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ABSTRACT

This project seeks to forecast energy usage by utilizing data from smart meters and the Random Forest 
Regressor algorithm. A logical flow of processes includes data preparation, model training, and model 
performance assessment. The use of the Label Encoder method to the dataset initiates the conversion of 
category variables into numerical representations. This crucial phase guarantees that the model can 
skillfully handle the data processing. After that, missing data are handled using the Simple Imputer 
technique, which judiciously fills in the blanks with suitable measurements like mean or median values. 
The train_test_split function divides the dataset into training and testing subsets, preparing the way for 
model training.  The Hybrid Random Forest Regressor approach is used in combination with the LR 
methodology to train the predictive model. Numeric characteristics are standardized using the Min Max 
scaling approach, which aligns them into a common range, to ensure the best model performance. A wide 
range of evaluation measures, such as mean_absolute_error, mean_squared_error, and 
median_absolute_error, are used to evaluate the model's effectiveness after training. These metrics provide 
a lot of insightful information by measuring the precision and accuracy of the model's forecasting abilities. 
The Random Forest Regressor algorithm, together with various preprocessing techniques, allows this 
research to forecast energy use from smart meter data with a high degree of accuracy. A spectacular Mean 
Absolute Error of proposed method is 70.79, outperforms over existing methods, SARIMA and SVR+LR 
and an equally excellent Median Absolute Error of 30.46 are achieved by the resulting model. The 
proposed model is implemented using Python software. These error rates provide quantifiable benchmarks 
that reveal the model's performance features and are an indication of its extraordinary predictive precision. 
The study's findings have enormous potential for improving cost effectiveness, eco-aware practices, and 
energy management effectiveness. 
Keywords: Smart Meter Data; Energy Consumption; Random Forest Regressor; Simple Imputer; Min 

Max Scaler 

1 INTRODUCTION 

Smart meters are cutting-edge tools that monitor 
and log power use in both residential and 
commercial facilities on a regular basis. They offer 
thorough data on energy use trends, enabling more 
precise invoicing, effective energy management, 
and the opportunity for demand response 
programmes. Smart meters have spread widely in 
recent years, generating enormous volumes of data 

on energy usage. Accurately estimating future 
energy demand is one of the chief problems facing 
the energy business. For a variety of stakeholders, 
including power utilities, grid operators, and 
consumers, accurate projections are essential 
because they allow for improved resource 
allocation, load balancing, and cost optimization 
[1]. Data from smart meters is a useful tool for 
forecasting energy use since it gives in-depth 
details on individual energy usage trends. Using 
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previous data from smart meters and other pertinent 
variables, models are created for smart meters that 
may predict future energy use. This prediction 
assignment frequently includes both short- and 
long-term forecasting (for example, projecting 
energy usage for the upcoming day or week or for 
the upcoming month or year). Several machine 
learning and statistical modelling approaches are 
used to address this prediction job. Regression 
models, time series analysis, ensemble techniques, 
and deep learning strategies are some of these. The 
model used will rely on the particulars of the 
prediction job, the qualities of the data, and the 
computational resources that are available [2]. 

In addition to the smart meter data itself, other 
factors can influence energy consumption and need 
to be considered in the prediction models [3]. These 
variables might include the season, the period of 
day, the time of the week, holidays, and special 
occasions. Including these outside variables in the 
prediction models can increase their precision and 
allow for more accurate forecasts. There are various 
advantages to making accurate projections of 
energy usage using data from smart meters. They 
give electric utilities the ability to maximize the 
production and distribution of energy, which results 
in more effective resource management and cost 
reductions. Consumers might possibly lower their 
energy costs by having a greater understanding of 
and control over their energy consumption. 
Additionally, precise forecasts support demand 
response programmes, where users can reduce their 
energy consumption during peak hours to ease 
system stress [4]. In conclusion, smart meter energy 
consumption prediction is essential for maximizing 
energy management, lowering expenses, and 
fostering effective resource allocation [5]. 
Predictive models may offer precise projections by 
utilizing past smart meter data and other pertinent 
variables, which will help power utilities and 
customers in the transition to a more sustainable 
and energy-efficient future. A popular machine 
learning approach for regression problems, such as 
estimating energy usage in the context of data from 
smart meters, is the Random Forest Regressor. It is 
a system of ensemble learning which employs a 
number of decision trees to offer precise forecasts. 
The smart meter dataset may be used to train a 
prediction model using the Random Forest 
Regressor. The Random Forest Regressor algorithm 
excels at handling intricate correlations and 
interactions between features, which makes it 
excellent for identifying patterns of energy usage in 
data from smart meters. It makes use of the group 
of decision trees to produce reliable forecasts that 
are accurate [6]. Once the model has been trained 
and predictions have been made, additional 

assessment and analysis may be done using the 
right metrics that are root mean squared error or 
mean absolute error, to judge the model's 
performance and make any required adjustments. In 
order to anticipate patterns of energy use, this study 
investigates a unique method that combines the 
abilities of Hybrid Random Forest Regression and 
Linear Regression models. This study intends to 
increase the accuracy of consumption projections 
using the comprehensive dataset offered by smart 
meters, assisting utilities, decision-makers, and 
users in maximizing energy management and 
resource allocation. The hybrid RF and LR model 
combines the predictions of both models to achieve 
a more accurate and reliable prediction. The RF 
model captures the complex non-linear patterns in 
the data, while the LR model provides a linear 
approximation to capture the overall trend and 
linear relationships. The combination of these 
models leverages the strengths of both approaches 
and yields improved prediction performance. To 
implement the hybrid model, the predictions from 
both the RF and LR models are combined using 
weighted averages [7]. The weights assigned to 
each model can be determined based on the 
performance of each model on the training data or 
through expert knowledge. The weights reflect the 
relative importance or confidence in the predictions 
of each model. By utilizing the hybrid RF and LR 
model for energy consumption prediction, we can 
benefit from the flexibility and accuracy of RF in 
capturing complex patterns, as well as the 
interpretability and simplicity of LR. This approach 
provides a robust and reliable prediction model that 
can be applied in energy management systems, cost 
optimization, and decision-making processes. 
Utilizing data from smart meters, this design 
combines the advantages of both the Hybrid 
Random Forest Regression and Linear Regression 
models. By utilizing the power of sophisticated 
data-driven approaches, it successfully addresses 
the study objectives and provides a robust method 
for forecasting electricity use, leading to a more 
precise and insightful knowledge of consumption 
trends [8].  

The key contributions of the project "Smart 
Meter Prediction for Energy Consumption" using 
the Random Forest Regressor algorithm can 
include: 

 The project introduces a hybrid model 
merging Random Forest and Linear 
Regression, harnessing their distinct strengths 
to enhance prediction accuracy while 
maintaining interpretability. 

 Through Label Encoder and Simple Imputer 
techniques, the project ensures seamless 
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conversion of categorical variables and 
effective handling of missing data, improving 
model robustness. 

 Utilizing Min-Max Scaler, the project 
standardizes numerical features, preventing 
dominance issues, and promoting efficient 
convergence during model training. 

 By assessing mean absolute error, mean 
squared error, and median absolute error, the 
project offers a comprehensive understanding 
of prediction performance, aiding nuanced 
decision-making. 

 Accurate electricity consumption predictions 
empower practical energy management 
decisions, enabling cost-effective energy 
utilization and aligning with sustainability 
objectives. 

This essay is organized as follows: While 
Section 3 elaborates on the issue description; 
Section 2 provides relevant work that is intended to 
grasp the proposed paper using the existing 
approaches. The proposed Smart meter technique 
for forecasting energy use is shown in the fourth 
segment. Section 5 tabulates and visually displays 
the outcomes and performance measures. Chapter 6 
concludes with a presentation of the conclusion and 
future work. 

2 LITERATURE REVIEW 

Jaiswal, Chakravorty, and Rong  [9] presents a  
paper titled "Distributed Fog Computing 
Architecture for Real-Time Anomaly Detection in 
Smart Meter Data" proposes a hierarchical Fog 
Computing approach to address the difficulties in 
processing real-time sensor data for detecting 
abnormalities in power consumption. This approach 
is suggested as an alternative to Cloud Computing 
Offers a pertinent and timely contribution. While 
the potential advantages of the proposed 
architecture are emphasized, clarity might be 
improved by a more in-depth description of the 
particular benefits of fog computation and a 
comparison with alternatives based on the cloud. 
The paper's applicability and influence in the realm 
of IoT and Big Data analysis might also be 
enhanced by offering more implementation 
insights, resolving security and privacy issues, and 
verifying the method with actual data. The 
robustness of the article might be improved by 
considering the security and privacy elements of the 
suggested architecture, which includes data 
encryption and access restrictions; given smart 
meter data contains sensitive information about 
homes. The deployment of a systematically 
decentralized Fog Computing architecture advances 

the field of real-time detection of anomalies in 
smart meter data. It effectively emphasizes the 
benefits of computational fogging over standard 
cloud computing in dealing with the difficulties of 
processing large amounts of data. The study might 
increase its effect and offer helpful insights for both 
researchers and professionals working in the fields 
of the Internet of Things (IoT), big data, and 
collaborative computing by considering the areas 
for advancement stated above. 

Sajjad et al. [10] elaborates that the crucial area 
of electric energy forecasting is addressed in the 
research article "A Novel CNN-GRU-Based Hybrid 
Approach for Short-Term Residential Load 
Forecasting." with a hybrid model combining 
Convolutional Neural Network (CNN) and Gated 
Recurrent Units (GRU). The authors persuasively 
make the case that current methods including GBR, 
ANNs, ELM, and SVM have difficulties capturing 
non-linear correlations and the flexibility of real-
world situations, necessitating the development of 
more reliable and precise forecasting methods. The 
research offers a structured framework using data 
improvement and training stages, utilizing CNN for 
the extraction of features and GRU for improved 
sequence learning, through the suggested hybrid 
model. The model outperforms the competition in 
terms of computational effectiveness, prediction 
accuracy, and feature extraction, which may be 
explained by CNN's feature extraction capabilities 
and GRU's efficient gated structure. AEP 
(Appliances Energy Prediction) and IHEPC 
(Individual Household Electric Power 
Consumption) datasets more specifically show 
minimized error rates compared to baseline models, 
which supports the method's effectiveness in the 
experimental validation across developed energy 
forecasting datasets. The paper's new hybrid 
technique, which provides a viable route for 
increasing the accuracy and effectiveness of short-
term domestic load forecasting, is its main 
contribution. 

Buzau et al.  [11] Presents the paper which 
contributes significantly to the field of electricity 
utilities by tackling the substantial issue of non-
technical losses, which have a substantial impact on 
revenue. The proposed solution introduces an 
innovative and comprehensive approach to address 
this challenge. By employing a hybrid deep neural 
network, the paper emphasizes the potential of 
cutting-edge technology to revolutionize anomaly 
and fraud detection in smart meters. Notably, the 
paper's key strength lies in its ability to 
autonomously learn relevant features from raw 
data, thus circumventing the labor-intensive process 
of handcrafted feature engineering. The 
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architectural design of the hybrid model, integrating 
a long short-term memory (LSTM) network and a 
multi-layer perceptrons (MLP) network, is 
strategically devised to handle both sequential and 
non-sequential data. The LSTM network adeptly 
captures patterns and trends within daily energy 
consumption history, while the MLP network 
accommodates additional contextual information 
such as contracted power and geographical details. 
This holistic approach enables the model to make 
comprehensive decisions, effectively addressing the 
multifaceted nature of non-technical losses. The 
empirical evaluation is a testament to the efficacy 
of the proposed hybrid neural network. Through 
thorough experimentation on real smart meter data 
from a prominent electricity utility, the model 
demonstrates remarkable performance 
improvements when compared to both state-of-the-
art classifiers and previously employed deep 
learning models for non-technical losses detection. 
This substantiates the robustness and practical 
applicability of the proposed approach, providing a 
viable solution for an industry-wide concern. 
Utilizing real smart meter data from a prominent 
electricity utility, the study provides a robust 
approach that not only addresses a pressing industry 
challenge but also showcases practical applicability 
and advancement over the state-of-the-art 
techniques. 

Electric utility companies throughout the world 
have suffered significant financial losses as a result 
of the urgent issue of electricity theft. Every year, 
power worth $6 billion is stolen in the United States 
alone. Physical assaults like line tapping or meter 
manipulation are frequently used to steal electricity 
from consumers. New kinds of power theft efforts 
are made feasible by the smart grid concept. First, 
cybercrime may be used to perpetrate electricity 
theft. Smart meters are put at purchasers' locations 
and routinely report the customers' usage for 
monitoring and invoicing reasons via the advanced 
metering infrastructure (AMI). In this situation, 
unscrupulous consumers may hack into smart 
meters to tamper with the readings in order to lower 
their power bills. In order to generate power and 
resell it to the grid operator at a profit, customers 
may set up distributed generation (DG) units 
founded on renewable energy bases at their sites 
according to the smart grid concept. In this project 
[12], Convolutional-neural-networks (CNN), deep-
feed-forward-neural-networks (DNN), and 
recurrent-neural-networks with gated-recurrent-
units (RNN-GRU) were examined for their 
performance in detecting electrical cyberattacks. 
However, the disappearing or expanding gradient 
problem might affect RNNs when they are being 
trained. It might be challenging to learn new things 

or for the model to become unstable when the 
gradient values grow or shrink dramatically over 
time. The capacity of RNNs to recognize long-term 
relationships in sequences is constrained by this 
issue. One area where machine learning is heavily 
used is in the predicting of electric usage using data 
from smart meters. Classification and clustering 
techniques must be used to thoroughly analyze the 
smart meter data in order to forecast peak demand 
and electric appliance use. A critical phase in the 
project and expansion of the electric power 
organization is the prediction of household 
appliances and high-demand periods. However, due 
to variations in customer demand and device 
consumption level demand, an in-depth and 
comprehensive examination of purchasers' smart 
meter data is compulsory to recognize key traits 
and the causes of deviation in both.  

This paper [13] focuses on utilizing information 
from the Irish and Umass repositories to estimate 
high demand and amounts of electrical appliance 
use correlate with private consumers' activities. The 
findings of the customer peak demand forecast are 
then used to analyses the customer's lifestyle. To 
anticipate the appliance consumption level and 
peak demand, the supervised and unsupervised 
machine learning algorithms CLARA clustering, 
support vector machine (SVM), and artificial neural 
network are used. In order to anticipate the average 
household's usage of electric appliances over the 
course of a year using smart data collected at 1-
minute intervals, mean electric appliance 
consumption values are produced. Only the average 
weekly consumption of the combined homes is 
computed for the customers' peak demand 
consumption. With 99.6% accuracy, the SVM-
based forecasting of consumer energy usage 
outperforms other studies in the same field of 
research. The outcome demonstrates that the 
approaches and algorithms used are being used to 
their fullest potential. To attain best performance, 
SVMs require careful tuning of a number of hyper 
parameters. The act of the model can be strongly 
impacted by the choice of parameters, comprising 
the regularization parameter (C), kernel type, and 
kernel parameters. Choosing the right parameter 
values frequently calls for knowledge or 
considerable testing. In the project, feature scaling 
with the Min Max Scaler is essential for getting the 
dataset ready for model training and enhancing the 
prediction model's performance. To avoid any data 
leaking, the Min Max Scaler is employed 
independently to the dataset's training and testing 
sets. The scaler is fitted using the training set, and 
the minimum and maximum values of each feature 
are determined. The training and testing sets are 
then both transformed using these calculated 
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values, maintaining consistency between the two. 
The project guarantees that the random forest 
regressor model receives standardized input data by 
scaling the numeric features using the Min Max 
Scaler, increasing the model's capability to 
precisely estimate energy usage. This preprocessing 
step improves the model's performance by enabling 
it to recognize the complex patterns and 
correlations found in the data from smart meters. 

3 PROBLEM STATEMENT 

The above literature review provides insights 
into various approaches and techniques used in the 
domain of electricity consumption forecasting and 
anomaly detection in the context of smart meter 
data. However, it also highlights several persistent 
challenges and areas for improvement in this field. 
Efficient and accurate forecasting of electricity 
consumption, as well as the detection of anomalies 
and non-technical losses in smart meter data, 
remains a critical concern for electric utility 
companies, particularly in the era of smart grids. 
Existing methods have shown limitations in 
capturing non-linear correlations, ensuring data 
security and privacy, and handling the multifaceted 
nature of the problem. Researchers and 
professionals in the domains of Internet of Things 
(IoT), big data, and collaborative computing seek 
more reliable, precise, and secure forecasting and 
anomaly detection solutions that can not only 
provide robust results but also consider the unique 
challenges posed by smart meters. To address these 
issues, there is a growing need for innovative 
approaches that leverage advanced technologies 
such as hybrid machine learning models, deep 
neural networks, and fog computing architectures 
[14].  

4 PROPOSED HYBRID RANDOM 
FOREST AND LINEAR REGRESSION 
METHOD 

The flow diagram for the smart meter prediction 
process starts with the data preprocessing step and 
it is shown in in Figure 1. In order to enable model 
training and assessment on unobserved data, the 
preprocessed dataset is then splitting for training 
and testing sets. The Random Forest Regressor 
technique is then used for model training. To 
properly estimate energy usage, this system builds 
an ensemble of decision trees and integrates their 
estimates. Using the training dataset, the research 
approach is trained to identify patterns and 
connections between the input characteristics and 
the target variable. Feature scaling is the following 
step after the model has been trained. The Min-Max 

Scaler is used to scale the dataset's numerical 
features, ensuring that each feature contributes 
equally to model training. Any bias that may arise 
from variances in their magnitudes is eliminated by 
modifying the features to a comparable range. After 
scaling, a number of measures are used to gauge the 
model's effectiveness [15]. To assess the precision 
and accuracy of the prototype's predictions, mean 
absolute error, mean squared error, and median 
absolute error are computed. These metrics offer 
information on the model's efficiency in calculating 
energy use. The model can then be utilized for 
prediction after being assessed and found to be 
satisfactory. The trained model may be given new 
or undiscovered data points, and it will produce 
estimates for energy usage based on the patterns it 
discovered during training. In conclusion, the flow 
diagram shows how data preparation, model 
training, feature scaling, performance evaluation, 
and prediction happen in order. Using the Random 
Forest Regressor algorithm and data from smart 
meters, this methodical technique offers precise 
calculation of energy use. 

 

Figure 1. Workflow of Smart Meter Prediction for 
Energy Consumption 

4.1 Dataset 
This dataset has been sourced from Kaggle and 

encompasses information derived from smart 
meters installed across a range of buildings, with 
the primary objective of enabling the prediction of 
electricity consumption patterns. Each entry in the 
collection represents a different meter reading 
instance and has accompanying attributes that offer 
further context. While the "timestamp" provides the 
date and time of the reading, the "building_id" 
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specifically identifies the building where the meter 
is installed. The "meter_reading" gives a specific 
meter's kWh of power usage at the moment it was 
recorded. Additional attributes include 
"primary_use," "square_feet," "year_built," and 
various weather-related parameters like 
"air_temperature," "cloud_coverage," and 
"wind_speed" that describe the building's current 
environmental conditions at the time of reading. 
Examples of these attributes include "education," 
"office," and "primary_use." With the use of these 
variables, predictive models might be created using 
this information to project changes in power usage, 
allowing for well-informed energy management 
and efficiency strategy decisions across a range of 
building types and environments. To manage 
missing values, normalize data, and create pertinent 
characteristics for efficient model training and 
precise predictions, preprocessing and analytical 
procedures may be required [16]. 

4.2 Data Pre-processing 
The scikit-learn package has a preprocessing 

method called the Label Encoder. Categorical 
variables are converted into numerical 
representations using this technique. Due to the 
requirement of numerical input in many machine 
learning methods, this is important [17] Each 
category in a categorical feature is given a distinct 
integer value by the Label Encoder. In this case, if a 
feature has the categories "red," "green," and 
"blue," the Label Encoder will assign the numbers 
0, 1, and 2, correspondingly, for each of those 
groups. The fit and transform techniques are 
offered by the Label Encoder class in scikit-learn. 
Based on the training data, the fit technique learns 
how to map categories to numerical values. This 
mapping is used by the transform technique to 
convert the category feature into numerical values 
[18]. In order to manage missing values and encode 
categorical variables into numerical representations, 
the smart meter dataset is imported and 
preprocessed. This guarantees that the data is in an 
appropriate format for additional investigation [19]. 
(1) helps to derive label encoder is as follows, 
Where the 𝑖th row resembles to the alter of class 
vector, 

𝑦௜ = ൣ𝑦௜ଵ𝑦௜ଶ, … , 𝑦௜௤൧
்

∈  𝒴  (1) 

According to OvO decomposition rule, Y can 
be transformed into a ternary encoded label matrix 
which is depicted in (2) and (3) 

𝐿 = [𝐿ଵ𝐿ଶ, … , 𝐿௤]  ∈  {−1,0, +1}௠×௟ 
 (2) 

𝐿௝ ∈ {−1,0, +1}௠×௟ೕ   (3) 

(4) corresponds to the encoded label matrix of 
the 𝑗 th class space. Let 𝑙௜௔

௝  be the factor in 𝑖th row 
and 𝑎th column of 𝐿௝ , its value is resolute as 
follows: 

𝑙௜௔
௝

= ൞

+1,    𝑖𝑓 𝑦௜௝ =  𝑝௔
௝

−1,    𝑖𝑓 𝑦௜௝ = 𝑛௔
௝

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (4) 

The encoded feature will contain the 
transformed numerical representation of the 
categorical feature. These transformed values can 
then be used as input for further analysis or 
machine learning models. 

4.3 Model Selection 
To regulate the amount of regularization used, 

the Lasso model is instantiated with predefined 
regularization strength (alpha). The training set of 
data, which consists of the independent 
characteristics and the matching target variable for 
energy consumption, is used to fit the model. The 
coef_ attribute is used to get the coefficients of the 
features after fitting the Lasso regression model. To 
assess the significance of each factor in forecasting 
energy use, the absolute values of the coefficients 
are determined. The scikit-learn library's 
train_test_split function is an essential tool for 
separating a dataset into training and testing sets. In 
machine learning projects, it is frequently used to 
assess model performance on unobserved data and 
prevent overfitting. In the context of the research 
the train_test_split function may be used to split the 
smart meter dataset into two distinct sets: one for 
training the predictive model and another for 
assessing its effectiveness. It enables the project to 
develop a trustworthy measure of the model's 
accuracy and generalizability by assessing it on 
unknown data by separating the dataset using 
train_test_split. The test_size argument, which 
specifies the percentage of the input data to be 
utilised for testing, is also sent to this method 
together with the input data and target variable. In 
the project, the testing set is set to 20% of the total 
data, and the remaining 80% is used for training the 
models [20].  

In machine learning projects, it is frequently 
used to assess model performance on unobserved 
data and prevent overfitting. The train_test_split 
function may be employed to split the smart meter 
dataset into two distinct sets: one for training the 
predictive model and another for assessing its 
effectiveness. It enables the project to develop a 
trustworthy measure of the model's accuracy and 
generalizability by assessing it on unknown data by 
separating the dataset using train_test_split. The 
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test_size argument, which specifies the percentage 
of the input data to be utilized for testing, is also 
sent to this method together with the input data and 
target variable. 

4.4 Feature Scaling using Min-Max Scaler  
By ensuring that all numerical characteristics 

are scaled similarly, feature scaling keeps the 
learning process from being dominated by any 
particular feature. The frequently used Min Max 
Scaler converts the numerical properties by scaling 
them to a predetermined range, often between 0 and 
1. By putting the characteristics into a similar range 
by scaling, the linkages between them are 
maintained. Each numerical characteristic in the 
smart meter dataset is normalized using the Min 
Max Scaler, ensuring that the values fall within the 
appropriate range. When working with data on 
energy usage, this normalization step is very crucial 
since it enables the model to consider all 
characteristics equally and capture the relative 
value of each information during training. Before 
training the model, the input data are scaled using 
the Min-Max Scaler data preparation approach.  All 
of the input characteristics are scaled to the same 
range using this normalization approach, which is 
typically between 0 and 1 [21]. All features are 
scaled using the Min-Max Scaler to the same range, 
which makes it simpler for the model to assess the 
relative weights of various features and produce 
precise predictions. Additionally, by scaling the 
data, the optimization technique used to train the 
model can achieve better convergence rates more 
quickly. The supplied information demonstrates 
how the min-max approach was used to scale the 
movement rate observing data to a range of 0 to 1 is 
represented in (5). 

𝑋௜
௠ =

௑೔
೘ି௑ಾ೔೙

೘

௑ಾೌೣ
೘ ି௑ಾ೔೙

೙    (5) 

Where 𝑥௜
௠ is any value of a variable 𝑚; 

𝑋ெ௔௫
௠ and 𝑋ெ௜௡

௡   are the maximum and the minimum 
values of that variable; 𝑥௜,௦௖௔௟௘ௗ

௠  is the value after 
scaling. The problem of one feature overwhelming 
the others due to its wider range of values may be 
avoided by normalizing the input data using the 
Min-Max Scaler. If features are not normalized, the 
model may give the features with greater values an 

excessive amount of weight, which might lead to 
subpar model performance. The Min-Max Scaler 
makes sure that each feature has an equal influence 
on the model predictions by scaling all features to 
the same range. 

4.5 HRF-LR Technique Employing for 
Prediction of Energy Consumption  

The experiment has shown how well the 
Random Forest Regressor algorithm predicts 
energy usage using information from smart meters. 
It offers knowledge on cost reduction, cost 
optimization, and sustainable practices. The 
accuracy and usability of the prediction model in 
real-world energy consumption situations can be 
improved by further developments and the research 
of cutting-edge approaches [22]. The Random 
Forest Regressor model was trained and evaluated 
using metrics such as median absolute error, mean 
squared error, and mean absolute error. The 
Random Forest Regressor model was trained and 
evaluated using the following metrics The train 
score represents the performance of the model on 
the training data. A score of 0.9803149820302954 
indicates that the model has achieved a high level 
of accuracy in predicting energy consumption 
based on the features in the training dataset. It may 
be concluded from this that the idea has 
successfully mastered the fundamental patterns and 
connections in the training data. A score of 
0.8921697245702427 suggests that the model is 
generalizing well to new data and is able to make 
precise calculations on unseen instances. However, 
the test score is slightly lower than the train score, 
indicating that there may be some overfitting of the 
model to the training data. It is important to 
monitor and optimize the model to achieve a 
balance between training and test performance. The 
Random Forest Regressor model was trained using 
a subset of 5 features from the available dataset. 
The selection of characteristics is an important 
stage in creating a predictive model because it 
identifies the aspects that are most pertinent to 
predicting energy usage. By utilizing a smaller set 
of features, the model can focus on the most 
informative attributes, potentially improving its 
performance and reducing computational 
complexity. The random forest regressor 
architecture is given in Figure 2. 



Journal of Theoretical and Applied Information Technology 

15th November 2023. Vol.101. No 21 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6904 

 

 

Figure 2. Random Forest Architecture 

Random forests, also known as random 
decision forests, are a method of collective learning 
that relies on building multiple decision trees 
during the training process while minimizing a 
given mistake metric and delivering an average of 
their forecasts as an output. It is used in the current 
study as the prediction algorithm. As the 
foundation of bagging, a sample of size 'n' is 
chosen at random from the training set, and this 
sample is subsequently fitted to a regression tree. 
The same data may reappear in this sample, which 
is a bootstrap sample and was selected through 
replacements. Each measurement has a 1/n 
probability of being selected when n data points 
with replacements are randomly picked to 
construct a bootstrap sample. Unpredictable 
variables that are independent and have the same 
distributions serve as a representation of this 
random decision. The bagging approach selects a 
set of bootstrap examples, applies the CART 
algorithm to those samples to create a set of 
prediction trees, and then aggregates the output 
from each classification. Alongside bagging, the 
RF algorithm seeks to identify the best chopping 
path using just the characteristics selected during 
node separating. By minimizing a cost function, the 
goal is to discover a suitable combination to chop, 
and the process is repeated until all the trees are 
completely grown. RF depends on projections from 
multiple trees that are combined to provide a 
consequence that is better than any one tree in the 
algorithm.  Due to the fact that bootstrap 
combination creates independent trees using many 
training sets, its key benefit is tolerance to noise. 
While the mean of multiple independent trees is 
not susceptible to noise, a poor predictor 

(regression tree) could. The same goal of 
preventing overfitting is achieved by choosing a 
random subset of characteristics during each split. 
The RF simulations that are within the subject 
matter of this study were created and evaluated 
using the Ensembles component from the Python 
Scikit toolkit. The branches were extended until 
every leaf was clean or had less than two examples, 
with the square root of the error being used as a 
metric to gauge the quality of a split. In the entire 
forest, 100 trees were automatically subject to 
consideration. 

The HRF-LR model is a powerful approach for 
energy consumption prediction from smart meter 
data. This model combines the strengths of both RF 
and LR to improve prediction accuracy and capture 
complex relationships within the data. Random 
Forest Regression is an ensemble learning 
technique that utilizes multiple decision trees to 
make predictions. It excels in handling non-linear 
relationships, capturing interactions between 
features, and handling outliers and missing values. 
RF constructs a multitude of decision trees and 
aggregates their predictions to obtain a robust and 
accurate prediction (6)[23].  

𝑦௣௥௘ = ∑ 𝑊௜ × 𝑇௜
௧
௜ୀଵ (𝑥)  (6) 

Where, 𝑥 is the input variable, 𝑦௣௥௘ denotes the 
predicted value corresponding to the input 𝑥, t is 
the amount of the constructed decision trees. 
Linear Regression, on the other hand, is a 
traditional statistical modeling technique that 
assumes a linear relationship between the input 
features and the target variable. It is widely used 
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for its interpretability and simplicity. LR estimates 
the coefficients of the linear equation that best fits 
the data, allowing for straightforward interpretation 
of feature importance and the direction of their 
impact on the target variable [24]. The general 
form of a LR model is as shown in (7) 

𝑦ො = 𝑥଴ + ∑ 𝑥௜𝐶௜
௡
௜ୀଵ   (7) 

Where 𝑦ො  is the model output, 𝐶௜′𝑠  are the 
independent input variables to the model, and 
𝑥଴, 𝑥ଵ, 𝑥ଶ, … , 𝑥௠  are partial regression coefficients.  
The hybrid equation for the Random Forest 
Regression and Linear Regression model can be 
represented as follows (8): 

𝑦_𝑝𝑟𝑒𝑑 =  𝑤1 ∗  𝑅𝐹(𝑥)  +  𝑤2 ∗  𝐿𝑅(𝑥)
 (8) 

Where, 𝑦_𝑝𝑟𝑒𝑑 is the predicted energy 
consumption value. 𝑅𝐹(𝑥) indicates the prediction 
from the Random Forest Regression model using 
input features 𝑥. 𝐿𝑅(𝑥) indicates the prediction 
from the Linear Regression model using input 
features 𝑥. 𝑤1 and 𝑤2 are the weights assigned to 
the predictions of the Random Forest Regression 
and Linear Regression models, respectively. These 
weights determine the contribution of each model 
to the final prediction. The weights 𝑤1 and 𝑤2 can 
be determined based on the performance of each 
model on the training data or through expert 
knowledge. The weights can be adjusted to give 
more importance to one model over the other, 
depending on their respective strengths and 
weaknesses. 

5 RESULTS AND DISCUSSION 

The result and discussion part for the Random 
Forest Regressor-based energy consumption 
prediction model provides a thorough evaluation of 
the model's performance as well as insightful 
conclusions. Metrics like mean absolute error, 
mean squared error, and median absolute error are 
used to estimate the model's presentation and 
provide quantifiable measurements of how well it 
predicts energy usage. The talk also looks at the 
Random Forest Regressor algorithm's feature 
significance rating in order to recognize significant 
characteristics and comprehend how they affect 
energy usage. The findings are explained in terms 
of energy consumption patterns, allowing for a 
fuller comprehension of the variables affecting 
energy use. Additionally, the comparison with 
benchmark models or earlier research confirms the 
viability of the selected strategy and accentuates 
the project's contributions. Limitations and future 

directions are also discussed, offering information 
on prospective advancements and potential routes 
for study. The project's practical implications for 
energy management, including resource allocation 
optimization and the promotion of sustainable 
practices, are highlighted in the outcome and 
discussion section. The MAE value was found to 
be 70.79465688782157. This metric measures the 
average absolute difference between the predicted 
and actual energy consumption values. A lower 
MAE indicates that the model's predictions are, on 
average, closer to the true values. In this project, 
the MAE suggests that the model has a moderate 
level of accuracy in predicting energy 
consumption. The MSE value was calculated as 
19648.03629805024. MSE represents the 
proportional variation among the projected and 
actual values for power usage. It bounces advanced 
weightage to larger errors. In this project, the MSE 
value provides an understanding of the magnitude 
of the errors, with higher values indicating larger 
discrepancies between predictions and actual 
values. The MedAE value was determined to be 
30.456483333333836. MedAE is a robust measure 
of error that represents the median absolute 
difference between the predicted and actual energy 
consumption values. It is fewer complex to outliers 
related to the MAE. A lower MedAE indicates that 
the model's predictions are more accurate and less 
affected by extreme values. These evaluation 
metrics provide insights into the performance and 
accuracy of the Random Forest Regressor model in 
predicting energy consumption. While the MAE 
and MedAE values indicate a moderate level of 
accuracy, the MSE value suggests that there are 
significant errors in some predictions. Further 
analysis and optimization of the model can be done 
to improve its predictive capabilities and reduce the 
errors. 

A statistical breakdown of many building-
related topics, including energy use, is shown in 
Table I. Building_id, cloud_coverage, 
meter_reading, year_built, air_temperature, 
dew_temperature, square_feet, precip_depth_1_hr, 
sea_level_pressure, wind_direction, and 
wind_speed is just a few of the columns that are 
present. Here, the descriptive statistics are provided 
for each column, including the count (number of 
data points), mean (average value), standard 
deviation (measure of data dispersion), 25th 
percentile, median (50th percentile), 75th 
percentile, minimum value and maximum value. 

 

 

Table 1. Statistical Information about Various Aspects Related to Buildings and their Energy Consumption 
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 𝐜𝐨𝐮𝐧𝐭 𝐌𝐞𝐚𝐧 𝐒𝐭𝐝 𝐌𝐢𝐧 𝟐𝟓% 
 

𝟓𝟎% 𝟕𝟓% 𝐌𝐚𝐱 

building_id 698675.0 50.061555 29.345241 0.0 24.0 50.0000 76.000 100.0 

meter_reading 698675.0 231.255069 382.396065 0.0 0.0 71.2593 302.715 4521.0 

square_feet 698675.0 88803.2106
46 

109440.853
130 

283.0 24456.
0 

53130.000
0 

103286.00
0 

487433.
0 

year_built 698675.0 1995.63708
7 

14.383392 1968.
0 

1985.0 2001.0000 2007.000 2016.0 

air_temperature 698452.0 22.841813 6.030032 1.7 18.9 23.9000 26.700 36.1 

cloud_coverage 394159.0 3.0433406 2.119795 0.0 2.0 2.0000 4.000 9.0 

dew_temperature 698452.0 16.824991 6.512371 
 

-9.4 13.3 18.3000 22.200 25.6 

precip_depth_1_hr 698591.0 1.370126 12.870762 -1.0 0.0 0.0000 0.000 343.0 

sea_level_pressure 691953.0 1017.98576
6 

4.035453 992.0 1015.5 1018.0000 1020.600 1030.2 

wind_direction 678753.0 156.437364 118.367931 0.0 60.0 140.0000 260.000 360.0 

wind_speed 698675.0 3.376827 2.156156 0.0 2.1 3.1000 4.600 15.4 

 

5.1 Correlation Heat Map 
The correlation coefficients, which can vary 

from -1 to 1, are shown in the annotations inside 
each cell of the heatmap. A correlation coefficient 
of -1 indicates a perfectly negative correlation, a 
correlation coefficient of 0 specifies no association 
at all, and a correlation value of 1 shows the 

complete positive relationship. Finding variables 
that are highly associated with one another is made 
simpler by visualizing the correlation matrix in a 
heatmap. By offering insights into probable 
patterns and interactions within the dataset, this 
aids in comprehending the connections and 
dependencies between variables. 

 

Figure 3. Correlation between Variables 

A visual depiction of the correlation between 
variables in the dataset is provided by the produced 
heatmap in Figure 3. Warmer colours are used to 
represent positive correlations whereas colder 
colours are used to display negative correlations. 
The correlation values are indicated as annotations 
on the heatmap cells, providing information about 
the connections between various variables. Strong 
connections between variables are highlighted by 

the heatmap, which is helpful for understanding 
relationships and seeing potential patterns or trends 
in the data. 

5.2 Kernal Density Estimate Plot 
A Kernal density estimation plot for a particular 

variable in the sample is represented by each 
subplot in Figure 4.  A smoothed approximation of 
the probability density function of a continuous 
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variable is provided by these figures. By 
calculating the underlying probability density, this 
figure illustrates the distribution of each variable. It 

displays the distribution's form and draws attention 
to the data's peaks, troughs, and modes [25].

 

 

Figure 4. Kernal Density Estimation Plot for a Specific Variable 

The connected variable's numbers are shown on 
the x-axis, while the predicted values for density 
are shown on the y-axis. The picture enables a 
visual evaluation of the distribution patterns and 
changes within the dataset by showing the density 
for each variable. It aids in comprehending the 
distribution, core patterns, and potential outliers of 
the data. One may learn more about the distribution 
trends, concentrations, and fluctuations in the data 
for any particular variable by looking at the KDE 
plots. A visual grasp of the distributional properties 
of the data is made possible by the KDE plots, 
which offer a smoothed picture of the probability 
density function. In comparison to a histogram, 
KDE may produce a fewer packed plot that is 
simpler to understand, particularly when presenting 

several variations. However, distortions may occur 
if the basic distribution is restricted or irregular. 
The usage of appropriate smoothing parameters 
determines the depiction's quality, just as a 
histogram [26]. 

5.3 Count Plot 
Figure 5 demonstrates that the 'year_built' 

variable's x-axis indicates its distinct values. An 
individual year is represented by each tick on the x-
axis. The count or frequency of occurrences for 
each year is shown on the y-axis. It shows how 
many occurrences of the same 'year_built' value 
there are in the dataset. Every distinct "year_built" 
value is represented by a bar in the plot, and the 
height of each bar reflects the number of 
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occurrences for that particular year. The bar is 
raised if more structures or properties were 
constructed in a given year. The count plot may be 
used to determine how properties are distributed 

across time. It aids in comprehending the 
frequency of various building eras and might offer 
useful details on the vintage and age of the 
structures in the dataset. 

 

 

Figure 5. Count of Occurrences for Specific Year 

 

Figure 6. Frequency of Events Corresponds to Day 

The width and height of the resulting plot in 
inches are determined by the figure size, which in 
Figure 6 is set to (30, 6). Each distinct value of the 
'day' variable's frequency or count of occurrences is 
shown on the countplot. The unique values of the 
'day' variable, which normally corresponds to the 
days of the month, are displayed on the x-axis. The 
count or regularity of occurrences for each day is 
shown on the y-axis. The height of each bar in the 

plot, which signifies a single day, corresponds to 
how frequently that day appears in the dataset. The 
countplot aids in analyzing the frequency of 
activities or observations associated with every 
day, offering important insights into temporal 
trends or patterns in the dataset. 
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5.4 Scatter Plot 
The scatter plot shows how the indices (on the 

x-axis) and associated values (on the y-axis) relate 
to one another. The data point indices are shown on 
the x-axis. An individual index of the data is 
associated with each point on the x-axis. The 
values being plotted, whether they be actual values 
or expected values are represented by the y-axis. 
Blue scatter spots on a graph represents the actual 
numbers. The actual value of a data point from the 
test set is represented by each blue point. Red 
scatter dots represent the expected values on the 
graph. The predicted value of a data point produced 
from the prediction model is represented by each 
red point. 

 

Figure 7. Scatter Plot to Identify the Relationship 
between the Indices 

The 'Index' x-axis in Figure 7 shows the data 
points' indices. The values being plotted are 
indicated by the word "Value" on the y-axis. The 
plot's title, "Actual vs Predicted Values," sums well 
the goal of the visualization. To distinguish 
between the actual values (blue) and the expected 
values (red), a legend has been provided. The 
presentation and accuracy of the prediction perfect 
may be evaluated graphically by comparing the 
actual and forecast morals in the scatter plot. It aids 
in determining whether there are any variations or 
conflicts between the model forecasts and the 
actual data points. 

5.5 Line Plot 
The discrepancy among the actual values and 

the expected values is shown by the line plot. The 
data point indices are shown on the x-axis. An 
individual index of the data is associated with each 
point on the x-axis. The difference between each 
data point's actual value and its forecasted value is 
shown on the y-axis. Calculated and shown as a 
line is the discrepancy between the measured 
values and the projected values. The difference's 
size and direction are shown by the line. When the 

anticipated values are greater than the actual 
values, as shown by positive values, the predicted 
values are lower than the actual values, as indicated 
by negative values. 

 

Figure 8. Determined Differences between Actual 
Values and Expected Values are Represented as Lines 

The indices of the data points are represented 
by the 'Index' x-axis in Figure 8. The 'Difference' 
label on the y-axis denotes the variance between 
the actual and expected values. The line is marked 
as "Difference" by the addition of a legend. The 
line plot makes it easier to see any flaws or 
differences between the projected and actual 
numbers. The size and direction of the prediction 
errors are shown by positive or negative departures 
from the zero line. This graph aids in 
comprehending the prediction model's overall 
performance and locating any predictable biases or 
discrepancies in the forecasts. 

The line plot in Figure 9 shows the correlation 
between the indices' (x-axis) values and 
corresponding values. The data point indices are 
shown on the x-axis. An individual index of the 
data is associated with each point on the x-axis. 
The values being plotted, whether they be actual 
values or expected values are represented by the y-
axis. A blue line represents the actual numbers on 
the graph. The first 10 data points from the test set 
are represented by the blue line, which shows their 
actual values. A red line represents the expected 
values on the graph. For the first 10 data points 
acquired from the prediction model, the red line 
indicates the predicted values.  
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Figure 9. Line Plot Visualizes the Relationship 
Between the Indices 

The indices of the data points are displayed on 
the x-axis, which is designated as "Index." The 
values being plotted are indicated by the word 
"Value" on the y-axis. Actual versus Predicted 
Values for 10 Values is how the plot's title is 
chosen to describe the visualization's goal. Figure 9 
shows a legend that separates the actual values 
(blue) from the anticipated values (red). 

The actual values are shown as a blue line in 
Figure 10. The first 100 data points from the test 
set are shown by the blue line, which depicts their 
actual values. A red line represents the expected 
values on the graph. The first 100 data points 
acquired from the prediction model are represented 
by the red line, which shows the predicted values. 
The indices of the data points are displayed on the 
x-axis, which is designated as "Index." The values 
being plotted are indicated by the word "Value" on 
the y-axis. The plot's title, "Actual vs Predicted 
Values for 100 values," explains what the 
visualization is meant to show. To distinguish 
between the actual values (blue) and the expected 
values (red), a legend has been provided. 

 
Figure 10. Actual vs Predicted Values for 100 values 

5.6 Heatmap 
The link between the indices (y-axis), the actual 

values (x-axis), and the accompanying residuals are 
shown visually via the heatmap. Actual values 
from the dataset are shown on the x-axis. In Figure 
11, the indices of the data points are shown on the 
y-axis. The average residual value for a particular 
combination of an actual value and an index is 
shown in each heatmap cell. The discrepancy 
between the actual and projected values is used to 
determine the residuals. The residuals quantify the 
discrepancy between expected and actual values. 
Positive residuals indicate that the anticipated 
values are higher than the actual values, while 
negative residuals indicate that the values that are 
anticipated are less than the actual values. 

The heatmap in Figure 11 shows the residuals' 
magnitude in a range of colors from cool (blue) to 
warm (red). The average residual value for each 
combination of an actual value and an index is 
shown in the annotated heatmap cells. For easier 
reading, the format of the annotations is adjusted to 
two decimal places (".2f"). The 'Actual' x-axis 
represents the actual values from the dataset and is 
marked as such. The data points' indices are shown 
on the y-axis, which is designated as "Index." The 
goal of the visualization is described by the plot's 
title, "Actual vs Predicted (Residuals)". The 
heatmap makes it easier to see the distribution and 
trends of the residuals.  By displaying the 
differences between the anticipated and actual 
values across various real values and indices, it 
aids in analysing the prediction model's accuracy. 
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Figure 11. Heatmap 

Table 2. Error Rate Comparison with Existing 
Methods 

Models MAE (%) 

SARIMA [27] 72.15 

SVR + LR [27] 75.63 

Proposed HRF-LR 70.79465688782157 

 

The Table 2 provides an evaluation of different 
models based on two performance metrics. Metrics 
are commonly used to assess the accuracy of 
predictive models. 

In Figure 12 error rate comparison with existing 
methods is depicted, and the proposed method 
achieves lower error when compared to existing 
methods. 

 

Figure 12. Error Rate Comparison with Existing 
Methods 

6 CONCLUSION AND FUTURE WORK 

The project's goal was to forecast energy usage 
using data from smart meters and the Random 
Forest Regressor algorithm. To get the data ready 
for modeling, preprocessing methods like Label 
Encoding and managing missing values using 
Simple Imputer were used. The train_test_split 
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technique was used to separate the dataset into 
training and testing sets for the assessment of the 
model. To guarantee that each feature contributes 
equally during model training, feature scaling was 
done using the Min Max Scaler. The Random 
Forest Regressor model was trained and evaluated 
using metrics such as mean absolute error, mean 
squared error, and median absolute error. 
Heatmaps, scatter plots, line plots, count plots, and 
other visualization techniques were used to 
analyses the data, assess model performance, and 
comprehend the link between variables. The 
findings demonstrated that the Random Forest 
Regressor model was able to estimate energy usage 
accurately based on the provided characteristics. 
Throughout the investigation, strict control 
methods were used. The use of cross-validation to 
evaluate model performance as well as data 
pretreatment methods to address outliers and 
missing data are some of these controls. These tests 
ensured that the study findings appropriately 
represent the model's predicting abilities and those 
they remain reliable and consistent. The main 
features impacting the forecast of energy usage 
were identified by a study of feature significance. 
Comparing the performance of other machine 
learning algorithms against that of the Random 
Forest Regressor might be useful. Support vector 
machines, gradient boosting, and neural networks 
are a few examples of algorithms that might 
provide an alternate modeling strategy and perhaps 
increase prediction accuracy. The model's 
forecasting skills can be improved by including 
outside data sources, such as weather data. A more 
complete picture of the link between energy use 
and environmental elements may be obtained by 
including the information that weather conditions 
have on energy use. Incorporating more advanced 
machine learning methods, including deep learning 
and neural networks, might help increase the 
forecasting of power usage utilizing hybrid models 
in the future. This would improve the system's 
ability to recognize complex connections and 
patterns in data from smart metres, perhaps 
resulting in even more precise forecasts. 
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