
Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6254

MULTI-AGENT PROXIMAL POLICY OPTIMIZATION FOR
PORTFOLIO OPTIMIZATION

FIRDAOUS KHEMLICHI 1,* , HIBA CHOUGRAD 1, SAFAE ELHAJ BEN ALI 1,

YOUNESS IDRISSI KHAMLICHI 1
1 SIGER Laboratory, Sidi Mohamed Ben Abdellah University Fez, Morocco

E-mail: 1,* firdaous.khemlichi@usmba.ac.ma

ABSTRACT

Deep reinforcement learning is a subfield of machine learning that combines the ideas of deep learning and
reinforcement learning to enable agents to learn and make decisions in complex environments. It has been
applied to a wide range of tasks, including gaming, robotics, and finance, among others. In finance,
reinforcement learning (RL) has emerged as a promising technique for solving strategic decision-making
problems in complex financial environments using reward-based approaches for optimal control. In this
paper, we propose a novel algorithm that leverages the power of Multi-Agent Reinforcement Learning
(MARL) coupled with Proximal Policy Optimization (PPO) to tackle the complex problem of portfolio
optimization. What sets this approach apart is its utilization of MARL, which involves multiple agents
learning and interacting within the same environment. This is in contrast to the traditional single-agent
approaches commonly used in portfolio optimization. In portfolio optimization, MARL enables agents to
learn from the interactions with other agents and the environment, leading to more realistic and robust
investment strategies. The performance of the algorithm was assessed on the S&P 500 market using various
numbers of agents and assets, and its performance was compared to several benchmarks. The performance
metrics used for evaluation consisted of annual profit, annual volatility, Sharpe ratio, and Sortino ratio. The
findings demonstrated that the algorithm outperformed the benchmarks in terms of all the performance
metrics considered, regardless of the number of agents and assets involved.

Keywords: Deep Learning, Reinforcement Learning, Portfolio Optimization, Proximal Policy Optimization.

1. INTRODUCTION

Traditional methods of portfolio
optimization can be limited due to the presence of
correlations between price and other factors in
financial environments, as well as the presence of
substantial noise. Considering this, advanced
machine learning techniques are presently being
utilized in financial market dealings [1]. However,
numerous models primarily utilize past asset prices
to forecast future price movements through neural
networks, which then enable trade agents to make
decisions based on such predictions [2] [3] [4]. The
notion appears logical, but the efficiency of these
algorithms heavily relies on accurately forecasting
future market prices. Consequently, some researches
[5] [6] address this challenge by using reinforcement
learning instead of predicting future prices.

Reinforcement learning involves an agent
that interacts with the environment to acquire an
optimal policy through trial and error for sequential
decision-making tasks [7] [8]. The task of dynamic
portfolio optimization is considered to be highly

challenging in finance, as noted by researchers such
as [9] [10]. It involves continuously adjusting the
allocation of funds among various financial
investment products, with the ultimate objective of
achieving maximum return while minimizing risk. In
order to address the problem of selecting the best
stock portfolio, researchers have developed a
reinforcement learning method based on
hypergraphs to learn an effective policy for
generating suitable trade actions, as described in
[11]. In addition, an RL framework based on policies
was presented for managing stock portfolios and its
effectiveness was compared to alternative trading
strategies [12].

In recent years, there's been recognition of
the complexity in decision-making, especially in
scenarios resembling multi-agent systems, where
multiple agents make strategic decisions [13]. To
tackle this, the Multi-Agent Reinforcement Learning
(MARL) framework was developed for decision-
making in shared environments [14]. MARL, akin to

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6255

Reinforcement Learning (RL), involves neural
networks for agent decision-making [15], but adds
complexity by considering agents' dynamics as part
of the environment [16]. In financial markets,
researchers consider MARL to enhance portfolio
management and returns [17]. An alternative
approach involves the Multi-Agent Simulator
(MAS), a tool for assessing market activity and
replicating market metrics [18].

Building upon this foundation, our paper
addresses the critical challenge of portfolio
optimization. The objective is to simultaneously
maximize returns while minimizing risks in the
context of complex and dynamic financial markets.
To achieve this, we design an algorithm to solve the
portfolio optimization problem, which involves
maximizing returns while minimizing risks. It is a
multi-agent reinforcement learning algorithm that
uses neural networks as function approximators. The
algorithm uses Proximal Policy Optimization (PPO)
[19] as the training method, which is a state-of-the-
art reinforcement learning algorithm that is known
for its stability and ability to handle continuous
action spaces. The exploration strategy used is
Boltzmann exploration, which is a stochastic method
that allows agents to select actions based on a
probability distribution that depends on the
estimated value of the actions. This allows the agents
to explore the action space more effectively and find
better solutions. The algorithm also uses Prioritized
Experience Replay (PER) [20], which is a method
that allows the algorithm to prioritize and replay
important experiences more frequently, leading to
faster learning and better performance. The
algorithm also incorporates the TD error, which is a
measure of the difference between the predicted
value and the actual value of a state or action, to
guide the learning process. Additionally, a shared
memory mechanism is employed to facilitate
communication and data sharing among the agents
in the portfolio optimization task. In general, the
algorithm is designed to learn optimal investment
strategies for a given set of assets and constraints, by
training multiple agents to work together in a
cooperative manner. The use of PPO [19],
Boltzmann exploration, PER [20], TD error, and a
shared memory allows the algorithm to learn quickly
and efficiently, while ensuring stability and
robustness. Broadly, our contributions are as
follows:

• The algorithm is based on a multi-agent
reinforcement learning framework, which allows for
better modeling of the complex interactions between
different assets in the portfolio.

• The algorithm uses a deep neural network to
learn the optimal portfolio allocation strategy, which
makes it more flexible and adaptable to different
market conditions.

• The introduction of a shared memory
mechanism facilitates efficient communication and
data sharing among agents. This enables agents to
exchange information, synchronize their actions, and
collectively learn from their experiences.

• The algorithm incorporates Boltzmann
exploration, which balances the exploration and
exploitation trade-off and leads to better long-term
performance.

• The algorithm has been tested on real-world
financial data, specifically the S&P 500 index, and
has demonstrated superior performance compared to
other traditional portfolio optimization approaches.

• The algorithm can be extended to potential
applications in other financial domains, such as asset
pricing, risk management and portfolio rebalancing.

The rest of the paper is structured as
follows: Section 2 provides a concise overview of
the concepts and fundamentals of reinforcement
learning, Markov Decision Process, Shared
Memory, Boltzmann exploration, and Prioritized
Experience Replay. Section 3 details the proposed
model Multi-agent PPO. The experimental results
are presented in section 4. Section 5 is dedicated to
the discussion, and the paper concludes with final
remarks.

2. BACKGROUND

In this section, we briefly present the
concepts and fundamentals of reinforcement
learning, Markov Decision Process, Shared
Memory, Boltzmann exploration, and Prioritized
Experience Replay.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a subfield
of machine learning (ML) that focuses on teaching
agents how to make optimal decisions based on the
feedback they receive from their environment. The
components that make up the RL framework are as
follows:

• Agent: The agent is the entity that
interacts with the environment and makes decisions.
It can be thought of as a software program or an
autonomous robot that has a set of actions it can take
and a decision-making policy that determines which
action to take given the current state of the
environment.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6256

• Environment: The environment is the
external world in which the agent operates. It can be
any system that the agent can sense and interact with,
such as a video game, a robot, or a financial market.
The environment has a set of states that the agent can
perceive and rewards that it can receive.

• State: The state of the environment is a
snapshot of the current situation the agent is in. It is
a representation of the relevant information that the
agent can perceive from the environment at a
particular moment.

• Action: An action is the decision made by
the agent based on the current state of the
environment. The nature of actions can vary
depending on the specific context and problem at
hand. Some actions may involve continuous control
over parameters, while others may involve discrete
choices from a predefined set of options.

• Reward: The reward is a numerical value
that the agent obtains from the environment as a
consequence of its action. It represents the value of
the action taken and can be positive, negative, or
neutral.

• Policy: The policy is the decision-making
strategy used by the agent to select actions based on
the current state of the environment. The goal of the
agent is to learn an optimal policy that maximizes
the total reward it receives over time.

• Value Function: The value function is a
function that estimates the expected total reward the
agent will receive from a specific state or state-action
pair.

In RL, the agent interacts with the
environment through a series of distinct time steps.
During each time step, the agent receives the current
state of the environment, decides on an action to take
based on its policy, receives a reward, and transitions
to a new state. The goal of the agent is to learn a
policy that maximizes the expected total reward it
receives over time. (See Figure 1).

Figure 1: Reinforcement Learning Process

There are several RL algorithms, each with

its own advantages and disadvantages, but they all
follow the basic RL framework outlined above.
Some of the most popular RL algorithms include Q-
learning [21], actor-critic methods [22], deep Q-
networks (DQNs) [15], and policy gradient methods.

In general, RL is a powerful technique that
has been used to solve a wide range of problems,
from playing video games to controlling robots to
optimizing financial portfolios. It has the potential to
revolutionize many fields by enabling machines to
make intelligent decisions in complex environments.
Our article specifically explores the application of
reinforcement learning in the domain of portfolio
optimization.

2.2 Markov Decision Process
Markov decision process (MDP) [23] is a

framework for modeling decision-making problems
in which an agent interacts with an environment over
a series of discrete time steps. MDPs are widely used
in reinforcement learning, where an agent learns to
make optimal decisions by maximizing a long-term
reward signal. In a single-agent MDP, the
environment is characterized by a set of states S, a
set of actions A, a transition function T, a reward
function R, and a discount factor γ. For simplicity,
we omit the state transition function since our work
assumes that the agent's actions do not impact state
transitions. The modeling of our MDP is as follows:

• The state space could include the current
portfolio weights, asset returns, and other relevant
market data. The current state of a stock is
characterized by a set of features that provide
relevant information about its performance. To
achieve this, we leverage a historical sequence of the
closing prices of the particular company over a
period of n days.

• The action space : The available options
for action encompass purchasing, selling, or holding
shares of various assets.

• The reward function could be based on the
change in portfolio value over time, taking into
account transaction costs and other constraints. In
our paper, a reward is determined by the action of a
company at its current state and the return it
generates on the following day. This reward is used
to evaluate the performance of the agent.

• A policy, denoted as π(s, a), refers to the
trading strategy adopted by an agent in a given state
s. It can be thought of as a probability distribution of

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6257

actions that an agent takes in response to a particular
state.
The primary objective of an agent is to determine the
optimal policy that results in the highest cumulative
rewards over time.

Once the MDP is defined, a reinforcement
learning algorithm could be used to learn an optimal
policy for portfolio optimization.

2.3 Multi-Agent Reinforcement Learning
Extension

In multi-agent reinforcement learning, the
MDP tuple is extended to include information
specific to the multi-agent setting. The MDP tuple
can be defined as follows:

• Joint State Space : A joint state space that
captures the state of all agents and the environment.

• Joint Action Space : Each agent in the
MARL framework selects an action from its
individual action space, which could include
different investment decisions or portfolio
allocations.

• Joint state transition function : A joint
state transition function that maps a joint state and
joint action to a joint next state. In the multi-agent
setting, the joint action is a tuple that consists of the
individual actions taken by each agent involved in
the system. Similar to the single-agent scenario, the
multi-agent case also omits the explicit
representation of the state transition function.

• Joint Reward Function : Reward functions
for each agent that map a joint state and joint action
to a reward received by that agent.

• The discount factor γ : A discount factor
that determines the importance of future rewards.

In summary, the MDP tuple in multi-agent
reinforcement learning extends the classical MDP
tuple to include information specific to the multi-
agent setting, such as joint state spaces and joint
action spaces, as well as reward functions for each
agent. Nonetheless, there are several fundamental
issues that arise when using MARL in the context of
portfolio optimization:

• Exploration-exploitation trade-off: The
agents need to balance exploration (trying new
strategies) and exploitation (using the current best
strategy) to find optimal solutions. In portfolio
optimization, this trade-off is particularly important
because the agents need to balance risk and reward.

• Scalability: As the number of assets in the
portfolio increases, the dimensionality of the
problem increases as well, making it more difficult
for the agents to learn optimal strategies.

• Agent Coordination and Communication:
In MARL, multiple agents need to collaborate and
coordinate their actions to optimize the portfolio
collectively. Designing effective communication
and coordination mechanisms between agents
becomes crucial for achieving desirable outcomes
and avoiding suboptimal solutions.

In the subsequent sections, we will
elaborate on our approach to resolving these
challenges and demonstrate how we can guide
agents to act distinctively while concurrently
optimizing their returns.

2.4 Shared Memory
In our algorithm for portfolio optimization

using the MARL framework, we utilize a shared
memory structure to facilitate seamless
communication and efficient data sharing among
multiple agents. The shared memory, denoted as M,
is constructed as a collection of shared variables
represented as 𝑀 = {𝑚ଵ, 𝑚ଶ, … . , 𝑚௡}. Each shared
variable, 𝑚௜ is designed to capture and store a
specific aspect of the system's state or information
that is accessible to all agents involved in the
optimization process.

This representation allows us to track the
evolution of the shared variables over time,
providing agents with access to the most up-to-date
information and enabling them to make informed
decisions.

Agents in the system can read from the
shared memory by retrieving the current value of a
shared variable 𝑚௜ at a given time t. This read
operation, grants agents access to the shared
information, such as historical asset prices, portfolio
weights, or market indicators. Additionally, agents
can update the shared memory through the write
operation, where they modify the value of a shared
variable 𝑚௜ to reflect new information or state
transitions, such as adjusting portfolio weights based
on new market data or learning updates from the
reinforcement learning algorithm.

The shared memory acts as a central
medium for agents to exchange and synchronize
data, facilitating coordination among them. Agents
can share observations, policy updates, and other
relevant information through the shared memory,
allowing them to collectively learn and adapt their
policies for portfolio optimization. By leveraging the
shared memory M, agents can effectively
communicate and collaborate, leading to improved
decision-making and overall performance in the
multi-agent system.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6258

2.5 Boltzmann exploration
The Boltzmann exploration is a

reinforcement learning technique that is used to
balance the exploration-exploitation tradeoff in an
agent's decision-making process. It is particularly
useful in situations where there are a large number
of potential actions, and the optimal action is not
immediately obvious. The Boltzmann distribution is
used to select actions based on their estimated values
and a temperature parameter that controls the level
of exploration. The temperature parameter is
gradually decreased over time to encourage
exploitation as the agent learns. In the context of
portfolio optimization, using Boltzmann exploration
can help the algorithm to explore a diverse range of
portfolio weights during the learning process. This is
important because the optimal portfolio weights may
not be immediately obvious and may require some
exploration. By using Boltzmann exploration, the
algorithm is more likely to discover a wider range of
potential solutions, which can ultimately lead to
better performance in terms of maximizing returns
and minimizing risk. Additionally, Boltzmann
exploration can help the algorithm avoid getting
stuck in local optima, which is a common problem
in optimization problems. The probabilities of
selecting different actions are determined by the
Boltzmann distribution.

In the context of reinforcement learning,
the Boltzmann exploration equation can be written
as:

 𝑝(𝑎௧ , 𝑠௧) =
௘

ೂ(ೞ೟,ೌ೟)
ഓ

∑ ௘
ೂ(ೞ೟,ೌ೟)

ഓೌ

 (1)

Where 𝑝(𝑎௧ , 𝑠௧) represents the probability
of selecting action 𝑎௧ in state 𝑠௧, 𝑄(𝑠௧ , 𝑎௧) represents
the Q-value, which is an estimate of the expected
cumulative reward when taking action 𝑎௧ in state 𝑠௧.
It measures the quality or value of an action in a
particular state and τ is the temperature parameter,
which controls the level of exploration versus
exploitation. The Boltzmann exploration equation
gives a probability distribution over the set of
possible actions, with the probability of each action
being proportional to the estimated value of that
action divided by the temperature parameter. When
the temperature parameter is high, the exploration is
more random, and the agent is more likely to select
actions with low estimated value. When the
temperature parameter is low, the exploration is
more deterministic, and the agent is more likely to
select actions with high estimated value.

2.6 Prioritized Experience Replay
Prioritized Experience Replay (PER) [20]

is an extension of the classic Experience Replay
technique commonly used in reinforcement learning
algorithms. The main idea behind Experience
Replay is to store past experiences (i.e., transitions)
of an agent in a replay buffer and randomly sample
them during training to break correlations between
successive transitions and improve learning
efficiency. However, not all experiences are equally
informative for learning, and some may be more
important than others. PER aims to address this issue
by assigning priorities to experiences in the replay
buffer based on their expected learning potential and
sampling transitions with higher priority more
frequently. The priorities of experiences are
typically determined based on the magnitude of their
temporal-difference (TD) errors, which measure the
difference between the predicted value of a state-
action pair and the actual reward received from it.
The intuition behind this is that transitions with
higher TD errors are more surprising and
unexpected, and therefore carry more information
for the agent to learn from.

Here are the steps involved in PER with TD
error:

1.Initialize a replay buffer of size N and set
the priority of all transitions to 1.

2.Collect experiences by interacting with
the environment using the current policy. For each
transition (s, a, r, s'), calculate the TD error as
follows:

𝛿 = |𝑟 + 𝛾𝑉(𝑠ᇱ) − 𝑉(𝑠) | (2)

where V is the agent's value function and γ
is the discount factor.

3. Add the transition to the replay buffer
with its priority set to 𝑝 = (𝛿 + 𝜀)ఈ, where ε is a
small positive constant to ensure that no transition
has zero priority and α is a hyperparameter that
controls the degree of prioritization.

4.Sample a batch of transitions from the
replay buffer based on their priorities. The
probability of selecting a transition with priority p(i)
is given by:

𝒑(𝑖) =
௣೔

ഁ

∑ ௣
ೖ
ഁ

ೖ

 (3)

where β is a hyperparameter that controls
the degree of importance sampling correction and

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6259

helps to balance the sampling bias caused by
prioritization.

5.Train the agent using the sampled batch
of transitions. During training, calculate the loss for
each transition as usual, but weight the loss by the
inverse of its sampling probability:

ℒ =
ଵ

ே
 ∑

ଵ

௉(௜)
 𝑙௜௜ (4)

where 𝑙௜ is the loss for the 𝑖௧௛ transition.
6. After training, update the priorities of the

transitions in the replay buffer based on their TD
errors. The new priority of transition i is set to 𝑝௜ =
(𝛿௜ + 𝜀)ఈ.

PER with TD error has been shown to
improve the sample efficiency and learning
performance of reinforcement learning algorithms
by allowing the agent to focus on the most
informative experiences.

3. MULTI-AGENT PPO

Our algorithm Multi-Agent Proximal
Policy Optimization is an algorithm designed for
portfolio optimization using deep reinforcement
learning, specifically using the Proximal Policy
Optimization (PPO) algorithm [19] with prioritized
experience replay [20]. PPO is a deep reinforcement
learning algorithm that is widely used for training
agents in environments with continuous action
spaces. The PPO algorithm is particularly well-
suited for portfolio optimization because it can
handle a large number of assets and agents.

The algorithm begins by initializing the
shared memory, which consists of a set of shared
variables capturing different aspects of the system's
state and information accessible to all agents.

Next, the algorithm initializes a population
of agents, each with its own policy network and
value network. The policy network is responsible for
selecting actions based on the observed state, while
the value network estimates the expected returns
associated with different state-action pairs.

During the training process, the agents
interact with the environment and collect
experiences. At each time step, an agent observes the
current state and selects an action based on its policy
network. After selecting an action, the agent
proceeds to execute it within the environment.

Subsequently, the agent receives a reward
based on its action and gains observations regarding
the subsequent state of the environment.

The experiences are stored in a prioritized
experience replay buffer, which maintains a
collection of transitions along with their
corresponding priorities. The prioritization is based
on the TD error, which quantifies the discrepancy
between the predicted and observed values.

To update the policy and value networks,
the algorithm employs the Proximal Policy
Optimization (PPO) algorithm.

The PPO algorithm maximizes a surrogate
objective function that balances the trade-off
between policy improvement and stability. The
objective function is optimized using stochastic
gradient ascent/descent, where the gradients are
estimated using the collected experiences from the
replay buffer.

In addition, the algorithm incorporates
Boltzmann exploration to encourage exploration of
the action space. Boltzmann exploration selects
actions according to a probability distribution based
on the Q-values or action preferences. This promotes
diversity in the agents' actions, allowing them to
explore different strategies and avoid being stuck in
local optima.

In general, the algorithm aims to optimize
the portfolio by maximizing the cumulative rewards
over time. Through the integration of PPO, MARL,
Prioritized experience replay, and the shared
memory mechanism, it enables agents to learn and
adapt their policies based on their collective
experiences, improving the decision-making process
and the overall performance of the portfolio.

Using PPO, prioritized experience replay,
shared memory, neural networks, and Boltzmann
exploration in our reinforcement learning algorithm
aims to provide several benefits, including:

•Improved convergence: PPO is a variant of
the traditional policy gradient algorithm that allows
for more stable and efficient convergence to optimal
policies.

•Faster learning: Prioritized experience
replay allows for more efficient use of experience
data, which can speed up the learning process.

•Improved exploration: Boltzmann
exploration encourages the agent to explore the
action space more thoroughly, leading to better
overall performance.

•Better performance: By combining these
techniques, the resulting algorithm can often achieve
better performance on complex tasks compared to
using each technique individually.

•Effective Communication and
Collaboration: The shared memory facilitates
communication and data sharing among the agents.
It enables them to exchange information, such as

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6260

updated network parameters, observations, or
learned insights. This promotes collaboration and
coordination among the agents, leading to collective
learning and improved performance.

The pseudo-code of our algorithm can be
described as follows:

4. EXPERIMENTAL RESULTS

4.1 Dataset

The S&P 500 is an index of 500 large
American companies, based on their market
capitalization. We selected a diverse range of stocks
from various sectors to create a portfolio. Our dataset
covers the period from January 2010 to December
2022, consisting of a total of 3272 rows. We divided
the data into a training set of 70% (2010-2018) and
a testing set of 30% (2019-2022). By training our RL
agent on this large span of time, it can learn optimal
strategies for both bearish and bullish markets and
adapt to different market scenarios.

4.2 Performance indicators
We compared the performance of our

algorithm against the following benchmark methods:
• Equal Weight Baseline (EW) - is a

simple investment strategy that involves equally
distributing investment funds across all assets in a
portfolio. Under this approach, each asset in the
portfolio receives the same weight or proportion of
investment, regardless of its individual risk and
return characteristics. The goal of this strategy is to
achieve diversification across assets and reduce
concentration risk.

• S&P 500 - The S&P 500 is an equity
market benchmark comprising 500 prominent
publicly traded companies in the United States. It is
highly regarded as one of the most extensively
tracked equity indices globally and is often used as a
barometer of the US stock market's overall health.
The companies in the index are selected based on
market capitalization, liquidity, and other factors,
and the index is weighted by market capitalization.
The S&P 500 is often used as a benchmark for
portfolio performance and is used to track the
performance of the US stock market as a whole.

• Weighted Moving Average Mean
Reversion (WMAMR) - is a baseline strategy used
in finance and investment. It is based on the idea that
the price of an asset will eventually revert to its
mean, and that an investor can profit from this by
buying when the price is below the moving average
and selling when it is above. The WMAMR strategy
calculates the moving average of the asset's price
over a certain period of time, and then takes a
position in the asset based on whether the current
price is above or below the moving average, with
weights assigned to each period of the moving
average. This weighting scheme allows more recent
prices to have a greater influence on the decision to
buy or sell than older prices.

Algorithm. Multi-agent PPO
Initialize the shared memory M.
Initialize policy and value networks for each agent.
Repeat until convergence:

For each agent :
 Select action 𝑎௧ based on current state 𝑠௧ using the

policy network.
 Execute action 𝑎௧ in the environment.

Observe new states 𝑠௧ାଵ and corresponding rewards 𝑟௧.

Compute TD errors 𝛿௧ and advantage estimates 𝐴௧.
Update value networks:
 Calculate value predictions 𝑉௧ for states 𝑠௧ using the

value network.
 Calculate value loss using the TD errors and a loss

function.
 Update the value network parameters using gradient

descent:
𝜃௩ ← 𝜃௩ − 𝛼∇ఏೡ

 𝐿௩௔௟௨௘

Update policy networks:
 Calculate action log probabilities π(𝑎௧ |𝑠௧) using the

policy network.
 Calculate surrogate objective 𝐿ୱ୳୰୰୭୥ୟ୲ୣ using the

advantage estimates and action log probabilities.
 Update the policy network parameters using

gradient ascent:
𝜃గ ← 𝜃గ + 𝛼∇ఏഏ

 𝐽 (𝜃గ)

Compute Boltzmann exploration probabilities P(𝑎௧ |𝑠௧)

using the Boltzmann equation:

𝑝(𝑎௧ , 𝑠௧) =
𝑒

ொ(௦೟,௔೟)
ఛ

∑ 𝑒
ொ(௦೟,௔೟)

ఛ௔

Add the transition (𝑠௧ , 𝑎௧ , 𝑟௧ , 𝑠௧ାଵ) to the replay buffer

with its priority set to 𝑝 = (𝛿௧ + 𝜀)ఈ .
Sample a mini batch from the replay buffer based on

priorities.
Update the value networks and policy networks using

the sampled mini batch.
Update the priorities of the sampled transitions in the

replay buffer based on the TD errors.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6261

• Integrated Mean-Variance Kd-Index
Baseline (IMVK) - is a baseline algorithm used to
compare the performance of portfolio optimization
algorithms. It is a type of mean-variance
optimization, which seeks to maximize the expected
return of a portfolio while minimizing its risk, as
determined by the variance of the portfolio's returns.

The IMVK algorithm integrates both mean-
variance optimization and kd-indexing, which is a
technique used to quickly retrieve data from a large
dataset. It constructs an efficient frontier of optimal
portfolios using kd-indexing, and then applies mean-
variance optimization to select the portfolio with the
highest Sharpe ratio (a measure of risk-adjusted
return).

5. DISCUSSION OF RESULTS

5.1 Performance Analysis
We start by training a multi-agent

reinforcement learning (MARL) using Proximal
Policy Optimization (PPO) algorithm on historical
data of the S&P 500 index. We divided the data into
a training set and a testing set, with the former used
to train the MARL agents and the latter used to
evaluate their performance. In the experiments, we
considered portfolios with 5, 10, and 20 assets,
respectively. For each portfolio size, we trained a
MARL agent with 10, 20, and 30 individual agents,
respectively. For each portfolio, we use the same
hyperparameters and training parameters to ensure a
fair comparison between the results.

The number of assets in a portfolio can have
a significant impact on portfolio performance. The
more assets there are in a portfolio, the more
complex the decision-making process becomes for
the MARL algorithm, as there are more possible
combinations of actions that can be taken. Therefore,
testing our algorithm on portfolios with varying
numbers of assets can help us understand how well
it can handle increasing levels of complexity and
diversification. Additionally, testing on portfolios
with different numbers of assets can help us identify
the optimal number of assets for a given market or
investment strategy. In addition, training a MARL
algorithm with different numbers of individual
agents can have a significant impact on the results.
Increasing the number of individual agents in the
MARL algorithm can increase the complexity of the
problem and improve the agent's ability to capture
the interactions between different assets. This can
lead to better performance and higher returns in the
portfolio. However, increasing the number of agents
also increases the dimensionality of the action space,
which can lead to slower convergence and increased

training time. Additionally, increasing the number of
agents can also increase the likelihood of overfitting
to the training data, especially if the number of
training samples is limited.

In our study, we applied our algorithm to
portfolio optimization with different numbers of
agents and assets and evaluated its performance
based on annual profit, annual volatility, Sharpe
ratio, and Sortino ratio.

To evaluate the performance of our
reinforcement learning (RL) agent against standard
portfolio optimization techniques, we selected five
non-RL based benchmarks. These benchmarks
include Equal Weight Baseline (EW), S&P 500,
Weighted Moving Average Mean Reversion
(WMAMR), and two variants of Integrated Mean-
Variance Kd-Index Baseline (IMVK), namely
Moderate and Aggressive Strategy, which were
discussed earlier. We compared the performance of
these benchmarks against each other and our RL
agent.

We first tested the algorithm on a 5-asset
portfolio consisting of AAPL, FB, GOOGL, JPM,
and XOM. The results demonstrated that our
algorithm outperformed the benchmarks in terms of
Annual profit, Sharpe ratio and Sortino ratio as
shown in figure 2 and in the tables 1, 2 and 3.

Table 1 : the portfolio performance of our algorithm
using 10 agents across different asset configurations,

including 5 assets, 10 assets, and 20 assets.

Table 2 : the portfolio performance of our algorithm
using 20 agents across different asset configurations,

including 5 assets, 10 assets, and 20 assets.

10
agents

Portfolio
balance

Annual
profit

Annual
volatility

Sharpe
ratio

Sortino
ratio

5
assets

27576 0.439 0.259 1.75 2.01

10
assets

30869 0.521 0.254 2.24 2.48

20
assets

37517 0.687 0.253 2.82 2.92

20
agents

Portfolio
balance

Annual
profit

Annual
volatility

Sharpe
ratio

Sortino
ratio

5
assets

30604 0.515 0.253 1.96 2.18

10
assets

34875 0.621 0.252 2.45 2.69

20
assets

47702 0.942 0.249 2.97 3.14

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6262

Table 3 : the portfolio performance of our algorithm
using 30 agents across different asset configurations,

including 5 assets, 10 assets, and 20 assets.

For the 5-asset portfolio, the MARL agent

with 10 individual agents achieved an average
annual profit of 0.439, with a Sharpe ratio of 1.75,
and a Sortino ratio of 2.01. The agent with 20
individual agents achieved an average annual profit
of 0.515, with a Sharpe ratio of 0.96, and a Sortino

ratio of 2.18. Finally, the agent with 30 individual
agents achieved an average annual profit of 0.689,
with a Sharpe ratio of 2.35, and a Sortino ratio of
2.67.
We then tested the algorithm on a 10-asset portfolio
consisting of the same five assets as before, plus five
additional assets: AMZN, BRK-B, JNJ, MSFT, and
PG. For the 10-asset portfolio, the MARL agent with

10 individual agents achieved an average annual
profit of 0.521, with a Sharpe ratio of 2.24, and a
Sortino ratio of 2.48. The agent with 20 individual
agents achieved an average annual profit of 0.621,
with a Sharpe ratio of 2.45, and a Sortino ratio of
2.69. Finally, the agent with 30 individual agents
achieved an average annual profit of 0.788, with a
Sharpe ratio of 2.48, and a Sortino ratio of 2.83.

Next, we tested the algorithm on a 20-asset
portfolio consisting of the same 10 assets as before,
plus another 10 assets: ADBE, BAC, CMCSA,
CVX, DIS, GE, JPM, KO, PFE, and T. For the 20-
asset portfolio, the MARL agent with 10 individual
agents achieved an average annual profit of 0.687,
with a Sharpe ratio of 2.82, and a Sortino ratio of
2.92. The agent with 20 individual agents achieved

an average annual profit of 0.942, with a Sharpe ratio
of 2.97, and a Sortino ratio of 3.14. Finally, the agent
with 30 individual agents achieved an average
annual profit of 1.09, with a Sharpe ratio of 3.15, and
a Sortino ratio of 3.38.

The results showed that as the number of
agents and the assets increased, the annual volatility
decreased for all scenarios. For instance, when there

30
agents

Portfolio
balance

Annual
profit

Annual
volatility

Sharpe
ratio

Sortino
ratio

5
assets

37563 0.689 0.251 2.35 2.67

10
assets

41547 0.788 0.248 2.48 2.83

20
assets

53621 1.09 0.248 3.15 3.38

(a) : The portfolio balance achieved by employing 10 agents for
different numbers of assets, specifically 5, 10, and 20.

(b) : The portfolio balance achieved by employing 20 agents for
different numbers of assets, specifically 5, 10, and 20.

(c) : The portfolio balance achieved by employing 30 agents for
different numbers of assets, specifically 5, 10, and 20.

Figure 2: The portfolio balance achieved for different configurations, including 5 assets with varying numbers of
agents (10, 20, and 30), as well as 10 and 20 assets with the same agent numbers.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6263

were 10 agents and 5 assets, the annual volatility
measured 0.259. However, with an increased
number of agents to 30, the annual volatility
decreased to 0.251. Alternatively, with 20 agents and
5 assets, the annual volatility recorded a value of
0.253. Notably, when there were 20 assets alongside
20 agents, the annual volatility further decreased to
0.249. This implies that incorporating multiple
agents in the portfolio optimization process can
contribute to risk reduction. Similarly, the inclusion
of multiple assets can also aid in mitigating the risks
associated with portfolio optimization.

Furthermore, as shown in tables 4, 5, and 6,
we observed that our algorithm outperformed all the
benchmarks, including the WMAMR and the two
variants of IMVK. For example, when using 30
agents and 20 assets, our algorithm achieved an
annual profit of 1.09, a Sharpe ratio of 3.15, and a
Sortino ratio of 3.38, compared to 0.348, 1.45, and
1.72 for the WMAMR benchmark, and 0.312, 1.02,
and 1.15 for the Aggressive IMVK benchmark.

These results indicate that our algorithm
performs better with a larger number of agents and
assets in the portfolio. The increase in the number of
agents and assets allows for a better diversification
of the portfolio and the agents are able to cooperate
and learn from each other to achieve higher returns
with lower risk. Additionally, the results
demonstrate that our algorithm can achieve
impressive results in terms of average annual profit,
Sharpe ratio, and Sortino ratio, indicating its
potential for real-world application in portfolio
optimization.

There are several potential reasons for this
improvement in performance as the number of assets
increases. One possible explanation is that with more
assets, there is a higher degree of diversification in
the portfolio, which can help to mitigate risk and
stabilize returns. Additionally, with more assets to
choose from, there may be a greater likelihood of
finding optimal trading strategies for each individual
asset, leading to overall better performance for the

Table 4 : Comparison of the portfolio performance between our Multi-agent PPO algorithm and other benchmark strategies for a
portfolio consisting of 5 assets.

Table 5 : Comparison of the portfolio performance between our Multi-agent PPO algorithm and other benchmark strategies for a
portfolio consisting of 10 assets.

Table 6 : Comparison of the portfolio performance between our Multi-agent PPO algorithm and other benchmark strategies for a
portfolio consisting of 20 assets.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6264

portfolio as a whole. It's important to note that this
general trend may not hold true in all cases and for
all types of algorithms. The optimal portfolio size
may depend on various factors such as market
conditions, trading costs, and the specific
characteristics of the assets being traded. However,
in the context of the experiments discussed here, it
appears that increasing the number of assets in the
portfolio leads to improved performance for the
proposed algorithm. In general, our algorithm
showed consistent outperformance across all three
portfolios with different numbers of assets and
agents.

6. CONCLUSIONS

In conclusion, our algorithm applied to
portfolio optimization in the S&P 500 index has
shown promising results. The experiment was
conducted with different numbers of individual
agents and assets in the portfolio. The results
indicate that the algorithm performs better as the
number of agents and assets increases. In general,
the algorithm can be used to help investors optimize
their portfolio in the S&P 500 allocation. The
algorithm can also be extended to other financial
markets and assets beyond the S&P 500 index.
However, there are some limitations to the study that
require further investigation in future research
studies. These encompass the need for exploring
alternative MARL algorithms; While our algorithm
achieved good results, there are many other MARL
algorithms that can be explored in the context of
portfolio optimization. These include algorithms
such as Q-learning, and Deep Deterministic Policy
Gradient (DDPG). Additionally, sentiment analysis
can be included in the algorithm to improve the
performance of portfolio optimization. By
incorporating sentiment analysis, the algorithm can
use sentiment scores as an additional input feature to
improve the accuracy of predicting the future price
movements of assets. In conclusion, the algorithm
shows great potential in revolutionizing the way
investors allocate assets and manage risk in financial
markets, and future research can further improve its
performance and applicability.

REFERENCES:

[1] S. Park, H. Song, and S. Lee, ‘Linear programing

models for portfolio optimization using a
benchmark’, The European Journal of Finance,
vol. 25, no. 5, pp. 435–457, Mar. 2019, doi:
10.1080/1351847X.2018.1536070.

[2] Z. Jiang, D. Xu, and J. Liang, ‘A Deep
Reinforcement Learning Framework for the
Financial Portfolio Management Problem’.
arXiv, Jul. 16, 2017. [Online]. Available:
http://arxiv.org/abs/1706.10059

[3] J. B. Heaton, N. G. Polson, and J. H. Witte,
‘Deep Learning in Finance’. arXiv, Jan. 14,
2018. [Online]. Available:
http://arxiv.org/abs/1602.06561

[4] S. T. A. Niaki and S. Hoseinzade, ‘Forecasting
S&P 500 index using artificial neural networks
and design of experiments’, J Ind Eng Int, vol.
9, no. 1, p. 1, Feb. 2013, doi: 10.1186/2251-
712X-9-1.

[5] CUMMING, James, ALRAJEH, Dr Dalal, et
DICKENS, Luke. ‘An investigation into the
use of reinforcement learning techniques
within the algorithmic trading domain’.
Imperial College London: London, UK, 2015,
vol. 58.

[6] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai,
‘Deep Direct Reinforcement Learning for
Financial Signal Representation and Trading’,
IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 3, pp. 653–664,
Mar. 2017, doi:
10.1109/TNNLS.2016.2522401.

[7] ‘(PDF) Dynamic Programming and Optimal
Control, Vol I’, dokumen.tips.
https://dokumen.tips/documents/dynamic-
programming-and-optimal-control-vol-i.html.

[8] R. S. Sutton and A. G. Barto, ‘Reinforcement
Learning: An Introduction’.

[9] ‘Markowitz H M. Portfolio selection: efficient
diversification of investments. New York:
Wiley, 1959.’.

[10] R. A. Haugen, Modern investment theory, 2nd
ed. Englewood Cliffs, N.J.: Prentice Hall,
1990. [Online]. Available:
http://catalog.hathitrust.org/api/volumes/oclc/
20265113.html

[11] X. Li, C. Cui, D. Cao, J. Du, and C. Zhang,
‘Hypergraph-Based Reinforcement Learning
for Stock Portfolio Selection’, in ICASSP 2022
- 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP), May 2022, pp. 4028–4032. doi:
10.1109/ICASSP43922.2022.9747138.

[12] H. Zhang, Z. Jiang, and J. Su, ‘A Deep
Deterministic Policy Gradient-based Strategy
for Stocks Portfolio Management’. arXiv, Mar.
21, 2021. [Online]. Available:
http://arxiv.org/abs/2103.11455

[13] K. Zhang, Z. Yang, and T. Başar, ‘Multi-Agent
Reinforcement Learning: A Selective

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6265

Overview of Theories and Algorithms’, in
Studies in Systems, Decision and Control, in
Studies in Systems, Decision and Control.
Springer, 2021, pp. 321–384. doi:
10.1007/978-3-030-60990-0_12.

[14] L. Busoniu, R. Babuska, and B. De Schutter,
‘A Comprehensive Survey of Multiagent
Reinforcement Learning’, IEEE Transactions
on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 38, no. 2, pp.
156–172, Mar. 2008, doi:
10.1109/TSMCC.2007.913919.

[15] V. Mnih et al., ‘Human-level control through
deep reinforcement learning’, Nature, vol. 518,
no. 7540, pp. 529–533, Feb. 2015, doi:
10.1038/nature14236.

[16] O. Vinyals et al., ‘Grandmaster level in
StarCraft II using multi-agent reinforcement
learning’, Nature, vol. 575, no. 7782, Art. no.
7782, Nov. 2019, doi: 10.1038/s41586-019-
1724-z.

[17] J. Lee, R. Kim, S.-W. Yi, and J. Kang, ‘MAPS:
Multi-agent Reinforcement Learning-based
Portfolio Management System’, in
Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, Jul.
2020, pp. 4520–4526. doi:
10.24963/ijcai.2020/623.

[18] J. Lussange, I. Lazarevich, S. Bourgeois-
Gironde, S. Palminteri, and B. Gutkin,
‘Modelling Stock Markets by Multi-agent
Reinforcement Learning’, Comput Econ, vol.
57, no. 1, pp. 113–147, Jan. 2021, doi:
10.1007/s10614-020-10038-w.

[19] J. Schulman, F. Wolski, P. Dhariwal, A.
Radford, and O. Klimov, ‘Proximal Policy
Optimization Algorithms’. arXiv, Aug. 28,
2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

[20] T. Schaul, J. Quan, I. Antonoglou, and D.
Silver, ‘Prioritized Experience Replay’. arXiv,
Feb. 25, 2016. [Online]. Available:
http://arxiv.org/abs/1511.05952

[21] C. Watkins, ‘Learning From Delayed
Rewards’, Jan. 1989.

[22] V. Konda and J. Tsitsiklis, ‘Actor-Critic
Algorithms’, in Advances in Neural
Information Processing Systems, MIT Press,
1999. [Online]. Available:
https://papers.nips.cc/paper/1999/hash/6449f4
4a102fde848669bdd9eb6b76fa-Abstract.html

[23] R. A. Howard, Dynamic programming and
Markov processes. in Dynamic programming
and Markov processes. Oxford, England: John
Wiley, 1960, pp. viii, 136.

