
Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6931

AUTOMATED MUTATION ANALYSIS FOR SMART
CONTRACT USING AMA TOOL WITH ENHANCED GA AND

MACHINE LEARNING APPROACH

R SUJEETHA1, K AKILA2
1,2 Department of Computer Science and Engineering, College of Engineering and Technology, SRM

Institute of Science and Technology, Vadapalani Campus, Vadapalani, Tamil Nadu, India.

E-mail: 1sr7092@srmist.edu.in, 2akilak@srmist.edu.in

ABSTRACT

Smart Contracts are the critical most popular in the Dapps Blockchain network. Smart contracts play a vital
role in safety-critical products. The quality of the smart contract is a vital factor. Test cases are used to ensure
the correctness of the smart contract code. The efficiency of the smart contract test suite is assessed using the
mutation testing technique. The state-of-the-art tools for assessing test suite quality generate numerous
mutants for execution. The test case generation-related state-of-the-art tools code and functional coverage
require further research to provide better coverage. This article proposes a tool for performing automated
mutation analysis (AMAT) for smart contracts in which the test cases are generated using the proposed
enhanced GA used for the mutation analysis. The mutation testing utilizes the effective mutants obtained
using a machine learning-based classification algorithm for reducing the number of mutants executed. The
results show that the tool effectively generates optimized test cases with high branch and function coverage
and achieves up to 98% mutation scores.

Keywords: Test Case, Genetic Algorithm, Mutation Testing, Classification

1. INTRODUCTION

 Blockchain Technology was first introduced in
the concept of Bitcoin [1]. Blockchain technology is
maintained by peers where the transactions
happening in a time are recorded and packed into a
block, and a link is created to join the blockchain. It
is a decentralised, traceable and tamper-free
technology [2]. A smart contract is an event-driven
code written in solidity programming language [3].
These smart contracts can be invoked by initiating a
transaction with the peers in the blockchain. Once
peers verify the transaction and it is a success, it’s
recorded in the blockchain, indicating the end of
execution of the smart contract.

In blockchain DApps are used as blockchain has
decentralised characteristics. There are four types of
DApps based on their architecture as a DApp –
Native Client, Smart Contract, Web and Contract,
Fully Decentralized. Here consider DApp - Web and
Contract, where more than 5000 DApps are
available. There is an increase in transactions using
CrowdFunding DApps. The Decentralized Finance
DeFi are popular among the investment-related
DApps.

Smart contracts are codes or rules that operate on
a blockchain and carry out the conditions of a deal
or an agreement. They are used to streamline the
exchange of digital assets between parties without
the need for middlemen or trust. Smart contracts are
binding and provable. Some network nodes, called
miners, execute the smart contracts in the
blockchain. Smart contracts have many applications
in various domains, like security tokens, e-voting,
land registration, education certificates, stock
exchange, and supply chain management. Millions
of dollars are handled through smart contracts; thus,
any safety feature or conceptual flaw could result in
significant financial losses. For instance, the
Ethereum network suffered a loss of $150 million
due to the infamous DAO assault [4]. Additionally,
because smart contracts cannot be altered, potential
problems cannot be fixed. Over '33000 insecure
smart contracts on the Ethereum blockchain,
containing about Ether 4900, according to Nikolic et
al. [5], demonstrate the significance of precise
verification of smart contracts.

The smart contracts code verification plays a
vital role in providing a quality smart contract
deployed in the blockchain network. To provide

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6932

quality smart contract testing, smart contracts are
necessary, and this is done by writing test cases or
test suites. Test cases are those required to confirm a
feature or its working in software testing. Test cases
are either written manually or it is generated
automatically. Manual writing of test cases involves
great effort from testers and consumes a lot of time.
Hence, the automatic generation of test cases is
focused. The automatic creation of test suites for
smart contracts based on solidity is possible using a
number of tools [11–14]. Fuzzing, artificial
intelligence, and genetic algorithms are some of the
techniques used in the tools cited above. The tools
provide test cases which lack branch coverage and
function coverage. There is a requirement for
optimizing the test case generation to improve the
quality of test cases.

Mutation testing is an effective method for
evaluating test suites of smart contracts that have
attracted a lot of attention from researchers. The term
mutation is defined as the small changes made in the
source code to introduce the faults that reflect the
real errors that commonly occur in coding. This
version of code is called mutated source code. The
mutated source code is executed against the test
suite, and the results are analysed by the capability
of a test suite to identify the mutated errors. If the
mutants are identified by the test suite it's calculated
as mutant killed else mutant is alive and is calculated
as mutant survives. The mutation score determines
the quality of the test suite. The most popular smart
contract language used for developing smart
contracts is solidity. There are tools for quality
checking the solidity of smart contracts test suites
[6],[8-10]. For Solidity smart contracts, these [6, 8-
10] tools perform mutation testing for the smart
contract test suites and accesses the test suite quality.
These tools have mutation operators proposed, that
includes Mutation testing for Smart contracts MuSC
[6], Deviant [8], and SuMo [10]. With the help of
mutation testing, these works attempt to report the
test suite's quality using mutation score, which
involves generating a vast number of mutants and
takes longer to get executed. The techniques used in
[6,8-10] tools require further investigation to reduce
the number of mutants generated or executed.

Further, the execution of automatic test case
generation requires an environmental setup different
from the mutation testing tool. Both tools are
executed on various platforms and consume time to
set up the environment for each tool. This paper
proposes AMAT tool for Automated Mutation
Analysis to bridge the challenges faced in test suite

generation and mutation testing as two different
platforms. The main goal of this paper is to optimize
the test case generation and test the quality of the test
case generated using a single framework. The
framework comprises three modules: one for
generating a test suite, the second for a mutant
engine, and a third to perform mutation testing based
on the classified effective mutants to assess the test
suite quality.

First, a tool for the automated creation of test
suites for Solidity smart contracts is developed.
Secondly, a mutation testing tool is developed to
examine the test suites generated. The two tools are
integrated. The findings are fascinating from two
perspectives. Firstly, demonstrates how the test
cases are generated using the proposed enhanced
GA. Secondly, assess the test suite's quality using a
mutation testing tool, in which the mutants not killed
by the test suite highlight the type of problems not
identified by test cases. Also, this tool can be used to
assess various available test suites for smart
contracts.

The rest of this article is organised as follows. The
preliminary notions are briefly discussed in Section
II. Section III introduces AMAT for automated
mutation analysis for smart contract, and Section IV
describes the experiment results in terms of the
useful test cases that were produced and the
assessment of the test suite’s quality. Section V
contains concluding remarks.

2. BACKGROUND

The related works are selected from recent
publications in reputed journals like IEEE
Transactions, Springer, etc.; these were selected
based on keyword searches like mutation testing
tools for smart contracts, smart contract testing
challenges and test case generation for smart
contracts. The following sections discuss the
techniques and limitations of tools for smart contract
mutation testing and test case generation.

2.1 Ethereum Smart Contracts

The Ethereum Virtual Machine (EVM) is where
Ethereum smart contracts are carried out and are
created using solidity, a statically typed curly-braces
programming language. Smart contracts are written
codes implemented within a peer-to-peer network
where no one has particular ownership over the
execution, allowing anybody to implement tokens of
value, ownership, voting, and other types of logic. It
is required to utilise the most recent version of
Solidity while deploying contracts. This is due to the

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6933

frequency with which breaking updates, new
features, and bug fixes are introduced. The
blockchain technology known as Ethereum was
created specifically for creating and deploying smart
contracts. The Ethereum framework works on a
model based on accounts, where the people
participating in the network are represented through
their accounts. Every transaction that happens in the
Ethereum blockchain can be represented as an
interaction between an externally owned account
and a contract account.

Externally owned account - To execute
transactions on Ethereum, users must first create an
account. A unique private-public pair of keys is
established for each account type. The private key
allows the user to access the account's funds,
whereas the public key is used to authenticate the
account. Each External Owned Account can send
transactions to other accounts of the same type and
Contract Accounts.

Contract Account – A Contract account is
created due to deploying a smart contract on the
Ethereum network. Other accounts can then
communicate with this account via its linked
address. A contract can execute transactions on its
storage calls, and fire calls on other contracts as a
reaction to a transaction.

2.2 Mutation Testing

Mutation testing is a highly effective technique
used to assess and enhance the quality of a test suite.
It works by introducing minor flaws into copies of
the code's source, which helps ensure the accuracy
of test data in detecting real flaws and identifying
constraints in the implemented test suite. The
ultimate goal of mutation testing is to deploy
trustworthy code by replicating the majority of
defects through the identification of a subset of
simple faults that can be found in real-world
programs. This approach is based on the assumption
that by identifying these defects, we can better
understand how to improve the overall quality of our
code.

Mutation testing creates mutants, slightly altered
versions of the original code. A mutant has a minor
difference from the original code that simulates a
common programming mistake. The main element
of mutation testing is mutation operators, which are
rules for modifying the source code to produce a
mutant.

Mutation testing evaluates the test suite by
running it on each mutant code and checking if the
tests can find the inserted error. If the test suite
identifies the mutant on a mutated code, the mutant
is said to be killed; otherwise, it is marked as alive.
The compiler can also discard some mutants. The
mutant is referred to be stillborn if the mutation
results in a compilation error.

The Mutation Score (MuScore), or percentage of
mutations eliminated by the test suite (EQ. (1)), is a
measure of the test suite's suitability. The test suite
can be improved iteratively by the developer until
the Mutation Score satisfies the adequacy condition.

𝑀𝑢𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 − 𝐿𝑖𝑣𝑒 𝑀𝑢𝑡𝑎𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
× 100

 (1)

However, the equivalent mutants must be
identified and removed before computing the
Mutation Score. A code with syntactic modifications
that behaves exactly like the original code is called
an equivalent mutant. Valid live mutants can be
examined to gain valuable knowledge about the
kinds of faults that standard testing cannot pick.
Based on this feedback, the test suite can be
improved, and missed instances during the test
design process can be covered.

Mutation analysis is a potent but expensive
testing method. Large code bases and test suites can
make a thorough mutation process expensive and
time-consuming. Researchers and professionals
have investigated effective cost-reduction strategies
[15][16]. Typically, either the number of mutants or
the amount of time required to run the program can
be decreased to make mutation testing simpler [15].
The quality of the final test suite could be
jeopardised if either technique is used carelessly.
Mutant sampling, Mutant clustering, and selective
mutants are some of the mutant reduction techniques
followed. These techniques use a subset of mutants,
selective operators alone are considered if these
techniques are done properly, the small set can be as
effective as the whole set of mutants. The cost of
execution of a mutant code can be reduced by
slacking the killing condition. The weak mutation
approach doesn't involve running the complete
program since it assumes that the mutant is
destroyed whenever it deviates from the original
code and changes its state. The test assessment is not
as expected.

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6934

The articles [6,8-10] have proposed test suite
assessment methods using mutation scores for smart
contracts. These tools commonly use user-selected
mutation operators specific to smart contracts. Based
on the selected operators, generated the mutants and
the mutated source code is used for execution against
the test suite. This involves random sampling and
selective mutants techniques for reducing the
mutants. These does not satisfy the usage of effective
mutants and requires further research in reducing the
mutants and using the only the effective mutants.
This motivated the further study of this research.

The predictive mutation testing [23] predicts the
mutation results without the mutants executions.
Constructed a classification model with the features
related to mutants and tests that predicts whether the
mutant is killable or survivable. This model has been
evaluated using projects written in JAVA language
achieved small accuracy loss and 0.80 AUC score.
The effectiveness of the model can be improved by
using more test appropriate features than the
categorical features and also to use large dataset.

The other significant problem with mutation
testing is the tester's need for manual labour. To
enhance the test suite, each living mutant must be
manually examined. Finding identical mutations,
which is an impossible undertaking, comes at an
additional cost. Selective mutation, HOMT (higher-
order mutation testing), and the TCE (Trivial
Compiler Equivalence) [17] can all assist in
resolving this issue. Nonetheless, the screening
procedure requires human participation because no
automated technique can remove all similar
mutations.

2.3 Automated Test Case Generation

The creation of automated test cases for smart
contracts similar to other software in software
engineering using automated methods is a current
field of study by many researchers.

To overcome problems and build test suites,
Driessen et al. [18] created an Automated Generator
of Solidity Test Suites (AGSOLT). To gain greater
branch coverage for smart contracts, the AGSOLT
compared random and guided searches. However,
whether this approach could yield reduced test cases
for final test suites was unclear.

Ji et al. [19] enhanced the Genetic Algorithm
(GA) to improve its ability to locate global optima.

Test cases for smart contracts built on solidity were
created using the GA. The findings show that the
algorithm reduced execution time while obtaining
good coverage. The method, however, proved
unsuitable for large-scale research and did not detect
smart contract weaknesses.

Olsthoorn et al. [20] created SynTest-Solidity, an
automated test case production tool incorporating
the fuzzing technique as a framework for smart
contracts. The framework proved useful for testing
solidity smart contracts using meta-heuristic search-
based algorithms. The method, however, was limited
to the solidity programming language and did not
include other languages such as TypeScript and
JavaScript. The code coverage 70%, function
coverage 91% and branch coverage 64% are
achieved. The evaluation of the tool requires further
research.

To more efficiently generate test cases with
excellent coverage for smart contract data flow
testing, S. Ji et al. [21] describe an improved GA
based test-case generating method. The method
incorporates particle swarm optimisation theory into
the genetic algorithm, which decreases the role of
randomness in genetic operations and improves its
capacity to locate global optima. More complex
fitness functions should be designed to assess if test
cases cover the same def-use pairs and to lead the
search for appropriate test cases.

The studies show continuous efforts to enhance
smart contract automated test creation to improve
coverage, lower execution time, and boost test
generation effectiveness. However, the literature
also reveals various areas for improvement, such as
extending these methods to more programming
languages and increasing their ability to find errors.

Existing test case generation approaches still
suffer from detecting vulnerabilities. Some
encounter difficulties when faced with the
distinctive elements of Solidity smart contracts, such
as require statements. Coverage of code and branch
still suffers from maximum coverage. The major
challenge in using the mutation testing tool is the
generation of numerous mutants. Random sampling
and subset are the techniques used in existing tools
for mutant reduction which suffers in selecting
effective mutants in testing the quality of test suite.
The issues mentioned above are addressed in this
article.

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6935

3. PROBLEM STATEMENT

Smart contracts have emerged as a crucial
technological advancement, facilitating secure and
decentralized functionalities across diverse fields
such as banking, supply chain management, and
governance. With these applications' increasing
intricacy and significance, a corresponding need
arises for thorough testing of smart contracts. The
test case generated using a different tool has to be
tested using the mutation testing tool which is
executed on different platforms. There are no
existing tools available for smart contracts which
perform both test case generation and quality
assessment using mutation testing in the same
framework. The environmental setup for generating
test cases and mutation testing takes time. All types
of test suites cannot be executed by the available
mutation testing tool as it is compatible with one type
of test suite. The central challenge revolves around
refining the construction of test suites for smart
contracts, aiming to enhance coverage and efficiency
while minimizing vulnerabilities and bugs. Quality
assurance of the test suite generated for the smart
contracts is challenging while using the available
mutation testing tool.

4. AUTOMATED MUTATION ANALYSIS

TOOL (AMAT)

This section provides the procedure to integrate
the automatic test case generation tool with the
mutation testing tool. The different construction
processes are considered to generate higher code
coverage, vulnerability detection and mutation
analysis. Detailed descriptions are given in the
following sections.

4.1 Proposed Architecture

The overall architecture of this paper is shown
in Figure 1 which contains three modules. The user
interface is provided to input the smart contracts for
which the test suite is generated, and the test suite's
quality is verified using the mutation testing
technique. The test case generator uses various steps
to generate test cases with better coverage using the
proposed Genetic algorithm, and the mutation
testing module constructed with the predictive
model is used to assess the test suite quality.

Figure 1: Architecture Diagram

4.2 Generation of Test Case for Smart Contracts

The test case generation follows the steps depicted
in Figure 2.

Figure 2: Automatic Test Case Generation

1) The various smart contracts chosen from
projects relevant to DeFi ecosystem are
considered as initial contracts.

2) To extract the information required for
generating and executing the test cases parsing
is done and Application Binary Interface (ABI)
is constructed for the smart contract.

3) To visualize the execution paths in the smart
contract CFG(Control Flow Graph) is built.

4) To represent the dependencies of various
control elements in the smart contract, CDG
(Control Dependency Graph) is constructed

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6936

using CFG. CDG helps in identifying
inconsistencies and control dependent issues.

5) Self-Adaptive learning Genetic Algorithm is
proposed to ensure better coverage in branch,
function and line of code.

Algorithm 1: Pseudocode of Enhanced GA

1) Start
2) Initialization of Parameter
3) Evaluation of fitness value fv
4) while (fv <max_generation)

 for (b = 1: 𝛲௦)
 Selection of Mutation
 Update the mut_strat using the equation

𝐸𝑃ே = 𝐸𝑃ே
ᇱ (𝐸𝑃ଵ

ᇱ+. . . +𝐸𝑃ସ
ᇱ)⁄

Update the speed and pos by selected
mut_strat
 if(new_pos of solution >current_pos of
solution)
 Update new_pos of solution
 end if
 if (new_pos of solution >global_best
solution)
 Update new_pos of solution
 end if
 if (new_pos of solution > prev_best
solution)
 Update new_pos of solution
 end if
end for

 for (b = 1: 𝛲௦)

 Update 𝛢𝑐𝑐ே
 end for

 if (fv 𝑚𝑜𝑑 𝐺𝑒𝑛௙ೡ
= 0)

 for (N = 1: 4)

Update 𝐸𝑃ேusing equation 𝐸𝑃ே
ᇱ =

(1 − ƞ)𝐸𝑃ே +
ƞ𝛢𝑐𝑐ே 𝐺𝑒𝑛௙ೡ

⁄ 𝐸𝑃ே =

𝐸𝑃ே
ᇱ (𝐸𝑃ଵ

ᇱ + ⋯ + 𝐸𝑃ସ
ᇱ)⁄

 Assign 𝛢𝑐𝑐ே = 0
 end for
 end if

𝑓௩ = 𝑓௩ + 1
 end while

5) Test cases are generated
6) Stop

4.2.1 Algorithm explanation

Due to applying some complex problems, the
GA model is stuck in a local optima dilemma where
the optimal solutions are impossible to reach.
Therefore, Enhanced GA is used to minimize local
optima and improve global search capabilities,

increasing the diversity of solutions. The GA has the
potential to learn on its own to increase robustness.
The following tactics are part of the proposed GA
model: 1) by adaptively modifying the algorithm
parameters utilizing linear and non-linear techniques
2) Develop various population plans 3) uses multiple
populations rather than just one. 4) GA incorporates
a bio-inspired mechanism 5) include mutation
update techniques with the enhanced GA algorithm
[22].

4.3 Mutation Testing

Mutation testing comprises the following steps as
shown in Figure 3,

1. The initial contract is mutated with the defined
mutation operators to generate mutated code.

2. The mutated contract is compiled for each
mutant created.

3. The Mutants are then classified using a random
forest classifier as effective or ineffective based
on killability.

4. Testing is carried over each mutant against the
test suite generated. Depending on the test
results, the mutants can be killed or survived.

5. The killed and total mutants generated are used
to calculate the Mutation Score (1).

6. The final mutation score for the test suite is
reported as a test report.

4.3.1 Classifier
The classifier based on binary classification

machine learning algorithm is used here to classify
effective mutants that are effective based on killing
capacity of the mutants. The machine learning
algorithm contains various binary classification
algorithms like SVM, Naïve bayes, Decision tree,
Random Forest etc., The proposed model is built
using random forest as it gives higher accuracy in
classifying the mutants than other algorithms. The
classifier model greatly reduces the time taken for
executing the mutants.

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup

Experiment Environment: Conducted
experiments in a computer system with Intel(R)
Core(TM) i7-1260P 2.10 GHz, 16.00GB RAM, and
Windows 11. Python is used to build the model for
GA, truffle and ganache is used to execute the
Solidity smart contracts.

5.2 Evaluation

The tool is evaluated for the performance of the
proposed approach using several metrics: average

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6937

code coverage rate, path uniqueness rate, execution
rate, false positive rate, false negative rate, test case
generation time, precision, recall and mutation score.

1. Number of test cases (TCn):

Test cases describe actions needed to validate
specific functions during software testing. Each test
case includes inputs and expected outputs for
verifying the actual program output. The Wilcoxon
rank-sum test assesses the significance of the
number of several test cases. During program
testing, the number of test cases achieved by one
algorithm may differ from that of other algorithms,
either greater or smaller. TCn is calculated using eq
2

𝑇𝐶௡ = 𝐹𝑃௡ × 1 ⋅ 2 (2)
Where FPn is the number of functional points.

2. Average code coverage (AC):

Code coverage serves as a metric for gauging
the extent to which the source code has been tested
while assessing the test suites’ effectiveness. This
metric quantifies the proportion of code within the
application exercised by the generated test cases,
with a higher value indicating more comprehensive
coverage and better-quality testing. AC is evaluated
based on equation (3) as,

 𝐴𝐶 =
௡೐ೣ೐

்஼೙
× 100 (3)

where Nexe is depicted as the number of lines
executed, and TCn is denoted as the total number of
generated test cases.

3. Path uniqueness rate (PR):

This assessment encompasses the distinct
execution paths traversed by the generated test cases,
indicating the evaluation of the rate of path
uniqueness. This uniqueness rate is determined by
calculating the ratio of the count of unique execution
paths (Nu) to the total number of test cases generated
TCn. PR is calculated using eq (4).

𝑃𝑅 =
ேೠ

்஼೙
× 100 (4)

4. Test case generation time (TGT):
The duration required for generating test cases

for smart contracts is called test case generation
time, with a shorter duration reflecting superior
performance.

5. False positive rate (FPr):

The false positive rate is a metric that
erroneously categorises a secure execution path as
vulnerable. A false positive (FP) refers to those
execution paths that are inaccurately identified as
vulnerable, whereas true negatives (TN) indicate

accurately identifying the safest execution paths.
The FPr is computed by,

Figure 3: Experimental Process-Mutation Testing

𝐹𝑃𝑟 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (5)

6. False negative rate (FNr):

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6938

When an insecure execution path is incorrectly
labelled as secure, it is referred to as the false
negative rate. This rate is calculated using the
equation provided below,

𝐹𝑁𝑟 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (6)

From the above-mentioned equation, the terms FN
and TP are represented as false negative and true
positive values.
7. Precision (PV):

This metric gauge the ratio of identified
vulnerabilities that are indeed genuine. True positive
values accurately forecast the vulnerable execution
paths. Precision values are assessed using the
equation provided below:

𝑃𝑣 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7)

8. Recall (Rr):

This measures the proportion of actual
vulnerabilities correctly detected by the test cases.
Higher values indicate that the test cases are
effective at detecting vulnerabilities. The recall rate
is determined by,

𝑅𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8)

9. Mutants Generated:

The total number of mutants generated using the
mutation operators.

10. Mutants Killed:

Killed mutants are the total number of injected
mutants or flaws identified by the test suite.

11. Mutation Score:

The ratio of number of mutants killed to the total
number of mutants generated gives the mutation
score. A mutation score reaching 100% implies that
the test suite quality is good, while less than 100 %
tells test suite requires improvement.

𝑀𝑢𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 − 𝐿𝑖𝑣𝑒 𝑀𝑢𝑡𝑎𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
× 100

 (1)
5.3 Results
 This section provides a discussion of the
experimental results. Table 1 provides the results of
the testing tool. For each smart contract, the table
shows the total number of mutants generated, the
number of mutants killed, and the Mutation Score for
both the existing and proposed tools. The results, in

comparison with the existing and proposed tool, can
be discussed regarding test case generation metrics
like average code coverage, execution time, recall,
precision, number of mutants generated, mutants
killed and mutation score obtained.

Figure 4: Average Code Coverage

Figure 4 analyses the average code
coverage rate based on the quantity of generated test
cases. The proposed technique, GA, Improved GA,
and aDynaMOSA, are among the several test case-
generating methods included in the comparative
study. A higher code coverage rate indicates a
greater possibility of identifying coding faults and
ensuring proper application behaviour. The average
code coverage rate is assessed by determining the
areas of the code that are not covered by the created
test cases. The average code coverage rate and the
amount of generated test cases tend to rise. The
proposed test case generation model had the highest
average code coverage rate of all the approaches
tested. In particular, the suggested strategy achieved
an average code coverage at the 10,000th test case.
This shows that the suggested method effectively
covers a substantial amount of the code, improving
the identification of potential programming
problems. The findings demonstrate the suggested
test case generation model's superior performance in
reaching a high average code coverage rate
compared to the other approaches considered during
the analysis.

The analysis of execution time based on the
quantity of generated test cases is shown in Figure 5.
The suggested self-adaptive learning GA approach,
aDynaMOSA, GA, and Improved GA are all
included in the comparison. The amount of time
needed to generate each test case is called execution
time. Particularly for smart contracts, the execution

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6939

Table 1: AMA Tool Results – Mutation Testing

AUTOMATED MUTATION ANALYSIS TOOL

Smart Contract

No. of Mutants
Generated

No. of Mutants Killed Mutation Score

Existing Proposed Existing Proposed
Existing
%

Proposed
%

Core_Fi_V3 858 515 458 455 53.38 88.38

INS 1819 1091 978 968 53.77 88.69

Rootkit_finance 1024 614 505 567 49.32 92.29

Straight_Fire_Finance 853 512 378 412 44.31 80.50

ThriftToken 1374 824 574 735 41.78 89.16

WOLF 2190 1314 1098 1190 50.14 90.56

Migrations 117 70 69 62 58.97 88.32

HelloEthSalon 51 31 29 28 56.86 91.50

hashforether 77 46 44 44 57.14 95.24

origin 269 161 112 145 41.64 89.84

rubixi 1371 823 478 792 34.87 96.28

timelock 191 115 99 98 51.83 85.51

IdentityManager 872 523 369 505 42.32 96.52

LotteryMultipleWinners 598 359 356 335 59.53 93.37

MultiSigWallet 1021 613 694 560 67.97 91.41

Identity 994 596 385 545 38.73 91.38

time tends to increase along with the amount of
generated test cases. According to the analysis, the
proposed self-adaptive learning GA model runs
faster than alternative techniques for creating test
cases. The proposed model specifically obtained an
execution time of 20 seconds at the 2000th test case
and a duration of 104 seconds for the 10000th test
case. This shows how effective the suggested
method is at producing test cases.

In Figure 6, the evaluation of the recall rate
depending on the quantity of generated test cases is
shown. Different methodologies are compared,
including GA, aDynaMOSA, Improved GA, and the
proposed method. The recall metric gauges how well
the models perform to accurately identify
vulnerabilities. The data shows that the recall rate
improves for all approaches as the number of test
cases generated rises. This suggests that the models
are better able to identify vulnerabilities with a larger
amount of test scenarios correctly.

Figure 5 Execution Time

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6940

Figure 6 Recall comparison

The proposed self-adaptive learning GA
strategy outperforms the other methods among all
those assessed regarding recall rate. The proposed
method specifically obtains a recall rate of 85% at
test case 2000 and a recall rate of 98.2% at test case
16000. These findings demonstrate how well the
suggested self-adaptive learning GA technique
accurately identifies vulnerabilities. The suggested
method's higher recall rates show that it can identify
more vulnerabilities, improving the system's overall
security.

Figure 7 Precision

Figure 7 shows the study of the precision
rate dependent on the number of test cases produced.
Precision provides more dependable and precise
results by measuring how closely the generated
results resemble the original values. Compared to
previous comparison approaches, the study shows
that the suggested test-case-generating process
provides a greater precision rate. In particular, the
precision rates for GA, aDynaMOSA, Improved GA,
and the suggested approach are 92%, 92.8%, 91%,
and 98%, respectively, at the 16000th test instance.
These results show that the suggested test case
generation approach outperforms the other methods
taken into account in the analysis regarding the
precision of results.

The classifer used in the predictive model helps

in reducing the number of mutants for execution.
The figure 8 shows the classification report for
classifying the effective mutants. Various binary
classification is used for the comparison of the
performance of the classifier. Random Forest
provides accurate results and thus used in the
proposed method.

Figure 8 Classification Report

The accuracy obtained by the model for

various binary classification algorithms are given in
the figure 9. Based on the accuracy obtained random
forest is chosen for the model in AMA tool.

Figure 9 Classifier’s Accuracy

The analysis based on the number of mutants

generated for the smart contracts under study is
shown in Figure 10. The proposed technique is
compared with one of the existing mutation testing
tools. Based on the number of lines of code and
operators available in the smart contract, the
mutation operators are used to generate mutants.

The number of mutants generated plays a vital
role in the performance of the mutation testing tool.
The more mutants, the execution time for each
mutant increases. The analysis shows that the

0%
20%
40%
60%
80%

100%
120%

Ki
lle

d
Su

rv
iv

ed
Ki

lle
d

Su
rv

iv
ed

Ki
lle

d
Su

rv
iv

ed

PrecisionRecallF1-Score

Random
Forest

Support
Vector
Classifier

Naive Bayes

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6941

proposed technique considers fewer mutants for
execution than the existing method. The reduction of
mutants is based on the effective mutant
classification, which is the new concept introduced
into the mutation testing of smart contracts instead
of using random sampling and clustering. This helps
in reducing the time taken to execute the mutants.

Figure 10: Number of Mutants Generated

The mutants killed count assesses the test suite

quality. The test suite must be able to identify the
mutants in the mutated source code. Once it
identifies the flaw, it said as mutant is killed. The
number of mutants killed is calculated based on
number of mutants executed. The analysis between
the existing and proposed techniques in terms of the
number of mutants killed for the various smart
contracts under study is shown in Figure 11. The
analysis shows that the test suite generated using the
proposed self-adaptive GA is capable of identifying
the mutants. The number of mutants killed is
increased with the proposed tool when compared
with the existing one, shows the effectiveness of the
test suite generated.

Figure 11: Number of Mutants Killed

The test suite quality is assessed using the
mutation score calculated using the formula given in
equation (1). The ratio between the number of
mutants killed to the total mutants generated. The
mutation score is the metric that reveals the test suite
quality. The higher the mutation score better the
quality of the test suite. Lower the mutation score
insist the improvement in the test suite generated.
The proposed integrated tool with the test suite

generation using the self-adaptive GA and machine
learning-based mutation testing shows that the
mutation score achieved is better than the existing
method is shown in figure 12. The analysis is based
on the various smart contracts and the mutation score
achieved for each smart contract.

Figure 12: Mutation Score

6. CONCLUSION
The difficulties with autonomous test case

development and mutation testing in smart contracts
are discussed in this article. Proposed a
comprehensive mutation analysis method to address
the issues. The proposed tool's performance is
assessed using various measures, including average
code coverage, execution time, false positive and
false negative rates, recall, precision, and mutation
score. Other approaches, like GA, aDynaMOSA,
Improved GA, and SuMo, are used for the
comparative analysis. The experimental research
showed that the suggested tool performed better in
terms of code coverage, branch coverage in terms of
test case generation and reduced number of mutants
in mutation testing for smart contracts. The tool
achieved average code coverage rates of 98%, 98.1%
recall, 98.4% precision, and 96% mutation score.
The developed AMA tool is hence useful in testing
the smart contract by generating the test cases
automatically and assessing quality of the test cases
by using mutation score within the same framework.
This reduces the time involved in experimental setup
of two different tools for generating the test cases
and assessing the quality.

In future planning, the proposed integrated tool
will be applied to a wider collection of commercial
smart contracts. Additionally, in order to improve
the efficiency and performance of the test case-
generating process, it is intended to investigate
parameterisation with other search techniques. To
enhance the automation, dependability, and
effectiveness of testing smart contracts in multiple

Journal of Theoretical and Applied Information Technology

15th November 2023. Vol.101. No 21
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6942

sectors by broadening the scope and introducing new
algorithms.

REFERENCES:
[1] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic

Cash System, Apr. 2008, [online] Available:
https://bitcoin.org/bitcoin.pdf.

[2] Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, "An
overview of blockchain technology: Architecture
consensus and future trends", Proc. IEEE Int. Congr.
Big Data, pp. 557-564, 2017.

[3] N. Szabo, "The idea of smart contracts", Apr. 1997,
[online] Available: https://nakamotoinstitute.org/the-
idea-of-smart-contracts/.

[4] D. Siegel, Understanding the dao attack,
https://www.coindesk.com/ understanding-dao-hack-
journalists, [Online; accessed 18-Dec-2019].

[5] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, A. Hobor,
Finding the greedy, ´ prodigal, and suicidal contracts
at scale, in: Proceedings of the 34th Annual Computer
Security Applications Conference, ACM, 2018, pp.
653–663.

[6] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang and Z. Chen,
"MuSC: A Tool for Mutation Testing of Ethereum
Smart Contract," 2019 34th IEEE/ACM International
Conference on Automated Software Engineering
(ASE), 2019, pp. 1198-1201, doi:
10.1109/ASE.2019.00136

[7] Y.Ivanova A.Khritankov, “Regular Mutator: A
Mutation Testing Tool for Solidity Smart Contracts”,
2020, Science Direct, Procedia Computer Science,
Volume 178, Page No. 75-83.

[8] Chapman, Patrick, et al. "Deviant: A mutation testing
tool for solidity smart contracts." 2019 IEEE
International Conference on Blockchain
(Blockchain). IEEE, 2019.

[9] Honig J.J., Everts M.H., Huisman M. “Practical
Mutation Testing for Smart Contracts”,2019. In:
Pérez-Solà C., Navarro-Arribas G., Biryukov A.,
Garcia-Alfaro J. (eds) Data Privacy Management,
Cryptocurrencies and Blockchain Technology. DPM
2019, CBT 2019. Lecture Notes in Computer
Science, vol 11737. Springer, Cham.
https://doi.org/10.1007/978-3-030-31500-9_19

[10] Barboni, Morena, Andrea Morichetta, and Andrea
Polini. "SuMo: A mutation testing approach and tool
for the Ethereum blockchain." Journal of Systems and
Software 193 (2022): 111445.

[11] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce,
G. Grieco, J. Feist, T. Brunson, A. Dinaburg,
Manticore: A User-Friendly Symbolic Excecution
Framework for Binaries and Smart Contracts, arXiv
preprint arXiv:1907.03890v3.

[12] V. Wustholz, M. Christakis, HARVEY: A Greybox
Fuzzer for Smart Monsieur ¨ Contracts, arXiv
preprint arXiv:1905.06944v1.

[13] S. So, S. Hong, H. Oh, SmarTest: Effectively Hunting
Vulnerable Transaction Sequences in Smart
Contracts through Language Model-Guided
Symbolic Execution (2021). URL
http://prl.korea.ac.kr/smartest

[14] S. W. Driessen, D. D. Nucci, G., D. A. Tamburri, W.-
J. Van Den Heuvel, Automated Test-Case Generation
for Solidity Smart Contracts: the AGSolT Approach
and its Evaluation, arXiv preprint
arXiv:2102.08864v2

[15] Y. Jia and M. Harman, "An Analysis and Survey of
the Development of Mutation Testing," in IEEE
Transactions on Software Engineering, vol. 37, no. 5,
pp. 649-678, Sept.-Oct. 2011, doi:
10.1109/TSE.2010.62.

[16] Zhang, Lu, et al. "Is operator-based mutant selection
superior to random mutant selection?." Proceedings
of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1. 2010.

[17] Papadakis, Mike, et al. "Trivial compiler
equivalence: A large scale empirical study of a
simple, fast and effective equivalent mutant detection
technique." 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering.
Vol. 1. IEEE, 2015.

[18] Driessen, S., Di Nucci, D., Monsieur, G., Tamburri,
D.A. and Heuvel, W.J.V.D., 2021. Automated test-
case generation for solidity smart contracts: the agsolt
approach and its evaluation. arXiv preprint
arXiv:2102.08864.

[19] Ji, S., Zhu, S., Zhang, P., Dong, H. and Yu, J., 2022.
Test-Case Generation for Data Flow Testing of Smart
Contracts Based on Improved Genetic
Algorithm. IEEE Transactions on Reliability.

[20] Olsthoorn, M., Stallenberg, D., Van Deursen, A. and
Panichella, A., 2022, May. SynTest-solidity:
automated test case generation and fuzzing for smart
contracts. In Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering:
Companion Proceedings (pp. 202-206).

[21] S. Ji, S. Zhu, P. Zhang, H. Dong and J. Yu, "Test-
Case Generation for Data Flow Testing of Smart
Contracts Based on Improved Genetic Algorithm," in
IEEE Transactions on Reliability, vol. 72, no. 1, pp.
358-371, March 2023, doi:
10.1109/TR.2022.3173025.

[22] Tan, Z., Tang, Y., Huang, H. and Luo, S., 2022.
Dynamic fitness landscape-based adaptive mutation
strategy selection mechanism for differential
evolution. Information Sciences, 607, pp.44-61

[23] Zhang, Jie, et al. "Predictive mutation testing."
Proceedings of the 25th International Symposium on
Software Testing and Analysis. 2016.

