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ABSTRACT 
 

Smart Contracts are the critical most popular in the Dapps Blockchain network. Smart contracts play a vital 
role in safety-critical products. The quality of the smart contract is a vital factor. Test cases are used to ensure 
the correctness of the smart contract code. The efficiency of the smart contract test suite is assessed using the 
mutation testing technique. The state-of-the-art tools for assessing test suite quality generate numerous 
mutants for execution. The test case generation-related state-of-the-art tools code and functional coverage 
require further research to provide better coverage. This article proposes a tool for performing automated 
mutation analysis (AMAT) for smart contracts in which the test cases are generated using the proposed 
enhanced GA used for the mutation analysis. The mutation testing utilizes the effective mutants obtained 
using a machine learning-based classification algorithm for reducing the number of mutants executed. The 
results show that the tool effectively generates optimized test cases with high branch and function coverage 
and achieves up to 98% mutation scores. 
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1. INTRODUCTION  

 Blockchain Technology was first introduced in 
the concept of Bitcoin [1]. Blockchain technology is 
maintained by peers where the transactions 
happening in a time are recorded and packed into a 
block, and a link is created to join the blockchain. It 
is a decentralised, traceable and tamper-free 
technology [2]. A smart contract is an event-driven 
code written in solidity programming language [3]. 
These smart contracts can be invoked by initiating a 
transaction with the peers in the blockchain. Once 
peers verify the transaction and it is a success, it’s 
recorded in the blockchain, indicating the end of 
execution of the smart contract. 

In blockchain DApps are used as blockchain has 
decentralised characteristics. There are four types of 
DApps based on their architecture as a DApp – 
Native Client, Smart Contract, Web and Contract, 
Fully Decentralized. Here consider DApp - Web and 
Contract, where more than 5000 DApps are 
available. There is an increase in transactions using 
CrowdFunding DApps. The Decentralized Finance 
DeFi are popular among the investment-related 
DApps. 

Smart contracts are codes or rules that operate on 
a blockchain and carry out the conditions of a deal 
or an agreement. They are used to streamline the 
exchange of digital assets between parties without 
the need for middlemen or trust. Smart contracts are 
binding and provable. Some network nodes, called 
miners, execute the smart contracts in the 
blockchain. Smart contracts have many applications 
in various domains, like security tokens, e-voting, 
land registration, education certificates, stock 
exchange, and supply chain management. Millions 
of dollars are handled through smart contracts; thus, 
any safety feature or conceptual flaw could result in 
significant financial losses. For instance, the 
Ethereum network suffered a loss of $150 million 
due to the infamous DAO assault [4]. Additionally, 
because smart contracts cannot be altered, potential 
problems cannot be fixed. Over '33000 insecure 
smart contracts on the Ethereum blockchain, 
containing about Ether 4900, according to Nikolic et 
al. [5], demonstrate the significance of precise 
verification of smart contracts. 

The smart contracts code verification plays a 
vital role in providing a quality smart contract 
deployed in the blockchain network. To provide 
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quality smart contract testing, smart contracts are 
necessary, and this is done by writing test cases or 
test suites. Test cases are those required to confirm a 
feature or its working in software testing. Test cases 
are either written manually or it is generated 
automatically. Manual writing of test cases involves 
great effort from testers and consumes a lot of time. 
Hence, the automatic generation of test cases is 
focused. The automatic creation of test suites for 
smart contracts based on solidity is possible using a 
number of tools [11–14]. Fuzzing, artificial 
intelligence, and genetic algorithms are some of the 
techniques used in the tools cited above. The tools 
provide test cases which lack branch coverage and 
function coverage. There is a requirement for 
optimizing the test case generation to improve the 
quality of test cases. 

Mutation testing is an effective method for 
evaluating test suites of smart contracts that have 
attracted a lot of attention from researchers. The term 
mutation is defined as the small changes made in the 
source code to introduce the faults that reflect the 
real errors that commonly occur in coding. This 
version of code is called mutated source code. The 
mutated source code is executed against the test 
suite, and the results are analysed by the capability 
of a test suite to identify the mutated errors. If the 
mutants are identified by the test suite it's calculated 
as mutant killed else mutant is alive and is calculated 
as mutant survives. The mutation score determines 
the quality of the test suite. The most popular smart 
contract language used for developing smart 
contracts is solidity. There are tools for quality 
checking the solidity of smart contracts test suites 
[6],[8-10]. For Solidity smart contracts, these [6, 8-
10] tools perform mutation testing for the smart 
contract test suites and accesses the test suite quality. 
These tools have mutation operators proposed, that 
includes Mutation testing for Smart contracts MuSC 
[6], Deviant [8], and SuMo [10]. With the help of 
mutation testing, these works attempt to report the 
test suite's quality using mutation score, which 
involves generating a vast number of mutants and 
takes longer to get executed. The techniques used in 
[6,8-10] tools require further investigation to reduce 
the number of mutants generated or executed. 

Further, the execution of automatic test case 
generation requires an environmental setup different 
from the mutation testing tool. Both tools are 
executed on various platforms and consume time to 
set up the environment for each tool. This paper 
proposes AMAT tool for Automated Mutation 
Analysis to bridge the challenges faced in test suite 

generation and mutation testing as two different 
platforms. The main goal of this paper is to optimize 
the test case generation and test the quality of the test 
case generated using a single framework. The 
framework comprises three modules: one for 
generating a test suite, the second for a mutant 
engine, and a third to perform mutation testing based 
on the classified effective mutants to assess the test 
suite quality. 

First, a tool for the automated creation of test 
suites for Solidity smart contracts is developed. 
Secondly, a mutation testing tool is developed to 
examine the test suites generated. The two tools are 
integrated. The findings are fascinating from two 
perspectives. Firstly, demonstrates how the test 
cases are generated using the proposed enhanced 
GA. Secondly, assess the test suite's quality using a 
mutation testing tool, in which the mutants not killed 
by the test suite highlight the type of problems not 
identified by test cases. Also, this tool can be used to 
assess various available test suites for smart 
contracts. 

The rest of this article is organised as follows. The 
preliminary notions are briefly discussed in Section 
II. Section III introduces AMAT for automated 
mutation analysis for smart contract, and Section IV 
describes the experiment results in terms of the 
useful test cases that were produced and the 
assessment of the test suite’s quality. Section V 
contains concluding remarks. 

2. BACKGROUND 

The related works are selected from recent 
publications in reputed journals like IEEE 
Transactions, Springer, etc.; these were selected 
based on keyword searches like mutation testing 
tools for smart contracts, smart contract testing 
challenges and test case generation for smart 
contracts. The following sections discuss the 
techniques and limitations of tools for smart contract 
mutation testing and test case generation.  

2.1 Ethereum Smart Contracts 

The Ethereum Virtual Machine (EVM) is where 
Ethereum smart contracts are carried out and are 
created using solidity, a statically typed curly-braces 
programming language. Smart contracts are written 
codes implemented within a peer-to-peer network 
where no one has particular ownership over the 
execution, allowing anybody to implement tokens of 
value, ownership, voting, and other types of logic. It 
is required to utilise the most recent version of 
Solidity while deploying contracts. This is due to the 
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frequency with which breaking updates, new 
features, and bug fixes are introduced. The 
blockchain technology known as Ethereum was 
created specifically for creating and deploying smart 
contracts. The Ethereum framework works on a 
model based on accounts, where the people 
participating in the network are represented through 
their accounts. Every transaction that happens in the 
Ethereum blockchain can be represented as an 
interaction between an externally owned account 
and a contract account.  

Externally owned account - To execute 
transactions on Ethereum, users must first create an 
account. A unique private-public pair of keys is 
established for each account type. The private key 
allows the user to access the account's funds, 
whereas the public key is used to authenticate the 
account. Each External Owned Account can send 
transactions to other accounts of the same type and 
Contract Accounts. 

Contract Account – A Contract account is 
created due to deploying a smart contract on the 
Ethereum network. Other accounts can then 
communicate with this account via its linked 
address. A contract can execute transactions on its 
storage calls, and fire calls on other contracts as a 
reaction to a transaction. 

2.2 Mutation Testing 

Mutation testing is a highly effective technique 
used to assess and enhance the quality of a test suite. 
It works by introducing minor flaws into copies of 
the code's source, which helps ensure the accuracy 
of test data in detecting real flaws and identifying 
constraints in the implemented test suite. The 
ultimate goal of mutation testing is to deploy 
trustworthy code by replicating the majority of 
defects through the identification of a subset of 
simple faults that can be found in real-world 
programs. This approach is based on the assumption 
that by identifying these defects, we can better 
understand how to improve the overall quality of our 
code. 

Mutation testing creates mutants, slightly altered 
versions of the original code. A mutant has a minor 
difference from the original code that simulates a 
common programming mistake. The main element 
of mutation testing is mutation operators, which are 
rules for modifying the source code to produce a 
mutant.  

Mutation testing evaluates the test suite by 
running it on each mutant code and checking if the 
tests can find the inserted error. If the test suite 
identifies the mutant on a mutated code, the mutant 
is said to be killed; otherwise, it is marked as alive. 
The compiler can also discard some mutants. The 
mutant is referred to be stillborn if the mutation 
results in a compilation error. 

The Mutation Score (MuScore), or percentage of 
mutations eliminated by the test suite (EQ. (1)), is a 
measure of the test suite's suitability. The test suite 
can be improved iteratively by the developer until 
the Mutation Score satisfies the adequacy condition. 

𝑀𝑢𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 − 𝐿𝑖𝑣𝑒 𝑀𝑢𝑡𝑎𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
× 100 

     (1)  

However, the equivalent mutants must be 
identified and removed before computing the 
Mutation Score. A code with syntactic modifications 
that behaves exactly like the original code is called 
an equivalent mutant. Valid live mutants can be 
examined to gain valuable knowledge about the 
kinds of faults that standard testing cannot pick. 
Based on this feedback, the test suite can be 
improved, and missed instances during the test 
design process can be covered. 

Mutation analysis is a potent but expensive 
testing method. Large code bases and test suites can 
make a thorough mutation process expensive and 
time-consuming. Researchers and professionals 
have investigated effective cost-reduction strategies 
[15][16]. Typically, either the number of mutants or 
the amount of time required to run the program can 
be decreased to make mutation testing simpler [15]. 
The quality of the final test suite could be 
jeopardised if either technique is used carelessly. 
Mutant sampling, Mutant clustering, and selective 
mutants are some of the mutant reduction techniques 
followed. These techniques use a subset of mutants, 
selective operators alone are considered if these 
techniques are done properly, the small set can be as 
effective as the whole set of mutants. The cost of 
execution of a mutant code can be reduced by 
slacking the killing condition. The weak mutation 
approach doesn't involve running the complete 
program since it assumes that the mutant is 
destroyed whenever it deviates from the original 
code and changes its state. The test assessment is not 
as expected. 
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The articles [6,8-10] have proposed test suite 
assessment methods using mutation scores for smart 
contracts. These tools commonly use user-selected 
mutation operators specific to smart contracts. Based 
on the selected operators, generated the mutants and 
the mutated source code is used for execution against 
the test suite. This involves random sampling and 
selective mutants techniques for reducing the 
mutants. These does not satisfy the usage of effective 
mutants and requires further research in reducing the 
mutants and using the only the effective mutants. 
This motivated the further study of this research.  

The predictive mutation testing [23] predicts the 
mutation results without the mutants executions. 
Constructed a classification model with the features 
related to mutants and tests that predicts whether the 
mutant is killable or survivable. This model has been 
evaluated using projects written in JAVA language 
achieved small accuracy loss and 0.80 AUC score. 
The effectiveness of the model can be improved by 
using more test appropriate features than the 
categorical features and also to use large dataset. 

The other significant problem with mutation 
testing is the tester's need for manual labour. To 
enhance the test suite, each living mutant must be 
manually examined. Finding identical mutations, 
which is an impossible undertaking, comes at an 
additional cost. Selective mutation, HOMT (higher-
order mutation testing), and the TCE (Trivial 
Compiler Equivalence) [17] can all assist in 
resolving this issue. Nonetheless, the screening 
procedure requires human participation because no 
automated technique can remove all similar 
mutations. 

2.3 Automated Test Case Generation 

The creation of automated test cases for smart 
contracts similar to other software in software 
engineering using automated methods is a current 
field of study by many researchers.  

To overcome problems and build test suites, 
Driessen et al. [18] created an Automated Generator 
of Solidity Test Suites (AGSOLT). To gain greater 
branch coverage for smart contracts, the AGSOLT 
compared random and guided searches. However, 
whether this approach could yield reduced test cases 
for final test suites was unclear. 

Ji et al. [19] enhanced the Genetic Algorithm 
(GA) to improve its ability to locate global optima. 

Test cases for smart contracts built on solidity were 
created using the GA. The findings show that the 
algorithm reduced execution time while obtaining 
good coverage. The method, however, proved 
unsuitable for large-scale research and did not detect 
smart contract weaknesses. 

Olsthoorn et al. [20] created SynTest-Solidity, an 
automated test case production tool incorporating 
the fuzzing technique as a framework for smart 
contracts. The framework proved useful for testing 
solidity smart contracts using meta-heuristic search-
based algorithms. The method, however, was limited 
to the solidity programming language and did not 
include other languages such as TypeScript and 
JavaScript. The code coverage 70%, function 
coverage 91% and branch coverage 64% are 
achieved. The evaluation of the tool requires further 
research. 

To more efficiently generate test cases with 
excellent coverage for smart contract data flow 
testing, S. Ji et al. [21] describe an improved GA 
based test-case generating method. The method 
incorporates particle swarm optimisation theory into 
the genetic algorithm, which decreases the role of 
randomness in genetic operations and improves its 
capacity to locate global optima. More complex 
fitness functions should be designed to assess if test 
cases cover the same def-use pairs and to lead the 
search for appropriate test cases. 

The studies show continuous efforts to enhance 
smart contract automated test creation to improve 
coverage, lower execution time, and boost test 
generation effectiveness. However, the literature 
also reveals various areas for improvement, such as 
extending these methods to more programming 
languages and increasing their ability to find errors. 

Existing test case generation approaches still 
suffer from detecting vulnerabilities. Some 
encounter difficulties when faced with the 
distinctive elements of Solidity smart contracts, such 
as require statements. Coverage of code and branch 
still suffers from maximum coverage. The major 
challenge in using the mutation testing tool is the 
generation of numerous mutants. Random sampling 
and subset are the techniques used in existing tools 
for mutant reduction which suffers in selecting 
effective mutants in testing the quality of test suite. 
The issues mentioned above are addressed in this 
article. 
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3. PROBLEM STATEMENT 
 

Smart contracts have emerged as a crucial 
technological advancement, facilitating secure and 
decentralized functionalities across diverse fields 
such as banking, supply chain management, and 
governance. With these applications' increasing 
intricacy and significance, a corresponding need 
arises for thorough testing of smart contracts. The 
test case generated using a different tool has to be 
tested using the mutation testing tool which is 
executed on different platforms. There are no 
existing tools available for smart contracts which 
perform both test case generation and quality 
assessment using mutation testing in the same 
framework. The environmental setup for generating 
test cases and mutation testing takes time. All types 
of test suites cannot be executed by the available 
mutation testing tool as it is compatible with one type 
of test suite. The central challenge revolves around 
refining the construction of test suites for smart 
contracts, aiming to enhance coverage and efficiency 
while minimizing vulnerabilities and bugs. Quality 
assurance of the test suite generated for the smart 
contracts is challenging while using the available 
mutation testing tool.  

4. AUTOMATED MUTATION ANALYSIS 

TOOL (AMAT) 

This section provides the procedure to integrate 
the automatic test case generation tool with the 
mutation testing tool. The different construction 
processes are considered to generate higher code 
coverage, vulnerability detection and mutation 
analysis. Detailed descriptions are given in the 
following sections. 

4.1 Proposed Architecture 

The overall architecture of this paper is shown 
in Figure 1 which contains three modules. The user 
interface is provided to input the smart contracts for 
which the test suite is generated, and the test suite's 
quality is verified using the mutation testing 
technique. The test case generator uses various steps 
to generate test cases with better coverage using the 
proposed Genetic algorithm, and the mutation 
testing module constructed with the predictive 
model is used to assess the test suite quality.  

 

Figure 1: Architecture Diagram 

4.2 Generation of Test Case for Smart Contracts 

The test case generation follows the steps depicted 
in Figure 2.  

 

Figure 2: Automatic Test Case Generation 

1) The various smart contracts chosen from 
projects relevant to DeFi ecosystem are 
considered as initial contracts. 

2) To extract the information required for 
generating and executing the test cases parsing 
is done and Application Binary Interface (ABI) 
is constructed for the smart contract. 

3) To visualize the execution paths in the smart 
contract CFG(Control Flow Graph) is built. 

4) To represent the dependencies of various 
control elements in the smart contract, CDG 
(Control Dependency Graph) is constructed 
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using CFG. CDG helps in identifying 
inconsistencies and control dependent issues. 

5) Self-Adaptive learning Genetic Algorithm is 
proposed to ensure better coverage in branch, 
function and line of code. 

 
Algorithm 1: Pseudocode of Enhanced GA 

1) Start  
2) Initialization of Parameter  
3) Evaluation of fitness value fv 
4) while (fv <max_generation) 

  for (b = 1: 𝛲௦) 
              Selection of Mutation 
                Update the mut_strat using the equation 

𝐸𝑃ே = 𝐸𝑃ே
ᇱ (𝐸𝑃ଵ

ᇱ+. . . +𝐸𝑃ସ
ᇱ)⁄  

Update the speed and pos by selected 
mut_strat 
 if(new_pos of solution >current_pos of 
solution) 
    Update new_pos of solution  
 end if  
     if (new_pos of solution >global_best 
solution) 
       Update new_pos of solution 
     end if 
    if (new_pos of solution > prev_best 
solution) 
        Update new_pos of solution 
     end if 
end for 

      for (b = 1: 𝛲௦) 

            Update 𝛢𝑐𝑐ே 
      end for  

      if (fv 𝑚𝑜𝑑 𝐺𝑒𝑛௙ೡ
= 0) 

        for (N = 1: 4) 

Update 𝐸𝑃ேusing equation 𝐸𝑃ே
ᇱ =

(1 − ƞ)𝐸𝑃ே +
ƞ𝛢𝑐𝑐ே 𝐺𝑒𝑛௙ೡ

⁄ 𝐸𝑃ே =

𝐸𝑃ே
ᇱ (𝐸𝑃ଵ

ᇱ + ⋯ + 𝐸𝑃ସ
ᇱ)⁄  

                       Assign 𝛢𝑐𝑐ே = 0 
          end for  
       end if  

𝑓௩ = 𝑓௩ + 1 
              end while  

5) Test cases are generated  
6) Stop  
 

 

4.2.1 Algorithm explanation 

Due to applying some complex problems, the 
GA model is stuck in a local optima dilemma where 
the optimal solutions are impossible to reach. 
Therefore, Enhanced GA is used to minimize local 
optima and improve global search capabilities, 

increasing the diversity of solutions. The GA has the 
potential to learn on its own to increase robustness. 
The following tactics are part of the proposed GA 
model: 1) by adaptively modifying the algorithm 
parameters utilizing linear and non-linear techniques 
2) Develop various population plans 3) uses multiple 
populations rather than just one. 4) GA incorporates 
a bio-inspired mechanism 5) include mutation 
update techniques with the enhanced GA algorithm 
[22].  

4.3 Mutation Testing 

Mutation testing comprises the following steps as 
shown in Figure 3, 

1. The initial contract is mutated with the defined 
mutation operators to generate mutated code. 

2. The mutated contract is compiled for each 
mutant created. 

3. The Mutants are then classified using a random 
forest classifier as effective or ineffective based 
on killability. 

4. Testing is carried over each mutant against the 
test suite generated. Depending on the test 
results, the mutants can be killed or survived. 

5. The killed and total mutants generated are used 
to calculate the Mutation Score (1). 

6. The final mutation score for the test suite is 
reported as a test report. 

4.3.1 Classifier 
The classifier based on binary classification 

machine learning algorithm is used here to classify 
effective mutants that are effective based on killing 
capacity of the mutants. The machine learning 
algorithm contains various binary classification 
algorithms like SVM, Naïve bayes, Decision tree, 
Random Forest etc., The proposed model is built 
using random forest as it gives higher accuracy in 
classifying the mutants than other algorithms. The 
classifier model greatly reduces the time taken for 
executing the mutants.  

 
5. EXPERIMENTAL RESULTS 
5.1 Experimental Setup 

Experiment Environment: Conducted 
experiments in a computer system with Intel(R) 
Core(TM) i7-1260P   2.10 GHz, 16.00GB RAM, and 
Windows 11. Python is used to build the model for 
GA, truffle and ganache is used to execute the 
Solidity smart contracts. 
 
5.2 Evaluation 

The tool is evaluated for the performance of the 
proposed approach using several metrics: average 
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code coverage rate, path uniqueness rate, execution 
rate, false positive rate, false negative rate, test case 
generation time, precision, recall and mutation score. 
 
1. Number of test cases (TCn): 

Test cases describe actions needed to validate 
specific functions during software testing. Each test 
case includes inputs and expected outputs for 
verifying the actual program output. The Wilcoxon 
rank-sum test assesses the significance of the 
number of several test cases. During program 
testing, the number of test cases achieved by one 
algorithm may differ from that of other algorithms, 
either greater or smaller. TCn is calculated using eq 
2 

𝑇𝐶௡ = 𝐹𝑃௡ × 1 ⋅ 2  (2) 
Where FPn is the number of functional points. 
 
2. Average code coverage (AC): 

Code coverage serves as a metric for gauging 
the extent to which the source code has been tested 
while assessing the test suites’ effectiveness. This 
metric quantifies the proportion of code within the 
application exercised by the generated test cases, 
with a higher value indicating more comprehensive 
coverage and better-quality testing. AC is evaluated 
based on equation (3) as,  

   𝐴𝐶 =
௡೐ೣ೐

்஼೙
× 100                     (3) 

where Nexe is depicted as the number of lines 
executed, and TCn is denoted as the total number of 
generated test cases. 

     
3. Path uniqueness rate (PR): 

This assessment encompasses the distinct 
execution paths traversed by the generated test cases, 
indicating the evaluation of the rate of path 
uniqueness. This uniqueness rate is determined by 
calculating the ratio of the count of unique execution 
paths (Nu) to the total number of test cases generated 
TCn. PR is calculated using eq (4). 

𝑃𝑅 =
ேೠ

்஼೙
× 100   (4) 

4. Test case generation time (TGT): 
The duration required for generating test cases 

for smart contracts is called test case generation 
time, with a shorter duration reflecting superior 
performance. 

 
5. False positive rate (FPr): 

The false positive rate is a metric that 
erroneously categorises a secure execution path as 
vulnerable. A false positive (FP) refers to those 
execution paths that are inaccurately identified as 
vulnerable, whereas true negatives (TN) indicate 

accurately identifying the safest execution paths. 
The FPr is computed by,  

 
 

 

 
Figure 3: Experimental Process-Mutation Testing 

 
 

𝐹𝑃𝑟 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (5) 

 
6. False negative rate (FNr): 
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When an insecure execution path is incorrectly 
labelled as secure, it is referred to as the false 
negative rate. This rate is calculated using the 
equation provided below,  

𝐹𝑁𝑟 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
                               (6) 

From the above-mentioned equation, the terms FN 
and TP are represented as false negative and true 
positive values.  
7. Precision (PV): 

This metric gauge the ratio of identified 
vulnerabilities that are indeed genuine. True positive 
values accurately forecast the vulnerable execution 
paths. Precision values are assessed using the 
equation provided below: 

 

𝑃𝑣 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (7) 

 
8. Recall (Rr): 

This measures the proportion of actual 
vulnerabilities correctly detected by the test cases. 
Higher values indicate that the test cases are 
effective at detecting vulnerabilities. The recall rate 
is determined by, 
 

𝑅𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                    (8) 

 
9. Mutants Generated: 

The total number of mutants generated using the 
mutation operators. 

 
10. Mutants Killed: 

Killed mutants are the total number of injected 
mutants or flaws identified by the test suite. 

 
11. Mutation Score: 

The ratio of number of mutants killed to the total 
number of mutants generated gives the mutation 
score. A mutation score reaching 100% implies that 
the test suite quality is good, while less than 100 % 
tells test suite requires improvement.  

𝑀𝑢𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 − 𝐿𝑖𝑣𝑒 𝑀𝑢𝑡𝑎𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
× 100 

                                                                              (1) 
5.3 Results 
 This section provides a discussion of the 
experimental results. Table 1 provides the results of 
the testing tool. For each smart contract, the table 
shows the total number of mutants generated, the 
number of mutants killed, and the Mutation Score for 
both the existing and proposed tools. The results, in 

comparison with the existing and proposed tool, can 
be discussed regarding test case generation metrics 
like average code coverage, execution time, recall, 
precision, number of mutants generated, mutants 
killed and mutation score obtained. 
 

 
Figure 4: Average Code Coverage 

Figure 4 analyses the average code 
coverage rate based on the quantity of generated test 
cases. The proposed technique, GA, Improved GA, 
and aDynaMOSA, are among the several test case-
generating methods included in the comparative 
study. A higher code coverage rate indicates a 
greater possibility of identifying coding faults and 
ensuring proper application behaviour. The average 
code coverage rate is assessed by determining the 
areas of the code that are not covered by the created 
test cases. The average code coverage rate and the 
amount of generated test cases tend to rise. The 
proposed test case generation model had the highest 
average code coverage rate of all the approaches 
tested. In particular, the suggested strategy achieved 
an average code coverage at the 10,000th test case. 
This shows that the suggested method effectively 
covers a substantial amount of the code, improving 
the identification of potential programming 
problems. The findings demonstrate the suggested 
test case generation model's superior performance in 
reaching a high average code coverage rate 
compared to the other approaches considered during 
the analysis. 

The analysis of execution time based on the 
quantity of generated test cases is shown in Figure 5. 
The suggested self-adaptive learning GA approach, 
aDynaMOSA, GA, and Improved GA are all 
included in the comparison. The amount of time 
needed to generate each test case is called execution 
time. Particularly for smart contracts, the execution  
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Table 1:  AMA Tool Results – Mutation Testing

AUTOMATED MUTATION ANALYSIS TOOL 

Smart Contract 

No. of Mutants 
Generated 

No. of Mutants Killed Mutation Score 

Existing Proposed Existing   Proposed  
Existing 
% 

Proposed 
% 

Core_Fi_V3 858 515 458 455 53.38 88.38 

INS 1819 1091 978 968 53.77 88.69 

Rootkit_finance 1024 614 505 567 49.32 92.29 

Straight_Fire_Finance 853 512 378 412 44.31 80.50 

ThriftToken 1374 824 574 735 41.78 89.16 

WOLF 2190 1314 1098 1190 50.14 90.56 

Migrations 117 70 69 62 58.97 88.32 

HelloEthSalon 51 31 29 28 56.86 91.50 

hashforether 77 46 44 44 57.14 95.24 

origin 269 161 112 145 41.64 89.84 

rubixi 1371 823 478 792 34.87 96.28 

timelock 191 115 99 98 51.83 85.51 

IdentityManager 872 523 369 505 42.32 96.52 

LotteryMultipleWinners 598 359 356 335 59.53 93.37 

MultiSigWallet 1021 613 694 560 67.97 91.41 

Identity 994 596 385 545 38.73 91.38 

time tends to increase along with the amount of 
generated test cases. According to the analysis, the 
proposed self-adaptive learning GA model runs 
faster than alternative techniques for creating test 
cases. The proposed model specifically obtained an 
execution time of 20 seconds at the 2000th test case 
and a duration of 104 seconds for the 10000th test 
case. This shows how effective the suggested 
method is at producing test cases. 

In Figure 6, the evaluation of the recall rate 
depending on the quantity of generated test cases is 
shown. Different methodologies are compared, 
including GA, aDynaMOSA, Improved GA, and the 
proposed method. The recall metric gauges how well 
the models perform to accurately identify 
vulnerabilities. The data shows that the recall rate 
improves for all approaches as the number of test 
cases generated rises. This suggests that the models 
are better able to identify vulnerabilities with a larger 
amount of test scenarios correctly.  

 
 
 

 
 
 

Figure 5  Execution Time 
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Figure 6 Recall comparison 

The proposed self-adaptive learning GA 
strategy outperforms the other methods among all 
those assessed regarding recall rate. The proposed 
method specifically obtains a recall rate of 85% at 
test case 2000 and a recall rate of 98.2% at test case 
16000. These findings demonstrate how well the 
suggested self-adaptive learning GA technique 
accurately identifies vulnerabilities. The suggested 
method's higher recall rates show that it can identify 
more vulnerabilities, improving the system's overall 
security. 

 

 
Figure 7 Precision 

Figure 7 shows the study of the precision 
rate dependent on the number of test cases produced. 
Precision provides more dependable and precise 
results by measuring how closely the generated 
results resemble the original values. Compared to 
previous comparison approaches, the study shows 
that the suggested test-case-generating process 
provides a greater precision rate. In particular, the 
precision rates for GA, aDynaMOSA, Improved GA, 
and the suggested approach are 92%, 92.8%, 91%, 
and 98%, respectively, at the 16000th test instance. 
These results show that the suggested test case 
generation approach outperforms the other methods 
taken into account in the analysis regarding the 
precision of results.  

 
The classifer used in the predictive model helps 

in reducing the number of mutants for execution. 
The figure 8 shows the classification report for 
classifying the effective mutants. Various binary 
classification is used for the comparison of the 
performance of the classifier. Random Forest 
provides accurate results and thus used in the 
proposed method. 

 

 
Figure 8 Classification Report 
 
The accuracy obtained by the model for 

various binary classification algorithms are given in 
the figure 9. Based on the accuracy obtained random 
forest is chosen for the model in AMA tool. 

 
Figure 9 Classifier’s Accuracy 

 
The analysis based on the number of mutants 

generated for the smart contracts under study is 
shown in Figure 10. The proposed technique is 
compared with one of the existing mutation testing 
tools. Based on the number of lines of code and 
operators available in the smart contract, the 
mutation operators are used to generate mutants. 

The number of mutants generated plays a vital 
role in the performance of the mutation testing tool. 
The more mutants, the execution time for each 
mutant increases. The analysis shows that the 
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proposed technique considers fewer mutants for 
execution than the existing method. The reduction of 
mutants is based on the effective mutant 
classification, which is the new concept introduced 
into the mutation testing of smart contracts instead 
of using random sampling and clustering. This helps 
in reducing the time taken to execute the mutants.  

 
Figure 10: Number of Mutants Generated 

 
The mutants killed count assesses the test suite 

quality. The test suite must be able to identify the 
mutants in the mutated source code. Once it 
identifies the flaw, it said as mutant is killed. The 
number of mutants killed is calculated based on 
number of mutants executed. The analysis between 
the existing and proposed techniques in terms of the 
number of mutants killed for the various smart 
contracts under study is shown in Figure 11. The 
analysis shows that the test suite generated using the 
proposed self-adaptive GA is capable of identifying 
the mutants. The number of mutants killed is 
increased with the proposed tool when compared 
with the existing one, shows the effectiveness of the 
test suite generated.  

 

 
Figure 11: Number of Mutants Killed 

The test suite quality is assessed using the 
mutation score calculated using the formula given in 
equation (1). The ratio between the number of 
mutants killed to the total mutants generated. The 
mutation score is the metric that reveals the test suite 
quality. The higher the mutation score better the 
quality of the test suite. Lower the mutation score 
insist the improvement in the test suite generated. 
The proposed integrated tool with the test suite 

generation using the self-adaptive GA and machine 
learning-based mutation testing shows that the 
mutation score achieved is better than the existing 
method is shown in figure 12. The analysis is based 
on the various smart contracts and the mutation score 
achieved for each smart contract.  

 

 
 

Figure 12: Mutation Score 
 

6. CONCLUSION 
The difficulties with autonomous test case 

development and mutation testing in smart contracts 
are discussed in this article. Proposed a 
comprehensive mutation analysis method to address 
the issues. The proposed tool's performance is 
assessed using various measures, including average 
code coverage, execution time, false positive and 
false negative rates, recall, precision, and mutation 
score. Other approaches, like GA, aDynaMOSA, 
Improved GA, and SuMo, are used for the 
comparative analysis. The experimental research 
showed that the suggested tool performed better in 
terms of code coverage, branch coverage in terms of 
test case generation and reduced number of mutants 
in mutation testing for smart contracts. The tool 
achieved average code coverage rates of 98%, 98.1% 
recall, 98.4% precision, and 96% mutation score. 
The developed AMA tool is hence useful in testing 
the smart contract by generating the test cases 
automatically and assessing quality of the test cases 
by using mutation score within the same framework. 
This reduces the time involved in experimental setup 
of two different tools for generating the test cases 
and assessing the quality.   

In future planning, the proposed integrated tool 
will be applied to a wider collection of commercial 
smart contracts. Additionally, in order to improve 
the efficiency and performance of the test case-
generating process, it is intended to investigate 
parameterisation with other search techniques. To 
enhance the automation, dependability, and 
effectiveness of testing smart contracts in multiple 
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sectors by broadening the scope and introducing new 
algorithms. 
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