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ABSTRACT 
 

Computer Tomography (CT) imaging provides a promising solution for various health-based evaluations 
and diagnoses. Certain parametric mappings of cerebral parenchyma are performed with continuous CT 
scans. It is highly solicited to diminish the CT dosage for constant application owing to the higher radiation 
exposure due to continuous scans. Thus, there is a need of novel denoising and classification technique. 
Here, image denoising is essential to attain a reliable diagnosis. This research concentrates on modelling a 
novel deep learning approach with a Localized convolutional image denoising auto-encoder (L-CNM) for 
CT image denoising, which avoids the higher-dose referral images during the training process. The 
proposed network model is trained by mapping the image frames captured from CT and evaluating the 
adjacent frames. The noise over the CT source is independent, and the proposed model intends to eradicate 
the noise. The anticipated model can be easily adapted to the various real-time analyses as the model deals 
effectually with the high-dose training images. The proposed method is validated using the online available 
public dataset and simulated in MATLAB 2020a environment. The model attains improved image quality 
compared to various existing denoising approaches. 
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1. INTRODUCTION  
 

Two common medical imaging approaches that 
use pathological diagnosis tools, computed 
tomography (CT) and perfusion imaging, enable 
doctors to communicate with the body's organs 
more effectively. While photon starvation effects 
immediately affect the mixed noise with convoluted 
distribution in CT perfusion images, random noises 
formed during acquisition are more likely to 
degrade the quality of MR images [1]. With higher 
noise levels, the image quality can deteriorate, 
which can impact following analyses like 
classification, segmentation, and registration [2] are 
three examples. Therefore, it is crucial to establish 
an efficient way to eliminate MR and CT picture 
noise before processing. Numerous image-
denoising techniques have been researched recently, 
including the Wiener filter based on spatial 
filtering, the Gaussian filter, wavelet-based filters, 
and nonlocal self-similarity models. Some 
academics pushed the idea of incorporating these 

methods into the medical picture, denoising 
problems [3].  

Martin Fernandez et al. used MR images to 
reduce noise. They proposed an approach that 
determined the shrinking of wavelet coefficients 
based on the conditional likelihood that something 
is noise or detail [4]. To determine the de-noising 
process's parameters, which need not consider noise 
variance's impact; they employed the expectation 
maximization operation. For MR image denoising, 
A procedure based on a nonlocal means filter and a 
Laplacian of Gaussian filter is recommended in [5]. 
The denoising procedure will be accelerated to 
highlight the edge information, and they only chose 
a small number of comparable patches based on 
edge proximity. It can effectively maintain the 
image's edges and structural elements. An enhanced 
higher-order singular value decomposition 
(HOSVD) approach for denoising MR images was 
proposed in [6]. They employed the conventional 
HOSVD approach and then added a recursive 
process. The recursive operation repeated the 
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weighted summation of the noisy and clean picture 
filtering procedure. They validated acceptable 
weights for denoising studies by employing a 
variety of image formats and noise levels. However, 
these traditional methods can take a long time to 
process and could be more effective at addressing 
the convoluted distribution and Rician or low-dose 
perfusion noise [7]. Recently, algorithms based on 
deep learning have outperformed more 
conventional methods at denoising challenges. 
Deep convolutional neural network with residual 
learning CNN (D-CNN) [8] employs denoising and 
has attained cutting-edge performance. 

Yet another method of reducing noise in CT 
scans is based on deep learning was published by 
Yang Q et al. [9]. To enhance the denoising 
effectiveness, they used the generative adversarial 
network (GAN) to utilize the two ideals that can 
statistically migrate the noise distribution and 
partially suppress noise using perceptual loss and 
Wasserstein distance approaches. A cascaded 
convolutional neural network (CNN) was created 
by Wu D et al. [10] to eliminate the artefacts that 
typical machine learning denoising techniques leave 
behind. The image's intricate residual noise can be 
further reduced and image quality improved using 
CNN. On datasets from low-dose CT, they 
compared the performance of single CNN structures 
with that of cascaded network architectures and 
discovered that the latter performed better. A 
technique based on CNN was recommended for 
low-dose CT image denoising by Chen H et al. 
[11]. Their approach successfully reduced noise and 
improved clarity by creating a mechanism for 
converting patches in low-dose CT images. 
However, the last convolution layer's supervisory 
information from earlier CNN-based denoising 
techniques needs to be improved, and they overlook 
the detailed data from earlier levels. Additionally, 
the denoising procedure will blur the image's fine 
details [12] – [15].  

We suggest a network model (L-CNM) that 
eliminates noise using an auto-encoding model; 
subsequently, in low-dose CT images, noise can be 
decreased via the proposed network model. With 
the guidance of the last three convolution layers, L-
CNM is built first to achieve precise noise 
predictions using the auto-encoding model. The L-
CNM has several render blocks for understanding 
complex characteristics, a block for making 
hierarchical sounds, a block for fusing different 
latent sounds to create the final output noise, and a 
block for learning complex features. A refining 
network is introduced in the second stage to recover 

the image's lost information after L-CNM denoises 
it. The following are the contributions of this work: 

1) We suggest merging an auto-encoding and 
classification network to form L-CNM. The 
proposed L-CNM restricts multi-supervision data to 
improve denoising effectiveness. When L-CNM 
denoises data, the proposed network can recover 
lost features. 

2) We use a progressive training technique in L-
CNM is trained cooperatively with a refinement 
network to create better noise estimations that can 
improve network performance. First, the 
independent prediction of the initial noise is taught 
to L-CNM. 

3) The resilience of our model is demonstrated by 
L-CNM success in situations for both specified and 
blind noise levels. The proposed model works well 
in identifying the noise over the provided image 
effectually compared to other existing approaches 
with better prediction outcomes. 

The work is organized as follows: section 2 gives a 
wider analysis of various prevailing approaches. In 
section 3, the proposed L-CNM model is 
elaborated, combining auto-encoding and 
prediction. The numerical outcomes are discussed 
in section 4, and the conclusion is given in section 
5.  

2. RELATED WORKS 

Several current techniques for CNN picture 
denoising will be covered in this section. We 
distinguish between two methods for CNN picture 
denoising: There are two types of CNN denoising: 
(1) CNN for broad-based imagery and CNN for 
specialized images. In the first method, general 
images are denoised using CNN architectures, 
whereas, in the second method, specific images are 
denoised using CNN [16]. Compared to the second 
technique, the first is more frequently utilized in 
CNN denoising applications. Pictures that serve a 
general function rather than a specific one are called 
"generic images" [17]. Images purposely made with 
a special or specific kind are referred to as specific 
images. Examples of specific images include 
remote sensing, infrared technology, and medical 
imaging. To update readers on the most recent CNN 
architecture about the image, CNN denoising is 
broken down by image category.  

    The reference suggested the attention-guided 
CNN (ADNet) for picture denoising [18]. The 
feature improvement block, the sparse block, the 
attention block (FEB), and the reconstruction block 
are the four blocks that make up the 17 layers of the 
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ADNet (RB). The SB was utilized to increase 
performance and efficacy and to shallow the 
denoising framework because sparsity has been 
shown to work effectively when applied to images 
[19]. Conv+BN+ReLU and dilated 
Conv+BN+ReLU are the two types that make up 
the twelve layers of the SB. Comparatively, the 
FEB contains four layers of three. The AB only has 
one layer of convolution, but the other two have  
(Conv+BN +ReLU, Conv, and Tanh) Multiple 
types. The AB directed the FEB and SB, which is 
good for background noise. To paint a precise 
picture, the RB does reconstruction last. Model 
training was created using the mean square error 
[20]. 

     While certain deep learning algorithms yield 
fantastic results when using artificial noise, most 
networks do not perform well when dealing with 
realistic noise-corrupted images. The noise 
estimation reduction network was proposed in 
(NERNet). On photos with realistic noise, NERNet 
reduced noise. The modules for noise estimation 
and noise reduction were the two modules that 
made up the architecture. The noise estimation 
module integrates the pyramid feature fusion [21] 
and symmetric dilated block [22] – [23] into the 
noise-level map. The removal module, meanwhile, 
eliminated noise by utilizing the map of the 
projected noise levels. The removal module 
combined global and local information to preserve 
texture and minute particulars. To create clear 
images, receiving the noise estimation module's 
output was the removal module [24]. Without a 
doubt, CNN efficiently picks up on noise patterns 
and picture patches. However, the network 
produced by this learning contains many image 
patches and training data. The local division and 
deep conquer network with patch complexity was 
depicted in reference [25] as a result of the 
preceding (PCLDCNet). The network was broken 
up into regional subtasks and instructed locally 
(based on the patch and conquer block and clear 
image). The local subtask was coupled with each 
weighting combination for a noisy patch. 

     Finally, image patches were organized according 
to complexity [26], and the modified stacked 
denoising autoencoders were used to train the k-
network [27]. Another issue with a deep learning 
network is network degradation (The mistake rate 
increases with layer depth.). Despite ResNet [28] 
being introduced, this problem still needed to be 
completely solved. Without the necessity for 
identity, mapping uses hierarchical residual learning 
for picture denoising, three sub-networks that make 

up the network are extraction of features, inference, 
and fusion. Increasing-dimensional feature maps are 
represented by patches extracted by a feature 
extraction sub-network. A huge receptive field is 
produced by cascading convolutions in the 
interference sub-network [29]. The cascaded 
procedure created tolerant errors in noise estimates 
and discovered noise maps from multi-scale data. 
The fusion sub-network then fuses the entire noise 
map to produce an estimation. 

    In recent times, CNN architectures have found 
considerable usage in picture denoising. We have 
suggested an analysis of various CNN image-
denoising approaches. To help readers comprehend 
current developments, several concepts and 
methodologies were clearly explained. There are 
several methods for CNN denoising. This study has 
144 references in all. According to the study, GAN 
was the technique for CNN picture denoising that 
was most frequently utilized. Several extractions 
and clean picture production techniques utilized the 
generator and the discriminator. Interestingly, 
several researchers coupled the GAN and DCNN 
approaches. Additionally, U-Net and feedforward 
CNN were employed. Researchers have employed 
the residual network at various times. The 
effectiveness and efficiency of the residual network 
may be a factor in its heavy usage. Researchers 
adopted the residual network to reduce the number 
of convolutions in their network. The researcher 
tried combining noise as an innovative measure 
(impulse Gaussian noise). Several thorough deep 
convolutions were needed to decrease mixed noise 
in photos. Medical photos frequently contain Rician 
and speckle noise. Pre-trained networks have 
demonstrated remarkable noise reduction 
performance in medical images. The Berkeley 
database was the one that CNN used the most for 
image denoising [30].  

Additionally, CNN methods for image-
denoising tasks commonly incorporate residual 
networks and the attention mechanism. Their 
widespread acceptance can be attributed to their 
popularity and image-denoising efficacy.  A few 
issues with CNN image denoising techniques are a 
need for more issues with unsupervised denoising 
operations and memory for CNN applications. In 
conclusion, only a few CNN techniques were 
applied to medical images. Additional CNN 
methods that may be used to denoise medical 
images would be advantageous. Additionally, the 
writers tried to compile programs and software, but 
it wasn't available. More RAM allotments being 
made available for the CNN work will be very 
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beneficial [30]. The major issues or problem with 
the existing approaches are that they fails to give 
appropriate denoised images even in case of 
applying pre-processing approaches. Also, the error 
rate is also higher and fails to give promising 
outcomes. 

3. METHODOLOGY 

Here, the image denoising is done using auto-
encoders composed of two modules: encoder and 
decoder. The encoding layer maps the provided 
input data to latent feature representation, and the 
decoding layer maps the representation towards the 
original data. Therefore, the number of neurons in 
the input and output layers is similar. The training 
label is similar to the input data. With the 
integration of intermediate layers, the auto-
encoding concept is introduced. The encoding 
concept is performed either in convolutional or 
fully connected layers. The training for the 
denoising concept is done with the noisy input data, 
and the corresponding labels are related to it. When 
the noisy data is analyzed, latent data representation 
is needed for the data construction. Therefore, the 
proposed auto-encoder designs newer data at the 
output when the corrupted data is provided to the 
training network. The denoised image is provided to 

the proposed  model for evaluating the 
prediction outcomes. 

3.1. Image denoising 

Fig 1 depicts the network architecture we've 
implemented. A module with both an encoder and a 
decoder is part of it. The encoder uses a 
convolutional network architecture that is common. 
The following are the components utilized in the 
down-sampling process: rectified linear unit 

(ReLU), two  max pooling operations with 

stride 2, two  convolutional layers (16 and 8 
channels of padded convolutions, respectively), and 
ReLU are all used. Parameters are reduced by using 
the pooling layers. The input size is chosen for all 
layers' maximum pooling operations. After the 
encoder, a bottleneck is added with four channels of 

padded convolutions and  convolutional 

layer. One layer of  padded convolutions with 
8 or 16 channels, ReLU and up-sampling operation 
make up the decoder path.  The up-sampling 

technique is viewed as the pooling technique's 
opposite. 

 Three things must be precisely laid out to any 
convolutional neural network (CNN) can be trained:  
the optimization technique, the starting weight 
values, and the loss function. We used a typical loss 
function called mean square error to get the 
projected AE (MSE). The employment of an 
optimization algorithm, such as a gradient-based 
one, is required to minimize the loss function. 
Adadelta, a gradient-based optimization technique, 
was used to train the suggested AE. The Adadelta 
algorithm modifies the parameters to change the 
learning rate by considering bigger updates for 
uncommon parameters and fewer features linked 
with often occurring features (i.e., low learning 
rates). When using this optimizer, no predetermined 
learning rate is required. Using the gradient descent 
method for optimization, the network's weight 
initialization in a CNN is critical. Our method uses 
Gaussian distribution with beginning weights with 

standard deviations of , where  represents 

all of a neuron's input nodes. Here,  equals 48 for 

our network's  kernels and 16 channels. 
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Figure 1: Encoding and decoding network 

  

A large amount of data collection must be 
prepared if convolutional networks are trained 
appropriately. Overfitting is prevented by 
increasing data diversity. Data augmentation is a 
tactic that gives the network essential invariance 
and resilience qualities without getting extra data 
when the training data set size is insufficient. Many 
augmentation options can be applied to enhance the 
database's size. CT images can be enhanced using 
cropping, shifting, horizontal flipping, and rotation 
(clockwise and counterclockwise). However, the 
fixed form of the retinal layers and physical 
limitations force these augmentations to have a 
restricted range. Real-time and training data 
augmentation is also possible to avoid excessive 
memory utilization. 

3.2. Classification 

We provide a localization technique that 
estimates landmark locations from a global to local 
scale. An entirely convolutional neural network 
makes advantage of patch-based analysis to forecast 
the locations of several landmarks during global 
landmark localization. Each landmark's location is 

fine-tuned using an  during the 

subsequent local analysis. The  used for 
global and local analysis carries out simultaneous 
regression and classification for a specific input 

patch.  Regression uses  to foretell the 

displacement vectors from any patch's centre to 
pertinent landmarks. For precise landmark 
localization, picture patches with more detail are 
closer to the desired landmark crucial than image 
patches farther away. Only a few alterations, 
though, are similarly crucial for precise localization. 
The median of the iconic places where the 
anticipated displacement vectors point is used to 
estimate each landmark's location. The relative 
value of the landmark localization patches is 
determined by combining regression and 
classification. An image patch is classified to 
determine whether a specific landmark is present. 
The anticipated displacement vectors are then 
weighted and averaged using the collected posterior 
classification probabilities. 

A two-stride,  kernel 
convolutional layers is followed by the global 

 and has four ResNet blocks. Its 
foundation is ResNet50. Each ResNetblock has 
three, four, or six convolutional layer pairs, each 
having two convolutional layers with kernels of 32, 

64, 128, or 256 ( ). Between the first and 
second ResNet blocks in our network are a layer of 

pooling with a stride and average size of  
voxels.   In contrast, every ResNet block in the 
original ResNet-50 starts with a strung-together 
convolutional layer. There are two output heads in 
the network following the four ResNet blocks: one 

Input 
image 

De-noised 

image 
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for classifying the presence of landmarks and 
another for the regression of displacement vectors. 
Both output heads have similar designs. A pair of 

output layers and two node dense layers are 
constructed for each head using one-to-one 
convolutions. A sigmoid function constrains each 
landmark's scalar output from the classification 
head to 0 and 1. The regression head produces each 
landmark's displacement vectors. Although much 
smaller and concentrated, the idea behind FCNNs 
for local landmark prediction is similar. Each 
network comprises average pooling, parallel heads 
for regression and classification, a ResNet block, 
and a succeeding ResNet block. The first ResNet 
block comprises two convolutional layers with a 

total of 32  kernels each. The size 
and stride of a typical pooling voxel are 

. Here, 64  kernels are 
used in each convolutional layer that makes up the 
second ResNet block. There are two output heads: a 
classification output and a regression output are 
placed after the two ResNet blocks, the same as the 

global . All levels use 64 kernels. 

 

 
 

 

Figure 2: Denoising AE 

The  give each convolutional layer 
zero padding, and batch normalization is applied 
after each convolutional layer. Instead of flattened, 
3D feature maps' thick layers are implemented as 
voxel convolutions to enable the application to 
images of any size (see Fig 2 and Fig 3 for 
prediction). Unlike the output layers for regression 
and classification, ReLUs, or rectified linear units, 
are used by networks to activate.  To acquire 
posterior probabilities between 0 and 1, a sigmoid 
activation is used for classification and regression 
and employs a linear activation function. The two 
components of the adjustments to the loss function 
made during training were the binary cross-entropy, 
the mean absolute error between the classification 
output and reference labels, and the regression 

output and reference displacements. Displacement 
vectors with a log transformation are used to 
calculate the mean absolute error to minimize the 
influence of input patches placed distant from the 
landmark on changes to network parameters than 
input patches placed close to the landmark. Adam 
was the optimization strategy applied, and 0.001 
was the learning rate.  

A network can assess input images of various sizes 
since it is fully convolutional. During global 
landmark localization, the network generates a 
variety of displacement vectors and posterior 
probabilities depending on the input image. The 
network's outputs are dispersed throughout a grid. 
Since they are the first convolutional layer with a 
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stride of two voxels, the total number of pooling 
layers and stride convolutional layers determine the 
grid spacing and the average pooling layer of the 
network, respectively. For the global or local 

localization step, where  is the sum of the pooling 

layers and stride convolutional layers, the down-

sampling rate is , and the patch size is  
voxels. Patches from an input image are sampled, 

and a grid with  voxel spacing created especially 
for a particular network is used. 

 

Figure 3: L-CNM architecture 

 

4. NUMERICAL WORKS  

This section shows the numerical outcomes of 

the proposed , which combines auto-
encoding and classification of input CT images. The 

anticipated  model employs certain 
image information as a constraint to enhance the 
denoising performance. The network intends for 
lost restoration during denoising using the proposed 

 model. The model employs an essential 
training strategy to train the network model 
independently for predicting the noise in the 
preliminary stage and enhancing the accuracy by 
noise elimination, thus improving the network 

performance. The proposed  model 
works well over certain noise levels and depicts the 
model's robustness.  

 

4.1. Data and execution details 

 

We used the data set from the Combined Healthy 
Abdominal Organ Segmentation (CHAOS) 
challenge, which comprises 51642 abdominal CT 

slices with a size of  for the low-dose 
CT perfusion noise denoising job. Testing involves 
the utilization of 9000 slices, while 42642 slices are 
chosen for training. MATLAB 2020a is used to 

implement our networks. With a  initial 
learning rate, we optimize the training process using 
Adam. After 30 epochs, the learning rate drops to 
10 4 per cent. There is a batch size of 64. 
Furthermore, we employ four and eight NVIDIA 

2080Ti GPUs to train . However, only 
one NVIDIA 2080Ti GPU is needed for testing. To 
illustrate the potency and robustness of the 
suggested model, these models are trained using a 
predetermined blind noise level and noise level. 
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4.2. Evaluation metrics 

Two quantitative metrics in this work, the peak 
signal-to-noise ratio (PSNR) and structural 
similarity index (SSIM), are used to evaluate the 
effectiveness of our method.  The following 
indicates the PSNR. 

 
(1) 

RMSE is the difference between the denoised 
images and the noise-free image's root mean square 
error. A measurement that is more in line with the 
sensation of sight is the SSIM, and it has the 
following representation. 

(2
) 

Where  and   represent an image's mean 

value,  and  represent its standard deviation, 

 represents its covariance, and  and  
represent two constants. To demonstrate our 
network's effectiveness, we trained it on both levels 
of precise and blind noise. To train our model 
specifically for noise level denoising, we used the 
noise levels for CT images 15, 25 and 35, 
respectively. We used random noise levels to train 
our model between 15 and 35 and 17 and 32 for 
blind noise denoising on CT images, respectively. 
We evaluated how well the suggested method 
performed against several existing denoising 
techniques like BM3D, D-CNN, DNN, W-NM, and 
low-rank matrix approximations (LRMA). We once 
more assessed the performance of the suggested 
method for low-dose CT perfusion noise denoising 
applications BM3D, D-CNN, DNN, W-NM, and 
low-rank matrix approximations (LRMA) methods. 

4.3. Qualitative analysis  

This work shows various analyses: (a) as the 
noisy input image with PSNR of 25.67 dB; (b) input 
low-dose perfusion noise; (c) ground truth of the 
clean image; and (d) denoised outcomes of various 
approaches. Fig 4a to 4c and Fig 5a to Fig 5c 
illustrates an outputs from the methods described 
above. Visually, the suggested method outperforms 
other approaches, as is evident. Additionally, the 
suggested method achieves 1.5 dB greater PSNR, 
which is higher than D-CNN and illustrates the 
effectiveness of our technique for denoising CT 
image noise. From the denoised images, the BM3D 
and W-NM cannot remove the disturbances 

adequately. D-CNN frequently loses more tissue 
detail information, and its texture information is 
typically not well retained. However, our suggested 
model can recover features with sharper edges, 
making them more visually appealing to human 
eyes. 

We employ the techniques mentioned above to 
eliminate the noises produced during the acquisition 
of the CT perfusion imaging to test the 
effectiveness of the procedure suggested for clinical 
CT images with low noise levels.  Since no 
fundamental ground truth can be used, we utilize 
visual perception to compare the denoised results of 
various techniques. We use the BM3D, D-CNN, 
DNN, W-NM, and low-rank matrix approximations 
(LRMA) models for blind noise levels for the deep 
learning methods to directly deal with the noisy 
images because it is uncertain how noisy the input 
image is. We established a noise level range for 
denoising equivalent to the deep neural network-
based approaches for the conventional BM3D, D-
CNN, DNN, W-NM, and low-rank matrix 
approximations (LRMA) methods. Fig 4a to Fig 4c 
displays the outcomes of one sample that was 
chosen at random. The suggested model produces 
greater visual results than the other three 
approaches. Because of the limitations of these 
models, some noise in the image remains in the 
denoised results produced by BM3D, D-CNN, 
DNN, W-NM and LRMA. In terms of overall 
performance, deep learning-based approaches beat 
traditional approaches. The proposed model 
removes more noise and reserves more detailed 
information, resulting in an acceptable visual effort. 

4.4. Quantitative outcomes 

The PSNR and SSIM measurements are then 
used to assess the effectiveness of different models. 
The experiment results on blind and particular 
perfusion noise levels are shown in Table 1 to 
support the usefulness of the suggested network. In 
this part, we analyze these models at noise levels 
17, 22, and 32. Our proposed model outperforms 
the two established techniques of BM3D, D-CNN, 
DNN, W-NM and LRMA in terms of PSNR and 
SSIM for reducing noise. Additionally, the PSNR 
for the D-CNN model powered by deep neural 
networks rises from 36.99 to 37.18 by 0.19, from 
35.82 to 36.01 by 0.19, and from 34.08 to 34.31 by 
0.23, respectively, highlighting the adaptability of 
the recommended approach once more. The PSNR 
increases at each of the three noise levels for the 
blind noise denoising job from 37.19 to 37.47 by 
0.28, 35.17 to 35.38 by 0.21, and 33.53 to 33.86 by 
0.33, respectively. It provides additional evidence 
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for the effectiveness of denoising, multi-supervision 
and progressive training approaches are suggested. 
As we can see from the results above, our suggested 
model performs better on blind and specific 
perfusion noise levels than BM3D, D-CNN, DNN, 
W-NM and LRMA. The success of the suggested 
approach is shown by the fact that, despite noise 
level 32, the SSIM of the proposed model performs 
only marginally worse than other approaches. The 

total denoising performance of the anticipated 
model is still superior to other methods. Fig 5a to 5c 
shows how the PSNR and SSIM vary. When 
several models are used, the training epoch 
increases. After 50 epochs, D-CNN outperforms 
other approaches demonstrating that the proposed 
network is simple to train for convergence. 

 

Table 1: PSNR and SSIM computation 

Types Methods 

Noise level = 15 Noise level = 25 Noise level = 35 

PSNR 
(dB) 

SSIM 
PSNR 

(dB) 
SSIM 

PSNR 
(dB) 

SSIM 

Specific 
model 

BM3D 
[5] 

21.8 0.37 16 0.13 15.5 0.14 

D-CNN 
[30] 

21.7 0.36 16.1 0.13 15.6 0.14 

DNN 

[4] 
36.5 0.89 33.6 0.84 31.8 0.80 

W-NM 

[7] 
36.8 0.89 33.7 0.85 31.9 0.80 

LRMA 
[10] 

36.5 0.90 33.8 0.85 31.9 0.81 

L-CNM 37 0.91 34.2 0.86 32 0.82 

Blind 
model 

BM3D 
[5] 

35.5 0.85 32.7 0.79 31 0.63 

D-CNN 
[30] 

35.7 0.87 33 0.80 31.5 0.78 

DNN 

[4] 
35.6 0.88 33.08 0.83 31.5 0.76 

W-NM 

[7] 
35.8 0.89 34 0.84 32 0.77 

LRMA 
[10] 

35.5 0.90 35 0.855 32.5 0.78 

L-CNM 37 0.91 35 0.86 33 0.83 

 

We compare the proposed model results with 
other renderings in this example to demonstrate the 
value of multi-supervision data for the difficulty 
similar to the CT noise denoising experiment part, 
noise denoising with low-dose perfusion. The two 
evaluations of PSNR and SSIM for predictions and 
several renderings are shown in Fig 4 and Fig 5.  

 

The proposed model performs better than the 
other three renderings, proving that combining 
different noise scales during training might produce 
more fruitful outcomes. Again, the PSNR and SSIM 
of render-3 outputs aren't necessarily higher than 
those of render-1 and render-2, emphasizing the 
importance of including hierarchical noise 
information for better prediction and the importance 
of multi-supervision information for improving 
denoising performance.  We re-evaluate the model's 
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performance after confirming the effects of the 
proposed network for refinement, the method of 
progressive training, and the various enormous 

channels. The results are shown in Table 1. The 
proposed model performs worsen than the 
refinement network.  

Fig 4a. PSNR and SSIM comparison for NL =15 (specific model) 

Fig 4b. PSNR and SSIM comparison for NL =25 (specific model) 

Fig 4c. PSNR and SSIM comparison for NL =25 (specific model) 
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Fig 5a. PSNR and SSIM comparison for NL =15 (Blind model) 

 

Fig 5b. PSNR and SSIM comparison for NL =25 (Blind model) 

Figure 5c:. PSNR and SSIM comparison for NL =35 (Blind model) 
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At three different noise levels, the PSNR lowers 
from 37.18 to 37.14, 36.01 to 35.98, and 34.31 to 
34.28, respectively. Without progressive training, 
the SSIM of the proposed model with channel 94 
dropped at the same noise levels from 0.9308 to 
0.9305, 0.9147 to 0.9143, and 0.8860 to 0.8789, 
respectively. It proves that improving network 
performance through progressive training is 
effective. Furthermore, the anticipated model with 
the big channel outperforms existing models with 
the small channel in terms of performance. The 
model achieved 36.94, 35.85, and 34.10 at each of 
the three noise levels, by 0.24, 0.16, and 0.21, 
respectively, as shown by the comparison in Table 
1. It represents a significant improvement in the 
areas of image denoising. Doing so confirms the 
significance of using many channels while 
denoising. 

5. CONCLUSION 

We created a cascaded multi-supervision 
convolutional neural network using a progressive 
training method to remove CT low-dose perfusion 
noise. Under the supervision of the most recent 
convolutional layers, to forecast latent noise, the 
proposed model is used and employed during 
denoising operations where some missing details 
are recovered using the proposed L-CNM network. 
The proposed model is trained separately to forecast 
the first noise before working together with the 
refined network to train it using progressive 
training, which improves network performance. The 
suggested network may learn hierarchical features 
obtained from inner layers with varied supervision 
levels, so resolving the issue with current 
algorithms that exclusively use data from the 
anticipation of the noise-free image by the final 
convolution layer. CT image denoising 
requirements for some problems with known and 
unknown noise levels, we evaluated the 
performance of the suggested technique.  According 
to experimental results, the suggested model 
performed well when measuring the global 
structural similarity index (SSIM) and the peak 
signal-to-noise ratio (PSNR) with unknown and 
particular noise levels. In the future, this work is 
further extended by the adoption of optimization 
and hybrid classification approaches to enhance the 
global and local prediction outcomes. 
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