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ABSTRACT 
 

Deep reinforcement learning is a subfield of machine learning that combines the ideas of deep learning and 
reinforcement learning to enable agents to learn and make decisions in complex environments. It has been 
applied to a wide range of tasks, including gaming, robotics, and finance, among others. In finance, 
reinforcement learning (RL) has emerged as a promising technique for solving strategic decision-making 
problems in complex financial environments using reward-based approaches for optimal control. In this 
paper, we propose a novel algorithm that leverages the power of Multi-Agent Reinforcement Learning 
(MARL) coupled with Proximal Policy Optimization (PPO) to tackle the complex problem of portfolio 
optimization. What sets this approach apart is its utilization of MARL, which involves multiple agents 
learning and interacting within the same environment. This is in contrast to the traditional single-agent 
approaches commonly used in portfolio optimization. In portfolio optimization, MARL enables agents to 
learn from the interactions with other agents and the environment, leading to more realistic and robust 
investment strategies. The performance of the algorithm was assessed on the S&P 500 market using various 
numbers of agents and assets, and its performance was compared to several benchmarks. The performance 
metrics used for evaluation consisted of annual profit, annual volatility, Sharpe ratio, and Sortino ratio. The 
findings demonstrated that the algorithm outperformed the benchmarks in terms of all the performance 
metrics considered, regardless of the number of agents and assets involved. 

Keywords: Deep Learning, Reinforcement Learning, Portfolio Optimization, Proximal Policy Optimization. 
 
1. INTRODUCTION  
 

Traditional methods of portfolio 
optimization can be limited due to the presence of 
correlations between price and other factors in 
financial environments, as well as the presence of 
substantial noise. Considering this, advanced 
machine learning techniques are presently being 
utilized in financial market dealings [1]. However, 
numerous models primarily utilize past asset prices 
to forecast future price movements through neural 
networks, which then enable trade agents to make 
decisions based on such predictions [2] [3] [4]. The 
notion appears logical, but the efficiency of these 
algorithms heavily relies on accurately forecasting 
future market prices. Consequently, some researches 
[5] [6] address this challenge by using reinforcement 
learning instead of predicting future prices.  

Reinforcement learning involves an agent 
that interacts with the environment to acquire an 
optimal policy through trial and error for sequential 
decision-making tasks [7] [8]. The task of dynamic 
portfolio optimization is considered to be highly 

challenging in finance, as noted by researchers such 
as [9] [10]. It involves continuously adjusting the 
allocation of funds among various financial 
investment products, with the ultimate objective of 
achieving maximum return while minimizing risk. In 
order to address the problem of selecting the best 
stock portfolio, researchers have developed a 
reinforcement learning method based on 
hypergraphs to learn an effective policy for 
generating suitable trade actions, as described in 
[11]. In addition, an RL framework based on policies 
was presented for managing stock portfolios and its 
effectiveness was compared to alternative trading 
strategies [12].   

In recent years, there's been recognition of 
the complexity in decision-making, especially in 
scenarios resembling multi-agent systems, where 
multiple agents make strategic decisions [13]. To 
tackle this, the Multi-Agent Reinforcement Learning 
(MARL) framework was developed for decision-
making in shared environments [14]. MARL, akin to 
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Reinforcement Learning (RL), involves neural 
networks for agent decision-making [15], but adds 
complexity by considering agents' dynamics as part 
of the environment [16]. In financial markets, 
researchers consider MARL to enhance portfolio 
management and returns [17]. An alternative 
approach involves the Multi-Agent Simulator 
(MAS), a tool for assessing market activity and 
replicating market metrics [18]. 

Building upon this foundation, our paper 
addresses the critical challenge of portfolio 
optimization. The objective is to simultaneously 
maximize returns while minimizing risks in the 
context of complex and dynamic financial markets. 
To achieve this, we design an algorithm to solve the 
portfolio optimization problem, which involves 
maximizing returns while minimizing risks. It is a 
multi-agent reinforcement learning algorithm that 
uses neural networks as function approximators. The 
algorithm uses Proximal Policy Optimization (PPO) 
[19] as the training method, which is a state-of-the-
art reinforcement learning algorithm that is known 
for its stability and ability to handle continuous 
action spaces. The exploration strategy used is 
Boltzmann exploration, which is a stochastic method 
that allows agents to select actions based on a 
probability distribution that depends on the 
estimated value of the actions. This allows the agents 
to explore the action space more effectively and find 
better solutions. The algorithm also uses Prioritized 
Experience Replay (PER) [20], which is a method 
that allows the algorithm to prioritize and replay 
important experiences more frequently, leading to 
faster learning and better performance. The 
algorithm also incorporates the TD error, which is a 
measure of the difference between the predicted 
value and the actual value of a state or action, to 
guide the learning process. Additionally, a shared 
memory mechanism is employed to facilitate 
communication and data sharing among the agents 
in the portfolio optimization task. In general, the 
algorithm is designed to learn optimal investment 
strategies for a given set of assets and constraints, by 
training multiple agents to work together in a 
cooperative manner. The use of PPO [19], 
Boltzmann exploration, PER [20], TD error, and a 
shared memory allows the algorithm to learn quickly 
and efficiently, while ensuring stability and 
robustness. Broadly, our contributions are as 
follows: 

• The algorithm is based on a multi-agent 
reinforcement learning framework, which allows for 
better modeling of the complex interactions between 
different assets in the portfolio. 

• The algorithm uses a deep neural network to 
learn the optimal portfolio allocation strategy, which 
makes it more flexible and adaptable to different 
market conditions. 

• The introduction of a shared memory 
mechanism facilitates efficient communication and 
data sharing among agents. This enables agents to 
exchange information, synchronize their actions, and 
collectively learn from their experiences. 

• The algorithm incorporates Boltzmann 
exploration, which balances the exploration and 
exploitation trade-off and leads to better long-term 
performance. 

• The algorithm has been tested on real-world 
financial data, specifically the S&P 500 index, and 
has demonstrated superior performance compared to 
other traditional portfolio optimization approaches. 

• The algorithm can be extended to potential 
applications in other financial domains, such as asset 
pricing, risk management and portfolio rebalancing.     

The rest of the paper is structured as 
follows: Section 2 provides a concise overview of 
the concepts and fundamentals of reinforcement 
learning, Markov Decision Process, Shared 
Memory, Boltzmann exploration, and Prioritized 
Experience Replay. Section 3 details the proposed 
model Multi-agent PPO. The experimental results 
are presented in section 4. Section 5 is dedicated to 
the discussion, and the paper concludes with final 
remarks. 

2. BACKGROUND 

In this section, we briefly present the 
concepts and fundamentals of reinforcement 
learning, Markov Decision Process, Shared 
Memory, Boltzmann exploration, and Prioritized 
Experience Replay.  

 
2.1 Reinforcement Learning 

Reinforcement learning (RL) is a subfield 
of machine learning (ML) that focuses on teaching 
agents how to make optimal decisions based on the 
feedback they receive from their environment. The 
components that make up the RL framework are as 
follows: 

• Agent: The agent is the entity that 
interacts with the environment and makes decisions. 
It can be thought of as a software program or an 
autonomous robot that has a set of  actions it can take 
and a decision-making policy that determines which 
action to take given the current state of the 
environment. 
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• Environment: The environment is the 
external world in which the agent operates. It can be 
any system that the agent can sense and interact with, 
such as a video game, a robot, or a financial market. 
The environment has a set of states that the agent can 
perceive and rewards that it can receive. 

• State: The state of the environment is a 
snapshot of the current situation the agent is in. It is 
a representation of the relevant information that the 
agent can perceive from the environment at a 
particular moment. 

• Action: An action is the decision made by 
the agent based on the current state of the 
environment. The nature of actions can vary 
depending on the specific context and problem at 
hand. Some actions may involve continuous control 
over parameters, while others may involve discrete 
choices from a predefined set of options. 

• Reward: The reward is a numerical value 
that the agent obtains from the environment as a 
consequence of its action. It represents the value of 
the action taken and can be positive, negative, or 
neutral. 

• Policy: The policy is the decision-making 
strategy used by the agent to select actions based on 
the current state of the environment. The goal of the 
agent is to learn an optimal policy that maximizes 
the total reward it receives over time. 

• Value Function: The value function is a 
function that estimates the expected total reward the 
agent will receive from a specific state or state-action 
pair. 

In RL, the agent interacts with the 
environment through a series of distinct time steps. 
During each time step, the agent receives the current 
state of the environment, decides on an action to take 
based on its policy, receives a reward, and transitions 
to a new state. The goal of the agent is to learn a 
policy that maximizes the expected total reward it 
receives over time. (See Figure 1). 

Figure 1: Reinforcement Learning Process 

 

 
 
There are several RL algorithms, each with 

its own advantages and disadvantages, but they all 
follow the basic RL framework outlined above. 
Some of the most popular RL algorithms include Q-
learning [21], actor-critic methods [22], deep Q-
networks (DQNs) [15], and policy gradient methods.  

In general, RL is a powerful technique that 
has been used to solve a wide range of problems, 
from playing video games to controlling robots to 
optimizing financial portfolios. It has the potential to 
revolutionize many fields by enabling machines to 
make intelligent decisions in complex environments. 
Our article specifically explores the application of 
reinforcement learning in the domain of portfolio 
optimization. 

2.2 Markov Decision Process 
Markov decision process (MDP) [23] is a 

framework for modeling decision-making problems 
in which an agent interacts with an environment over 
a series of discrete time steps. MDPs are widely used 
in reinforcement learning, where an agent learns to 
make optimal decisions by maximizing a long-term 
reward signal. In a single-agent MDP, the 
environment is characterized by a set of states S, a 
set of actions A, a transition function T, a reward 
function R, and a discount factor γ. For simplicity, 
we omit the state transition function since our work 
assumes that the agent's actions do not impact state 
transitions. The modeling of our MDP is as follows: 

• The state space could include the current 
portfolio weights, asset returns, and other relevant 
market data. The current state of a stock is 
characterized by a set of features that provide 
relevant information about its performance. To 
achieve this, we leverage a historical sequence of the 
closing prices of the particular company over a 
period of n days. 

• The action space : The available options 
for action encompass purchasing, selling, or holding 
shares of various assets. 

• The reward function could be based on the 
change in portfolio value over time, taking into 
account transaction costs and other constraints. In 
our paper, a reward is determined by the action of a 
company at its current state and the return it 
generates on the following day. This reward is used 
to evaluate the performance of the agent.  

• A policy, denoted as π(s, a), refers to the 
trading strategy adopted by an agent in a given state 
s. It can be thought of as a probability distribution of 
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actions that an agent takes in response to a particular 
state.  
The primary objective of an agent is to determine the 
optimal policy that results in the highest cumulative 
rewards over time. 

Once the MDP is defined, a reinforcement 
learning algorithm could be used to learn an optimal 
policy for portfolio optimization. 

2.3 Multi-Agent Reinforcement Learning 
Extension 

In multi-agent reinforcement learning, the 
MDP tuple is extended to include information 
specific to the multi-agent setting. The MDP tuple 
can be defined as follows: 

• Joint State Space : A joint state space that 
captures the state of all agents and the environment. 

• Joint Action Space :  Each agent in the 
MARL framework selects an action from its 
individual action space, which could include 
different investment decisions or portfolio 
allocations. 

• Joint state transition function : A joint 
state transition function that maps a joint state and 
joint action to a joint next state. In the multi-agent 
setting, the joint action is a tuple that consists of the 
individual actions taken by each agent involved in 
the system. Similar to the single-agent scenario, the 
multi-agent case also omits the explicit 
representation of the state transition function. 

• Joint Reward Function : Reward functions 
for each agent that map a joint state and joint action 
to a reward received by that agent. 

• The discount factor γ : A discount factor 
that determines the importance of future rewards. 

In summary, the MDP tuple in multi-agent 
reinforcement learning extends the classical MDP 
tuple to include information specific to the multi-
agent setting, such as joint state spaces and joint 
action spaces, as well as reward functions for each 
agent. Nonetheless, there are several fundamental 
issues that arise when using MARL in the context of 
portfolio optimization: 

• Exploration-exploitation trade-off: The 
agents need to balance exploration (trying new 
strategies) and exploitation (using the current best 
strategy) to find optimal solutions. In portfolio 
optimization, this trade-off is particularly important 
because the agents need to balance risk and reward. 

• Scalability: As the number of assets in the 
portfolio increases, the dimensionality of the 
problem increases as well, making it more difficult 
for the agents to learn optimal strategies. 

• Agent Coordination and Communication: 
In MARL, multiple agents need to collaborate and 
coordinate their actions to optimize the portfolio 
collectively. Designing effective communication 
and coordination mechanisms between agents 
becomes crucial for achieving desirable outcomes 
and avoiding suboptimal solutions. 

In the subsequent sections, we will 
elaborate on our approach to resolving these 
challenges and demonstrate how we can guide 
agents to act distinctively while concurrently 
optimizing their returns. 

2.4 Shared Memory  
In our algorithm for portfolio optimization 

using the MARL framework, we utilize a shared 
memory structure to facilitate seamless 
communication and efficient data sharing among 
multiple agents. The shared memory, denoted as M, 
is constructed as a collection of shared variables 
represented as 𝑀 = {𝑚ଵ, 𝑚ଶ, … . , 𝑚௡}. Each shared 
variable, 𝑚௜ is designed to capture and store a 
specific aspect of the system's state or information 
that is accessible to all agents involved in the 
optimization process. 

This representation allows us to track the 
evolution of the shared variables over time, 
providing agents with access to the most up-to-date 
information and enabling them to make informed 
decisions. 

Agents in the system can read from the 
shared memory by retrieving the current value of a 
shared variable 𝑚௜ at a given time t. This read 
operation, grants agents access to the shared 
information, such as historical asset prices, portfolio 
weights, or market indicators. Additionally, agents 
can update the shared memory through the write 
operation, where they modify the value of a shared 
variable 𝑚௜ to reflect new information or state 
transitions, such as adjusting portfolio weights based 
on new market data or learning updates from the 
reinforcement learning algorithm. 

The shared memory acts as a central 
medium for agents to exchange and synchronize 
data, facilitating coordination among them. Agents 
can share observations, policy updates, and other 
relevant information through the shared memory, 
allowing them to collectively learn and adapt their 
policies for portfolio optimization. By leveraging the 
shared memory M, agents can effectively 
communicate and collaborate, leading to improved 
decision-making and overall performance in the 
multi-agent system. 
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2.5 Boltzmann exploration 
The Boltzmann exploration is a 

reinforcement learning technique that is used to 
balance the exploration-exploitation tradeoff in an 
agent's decision-making process. It is particularly 
useful in situations where there are a large number 
of potential actions, and the optimal action is not 
immediately obvious. The Boltzmann distribution is 
used to select actions based on their estimated values 
and a temperature parameter that controls the level 
of exploration. The temperature parameter is 
gradually decreased over time to encourage 
exploitation as the agent learns. In the context of 
portfolio optimization, using Boltzmann exploration 
can help the algorithm to explore a diverse range of 
portfolio weights during the learning process. This is 
important because the optimal portfolio weights may 
not be immediately obvious and may require some 
exploration. By using Boltzmann exploration, the 
algorithm is more likely to discover a wider range of 
potential solutions, which can ultimately lead to 
better performance in terms of maximizing returns 
and minimizing risk. Additionally, Boltzmann 
exploration can help the algorithm avoid getting 
stuck in local optima, which is a common problem 
in optimization problems. The probabilities of 
selecting different actions are determined by the 
Boltzmann distribution. 

In the context of reinforcement learning, 
the Boltzmann exploration equation can be written 
as: 

     𝑝(𝑎௧ , 𝑠௧) =  
௘

ೂ(ೞ೟,ೌ೟)
ഓ

∑ ௘
ೂ(ೞ೟,ೌ೟)

ഓೌ

                        (1)                                                      

Where 𝑝(𝑎௧ , 𝑠௧) represents the probability 
of selecting action 𝑎௧ in state 𝑠௧,  𝑄(𝑠௧ , 𝑎௧) represents 
the Q-value, which is an estimate of the expected 
cumulative reward when taking action 𝑎௧ in state 𝑠௧. 
It measures the quality or value of an action in a 
particular state and τ is the temperature parameter, 
which controls the level of exploration versus 
exploitation. The Boltzmann exploration equation 
gives a probability distribution over the set of 
possible actions, with the probability of each action 
being proportional to the estimated value of that 
action divided by the temperature parameter. When 
the temperature parameter is high, the exploration is 
more random, and the agent is more likely to select 
actions with low estimated value. When the 
temperature parameter is low, the exploration is 
more deterministic, and the agent is more likely to 
select actions with high estimated value. 

2.6 Prioritized Experience Replay 
Prioritized Experience Replay (PER) [20] 

is an extension of the classic Experience Replay 
technique commonly used in reinforcement learning 
algorithms. The main idea behind Experience 
Replay is to store past experiences (i.e., transitions) 
of an agent in a replay buffer and randomly sample 
them during training to break correlations between 
successive transitions and improve learning 
efficiency. However, not all experiences are equally 
informative for learning, and some may be more 
important than others. PER aims to address this issue 
by assigning priorities to experiences in the replay 
buffer based on their expected learning potential and 
sampling transitions with higher priority more 
frequently. The priorities of experiences are 
typically determined based on the magnitude of their 
temporal-difference (TD) errors, which measure the 
difference between the predicted value of a state-
action pair and the actual reward received from it. 
The intuition behind this is that transitions with 
higher TD errors are more surprising and 
unexpected, and therefore carry more information 
for the agent to learn from. 

Here are the steps involved in PER with TD 
error: 

1.Initialize a replay buffer of size N and set 
the priority of all transitions to 1. 

2.Collect experiences by interacting with 
the environment using the current policy. For each 
transition (s, a, r, s'), calculate the TD error as 
follows: 

𝛿 = |𝑟 +  𝛾𝑉(𝑠ᇱ) − 𝑉(𝑠) |                          (2)          

where V is the agent's value function and γ 
is the discount factor. 

3. Add the transition to the replay buffer 
with its priority set to 𝑝 = (𝛿 +  𝜀)ఈ,  where ε is a 
small positive constant to ensure that no transition 
has zero priority and α is a hyperparameter that 
controls the degree of prioritization. 

4.Sample a batch of transitions from the 
replay buffer based on their priorities. The 
probability of selecting a transition with priority  p(i)  
is given by: 

𝒑(𝑖) =  
௣೔

ഁ

∑ ௣
ೖ
ഁ

ೖ

                                           (3) 

where β is a hyperparameter that controls 
the degree of importance sampling correction and 
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helps to balance the sampling bias caused by 
prioritization. 

5.Train the agent using the sampled batch 
of transitions. During training, calculate the loss for 
each transition as usual, but weight the loss by the 
inverse of its sampling probability: 

ℒ =  
ଵ

ே
 ∑

ଵ

௉(௜)
 𝑙௜௜                                      (4)      

where 𝑙௜ is the loss for the 𝑖௧௛ transition. 
6. After training, update the priorities of the 

transitions in the replay buffer based on their TD 
errors. The new priority of transition i is set to 𝑝௜ =
(𝛿௜ +  𝜀)ఈ. 

PER with TD error has been shown to 
improve the sample efficiency and learning 
performance of reinforcement learning algorithms 
by allowing the agent to focus on the most 
informative experiences. 

3. MULTI-AGENT PPO 

Our algorithm Multi-Agent Proximal 
Policy Optimization is an algorithm designed for 
portfolio optimization using deep reinforcement 
learning, specifically using the Proximal Policy 
Optimization (PPO) algorithm [19] with prioritized 
experience replay [20]. PPO is a deep reinforcement 
learning algorithm that is widely used for training 
agents in environments with continuous action 
spaces. The PPO algorithm is particularly well-
suited for portfolio optimization because it can 
handle a large number of assets and agents. 

The algorithm begins by initializing the 
shared memory, which consists of a set of shared 
variables capturing different aspects of the system's 
state and information accessible to all agents.  

Next, the algorithm initializes a population 
of agents, each with its own policy network and 
value network. The policy network is responsible for 
selecting actions based on the observed state, while 
the value network estimates the expected returns 
associated with different state-action pairs. 

During the training process, the agents 
interact with the environment and collect 
experiences. At each time step, an agent observes the 
current state and selects an action based on its policy 
network. After selecting an action, the agent 
proceeds to execute it within the environment.  

Subsequently, the agent receives a reward 
based on its action and gains observations regarding 
the subsequent state of the environment. 

The experiences are stored in a prioritized 
experience replay buffer, which maintains a 
collection of transitions along with their 
corresponding priorities. The prioritization is based 
on the TD error, which quantifies the discrepancy 
between the predicted and observed values. 

To update the policy and value networks, 
the algorithm employs the Proximal Policy 
Optimization (PPO) algorithm.  

The PPO algorithm maximizes a surrogate 
objective function that balances the trade-off 
between policy improvement and stability. The 
objective function is optimized using stochastic 
gradient ascent/descent, where the gradients are 
estimated using the collected experiences from the 
replay buffer. 

In addition, the algorithm incorporates 
Boltzmann exploration to encourage exploration of 
the action space. Boltzmann exploration selects 
actions according to a probability distribution based 
on the Q-values or action preferences. This promotes 
diversity in the agents' actions, allowing them to 
explore different strategies and avoid being stuck in 
local optima. 

In general, the algorithm aims to optimize 
the portfolio by maximizing the cumulative rewards 
over time. Through the integration of PPO, MARL, 
Prioritized experience replay, and the shared 
memory mechanism, it enables agents to learn and 
adapt their policies based on their collective 
experiences, improving the decision-making process 
and the overall performance of the portfolio. 

Using PPO, prioritized experience replay, 
shared memory, neural networks, and Boltzmann 
exploration in our reinforcement learning algorithm 
aims to provide several benefits, including: 

•Improved convergence: PPO is a variant of 
the traditional policy gradient algorithm that allows 
for more stable and efficient convergence to optimal 
policies. 

•Faster learning: Prioritized experience 
replay allows for more efficient use of experience 
data, which can speed up the learning process. 

•Improved exploration: Boltzmann 
exploration encourages the agent to explore the 
action space more thoroughly, leading to better 
overall performance. 

•Better performance: By combining these 
techniques, the resulting algorithm can often achieve 
better performance on complex tasks compared to 
using each technique individually. 

•Effective Communication and 
Collaboration: The shared memory facilitates 
communication and data sharing among the agents. 
It enables them to exchange information, such as 
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updated network parameters, observations, or 
learned insights. This promotes collaboration and 
coordination among the agents, leading to collective 
learning and improved performance. 

The pseudo-code of our algorithm can be 
described as  follows: 

 
 

4. EXPERIMENTAL RESULTS  

4.1 Dataset 

The S&P 500 is an index of 500 large 
American companies, based on their market 
capitalization. We selected a diverse range of stocks 
from various sectors to create a portfolio. Our dataset 
covers the period from January 2010 to December 
2022, consisting of a total of 3272 rows. We divided 
the data into a training set of 70% (2010-2018) and 
a testing set of 30% (2019-2022). By training our RL 
agent on this large span of time, it can learn optimal 
strategies for both bearish and bullish markets and 
adapt to different market scenarios. 

4.2 Performance indicators 
We compared the performance of our 

algorithm against the following benchmark methods: 
• Equal Weight Baseline (EW) - is a 

simple investment strategy that involves equally 
distributing investment funds across all assets in a 
portfolio. Under this approach, each asset in the 
portfolio receives the same weight or proportion of 
investment, regardless of its individual risk and 
return characteristics. The goal of this strategy is to 
achieve diversification across assets and reduce 
concentration risk.  

• S&P 500 - The S&P 500 is an equity 
market benchmark comprising 500 prominent 
publicly traded companies in the United States. It is 
highly regarded as one of the most extensively 
tracked equity indices globally and is often used as a 
barometer of the US stock market's overall health. 
The companies in the index are selected based on 
market capitalization, liquidity, and other factors, 
and the index is weighted by market capitalization. 
The S&P 500 is often used as a benchmark for 
portfolio performance and is used to track the 
performance of the US stock market as a whole. 

• Weighted Moving Average Mean 
Reversion (WMAMR) - is a baseline strategy used 
in finance and investment. It is based on the idea that 
the price of an asset will eventually revert to its 
mean, and that an investor can profit from this by 
buying when the price is below the moving average 
and selling when it is above. The WMAMR strategy 
calculates the moving average of the asset's price 
over a certain period of time, and then takes a 
position in the asset based on whether the current 
price is above or below the moving average, with 
weights assigned to each period of the moving 
average. This weighting scheme allows more recent 
prices to have a greater influence on the decision to 
buy or sell than older prices. 

Algorithm. Multi-agent PPO 
Initialize the shared memory M. 
Initialize policy and value networks for each agent. 
Repeat until convergence:  

For each agent : 
     Select action 𝑎௧ based on current state 𝑠௧ using the 

policy network. 
     Execute action 𝑎௧ in the environment. 

Observe new states 𝑠௧ାଵ and corresponding rewards 𝑟௧. 

Compute TD errors 𝛿௧ and advantage estimates 𝐴௧.   
Update value networks: 
     Calculate value predictions 𝑉௧  for states 𝑠௧ using the 

value network. 
     Calculate value loss using the TD errors and a loss 

function. 
     Update the value network parameters using gradient 

descent: 
𝜃௩  ←  𝜃௩ −  𝛼∇ఏೡ

 𝐿௩௔௟௨௘  

Update policy networks: 
     Calculate action log probabilities π(𝑎௧ |𝑠௧) using the 

policy network. 
     Calculate surrogate objective 𝐿ୱ୳୰୰୭୥ୟ୲ୣ using the 

advantage estimates and action log probabilities. 
     Update the policy network parameters using 

gradient ascent:  
𝜃గ  ←  𝜃గ +  𝛼∇ఏഏ

 𝐽 (𝜃గ) 

 
Compute Boltzmann exploration probabilities P(𝑎௧ |𝑠௧) 

using the Boltzmann equation:  

𝑝(𝑎௧ , 𝑠௧) =  
𝑒

ொ(௦೟,௔೟)
ఛ

∑ 𝑒
ொ(௦೟,௔೟)

ఛ௔

 

 
Add the transition (𝑠௧ , 𝑎௧ , 𝑟௧ , 𝑠௧ାଵ) to the replay buffer 

with its priority set to 𝑝 = (𝛿௧ +  𝜀)ఈ . 
Sample a mini batch from the replay buffer based on 

priorities. 
Update the value networks and policy networks using 

the sampled mini batch. 
Update the priorities of the sampled transitions in the 

replay buffer based on the TD errors. 
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• Integrated Mean-Variance Kd-Index 
Baseline (IMVK) - is a baseline algorithm used to 
compare the performance of portfolio optimization 
algorithms. It is a type of mean-variance 
optimization, which seeks to maximize the expected 
return of a portfolio while minimizing its risk, as 
determined by the variance of the portfolio's returns. 

The IMVK algorithm integrates both mean-
variance optimization and kd-indexing, which is a 
technique used to quickly retrieve data from a large 
dataset. It constructs an efficient frontier of optimal 
portfolios using kd-indexing, and then applies mean-
variance optimization to select the portfolio with the 
highest Sharpe ratio (a measure of risk-adjusted 
return). 

5. DISCUSSION OF RESULTS   

5.1 Performance Analysis  
We start by training a multi-agent 

reinforcement learning (MARL) using Proximal 
Policy Optimization (PPO) algorithm on historical 
data of the S&P 500 index. We divided the data into 
a training set and a testing set, with the former used 
to train the MARL agents and the latter used to 
evaluate their performance. In the experiments, we 
considered portfolios with 5, 10, and 20 assets, 
respectively. For each portfolio size, we trained a 
MARL agent with 10, 20, and 30 individual agents, 
respectively. For each portfolio, we use the same 
hyperparameters and training parameters to ensure a 
fair comparison between the results.  

The number of assets in a portfolio can have 
a significant impact on portfolio performance. The 
more assets there are in a portfolio, the more 
complex the decision-making process becomes for 
the MARL algorithm, as there are more possible 
combinations of actions that can be taken. Therefore, 
testing our algorithm on portfolios with varying 
numbers of assets can help us understand how well 
it can handle increasing levels of complexity and 
diversification. Additionally, testing on portfolios 
with different numbers of assets can help us identify 
the optimal number of assets for a given market or 
investment strategy. In addition, training a MARL 
algorithm with different numbers of individual 
agents can have a significant impact on the results. 
Increasing the number of individual agents in the 
MARL algorithm can increase the complexity of the 
problem and improve the agent's ability to capture 
the interactions between different assets. This can 
lead to better performance and higher returns in the 
portfolio. However, increasing the number of agents 
also increases the dimensionality of the action space, 
which can lead to slower convergence and increased 

training time. Additionally, increasing the number of 
agents can also increase the likelihood of overfitting 
to the training data, especially if the number of 
training samples is limited.  

In our study, we applied our algorithm to 
portfolio optimization with different numbers of 
agents and assets and evaluated its performance 
based on annual profit, annual volatility, Sharpe 
ratio, and Sortino ratio. 

To evaluate the performance of our 
reinforcement learning (RL) agent against standard 
portfolio optimization techniques, we selected five 
non-RL based benchmarks. These benchmarks 
include Equal Weight Baseline (EW), S&P 500,  
Weighted Moving Average Mean Reversion 
(WMAMR), and two variants of Integrated Mean-
Variance Kd-Index Baseline (IMVK), namely 
Moderate and Aggressive Strategy, which were 
discussed earlier. We compared the performance of 
these benchmarks against each other and our RL 
agent. 

We first tested the algorithm on a 5-asset 
portfolio consisting of AAPL, FB, GOOGL, JPM, 
and XOM. The results demonstrated that our 
algorithm outperformed the benchmarks  in  terms of 
Annual profit, Sharpe ratio and Sortino ratio as 
shown in figure 2 and in the tables 1, 2 and 3. 

 
Table 1 : the portfolio performance of our algorithm 
using 10 agents across different asset configurations, 

including 5 assets, 10 assets, and 20 assets. 

 
Table 2 : the portfolio performance of our algorithm 
using 20 agents across different asset configurations, 

including 5 assets, 10 assets, and 20 assets. 
 

10 
agents 

Portfolio 
balance 

Annual 
profit 

Annual 
volatility 

Sharpe 
ratio 

Sortino 
ratio 

5 
assets 

27576 0.439 0.259 1.75 2.01 

10 
assets 

30869 0.521 0.254 2.24 2.48 

20 
assets 

37517 0.687 0.253 2.82 2.92 

20 
agents 

Portfolio 
balance 

Annual 
profit 

Annual 
volatility 

Sharpe 
ratio 

Sortino 
ratio 

5 
assets 

30604 0.515 0.253 1.96 2.18 

10 
assets 

34875 0.621 0.252 2.45 2.69 

20 
assets 

47702 0.942 0.249 2.97 3.14 
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Table 3 : the portfolio performance of our algorithm 
using 30 agents across different asset configurations, 

including 5 assets, 10 assets, and 20 assets. 

 
For the 5-asset portfolio, the MARL agent 

with 10 individual  agents achieved an average 
annual profit of  0.439, with a Sharpe ratio of  1.75, 
and a Sortino ratio of  2.01. The agent with 20 
individual agents achieved an average annual profit 
of  0.515, with a Sharpe ratio of 0.96, and a Sortino  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

ratio of 2.18. Finally, the agent with 30 individual 
agents achieved an average annual profit of 0.689, 
with a Sharpe ratio of 2.35, and a Sortino ratio of 
2.67. 
We then tested the algorithm on a 10-asset portfolio 
consisting of the same five assets as before, plus five 
additional assets: AMZN, BRK-B, JNJ, MSFT, and 
PG. For the 10-asset portfolio, the MARL agent with 

10 individual agents achieved an average annual 
profit of 0.521, with a  Sharpe ratio of 2.24, and a 
Sortino ratio of 2.48. The agent with 20 individual 
agents achieved an average annual profit  of 0.621, 
with a Sharpe ratio of 2.45, and a Sortino ratio of 
2.69. Finally, the agent with 30 individual agents 
achieved an average annual profit of 0.788, with a 
Sharpe ratio of  2.48, and a Sortino ratio of  2.83. 

Next, we tested the algorithm on a 20-asset 
portfolio consisting of the same 10 assets as before, 
plus another 10 assets: ADBE, BAC, CMCSA, 
CVX, DIS, GE, JPM, KO, PFE, and T. For the 20-
asset portfolio, the MARL agent with 10 individual 
agents achieved an average annual profit of 0.687, 
with a Sharpe ratio of 2.82, and a Sortino ratio of 
2.92. The agent with 20 individual agents achieved  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

an average annual profit of 0.942, with a Sharpe ratio 
of 2.97, and a Sortino ratio of 3.14. Finally, the agent 
with 30 individual agents achieved an average 
annual profit of 1.09, with a Sharpe ratio of 3.15, and 
a Sortino ratio of  3.38. 

The results showed that as the number of 
agents and the assets increased, the annual volatility 
decreased for all scenarios. For instance, when there 

30 
agents 

Portfolio 
balance 

Annual 
profit 

Annual 
volatility 

Sharpe 
ratio 

Sortino 
ratio 

5 
assets 

37563 0.689 0.251 2.35 2.67 

10 
assets 

41547 0.788 0.248 2.48 2.83 

20 
assets 

53621 1.09 0.248 3.15 3.38 

(a) : The portfolio balance achieved by employing 10 agents for  
different numbers of assets, specifically 5, 10, and 20. 

(b) : The portfolio balance achieved by employing 20 agents for  
different numbers of assets, specifically 5, 10, and 20. 

(c) : The portfolio balance achieved by employing 30 agents for         
different numbers of assets, specifically 5, 10, and 20. 

Figure 2: The portfolio balance achieved for different configurations, including 5 assets with varying numbers of 
agents (10, 20, and 30), as well as 10 and 20 assets with the same agent numbers. 
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were 10 agents and 5 assets, the annual volatility 
measured 0.259. However, with an increased 
number of agents to 30, the annual volatility 
decreased to 0.251. Alternatively, with 20 agents and 
5 assets, the annual volatility recorded a value of 
0.253.  Notably, when there were 20 assets alongside 
20 agents, the annual volatility further decreased to 
0.249. This implies that incorporating multiple 
agents in the portfolio optimization process can 
contribute to risk reduction. Similarly, the inclusion 
of multiple assets can also aid in mitigating the risks 
associated with portfolio optimization. 

Furthermore, as shown in tables 4, 5, and 6, 
we observed that our algorithm outperformed all the 
benchmarks, including the WMAMR and the two 
variants of IMVK. For example, when using 30  
agents and 20 assets, our algorithm achieved an 
annual profit of 1.09, a Sharpe ratio of 3.15, and a 
Sortino ratio of 3.38, compared to 0.348, 1.45, and 
1.72 for the WMAMR benchmark, and 0.312, 1.02, 
and 1.15 for the Aggressive IMVK benchmark. 

These results indicate that our algorithm 
performs better with a larger number of agents and 
assets in the portfolio. The increase in the number of 
agents and assets allows for a better diversification 
of the portfolio and the agents are able to cooperate 
and learn from each other to achieve higher returns 
with lower risk. Additionally, the results 
demonstrate that our algorithm can achieve 
impressive results in terms of average annual profit, 
Sharpe ratio, and Sortino ratio, indicating its 
potential for real-world application in portfolio 
optimization. 

There are several potential reasons for this 
improvement in performance as the number of assets 
increases. One possible explanation is that with more 
assets, there is a higher degree of diversification in 
the portfolio, which can help to mitigate risk and 
stabilize returns. Additionally, with more assets to 
choose from, there may be a greater likelihood of 
finding optimal trading strategies for each individual 
asset, leading to overall better performance for the 

Table 4 : Comparison of the portfolio performance between our Multi-agent PPO algorithm and other benchmark strategies for a 
portfolio consisting of 5 assets. 

Table 5 : Comparison of the portfolio performance between our Multi-agent PPO algorithm and other benchmark strategies for a 
portfolio consisting of 10 assets. 

Table 6 : Comparison of the portfolio performance between our Multi-agent PPO algorithm and other benchmark strategies for a 
portfolio consisting of 20 assets. 
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portfolio as a whole. It's important to note that this 
general trend may not hold true in all cases and for 
all types of algorithms. The optimal portfolio size 
may depend on various factors such as market 
conditions, trading costs, and the specific 
characteristics of the assets being traded. However, 
in the context of the experiments discussed here, it 
appears that increasing the number of assets in the 
portfolio leads to improved performance for the 
proposed algorithm. In general, our algorithm 
showed consistent outperformance across all three 
portfolios with different numbers of assets and 
agents.  

6. CONCLUSIONS 

In conclusion, our algorithm applied to 
portfolio optimization in the S&P 500 index has 
shown promising results. The experiment was 
conducted with different numbers of individual 
agents and assets in the portfolio. The results 
indicate that the algorithm performs better as the 
number of agents and assets increases. In general, 
the algorithm can be used to help investors optimize 
their portfolio in the S&P 500 allocation. The 
algorithm can also be extended to other financial 
markets and assets beyond the S&P 500 index. 
However, there are some limitations to the study that 
require further investigation in future research 
studies. These encompass the need for exploring 
alternative MARL algorithms; While our algorithm 
achieved good results, there are many other MARL 
algorithms that can be explored in the context of 
portfolio optimization. These include algorithms 
such as Q-learning, and Deep Deterministic Policy 
Gradient (DDPG). Additionally, sentiment analysis 
can be included in the algorithm to improve the 
performance of portfolio optimization. By 
incorporating sentiment analysis, the algorithm can 
use sentiment scores as an additional input feature to 
improve the accuracy of predicting the future price 
movements of assets. In conclusion, the algorithm 
shows great potential in revolutionizing the way 
investors allocate assets and manage risk in financial 
markets, and future research can further improve its 
performance and applicability. 
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