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ABSTRACT 

 

The stock market is a complex and dynamic financial ecosystem where investors buy and sell securities. 
Various factors influence it, including economic indicators, geopolitical events, and social sentiment. Twitter 
has become a significant source of real-time information for traders and investors. Stock tweets are short 
messages posted on Twitter that discuss stocks, providing insights, opinions, and predictions. Analyzing 
these tweets can help gauge market sentiment and anticipate price movements. The classification of stock 
tweets involves categorizing them as positive, negative, or neutral based on sentiment. This sentiment 
analysis aids in understanding investor sentiment and predicting market trends. The Elite Artificial Bee 
Colony Optimization-Based Synergy Random Forest (EABC-SRF) is an innovative algorithm to enhance 
sentiment analysis. It combines the power of Artificial Bee Colony Optimization (ABC) and Synergy 
Random Forest (SRF) to optimize feature selection and sentiment classification. EABC-SRF uses elite 
artificial bees to select the most relevant features for sentiment analysis. It then integrates these features into 
the SRF framework to classify tweets effectively, reducing ambiguity and noise. The “Stock Tweets for 
Sentiment Analysis and Prediction” dataset is the foundation for training and testing EABC-SRF. It contains 
a vast collection of stock-related tweets for model development and evaluation. Results from experiments 
with EABC-SRF demonstrate its superior performance in sentiment analysis compared to traditional 
methods. It disentangles the ambiguity in stock tweets, providing valuable insights for investors and traders 
in predicting market sentiment and trends. 
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1. INTRODUCTION 

Sentiment analysis, often called opinion 
mining, is a dynamic field in natural language 
processing that involves assessing and deciphering 
the emotional tone of textual content [1]. It 
empowers businesses, researchers, and individuals 
to gauge public sentiment toward a particular topic, 
product, or service, whether positive, negative, or 
neutral. Using machine learning algorithms and 
linguistic analysis, sentiment analysis extracts 
valuable insights from social media posts, customer 
reviews, and news articles. These insights aid 
decision-making, brand management, and customer 
satisfaction [2], [3]. 

  

Stock Tweets, known for their brevity, 
provide a unique lens into stock trading and 

investment. These concise messages, typically 
confined to 280 characters, are prevalent on platforms 
like Twitter and offer real-time insights, opinions, and 
reactions from traders and investors. One of the 
critical advantages of Stock Tweets is their ability to 
swiftly disseminate information about market events 
[3]. This immediacy makes them a valuable resource 
for market participants looking to stay up-to-date with 
breaking news, earnings reports, and notable stock 
movements. Moreover, the concise format encourages 
users to distil complex financial ideas into easily 
digestible snippets, making them accessible to a 
broader audience. The brevity of Stock Tweets can 
also pose challenges. It often leads to 
oversimplification, where critical nuances may be 
overlooked [4]. Therefore, while they offer a valuable 
glimpse into market sentiment, investors must 
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conduct comprehensive research and due diligence 
before making trading decisions based solely on 
these tweets. Stock Tweets are a rapid, dynamic, and 
influential component of the modern financial 
landscape, offering opportunities and pitfalls to 
those who engage with them [5]. 

  

Twitter, a microblogging platform, has 
become a treasure trove of real-time data for 
sentiment analysis. With millions of tweets posted 
daily on various topics, it is a valuable resource for 
understanding public sentiment [6], [7]. Sentiment 
analysis on Twitter involves using natural language 
processing (NLP) techniques to classify tweets as 
positive, negative, or neutral based on the emotions 
expressed within the text. This analysis can provide 
several insights: 

 Brand Monitoring: Companies can track 
mentions of their brands and products on 
Twitter to gauge customer sentiment. This 
helps in understanding public perception 
and addressing issues promptly. 

 Political Analysis: Sentiment analysis on 
political tweets during elections or key 
events can provide valuable information 
about voter sentiment and potential 
outcomes. 

 Crisis Management: During natural 
disasters or public health emergencies, 
sentiment analysis can help authorities 
monitor public sentiment to take timely 
actions and respond to concerns. 

 Customer Feedback: Businesses can 
gather feedback from customer tweets, 
allowing them to improve their products 
and services. 

 Market Research: Twitter sentiment 
analysis can inform market research by 
identifying trends, preferences, and 
emerging industry topics. 

Analyzing sentiment on Twitter comes with 
challenges like sarcasm, context, and brevity. 
Researchers and analysts continually refine NLP 
models to tackle these challenges and extract 
meaningful insights from the vast sea of tweets, 
making Twitter a valuable source for sentiment 
analysis in today’s digital landscape. 

  

Bio-inspired optimization, a field rooted in 
mimicking natural processes and principles, draws 
inspiration from the complexity and efficiency of 
biological systems to solve complex problems. 

Instead of focusing on specific algorithms, bio-
inspired optimization harnesses the underlying 
concepts found in nature to tackle various 
computational challenges [8]. One fundamental 
aspect of bio-inspired optimization is its ability to 
adapt and evolve. Nature demonstrates this through 
evolution, where species adapt to changing 
environments over time. Similarly, bio-inspired 
optimization methods are designed to adapt their 
strategies or parameters to find optimal solutions in 
dynamic or uncertain problem domains [9] . 

Decentralization is another critical principle 
in biological systems because complex behaviours 
often emerge from the interactions of individual 
components, such as cells or ants in a colony[10]. 
This decentralized approach is mirrored in bio-
inspired optimization, where a population of solutions 
collaboratively explores the solution space, allowing 
for a distributed search that can efficiently navigate 
complex landscapes. Bio-inspired optimization can 
explore diverse solution spaces akin to genetic 
diversity in species. This diversity allows it to avoid 
getting trapped in local optima and instead seek global 
optima, ensuring better overall solutions to complex 
problems. Significant advantages of bio-inspired 
optimization in sentiment classification on Twitter are 
[11]: 

 Adaptability: Twitter data is dynamic and 
constantly evolving, with shifts in language 
and sentiment trends. Bio-inspired 
optimization can adapt to these changes 
quickly, ensuring the sentiment 
classification model remains effective. 

 Distributed Processing: Twitter generates 
vast amounts of data from diverse sources 
and languages. Bio-inspired optimization’s 
decentralized approach can efficiently 
handle this distributed data, making it well-
suited for sentiment analysis on Twitter. 

 Global Optimization: Sentiment analysis 
requires a nuanced understanding of 
evolving language expressions. Bio-inspired 
optimization’s ability to explore diverse 
solution spaces can help find the best model 
configurations for accurate sentiment 
classification. 

 Bio-inspired optimization’s [12], [13], [22]–
[26], [14]–[21] adaptability, decentralized processing, 
and capacity for global optimization make it a 
promising approach for sentiment classification on 
Twitter, enabling the development of robust models 
capable of tackling the platform’s dynamic and 
multilingual nature. 
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1.1. Problem Statement 

In the domain of sentiment classification 
for stock tweets, a prominent and persistent 
challenge emerges from the inherent vagueness and 
subtleties present in the language used, including the 
occasional presence of sarcasm, which collectively 
perplex sentiment analysis algorithms and hinder 
their capacity to discern sentiment polarity. The 
nature of stock tweets, characterized by their 
conciseness and informality, frequently results in 
adopting succinct and sometimes enigmatic 
language, thus obscuring the intended sentiment. 
Moreover, the frequent deployment of sarcasm in 
stock-related tweets adds another intricate layer of 
complexity, as it often conveys sentiments instead of 
the words’ literal meaning. These multifaceted 
intricacies underscore the necessity for pioneering 
approaches that can adeptly decode the intricate 
linguistic subtleties and resolve the intricate 
challenge of achieving precise sentiment 
classification within the ever-evolving landscape of 
financial markets. 

  

1.2. Motivation 

The impetus for this research in sentiment 
classification within stock tweets is grounded in the 
rapidly evolving landscape of social media’s impact 
on financial markets. In today’s digitally 
interconnected world, platforms like Twitter serve as 
dynamic market sentiment indicators, wielding the 
power to swiftly influence investment decisions and 
market dynamics. However, the pervasive challenge 
of linguistic ambiguity and the subtleties of sarcasm 
inherent in stock tweets obstruct precise sentiment 
analysis. This research is driven by the quest to 
devise innovative approaches for disentangling the 
intricate language of stock tweets, ultimately 
advancing the accuracy of sentiment classification 
models. The significance of practical sentiment 
analysis transcends investor empowerment to 
encompass a broader understanding of the intricate 
interplay between social media sentiment and stock 
price movements, promising benefits not only for 
financial professionals but also for a broader 
spectrum of market participants seeking informed 
decision-making in an era where social media 
profoundly shapes market sentiment. 

  

1.3. Objectives 

 The central research objective is to enhance 
sentiment classification accuracy within stock tweets 
by effectively tackling the challenges posed by 

linguistic ambiguity and sarcasm. This study aims to 
quantify and analyze the extent of linguistic 
ambiguity, identify its prevalent patterns, and develop 
data preprocessing strategies to disambiguate and 
enrich stock tweets’ context. Furthermore, the 
research will focus on developing and implementing 
advanced machine learning and natural language 
processing models tailored to decode the intricacies of 
language in stock tweets, particularly addressing 
sarcasm detection. Through rigorous evaluation, the 
study aims to demonstrate the efficacy of these 
models in improving sentiment classification within 
stock tweets, ultimately providing financial 
professionals and investors with more reliable tools 
for decision-making while contributing to a deeper 
understanding of how linguistic subtleties impact 
market sentiment in the financial domain. 

 

 2. LITERATURE REVIEW 

The “Digital Haves and Have-Mores” [27] 
presents an innovative approach that utilizes social 
media data to forecast the stock market’s dramatic 
fluctuations during the pandemic. This research goes 
beyond traditional market analysis by focusing on the 
digital ‘haves’—individuals and entities with 
significant online presence and influence—and the 
‘have-mores’ with greater access to data and 
resources. The “Twitter-Aided Decision Making” 
[28] provides an insightful overview of the latest 
advancements in utilizing Twitter data for decision-
making across various domains. This comprehensive 
analysis delves into the innovative ways Twitter has 
been harnessed as a valuable source of real-time 
information and sentiment analysis.  

  

The “Social Media with Stock Price 
Movements” [29] study comparing traditional news 
and social media with stock price movements aims to 
unravel whether news or price changes occur first. 
While the Efficient Market Hypothesis posits that 
news and price adjustments happen simultaneously in 
highly efficient markets, empirical evidence suggests 
that there can be lags in information processing. The 
“Social Informedness and Investor Sentiment” [30]  
investigates the role of social media and investor 
sentiment during the GameStop short squeeze 
phenomenon. This research delves into “social 
informedness,” which refers to how information and 
sentiment are disseminated and absorbed within 
online communities, particularly on platforms like 
Reddit and Twitter.  

  

The “Social media, political uncertainty, and 
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stock markets” [31]  is a dynamic and influential 
relationship. Social media platforms serve as 
lightning-fast conduits for disseminating 
information, shaping market sentiment, and 
amplifying reactions to political events and policy 
changes. Investors increasingly monitor these 
platforms for real-time insights into political 
developments that can impact market behaviour. The 
“Fundamental and Technical Analysis” 
[32]critically examines the effectiveness and 
implications of two prominent approaches in stock 
market forecasting: fundamental analysis and 
technical analysis. Fundamental analysis involves 
evaluating a company’s financial health, including 
earnings, assets, and market position, to predict stock 
prices. Technical analysis relies on historical price 
and volume data, looking for patterns and trends to 
make predictions.  

  

The “Information Diffusion over Social 
Network” [33] comprehensively analyses the 
mechanisms governing information propagation 
through social media platforms and its relevance to 
stock market dynamics. It investigates how 
information spreads across social networks, shaping 
investor sentiment and influencing stock market 
trends. The survey outlines potential developments, 
discussing emerging trends, technologies, and 
research avenues that could enhance our 
understanding of information diffusion’s impact on 
financial markets. The “Visuals and Attention” [34]  
investigates the impact of visual content, such as 
images and infographics, on user engagement with 
earnings-related news shared on Twitter. It explores 
whether the inclusion of visuals enhances user 
attention and interaction with such financial 
information by analyzing metrics like likes, retweets, 
and comments on tweets containing earnings news 
with and without visual elements. 

  

The “Twitter and the Voluntary Disclosure 
Effect” [35]  delves into the intriguing relationship 
between companies’ voluntary disclosures and the 
ensuing discussions and reactions on the Twitter 
platform. It aims to scrutinize how voluntary 
disclosure, where companies share information 
about their operations, financial health, or strategic 
plans, influences investor sentiment and reactions 
within the Twitterverse. The “Stock Returns and 
Investor Sentiment” [36]  explores the intricate 
relationship between stock market returns and 
investor sentiment, focusing on textual analysis and 
social media platforms. This study employs 
advanced text analytics techniques to dissect the 

sentiment and content of messages and discussions 
shared on social media channels like Twitter, Reddit, 
or financial forums.  

  

The “Social Media Sentiment Stock 
Prediction” [37] framework leverages social media 
sentiment analysis to enhance stock market 
prediction, particularly emphasizing the effectiveness 
of LSTM (Long Short-Term Memory) deep learning 
models in capturing sentiment dynamics. This 
approach capitalizes on real-time sentiment insights 
by systematically collecting and preprocessing social 
media data related to financial markets. “Twitter 
Opinion Stock Prediction” [38]  framework employs 
customer opinions from Twitter data to drive stock 
predictions, utilizing the optimized Strawberry-based 
Bi-directional Recurrent Neural Model (SBRNM). Its 
operational mechanism encompasses data collection, 
preprocessing, and advanced deep learning analysis. 
This approach systematically gathers Twitter data 
relevant to financial markets and specific stocks, 
emphasizing customer sentiments. The SBRNM 
model’s advantage lies in its capacity to capture both 
past and future context, enhancing predictive 
accuracy.  

  

3. PROPOSED WORK 

3.1. Synergy Random Forest 

Synergy Random Forest is a machine 
learning algorithm that combines the principles of two 
popular techniques: Random Forests and Synergistic 
Ensemble Learning. The breakdown of the 
components of this algorithm are:  

 Random Forests: Random Forest is a widely-
used ensemble learning technique in machine 
learning. It builds multiple decision trees during 
training and combines their predictions to make 
more accurate and robust predictions. Random 
Forests introduce randomness in two main ways: 
bootstrapping (sampling with replacement) from 
the training data and considering only a random 
subset of features at each node when growing 
each tree. This randomness helps reduce 
overfitting and improves the generalization 
ability of the model. 

 Synergistic Ensemble Learning: Synergistic 
ensemble learning involves combining multiple 
models or algorithms to leverage their 
complementary strengths, aiming to achieve 
better performance than individual models. In 
synergy, the combined effect of the ensemble is 
greater than the sum of its parts. It often involves 
selecting models that excel in different areas or 
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have different biases and combining them 
effectively. 

 3.1.1. Data Collection 

Consider a dataset  containing 

 pairs of feature vectors and 
corresponding target values: 

. Here, each  represents the feature vector 

for the -th data point, and  is 
the corresponding target value. This acts as a 
foundation for the Random Forest model. 

  

3.1.2. Data Preprocessing 

For each feature  in a given 

data point , if it happens to be missing 
(denoted as NaN), it can be replaced with an imputed 
value. One common approach is to use the mean 

 of feature  across all 
available data points. Eq.(1) expresses the same. 

 if  is missing (1) 

  

To identify outliers in a specific feature 

, calculate its mean  and 

standard deviation  across all data 

points. Then, evaluate the -score 

 for each observation  
using Eq.(2). 

 
(2) 

  

In Eq.(2), if the absolute value of 

 exceeds a predetermined threshold, 

consider  as an outlier. For proper 
modelling, bringing all features to a similar scale is 
essential. Eq.(3) expresses Min-Max scaling, which 
is applied to scale the feature. 

 

(3) 

  

Eq.(3) can be standardized by transforming 

 to a standardized value  and 
it is expressed in Eq.(4). 

 
(4) 

  

3.1.3. Bootstrapping 

This phase prepares subsets for constructing 
individual decision trees within the Random Forest. 
Starting with the original dataset 

, where  ranges 

from 1 to , and for each subset 

. 

  

A new subset  is generated by 

randomly selecting  data points 

 with replacement from the original 

dataset  and the Eq.(5) expresses the same. 

(5
) 

  

A decision tree  is construct 

using the subset . Each tree will learn 
different perspective due to the random subsets, 
contributing to the ensemble’s diversity. 

  

3.1.4. Reliable Decision Trees Building 

This step involves constructing individual 
decision trees using the bootstrapped subsets and 
introducing randomness through feature selection 
during node splits, for each subset 

, where is the 
total number of decision trees in the Random Forest. 
Each node in the decision tree considers a random 
subset of characteristics for branching. This 
introduces diversity and reduces overfitting. Let’s 

denote the total number of features as , and 
the number of features considered at each split as 

. Randomly select features 

from the available  features. 

  

Given a node in the tree, this research 
evaluates candidate splits for each feature. The goal is 
to find the best split that optimally separates the data 
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points based on a specific criterion. Eq.(6) is applied 
for classification tasks: the Gini impurity. 

 
(6) 

where  is the proportion of samples of class  

at node . 

  

Eq.(7) is applied for regression tasks, which 
is the mean squared error (MSE) and acts as a 
standard criterion. 

 
(7) 

where  is the target value of the -th sample,  

is the predicted value, and  is the number of 
samples in the node. 

  

Recursive node partitioning continues until 
some stopping requirement is met, such as the 
required number of samples per leaf or the maximum 
depth of the tree. This process creates a hierarchical 
structure of nodes and leaves, allowing the tree to 
capture complex relationships in the data. Further 
data points are handled by branching from the 
decision tree’s root node to a leaf node, again based 
on the feature values. The target value associated 
with the majority class (classification) or the average 
value (regression) of the samples in the leaf node 
becomes the predicted value. 

  

3.1.5. Voting 

After constructing individual decision trees 
in the Random Forest, this step involves combining 
their predictions to make a final prediction. 
Classification and regression stages must be carried 
out for each new data point. 

 If the Random Forest is used for classification, each 
decision tree votes for its predicted class. The class 
with the majority of votes among all the trees is 
considered the final prediction for the Random 
Forest. Eq.(8) mathematically expresses the same: if 

it has  decision trees, the predicted class 
for a new data point is the mode (most common 
value) of the class predictions across all trees. 

(
8
) 

  

If the Random Forest is used for regression, 

the predicted values from all individual trees are 

averaged to obtain the final prediction. For  
number of decision trees, the final predicted value for 
a new data point is the mean of the predicted values 
from all trees, and it is mathematically expressed as 
Eq.(9). 

(
9
) 

  

3.1.6. Ensemble Output 

The output of the Random Forest algorithm 
is now ready. It provides predictions for new data 
points based on the combined decisions of the 
ensemble of decision trees. For classification, the 
ensemble’s output is the class label with the highest 
number of votes from all decision trees. The 
ensemble’s output for regression is the average of the 
predicted values from all decision trees. The model’s 
generalization and precision are enhanced by this 
ensemble method, which also helps prevent 
overfitting. 

  

By combining the predictions from 
individual trees through voting or averaging, the 
Random Forest leverages the diversity and collective 
intelligence of the ensemble to provide robust and 
accurate predictions for both classification and 
regression tasks. 

  

3.2. Elite Artificial Bee Colony Optimization 

In 2005, Karaboga introduced the Artificial 
Bee Colony (ABC)  optimization [25] method for 
continuous optimization, drawing inspiration from the 
foraging behaviour of honeybees in their colonies. 
The following sub-sections discuss the steps involved 
in Elite Artificial Bee Colony Optimization (EABC). 

  

3.2.1. Random Population Initialization 

The initial step involves generating a random 

population of  individuals within the 

interval , where  
represents the total number of potential locations. This 
also serves as a gauge of the time required to code 
something from scratch. Eq.(10) mathematically 
describes the random population initialization 
process. 

 (10) 



Journal of Theoretical and Applied Information Technology 

15th November 2023. Vol.101. No 21 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6920 

  

where  belongs to the set  and it 

represents the maximum value,  belongs to the set 

 and it represents the minimum value, 

the  function generates a pseudorandom 

scalar within the open interval . Additionally, 

 and   represents the maximum and 
minimum values of the overall component. 

3.2.2. Solution Update 

The random population initialization step 
involves discretizing the continuous space that are 
available. Eq.(11) expresses how the solution is 
updated. 

 (11) 

where,  is a binary variable that indicates the 

availability of building  for use. The modulus 

function  returns the remainder 

obtained by dividing  by  while   
represents the integer rounded down to the nearest 

whole number less than or equal to  with all other 
arguments remaining unchanged. 

  

 All modifications are identified using the 

 values, from which the decision variables  

can be derived. In this scenario,  would be directed 

to the modification  that is globally closest to them 
among the available modifications. Therefore, if 

 equals 1, it signifies that among all available 

facilities, facility  is the one closest to customer 

. Conversely, if  equals 0, it means that  is not 

directed to facility  

  

3.2.3. Fitness Function 

The fitness function for each  
can be determined using the objective function, after 
the solution transformation step using Eq.(12). 

 
(12) 

where  represents the fitness of individual  and 

 denotes the cost to the objective function for an 

individual . 

  

Algorithm 2: Fitness Function 

Input: 

Population: List of individuals, where each z 
is represented as a list of components. 

: A function that 
takes an individual and returns the 

cost  to the objective function 
for that individual. 

 

Output: 

 A list of  
containing the fitness values for 
each population member. 

 

Procedure: 

Initialize an empty list called fitness_scores 
to store the fitness values for 
each individual. 

For each z in the population, do the 
following: 

Calculate the cost g_z to the objective 
function for individual z using 
the provided 

. 

Calculate the fitness value  for 
individual z using Eq.(12): 

if  ≥ 0 

 = 1 / (1 + 

) 

else 

 = 1 + |

| 

Append the calculated  to the 
fitness_scores list. 

End of the loop for individual z. 

The  list contains the 
fitness values for all individuals. 
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Return the  list as the 
output. 

  

3.2.4. Employed Bees 

Employed bees will execute one of the 
fundamental phases of ABC to generate an entirely 

new individual  using Eq.(13). 

 (13
) 

where  is a randomly selected integer from the set 

, distinct from the current person’s  

value, while  and  are random individuals chosen 

from the set  Only the most 

advantageous individual between  and  will 
persist, i.e., the superior individual at that moment 

will replace  

  

3.2.5. Probabilistic Analysis 

The probability values of an individual after 
the employed bees phase are calculated using 
Eq.(14). This probability value determines which 
individual will advance to the next level of 
exploitation. 

 
(14) 

where  represents the probability of selecting 

individual  during the onlooker bees stage.  is an 

index from the set  representing 
individuals. 

3.2.6. Observer Bees 

In the second stage, a probability value is 
applied to the food sources discovered by the 
recruited bees, as shown in Eq.(10). Following 
Eq.(15), an onlooker bee will then exploit the chosen 
individual. A new potential member of the 

population, denoted as  is generated. 
Similar to the earlier illustration with the worker 
bees, a competitive process occurs between 

 and  

(15
) 

  

Here,  is a probability-weighted index representing 
a particular individual or food source selected from 

the set  based on probability weights. A 

random number greater than or equal to  is denoted 

as  and is chosen from the set . All 
other values correspond to those defined in Eq. (9). 

This procedure will continue until each 
observer bee discovers and utilizes a food source. 

  

3.2.7. Bee Scouts phase 

 The current phase is deployed with the 
assistance of a threshold parameter, ‘limit.’ For 
simplicity, this research denotes the total number of 

times better solutions couldn’t be found as  for 

 When a bee has been employed bee for a 

continuous cum consecutive period of  greater 
than or equal to the ‘limit,’ it transitions to scout duty. 
Following Eq.(16), the current food source is 
immediately replaced with a newly generated random 
one. At this stage, only a single scout bee is randomly 
dispatched to explore a potential new food source. In 
other words, only the least effective worker bee is 
promoted to scout duty. 

 

 

(16
) 

where  belongs to the set  

  

3.2.8. Restrictions on Handling Methods 

In the context of the dynamic processes of 
EABC, it is essential to manage and adhere to certain 
constraints or restrictions on the components 

, representing the potential solutions or 
individuals within the optimization problem. These 
constraints ensure that the search for the optimal 
solution remains within the specified bounds. The 

handling method for each component , 

denoted as , is designed to enforce these 
constraints effectively. It is a crucial part of the 
optimization process.  

  

If the current value of  falls 

below the minimum permissible value , 
it is adjusted using Eq.(17). A random value within 

the range [ , ] is generated 
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and assigned to . This ensures that the 
component remains within the lower bound. 

 (17) 

  

If the current value of  exceeds 

the maximum permissible value , it is 
adjusted using Eq.(18). A random value within the 

same range [ , ] is 

generated and subtracted from , 
ensuring the component stays within the upper 
bound. 

 (18) 

  

3.2.9 Crossovers Operator  

The crossover operator is employed during 
the employed-bees phase of EABC to facilitate 

information sharing. Initially, individual   

is replaced with , and then a new 

perspective,  is considered. Unlike the 
search technique of EABC, a randomly selected 

component of  can be updated using 

Eq.(19). It’s evident that part  from 

 has replaced the corresponding part of 

. Therefore, the new individual 

 obtains its  from the current 

individual  while the remaining 
components originate from the previous individual 

 This method effectively avoids altering 
the genetic makeup of the selected parent and can be 
considered a pure crossover operation. 

  (19) 

where  is a randomly selected component, with  

belonging to the set .  is also a random 

number chosen from the set , with the 

condition that  is not equal to  where  is chosen 

from the set . All other parameters 
remain the same as in Eq.(13). 

  

3.2.10. Distribution Frequency 

EABC presents a novel perturbation 
frequency strategy. One approach to modifying 
individuals is by adjusting the number of components 
the bee possesses. This number, denoted as 

, is a random integer within the range 

. Eq.(20) and Eq.(21) can 

be used to calculate both  and 

. 

 
(20) 

 
(21) 

where  represents the total number of possible 
infrastructures. 

  

During the employed-bees phase of EABC, 

the  dimensions of each individual, denoted 

as , will be modified according to Eq.(18). 

  

3.2.11. Frequency Pattern Perturbation 

In the context of EABC, the algorithm 
implements a strategy to prevent the rapid aggregation 
of inferior individuals around superior ones during 
food source discovery. This is achieved by 
eliminating the initial probability of choosing a 
procedure. 

  

(a). Initial Probability of Choosing a Procedure: 

In typical optimization algorithms, an initial 
probability may be assigned to each bee (representing 
a potential solution) to choose a specific procedure or 
path to explore. However, in EABC, this initial 
probability is deliberately eliminated. This means that 
at the beginning of the optimization process, each bee 
does not have a predefined likelihood of choosing a 
particular procedure for exploring a food source. 

  

(b). Preventing Rapid Aggregation of Inferior 
Individuals: 

By removing the initial probability of 
procedure selection, EABC aims to mitigate the risk 
of rapid convergence of bees (individuals) towards a 
few promising solutions, which could be suboptimal 
or inferior. Without an initial bias towards specific 
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procedures, each bee has an equal chance to explore 
various food sources based on their characteristics 
and requirements. 

  

(c). Ensuring Diverse Food Source Discovery: 

This absence of an initial probability 
ensures diversity in exploring food sources. Each 
observing bee, regardless of its initial state, has an 
opportunity to discover a food source that best suits 
its requirements and characteristics. It encourages a 
more comprehensive search across the solution 
space, promoting the discovery of various food 
sources that may have different fitness values. 

  

(d). Enhancing Solution Quality and Diversity: 

By preventing the rapid aggregation of bees 
around inferior solutions, EABC enhances the 
overall quality and diversity of the solutions 
explored. It allows for a more thorough exploration 
of the solution space, increasing the likelihood of 
finding superior and diverse solutions well-suited to 
each observing bee’s requirements. 

  

3.2.12. Opposition-based Learning Method 

Opposition-based Learning (OBL) is 
applied to mitigate the common issue of getting 
trapped in local optima in ABC. It’s worth 
emphasizing that in the proposed EABC, every scout 
bee will discover a new food source, helping them 
avoid local traps more effectively. By combining the 
OBL approach with the distribution frequency 

strategy, a subset of components in  for 

scout bee  will be updated. According to 

Eq. (17), new components  can be 
generated randomly to replace the selected 
components. 

 (17) 

  

If  then all other 
settings remain consistent with those described, 
representing an arbitrary index. EABC implements 
the OBL technique during scout bees with minimal 

adjustments to . 

  

3.3. Fusion EABC and SRF 

The fusion of Elite Artificial Bee Colony 
Optimization (EABC) and Synergy Random Forest 
(SRF) into “Elite Artificial Bee Colony 

Optimization-Based Synergy Random Forest (EABC-
SRF)” represents a synergistic approach to machine 
learning and optimization. EABC-SRF harnesses the 
power of EABC’s optimization capabilities to fine-
tune the parameters of the SRF algorithm, enhancing 
its predictive performance. EABC optimizes SRF by 
iteratively adjusting its hyperparameters, allowing it 
to adapt to the intricacies of specific datasets. The 
fitness function of EABC evaluates SRF’s 
performance, ensuring that the model evolves towards 
optimal configurations. EABC’s bees, including 
employed, observer, and scout bees, explore the 
parameter space of SRF, fostering a diverse set of 
model configurations. SRF, on the other hand, brings 
its ensemble learning strength to the fusion. It 
leverages the synergy of multiple decision trees to 
make robust predictions. By integrating EABC’s 
optimization process, SRF becomes more adaptable, 
accurate, and capable of handling complex datasets. 
The fusion’s iterative nature ensures that the 
optimization continues until convergence, leading to 
highly tuned SRF models. EABC-SRF’s automatic 
parameter tuning reduces the burden of manual 
hyperparameter selection and enhances the model’s 
generalization ability. 

  

EABC-SRF combines the optimization 
prowess of EABC with the ensemble learning 
capabilities of SRF, resulting in a powerful, adaptable, 
and accurate machine-learning framework. This 
fusion has the potential to significantly improve 
predictive modelling across various domains, making 
it a promising approach in machine learning and data 
science. 

  

3.3.1. Advantages 

 Optimized Parameters: EABC-SRF 
combines the power of optimization (EABC) 
with ensemble learning (SRF) to find the best 
parameter configurations for the random 
forest, leading to improved model 
performance. 

 Automatic Tuning: The fusion allows for 
the automatic tuning of hyperparameters, 
reducing the need for manual parameter 
tuning. 

 Enhanced Generalization: By optimizing 
SRF parameters, EABC-SRF aims to 
enhance the model’s generalization ability 
and robustness, making it suitable for a wide 
range of datasets. 

 Diverse Ensemble: SRF’s ensemble 
approach ensures that the model leverages 
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the diversity of individual decision trees, 
leading to more accurate predictions. 

  

Algorithm 3: EABC-SRF Algorithm 

Step 1: Initialize parameters for EABC and 
SRF: 
a. Define EABC parameters 

(population size, maximum 
generations, bounds for 
parameters). 

b. Set up SRF parameters (number 
of decision trees, depth of trees). 

Step 2: Initialize the population of parameter 
configurations for SRF using EABC: 
a. Generate a random population of 

parameter configurations. 
Step 3: Evaluate the fitness of each parameter 

configuration: 
a. Train SRF with the given 

parameter configuration on a 
training dataset. 

b. Evaluate SRF’s performance 
using a validation dataset. 

c. Assign fitness scores based on 
SRF’s performance. 

Step 4: Repeat the Steps 5 to 7 until 
convergence is attained: 

Step 5: Employed Bees Phase (Parameter 
Modification): 
a. Select a subset of parameter 

configurations from the 
population. 

b. Modify the selected 
configurations to explore nearby 
regions in the parameter space. 

c. Evaluate the fitness of modified 
configurations. 

Step 6: Onlooker Bees Phase (Probability-
Based Selection): 
a. Select parameter configurations 

based on their fitness scores and 
probabilities. 

b. Modify the selected 
configurations. 

c. Evaluate the fitness of modified 
configurations. 

Step 7: c. Scout Bees Phase (Exploration): 
a. Identify parameter configurations 

with low fitness scores (stagnant 
solutions). 

b. Replace these configurations 
with randomly generated ones. 

c. Evaluate the fitness of new 
configurations. 

Step 8: Select the best parameter configuration 
based on fitness scores. 

Step 9: Train the Synergy Random Forest 
(SRF) model using the selected 
parameter configuration on the training 
dataset. 

Step 10: Make predictions on a test dataset 
using the trained SRF model. 

Step 11: Evaluate the performance of the 
EABC-SRF model on the test. 

Step 12: Output the final trained EABC-SRF 
model and its performance metrics. 

  

4. ABOUT DATASET 

The “Stock Tweets for Sentiment Analysis 
and Prediction” dataset is a comprehensive and 
invaluable resource for researchers and analysts in 
financial markets. Comprising an extensive collection 
of over 80,000 tweets, this dataset focuses on the top 
25 most closely monitored stock tickers listed on 
Yahoo Finance. It spans a substantial time frame, 
covering the period from September 30, 2021, to 
September 30, 2022. This dataset’s unique 
incorporation of real-time stock market price and 
volume data corresponding to each tweet and its 
associated stock sets this dataset apart. Each entry in 
this dataset offers essential information, including the 
precise date and time when the tweet was posted, the 
complete text of the tweet, the specific stock ticker 
name, and the corresponding company name. This 
dataset serves as a versatile tool for researchers and 
analysts, allowing them to harness its potential in 
various ways: 

 Sentiment Analysis: By scrutinizing the 
sentiments expressed within these tweets, 
researchers can gain profound insights into 
public and investor sentiment regarding 
individual stocks. This analysis facilitates 
the detection of shifts and trends in market 
sentiment over the designated time frame. 

 Stock Price Prediction: By integrating 
sentiment data with historical stock market 
data, analysts can develop predictive models 
capable of forecasting stock price 
movements. Such predictive capabilities 
offer a substantial advantage to investors and 
traders. 

 Exploration of Sentiment-Price 
Dynamics: Researchers can explore the 
intricate connection between social media 
sentiment and subsequent stock price 
variations with this dataset. Uncovering 



Journal of Theoretical and Applied Information Technology 

15th November 2023. Vol.101. No 21 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6925 

  

these patterns and relationships provides 
invaluable insights into the complex 
dynamics of financial markets. 

  This dataset, inspired by established 
sentiment analysis lexicons and existing stock 
market sentiment datasets, ensures its relevance and 
reliability. Whether you are a data scientist, financial 
analyst, or investor, this dataset opens doors to more 
profound insights into the intricate interplay between 
social media sentiment and the behaviour of 
financial markets, serving as a critical resource for 
advancing our understanding of stock market 
dynamics. 

  

5. RESULTS AND DISCUSSION 

5.1. Precision Analysis 

Precision, in the context of this figure, 
quantifies the model’s ability to make accurate 
positive predictions while minimizing false 
positives. It is calculated as the ratio of true positive 
predictions to the total positive predictions made by 
the model. Figure 1 provides the analysis of 
Precision results. 

  

LSTM, a recurrent neural network (RNN) 
architecture, achieves a precision score of 47.77% in 
Figure 1. This value reflects LSTM’s effectiveness 
in making positive predictions while maintaining 
reasonable precision. The architecture’s focus on 
capturing sequential dependencies within data 
contributes to this result. SBRNM demonstrates a 
higher precision score of 60.13%. This suggests that 
SBRNM excels in distinguishing relevant positive 
instances from irrelevant ones. The bidirectional 
processing within the model allows it to consider 
both past and future contexts, enhancing its precision 
in positive predictions. EABC-SRF notably achieves 
the highest precision score of 88.72% among the 
models in Figure 1. This indicates EABC-SRF’s 
exceptional ability to minimize false positive errors 
while providing accurate positive predictions. 
Utilizing elite artificial bee colony optimization and 
synergy within the random forest architecture likely 
significantly optimizes the model’s parameters and 
enhances precision. 

  

  
Figure 1. Precision 

  

Figure 1 showcases the precision 
performance of different models, highlighting their 
varying abilities to make accurate positive predictions 
while avoiding false positives. LSTM, SBRNM, and 
EABC-SRF each contribute to precision differently 
based on their unique working mechanisms. Precision 
is a critical metric when selecting a model for 
applications where the cost of false positive errors is 
high, ensuring that positive predictions are highly 
reliable and accurate. 

  

5.2. Recall Analysis 

Figure 2 presents the recall performance 
metric vital for evaluating the effectiveness of three 
distinct models: LSTM, SBRNM, and EABC-SRF. 
Recall assesses the models’ ability to correctly 
identify and capture a high percentage of relevant 
positive instances within the dataset. Recall is crucial 
to minimize false negatives, ensuring that as few 
positive instances as possible are missed. 
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Figure 2. Recall 

  

LSTM, a recurrent neural network (RNN) 
architecture, achieves a recall score of 43.72% in 
Figure 2. This score reflects LSTM’s ability to 
capture a substantial proportion of positive instances 
within the data. LSTM’s strength lies in its capacity 
to recognize patterns and dependencies within 
sequences, contributing to its recall performance. 
SBRNM demonstrates a higher recall score of 
60.49%. This indicates that SBRNM excels in 
correctly identifying and capturing a significant 
portion of the relevant positive instances. The 
bidirectional processing employed by SBRNM 
allows it to consider both past and future context, 
making it adept at recognizing nuanced patterns in 
the data. EABC-SRF attains a recall score of 
88.40%, the highest among the models in Figure 2. 
This underscores EABC-SRF’s exceptional ability 
to identify and capture the vast majority of actual 
positive instances. Integrating elite artificial bee 
colony optimization and synergy within the random 
forest architecture is pivotal in optimizing the 
model’s parameters for recall-oriented tasks. 

 Figure 2 highlights the recall performance of 
different models, emphasizing their varying abilities 
to effectively identify and capture actual positive 
instances. While LSTM, SBRNM, and EABC-SRF 
contribute to recall differently, their distinct working 
mechanisms result in different performance levels in 
this crucial metric. Recall is particularly valuable in 
applications where missing positive cases, such as 
medical diagnosis or fraud detection, can have 

significant consequences. 

  

5.3. Classification Accuracy Analysis 

Figure 3 is a fundamental evaluation 
measure for three distinct models: LSTM, SBRNM, 
and EABC-SRF. Classification accuracy assesses the 
overall correctness of a model’s predictions across all 
classes within a dataset. This metric is paramount in 
various machine learning applications, reflecting the 
model’s ability to provide accurate predictions for 
both positive and negative instances. 

  

  
Figure 3. Classification Accuracy 

 

LSTM, a recurrent neural network (RNN) 
architecture, attains an accuracy score of 44.83% in 
Figure 3. This score indicates LSTM’s competence in 
making accurate predictions across all classes, 
although it may face challenges when dealing with 
complex or multi-modal data. LSTM’s strength lies in 
its capacity to capture sequential dependencies within 
data, contributing to its accuracy. SBRNM achieves a 
higher accuracy score of 61.33%. This highlights 
SBRNM’s effectiveness in accurately classifying 
instances across various classes within the dataset. 
The bidirectional processing within SBRNM allows it 
to consider past and future contexts, enhancing its 
ability to recognize diverse patterns in the data. 
EABC-SRF stands out with an accuracy score of 
88.25%, the highest among the models in Figure 3. 
This underscores EABC-SRF’s exceptional capability 
to provide accurate predictions across multiple 
classes. Integrating elite artificial bee colony 
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optimization and synergy within the random forest 
architecture significantly optimizes the model’s 
parameters for high overall accuracy. 

  

Figure 3 highlights the classification 
accuracy performance of different models, 
emphasizing their varying abilities to provide 
accurate predictions across all classes within the 
dataset. While LSTM, SBRNM, and EABC-SRF 
contribute to accuracy differently, their distinct 
working mechanisms result in different performance 
levels in this crucial metric. Classification accuracy 
is critical when selecting a model for tasks where 
overall correctness in classifying instances is 
essential, such as image recognition or text 
categorization. 

  

5.4. F-Measure Analysis 

Figure 4 is a comprehensive measure of 
model performance for three distinctive models: 
LSTM, SBRNM, and EABC-SRF. The F-Measure 
evaluates a model’s precision and recall, striking a 
harmonious trade-off between these critical aspects. 
This metric is particularly valuable when 
maintaining a balance between minimizing false 
positives (precision) and false negatives (recall) is 
essential, ensuring that optimistic predictions are 
accurate and comprehensive. 

  

  
Figure 4. F-Measure 

  

LSTM yields an F-Measure of 45.66% in 
Figure 4. This indicates LSTM’s ability to balance 

precision and recall, capturing sequential 
dependencies in data and achieving a reasonable 
balance between false positives and false negatives. 
SBRNM achieves a slightly higher F-measure of 
60.31%. This suggests that SBRNM excels in finding 
a balance between precision and recall, capturing 
relevant patterns in the data while minimizing false 
positives and negatives. The bidirectional processing 
within SBRNM enhances its performance in 
achieving this harmony. EABC-SRF stands out with 
an F-Measure of 88.56%, the highest among the 
models in Figure 4. This highlights EABC-SRF’s 
exceptional capability to optimize parameters 
effectively, striking an excellent balance between 
precision and recall. Integrating elite artificial bee 
colony optimization and synergy within the random 
forest architecture plays a pivotal role in achieving 
this balance. 

  

Figure 4 visualizes the F-Measure 
performance of different models, emphasizing their 
varying abilities to strike a harmonious balance 
between precision and recall. While LSTM, SBRNM, 
and EABC-SRF each contribute to the F-Measure 
differently, their distinct working mechanisms result 
in different performance levels in this crucial metric. 
The F-Measure is particularly valuable in scenarios 
where it is crucial to balance minimizing false 
positives and negatives, such as medical diagnostics 
or anomaly detection, ensuring that positive 
predictions are accurate and comprehensive. 

  

6. CONCLUSION 

This research underscores the significance of 
Twitter as a real-time information hub within the 
intricate realm of the stock market. In a landscape 
influenced by a multitude of factors, ranging from 
economic indicators to geopolitical events, the role of 
social sentiment, as manifested in stock tweets, 
emerges as a dynamic and influential force with the 
capacity to profoundly impact investor decisions and 
market trends. As demonstrated in this research, the 
categorization of stock tweets based on sentiment 
proves invaluable for comprehending investor 
sentiment and prognosticating market dynamics. The 
proposed optimization-based classification algorithm, 
namely Elite Artificial Bee Colony Optimization-
Based Synergy Random Forest (EABC-SRF), 
represents a notable leap forward in sentiment 
analysis. By synergizing the capabilities of Artificial 
Bee Colony Optimization (ABC) and Synergy 
Random Forest (SRF), EABC-SRF adeptly addresses 
the inherent complexity and noise characteristic of 
stock tweets, thereby elevating the precision and 
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transparency of sentiment classification. EABC-
SRF’s feature selection mechanism, facilitated by 
elite artificial bees, and its seamless integration into 
the SRF framework underscore the potential of this 
novel approach in deciphering intricate social 
sentiment data. The reliance on the “Stock Tweets 
for Sentiment Analysis and Prediction” dataset as the 
cornerstone for developing and assessing EABC-
SRF underscores the fundamental role of robust data 
sources in advancing such models. The outstanding 
performance of EABC-SRF, as substantiated by 
experimental outcomes, reaffirms its efficacy in 
aiding investors and traders by furnishing perceptive 
sentiment analysis to facilitate more discerning 
decision-making within the ever-evolving stock 
market milieu. This research underscores the pivotal 
role of cutting-edge machine learning techniques in 
distilling invaluable insights from the ever-
expansive domain of social media data, thereby 
contributing to more astute market analysis and 
prediction. Performance of the current research can 
be enhanced with optimization strategies in future. 
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