
Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6473

TENACIOUS FISH SWARM OPTIMIZATION BASED
HIDDEN MARKOV MODEL (TFSO-HMM) FOR

AUGMENTED ACCURATE COTTON LEAF DISEASE
IDENTIFICATION AND YIELD PREDICTION

S.GOVINDASAMY1, D.JAYARAJ2

1Research Scholar, Department of Computer & Information Science, Annamalai University, Chidambaram,
2Assistant Professor / Programmer, Department of Computer Science & Engineering,

Annamalai University, Chidambaram
E-mail: 1govindasamy1412@gmail.com, 2jayarajvnr@gmail.com

ABSTRACT

This research presents an innovative approach called Tenacious Fish Swarm Optimization based Hidden
Markov Model (TFSO-HMM) for augmented accurate cotton leaf disease identification and yield
prediction. Cotton leaf diseases significantly threaten crop productivity, requiring timely detection and
precise prediction for effective disease management. The proposed TFSO-HMM framework combines the
strengths of Tenacious Fish Swarm Optimization (TFSO) and the Hidden Markov Model (HMM) to
address the challenges associated with disease identification and yield prediction in cotton plants. TFSO, a
nature-inspired optimization algorithm, optimizes the classification process, enhancing the accuracy of
disease identification. By harnessing the collective intelligence of fish swarms, TFSO intelligently explores
the search space to identify the optimal solution. The selected information is then incorporated into the
HMM framework, which captures the temporal dependencies in disease progression and yield prediction.
HMM's sequential modelling approach facilitates understanding the dynamic behaviour of cotton leaf
diseases over time, leading to more accurate predictions. Experimental results on a comprehensive dataset
demonstrate the superior performance of the TFSO-HMM method over existing approaches in terms of
accuracy and predictive capability. The augmented accuracy achieved through TFSO-HMM enables early
detection and precise prediction of cotton leaf diseases, enabling timely interventions for disease
management and maximizing crop yield.
Keywords: Tenacious Fish Swarm Optimization, Hidden Markov Model, Cotton Leaf Disease, Yield
 Prediction, Disease Identification, Augmented Accuracy.

1. INTRODUCTION

Identifying and classifying leaf diseases is
paramount for early detection and effective plant
health management. The process commences with
data collection, amassing a comprehensive dataset
encompassing healthy and diseased leaf images.
The collected data then undergoes preprocessing,
wherein various techniques are applied to improve
image quality and prepare the images for
subsequent analysis. Feature extraction follows,
where distinctive characteristics are extracted from
the preprocessed leaf images. A model is selected
to perform the classification task, and its
hyperparameters are fine-tuned for optimal
performance. The model is trained using the
available data, and its effectiveness is evaluated and
validated. In addition, error analysis and diagnosis
aid in understanding misclassifications and
improving overall accuracy. The identified diseases

are ultimately presented as the output result,
enabling effective decision-making in plant disease
management. The general steps involved in lead
disease identification are given in Figure 1.

Figure 1. Image Processing in Leaf Disease
Identification

Data
Collection

Dataset
Splitting Preprocessing

Model
Training Model

Selection
Feature

Extraction

Model Evaluation
and Validation

Error Analysis
and Diagnosis Output Result

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6474

Leaf diseases are conditions that affect the
health and growth of plants by causing damage to
their leaves. These diseases can be caused by
bacteria, fungi, viruses, and environmental stressors
such as extreme temperatures or insufficient water.
One of the most common types of leaf diseases is
fungal infections. These infections can cause leaf
spots, blight, and rust [1]. Symptoms may include
discoloration of the leaves, yellowing, wilting, and
leaf drop. The fungus can spread quickly
throughout the plant and, if left untreated, cause
significant damage or even death. Bacterial
infections can also cause leaf diseases, such as
bacterial leaf spot. This condition is characterized
by brown or black spots on the leaves, which can
eventually spread and cause the leaves to die.
Viruses can also cause leaf diseases, which can be
more challenging to diagnose and treat. Symptoms
may include yellowing or mottling of the leaves,
stunted growth, and distorted leaf shapes [2]. Leaf
diseases can have a significant impact on plant
health and productivity. Diseased leaves are less
able to photosynthesize, which can reduce the
amount of energy available for growth and fruit
production. In severe cases, leaf diseases can cause
defoliation, leading to plant death. Preventing leaf
diseases involves a combination of good cultural
practices, such as proper watering and fertilization
and using fungicides, bactericides, or other
treatments as necessary. Early detection and prompt
treatment are also crucial to minimizing damage
and preventing the spread of disease [3].

Cotton leaf diseases can significantly
impact the overall yield of cotton crops. In addition
to the reduced photosynthesis and growth of
diseased leaves, conditions can lead to premature
plant defoliation, where leaves drop off before they
should [4]. This reduces the plant’s ability to
produce bolls, where the cotton fibres are
harvested. In severe cases, cotton diseases can
cause complete crop failure, resulting in significant
economic losses for farmers and impacting the
global cotton supply. For instance, Fusarium wilt
can cause up to 100% yield loss in susceptible
cotton varieties. Cotton farmers use preventative
and curative measures to control crop diseases [5].
Preventive measures include planting disease-
resistant varieties, crop rotation, and maintaining
healthy soil with proper irrigation, fertilization, and
tillage. Curative measures involve using fungicides,
bactericides, or other chemicals to treat diseased
plants and prevent the spread of disease. However,
chemical treatments can have negative
environmental impacts and may lead to the
development of resistant strains of pathogens over

time. Therefore, many farmers are adopting
alternative disease control methods, such as
biocontrol agents, genetic engineering, and
precision farming techniques [6].

A subfield of AI, machine learning is
teaching computers to infer meaning from data
without being told what to look for. In essence, it is
a way for machines to learn from examples and
experience and use this knowledge to make
decisions or predictions about new data. In the
context of cotton leaf disease identification,
machine learning can be used to analyze data from
images of diseased cotton leaves to identify the
type of disease and predict its severity accurately
[7]. An extensive collection of tagged photos is
used to train a machine-learning model, where each
image is tagged with the corresponding disease type
and severity level. The trained model may then be
used to classify new cotton leaf photos, accurately
identifying the type of disease and predicting its
severity. This can be especially useful for early
detection and rapid response to disease outbreaks
and for developing effective treatment strategies
[8].

There are several approaches to machine
learning that can be used for cotton leaf disease
identification, including [9, 10]:

 In supervised learning, a model is trained using
data that has already been annotated, where
each image is tagged with the corresponding
disease type and severity level. The model can
then classify new ideas based on the patterns it
learned from the training data.

 Unsupervised learning: Includes training a
model on data that hasn’t been labelled and
letting it figure out patterns and connections on
its own. This approach can be helpful when
there is no prior knowledge about the types of
diseases or their severity levels.

 In deep learning, neural networks discover
hidden connections and patterns in data.
Algorithms based on deep learning can assess
photos quickly and accurately, as they can
learn to recognize patterns at multiple levels of
abstraction.

1.1. Motivation

Cotton is a vital cash crop for many
countries, and its production significantly
contributes to food security and economic stability.
Cotton leaf diseases substantially threaten global
agricultural resilience and food production. Farmers
and agricultural organizations can take timely

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6475

actions to minimize the impact of diseases on
cotton production by accurately classifying these
diseases and predicting crop yields. The availability
of a reliable disease classification and yield
prediction system can empower farmers to
implement appropriate preventive measures, adopt
disease-resistant varieties, and improve crop
management practices to enhance overall
productivity. This, in turn, ensures a steady supply
of cotton for the textile industry and mitigates the
risk of food shortages. By developing an effective
cotton leaf disease classification and yield
prediction system, we can bolster global
agricultural resilience, contribute to food security,
and support sustainable development goals related
to poverty reduction and economic stability in
cotton-producing regions.

Bio-inspired optimization, a computational
approach inspired by biological systems, has the
potential to address diverse research issues across
multiple domains [11–24], [25], [26], [27]. These
algorithms offer versatile and practical solutions by
emulating adaptive behaviors observed in nature.
They have been successfully applied in engineering
design, data mining, scheduling, image processing,
robotics, and more.

1.2. Problem Statement

Cotton leaf diseases significantly threaten
global agricultural resilience and food security. The
lack of an accurate and efficient cotton leaf disease
classification and yield prediction system hinders
farmers’ ability to identify and manage these
diseases effectively, resulting in substantial yield
losses and compromising the availability of cotton
for the textile industry and other related sectors.
Farmers face difficulties identifying specific
diseases affecting their cotton crops without a
reliable classification system, leading to delayed or
inadequate interventions. Consequently, the spread
of diseases goes unchecked, resulting in reduced
crop productivity and lower yields. The inability to
accurately predict yield based on disease profiles
further exacerbates the challenge, as it hampers
farmers’ capacity to plan for future production
levels and take proactive measures to mitigate
potential food shortages. To address these issues,
there is an urgent need to develop a robust cotton
leaf disease classification system that can
accurately identify and classify diseases affecting
cotton plants. Farmers and agricultural
organizations can make informed decisions
regarding disease management strategies, resource
allocation, and overall production planning by
integrating a yield prediction component. The

development of such a system would contribute to
global agricultural resilience by reducing crop
losses, ensuring food security, and supporting
sustainable development goals related to poverty
reduction and economic stability in cotton-
producing regions.

1.3. Research Objective

The objective of this research titled
“TFSO-HMM: A Novel Method for Accurate
Cotton Leaf Disease Identification and Yield
Prediction” is to develop and evaluate a novel
method that combines Hidden Markov Models
(HMM) with the enhanced version of Fish Swarm
Optimization (FSO) for accurate cotton leaf disease
identification and reliable yield prediction. Based
on the problem statement related to Motivation 3,
which highlights the significance of accurate cotton
leaf disease classification and yield prediction for
ensuring global agricultural resilience and food
security, the research objective aims to address this
challenge by leveraging the capabilities of HMM
and FSO. The specific objectives are as follows:

 Develop an enhanced cotton leaf disease
identification model using HMM: Design a
Hidden Markov Model that leverages the
sequential nature of symptom development in
cotton leaf diseases. The model will learn and
capture the underlying patterns and transitions
between disease states, enabling accurate
identification of specific diseases. Train the
HMM using a labelled dataset of cotton leaf
disease samples to learn the disease-specific
emission and transition probabilities.

 Enhance Fish Swarm Optimization (FSO)
for model parameter optimization: Integrate
the enhanced version of the FSO algorithm
(namely TFSO) with the HMM framework to
optimize the model parameters. TFSO will be
employed to fine-tune the emission and
transition probabilities of the HMM,
maximizing the model’s accuracy and
robustness in cotton leaf disease identification.
The TFSO algorithm will simulate the
movement and behaviour of a fish swarm,
enabling efficient parameter optimization.

 Evaluate the performance of the TFSO-
HMM method for disease identification and
yield prediction: Assess the accuracy and
effectiveness of the TFSO-HMM method in
accurately identifying cotton leaf diseases.
Compare the performance of the proposed
method with other existing classification
techniques and traditional HMM models.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6476

Additionally, incorporate the disease
identification results into a yield prediction
model, enabling reliable estimation of crop
productivity based on disease profiles.

 Analyze the impact of the TFSO-HMM
method on global agricultural resilience and
food security: Evaluate the potential benefits
of the TFSO-HMM approach for enhancing
global agricultural resilience and ensuring food
security. Analyze the implications of accurate
disease identification and reliable yield
prediction on optimizing disease management
strategies, resource allocation, and overall
cotton production. Assess the potential
economic and societal impacts of improved
agricultural practices enabled by the TFSO-
HMM method.

2. LITERATURE REVIEW

“Learning Aided System for Agriculture
Monitoring” [28] combines image processing
techniques with IoT-CNN architecture to enable
efficient and accurate monitoring of agricultural
activities. The system can detect and classify
agricultural parameters such as crop health, weed
infestation, and pest presence by capturing and
analyzing images from IoT devices deployed in the
fields. An extensive collection of labelled photos
teaches the IoT-CNN model, allowing it to learn
and recognize patterns associated with different
agricultural conditions. This integrated approach
enhances the monitoring capabilities and enables
timely decision-making for farmers. “Tomato Leaf
Disease Recognition Systems” [29] explores using
machine learning algorithms to develop efficient
and accurate models for detecting and recognizing
tomato leaf diseases. These systems can analyze
leaf images and classify them into different disease
categories by leveraging advanced machine
learning techniques, such as convolutional neural
networks (CNNs) or support vector machines
(SVMs). Machine learning enables rapid and early
detection of diseases, allowing farmers to take
timely action to prevent the spread of infections and
optimize crop yields. Implementing such systems in
developing countries can significantly benefit
small-scale farmers by providing them with
affordable and accessible tools for disease
management.

“Tomato Leaf Disease Classification” [30]
proposes a methodology that leverages transfer
learning techniques to utilize pre-trained models
and extract high-level features from tomato leaf
images. Combining the learned features with

handcrafted features through feature concatenation
improves the classification model’s accuracy and
robustness in identifying various tomato leaf
diseases. Transfer learning enables the model to
benefit from knowledge gained from large-scale
datasets, while feature concatenation ensures the
integration of learned and manually designed
features. This approach enhances the performance
of the classification system, enabling accurate and
reliable disease identification. “Hybrid
Convolutional Neural Network-based
Classification” [31] proposes a methodology that
combines different CNN architectures to classify
diseases effectively based on the type of pathogen
affecting the tomato plants. By training the hybrid
CNN model on a diverse dataset of tomato leaf
images, the system learns to distinguish between
bacterial, viral, and fungal diseases with high
accuracy. The hybrid approach leverages the
strengths of multiple CNN architectures to capture
both low-level and high-level features, enhancing
the discriminative power of the model. This
methodology contributes to plant disease
classification by providing a comprehensive and
accurate solution for identifying different diseases
affecting tomato plants.

“AdaBoostSVM Classifier” [32] proposes
a methodology that combines the AdaBoost
algorithm with support vector machines (SVM) for
disease classification in rice plants. The AdaBoost
algorithm is used to enhance the performance of the
SVM classifier by iteratively adjusting the weights
of training samples to focus on difficult-to-classify
instances. The system learns to properly categorize
and detect different illnesses affecting rice plants by
being trained on a dataset of tagged photos of rice
plants using the AdaBoostSVM model. The
combination of AdaBoost and SVM offers
improved accuracy and robustness in disease
detection. “Cassava Disease Recognition” [33]
proposes a methodology that addresses the
challenge of limited data and low-quality images
commonly encountered in cassava disease
recognition. The enhanced data augmentation
model generates additional training samples by
applying various transformations and image
processing techniques, expanding the dataset and
improving the model’s generalization ability. Deep
learning techniques, such as convolutional neural
networks (CNNs), are then employed to learn and
extract meaningful features from the augmented
images. The system achieves accurate and robust
cassava disease recognition by training the deep
learning model on the enhanced dataset, even from
low-quality images.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6477

“Attention Deep Learning-based Large-
Scale Learning Classifier” [34] proposes a
methodology that leverages attention mechanisms
within deep learning architectures to enhance the
classifier’s ability to focus on relevant features
within the Cassava leaf images. The model can
selectively attend to important regions and patterns
by incorporating attention mechanisms, improving
classification accuracy. This approach benefits
large-scale learning scenarios where the dataset
consists of many images. The attention-based deep
learning classifier can efficiently process and
classify Cassava leaf disease images, enabling rapid
and accurate identification of various diseases
affecting Cassava plants. “ResNet with YOLO
Classifier” [35] proposes a methodology that
combines the strengths of both ResNet and YOLO
architectures to improve the accuracy and
efficiency of disease recognition in paddy leaf
images. ResNet is utilized for its deep feature
extraction capabilities, enabling the model to
capture intricate details and patterns associated with
different diseases. YOLO, known for its real-time
object detection capabilities, is integrated to
accurately localize and classify disease regions
within the paddy leaf images. Combining these two
architectures, the hybridized model achieves
enhanced accuracy and computational efficiency.

“Weighted Ensemble Learning” [36]
proposes a methodology that combines image
processing algorithms with ensemble learning to
improve the accuracy of disease classification in
tomato leaves. Image processing techniques extract
relevant features and characteristics from the leaf
images, providing valuable information for disease
identification. Weighted ensemble learning is then
applied to combine the predictions of multiple
classifiers, assigning higher weights to more
accurate classifiers. This approach enhances the
overall classification performance by leveraging the
strengths of different models and reducing the
impact of individual classifier errors. The weighted
ensemble learning technique ensures robust and
reliable disease classification in tomato plants.
“Multiscale Voting Mechanism” [37] proposes a
methodology that leverages multiscale analysis to
capture features at different resolutions, allowing
for more comprehensive disease recognition. The
voting mechanism combines the predictions of
multiple classifiers operating at different scales,
using their collective decisions to make the final
classification. This approach enhances the
robustness and accuracy of disease recognition by
considering various perspectives and avoiding the
limitations of single-scale analysis. The multiscale

voting mechanism is designed to handle the
challenges posed by natural field conditions, where
variations in lighting, background, and other
environmental factors can affect disease
appearance. By incorporating this mechanism, the
system performs better in identifying rice leaf
diseases under realistic field conditions.

“Plant Disease Detection” [38] utilizes
machine learning algorithms to analyze plant
images and identify diseases accurately. One
commonly used technique is the application of
convolutional neural networks (CNNs), designed to
learn and extract meaningful features from images.
Convolutional neural network (CNN) models are
trained on massive annotated datasets of plant
photos to recognize patterns and traits associated
with different illnesses. Another approach is using
decision trees or random forests, which employ a
set of rules to classify plant images based on their
visual features. Support vector machines (SVMs)
are also utilized, where they create a hyperplane to
separate different disease classes. Additionally,
deep learning techniques like recurrent neural
networks (RNNs) and long short-term memory
(LSTM) networks have been applied to analyze
sequential data, such as time series data from
sensors monitoring plant health. These machine
learning approaches enable early and accurate
detection of plant diseases, facilitating timely
intervention and management strategies. “Self-
Adaptive-Deer Hunting Optimization” [39]
proposes an optimal weighted feature selection
mechanism that utilizes the SADHO algorithm to
identify the most informative and discriminative
features from the plant leaf images. The
classification model is optimized for accurate
disease detection by assigning appropriate weights
to these selected features. The approach also
incorporates a hybrid classifier that combines the
strengths of multiple classification algorithms, such
as support vector machines (SVM), random forests
(RF), or artificial neural networks (ANN), to
improve the overall classification performance.
This hybrid classifier leverages the complementary
nature of different algorithms, enhancing the
robustness and accuracy of disease detection. By
integrating the SADHO algorithm, weighted feature
selection, and hybrid classification, this research
provides an effective solution for automated disease
detection in plant leaves.

“Random Forest (RF)” [40] is a robust
machine-learning algorithm that has gained
significant attention in cotton leaf disease
identification. Its working mechanism involves

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6478

creating an ensemble of decision trees, each trained
on a different subset of the training data. During the
classification process, the algorithm combines the
predictions of all trees to make the final decision.
This ensemble approach offers several advantages,
including improved accuracy, robustness to noise,
and reduce overfitting. In the context of cotton leaf
disease identification, RF has demonstrated
excellent performance in accurately classifying
various disease types based on their symptom
patterns. Its ability to handle high-dimensional data,
deal with missing values, and capture complex
relationships makes it well-suited for this task.
Using RF, researchers make significant strides in
automating cotton leaf disease identification, early
detection, and supporting effective agricultural
disease management.

“Support Vector Machines (SVM)” [41]
have become a popular machine-learning algorithm
for cotton leaf disease identification due to their
effective working mechanism. SVM works by
transforming the input data into a higher-
dimensional feature space using a kernel function,
where it aims to find an optimal hyperplane that
separates different disease classes. SVM aims to
maximize the margin between the decision
boundary, the support vectors, and the data points
closest to the boundary. This margin maximization
approach allows SVM to achieve good
generalization and robustness in disease
classification. In the context of cotton leaf disease
identification, SVM has shown promising results in
accurately classifying different disease types based
on their symptom patterns. Its ability to handle
high-dimensional data, handle nonlinearity through
kernel functions, and find optimal decision
boundaries makes it a valuable tool for automated
disease identification and supporting sustainable
agricultural practices.

3. TENACIOUS FISH SWARM OPTIMIZATION
BASED HIDDEN MARKOV MODEL

3.1. Hidden Markov Model

The hidden Markov Model (HMM)
belongs to the statistical models used for extracting
concealed information from observed sequences of
symbols in various applications. HMM uses an
unconstrained Markov model to represent the
system. Separating the unknown parameters from
the known ones is HMM's fundamental difficulty.
HMM precisely models real-time data and can
simulate the source data. Multiple machine learning
strategies have been developed based on HMM,
which find significant applications in computational

biology, optical character recognition, and speech
recognition. HMM is an indispensable tool in
bioinformatics due to its robustness, manipulability,
simplicity, and adaptability to handle multiclass
problems. A discrete stochastic process describes
the input sequence as an output sequence during the
HMM procedure. The system continuously
transitions between states not immediately apparent
to the user. Each hidden state represents a
fundamental element of the modelled data, such as
the level of amino acid present in a protein
sequence.

3.1.1. Hidden markov model in image classification

Hidden Markov models (HMMs) are
widespread because these probabilistic models are
effective in many contexts, such as voice
recognition, NLP, and time series analysis. They
can also be utilized for image classification tasks.
An HMM treats an image as a sequence of
observed symbols or features in image
classification. These symbols can be derived from
various image characteristics, such as color, texture,
or shape. The HMM can learn the underlying
patterns and structure in the image data by
capturing the spatial or temporal dependencies
between these symbols. The key idea behind using
HMMs for image classification is that underlying
hidden states influence the observed symbols.
These hidden states represent the latent factors or
classes that the image belongs to. For example, in a
binary classification problem of distinguishing
between cats and dogs, the hidden states could
represent the "cat" and "dog" classes. During the
training phase, the HMM learns the statistical
properties of the observed symbols and their
relationship to the hidden states. Calculating the
chance of detecting a specific symbol given a
hidden state requires calculating the distribution of
the starting state and the probability of transitioning
between different concealed states.

Once the HMM is trained, it can be
applied to classify new images. This involves
inferring probable hidden-states-sequence (Viterbi
algorithm) or estimating the posterior probabilities
of hidden states given the observed symbols. The
image is assigned to a specific class or category
based on the inference results. By leveraging the
temporal or spatial dependencies captured by the
HMM, image classification systems based on
HMMs can effectively model the relationships
between different parts or features of an image.
This can lead to improved classification accuracy
and the ability to handle variations within image
datasets.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6479

HMMs can be used for image
classification by treating the image as a sequence of
observed symbols and leveraging the probabilistic
modelling capabilities of HMMs. The steps
involved in HMMs when applied for image
classification are:

 Image Representation: Convert each image
into a sequence of symbols or features that
capture relevant information. For example,
images can be divided into smaller regions or
patches, and features like colour histograms,
texture descriptors, or local binary patterns can
be extracted from each patch.

 Symbolization: Map the extracted features to
discrete symbols or discrete levels to create an
observed symbol sequence. This step is
essential because HMMs operate on discrete
symbols. The symbols should capture
discriminative information about the image
patches.

 HMM Training: Train an HMM model using
a labelled dataset of images. Each picture in the
training set is mapped to a series of symbols.
The HMM learns the underlying statistical
patterns and dependencies between the
observed symbols and hidden states.

 Hidden States: Define a set of hidden states
that capture the underlying characteristics or
classes of images. These hidden states
represent the latent or unobservable factors
contributing to the observed symbols. For
example, if classifying images like "cat" or
"dog," the hidden states can represent different
visual patterns associated with each class.

 Model Parameters: Calculate the HMM's
transition probabilities (A), emission
probability (B), and starting state distribution
(). Given a set of concealed states, the
likelihood of being in each beginning state is
represented by a distribution, and state
transition probabilities capture the probability
of moving between initial states, and emission
probabilities model the probability of
witnessing each symbol.

 Inference: Given a new image to classify,
apply the trained HMM model to perform
inference. This involves computing the most
likely sequence of hidden states (Viterbi
algorithm) or estimating the posterior
probabilities of hidden states given the
observed symbols.

 Classification: Assign the image to a class
based on the inference results. The assigned
class can be determined by considering the
most likely hidden state sequence or using a
decision rule based on the posterior
probabilities.

 Evaluation and Iteration: Metrics like
precision, recall, accuracy, and F1-score may
be used to evaluate the efficacy of an HMM-
based image categorization system. If
necessary, iterate and refine the model and
feature representation to improve classification
performance.

3.1.2. Stochastic process

The fundamental principle behind
modelling a process is collecting instances derived
from it. This allows us to understand different
aspects of the procedure and make predictions
based on historical data. Stochastic models serve
three primary purposes:

(i) Elaborate process details for improved
outcomes,

(ii) Forecast results, and

(iii) Perform classification by predicting a single
variable 𝑘 based on input values from a limited
and unordered set, where the input data 𝑥 is
defined as (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … . , 𝑥௡).

In a stochastic model, events can be
predicted with certainty. A stochastic model
introduces a state of non-determinism, meaning it
performs its process randomly. The term
"stochastic" derives from "random." On the other
hand, a deterministic model makes only one
prediction for each set of inputs. The stochastic
model is driven by a probabilistic event sequence in
which different numbers determine each step's
result. To rephrase, the probabilistic outcomes
predicted by the stochastic model consider both the
probability value and the weighted likelihood.
Probability distributions for outcomes may be
predicted using stochastic process modelling, which
accounts for random changes in input across time.
One definition of a stochastic process in the field of
joint probability is a random variable 𝑋 = 𝑋௧; while
the prediction of a deterministic model is always
the same given a specific set of inputs. In the
stochastic model, each step in the process has a
different likelihood of success, and the whole thing
is predicated on that. To rephrase, the probabilistic
outcomes predicted by the stochastic model
consider both the probability value and the
weighted likelihood.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6480

Stochastic process modelling is a tool to
predict probability distributions for potential
outcomes, accommodating random variations in
input over a specified period. A stochastic process
is characterized by a random variable 𝑋 =
{𝑋௧; 𝑡 ∈ 𝑇} in the space of joint probability. It takes
a state space 𝑆 (i.e., a standard set) and is indexed
by 𝑇, representing discrete-time intervals.

3.1.3. Markov processes and markov chains

 There are many stochastic processes, but
the most prominent are Markov chains & Markov
processes. These models represent the behaviour of
systems whose next state is determined purely by
the existing state, making them effectively
memoryless.

Markov Process

A Markov process is characterized by its
ability to reduce memory utilization. It is a
stochastic process in which the dispersion of the
following state depends solely on the present state,
disregarding previous states or events. This
property allows for efficient modelling and
analysis, as a finite number of states can describe
the process. The conditions for a stochastic process
X(t) to be considered a Markov process are as
follows:

 Finite State Count: A Markov process must
have a finite number of possible states or
outcomes. This means the system can exist in a
limited and well-defined set of states, and
transitions between states occur according to
specific rules.

 Constant Probabilities over Time: The
probabilities associated with transitioning
between states remain constant as time
progresses. This implies that the transition
probabilities are independent of time, ensuring
the system's dynamics are consistent
throughout the process.

 Memorylessness: One of the critical
characteristics of a Markov process is its
property of memorylessness. According to this
characteristic, past events have no bearing on
the likelihood of an inevitable future state
occurring. No extrinsic factors influence the
conditional likelihood of a future state
transition.

By satisfying these conditions, a stochastic
process can be classified as a Markov process,
enabling the application of specific mathematical

techniques to analyze and model the system's
behaviour.

Markov Chain

Markov chains are a special kind of
Markov process that adheres to memoryless
conditions and has a discrete state space. It consists
of a sequence of states, where transition probabilities
determine the transition from one state to the next.
The chain moves from state to state based on
probabilistic transitions, forming a stochastic
process with Markovian properties. Markov chains
are widely used in various fields, including
mathematics, physics, economics, and computer
science, for modeling systems with probabilistic
dynamics and predicting future states based on
current observations.

3.1.4. Hidden markov models

HMM is a probability-based model that
employs two simultaneous stochastic processes: a
state transition process governed by the Markov
property and an output process that produces
random sequences. The Markov model describes
the sequence of variables using initial and
transformation probabilities. In contrast, the output
model generates characters from a given alphabet
with only one element. The state transition
sequence is hidden, meaning the variables' states
are not directly observed but inferred from the
output symbols within the sequence. Therefore,
HMM can be characterized by its states, state,
transition, and output probabilities. HMM serves as
an architecture for processing inputs, and a
quintuple represents its formal definition
(𝑆, 𝑉, 𝜋, 𝐴, 𝐵), It includes the following
components:

 𝑆 = {𝑆ଵ, 𝑆ଶ, 𝑆ଷ, … . , 𝑆௡}: Represents the set of
states, with 𝑁, indicating the total number of
states.

 The Markov chain is denoted as a triplet
(𝑆, 𝜋, 𝐴), where the states are hidden and not
directly observed.

 Vocabulary is defined as a set
 𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, … … , 𝑣௠, }.

 𝜋: 𝑆 → [0,1] = {𝜋ଵ, 𝜋ଶ, 𝜋ଷ, … . , 𝜋௡}: Represents
the initial stage of the probability distribution,
indicating the probability of each state. It
satisfies the condition Σ(𝑠 ∈ 𝑆)𝜋(𝑠) =
Σ(𝑖 = 1)௡𝜋௜ = 1.

 The probability of transitioning from one state
𝑆௜ to another state 𝑆௝ is represented by

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6481

 𝐴 = ൫𝑎௜௝൯
௜௡௦

, where 𝑎௜௝ ∈ [0,1] for every

individual transition between 𝑆௜ and 𝑆௝, and it
satisfies the condition Σ(𝑖 ∈ 𝑆)𝑎௜௝ = 1.

 𝐵 = ൫𝑏௜௝൯
௜

௩
𝑠 indicates the output probability,

where 𝑣௜ corresponds to the state 𝑆௜.

HMM proves useful for modelling
processes when the system's state is unknown. Its
fundamental concept involves generating a
sequence of numbers randomly. Typically, when
observing output events, HMM is considered a
generative model used to generate sequences for
observation. Algorithmically, an observed sequence
𝑂 = 𝑜ଵ, 𝑜ଶ, 𝑜ଷ, … . , 𝑜் , where 𝑜௧ ∈ 𝑉 can be
generated by an HMM.

3.1.5. Forward algorithm

Hidden Markov Models (HMMs) rely on
the forward algorithm, which is essential in many
fields. The probability of transitioning between
states at every step in an observable sequence is
computed. The forward algorithm provides
valuable insights into the likelihood of different
hidden state sequences, enabling us to make
inferences and perform tasks such as decoding and
parameter estimation. In HMMs, the underlying
system is modelled as a probabilistic framework
comprising two stochastic processes: a Markov
process governing the state transitions and an
output process determining the emitted symbols.
Given the observed sequence, the forward
algorithm allows us to efficiently compute the
probabilities of being in different states at each time
step. By calculating the emission and transition
probability based on the starting state distribution,
the algorithm recursively calculates the forward
variables, representing the probabilities of being in
each state at a specific time. By employing the
forward algorithm, we can analyze and understand
the dynamics of the hidden states in an HMM. It
lays the groundwork for tasks like estimating states,
predicting sequences, and finding the most likely
order of hidden states given an observational
sequence. Additionally, the forward algorithm
serves as a building block for other algorithms in
HMMs, such as the backward algorithm, the Baum-
Welch algorithm for parameter estimation, and the
Viterbi algorithm for decoding. Here's a step-by-
step representation of the forward algorithm:

Algorithm 1. Forward Algorithm
Step 1: Initialize the forward variable 𝜶 at

time 𝒕 = 𝟏
a) For each state 𝑖:
b) Set 𝛼ଵ(𝑖) = 𝜋(𝑖) ∗ 𝐵(𝑖, 𝑜ଵ), where

𝜋(𝑖) is the initial state distribution, and
𝐵(𝑖, 𝑜ଵ) is the probability of emitting
the first observed symbol from state 𝑖.

Step 2: Recursion
a) For each time step 𝑡 from 2 to 𝑇:
b) For each state 𝑗:
c) Calculate the forward variable 𝛼௧௝

using 𝛼௧௝ = 0.
d) For each state 𝑖:
e) Add 𝛼௧௝+= 𝛼௧ିଵ(𝑖) ∗ 𝐵(𝑗, 𝑜௧), where

𝐴(𝑖, 𝑗) is the transition probability
from state 𝑖 to state 𝑗, and 𝐵(𝑗, 𝑜௧) is
the probability of emitting a symbol 𝑜௧
from state 𝑗.

Step 3: Termination
a) Figure out the forward chance at the

last time step 𝑇:
b) Set 𝑃(𝑂|𝜆) = 0.
c) For each state i:
d) Add (𝑂|𝜆)+= 𝛼𝑇(𝑖), where 𝛼𝑇(𝑖)

represents the forward variable at time
𝑇 for state 𝑖.

Step 4: Output
a) The prospective possibilities Given the

sequence 𝑂, the probabilities of being
in state 𝑗 at time 𝑡 are represented by
𝛼௧௝.

b) The forward probability 𝑃(𝑂|𝜆)
represents the overall likelihood of the
observed sequence 𝑂 given the HMM
parameters 𝜆.

3.1.6. Backward algorithm

The backward algorithm is an essential
component of HMMs and complements the forward
algorithm in providing a complete understanding of
the underlying system. It allows us to compute the
probabilities of future observations given a
particular state at each time step. The backward
algorithm is crucial in bioinformatics parameter
estimation, decoding, and sequence alignment. In
HMMs, the backward algorithm operates in tandem
with the forward algorithm, providing a
complementary perspective on the observed
sequence. At each time step, the forward algorithm
determines the likelihood of several possible states.
The backward algorithm computes the probabilities
of future observations given a specific state at each
time step. This information is valuable in
deciphering the significance and impact of different
hidden states on future observations. The backward
algorithm starts by initializing the backward
variable at the last time step to capture the
probabilities of the final observations given each
state. It then recursively calculates the backward

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6482

variables at earlier time steps, considering the
transition and emission probabilities. By utilizing
these probabilities, the backward algorithm
effectively propagates the information from future
observations to the present, allowing us to estimate
the likelihood of observing specific sequences of
symbols.

By employing the backward algorithm, we
comprehensively understand the HMM by
considering past and future information. This
information is crucial for decoding tasks, where the
sequence seen is used to infer the most likely
sequence of concealed states. Additionally, the
backward algorithm plays a pivotal role in
parameter estimation techniques such as the Baum-
Welch algorithm, which relies on the backward
probabilities to update the model parameters and
improve their accuracy iteratively.

Algorithm 2. Backward Algorithm

 Initialization
 Set 𝛽௧(𝑖) = 1 for every state 𝑖 at the last

time step 𝑇.
 Recursion
 For every time step 𝑡 from 𝑇 − 1 to 1:
 For every state 𝑖:
 Calculate the backward variable 𝛽௧(𝑖) using

the following steps:
 Set 𝛽௧(𝑖) = 0.
 For each state 𝑗:
 Calculate the backward probability for state

𝑖 at time step 𝑡:
 Multiply the transition probability 𝐴(𝑖, 𝑗)

from state 𝑖 to state 𝑗 by the emission
probability 𝐵(𝑗, 𝑜௧ାଵ) of emitting symbol
𝑜௧ାଵ from state 𝑗.

 Multiply the result by the backward variable
𝛽௧ାଵ(𝑗) at time step 𝑡 + 1 for state 𝑗.

 Add the product to 𝛽௧(𝑖).
 Termination
 Calculate the backward probability at the

first time step 𝑡 = 1:
 Set 𝑃(𝑂|𝜆) = 0.
 For each state 𝑖:
 Calculate the contribution of state 𝑖 to the

overall backward probability:
 Multiply the initial state distribution 𝜋(𝑖) by

the emission probability 𝐵(𝑖, 𝑜ଵ) of emitting
the first observed symbol from state 𝑖.

 Multiply the result by the backward variable
𝛽ଵ(𝑖) at time step 1 for state 𝑖.

 Add the product to 𝑃(𝑂|𝜆).
 Output

 The backward probabilities 𝛽௧(𝑖) represent
the probability of being in state 𝑖 at time 𝑡,
given the observed sequence 𝑂.

 The backward probability 𝑃(𝑂|𝜆) represents
the overall likelihood of the observed
sequence 𝑂 given the HMM parameters 𝜆.

3.1.7. Forward-Backward Algorithm

The Forward-Backward (FB) algorithm
estimates the posterior & pairwise probability of a
Hidden Markov Model (HMM) by fusing the
forward and backward methods. Based on the
observed sequence, it provides valuable
information about the underlying states and their
transitions.

Algorithm 3. Forward-Backward Algorithm

Step 1: Initialize
a) Set the forward variable 𝛼௧(𝑖) =

𝜋(𝑖) ∗ 𝐵(𝑖, 𝑜ଵ) for each state 𝑖 at
time step 𝑡 = 1.

b) Set the backward variable 𝛽௧(𝑖) =
1 for each state 𝑖 at the last time
step 𝑇.

Step 2: Forward Procedure
a) For every time step 𝑡 from 2 to 𝑇:
b) For every state 𝑖:
c) Calculate the forward variable

𝛼௧(𝑖) using the following steps:
d) Set 𝛼௧(𝑖) = 0.
e) For each state 𝑗:
f) Multiply the transition probability

𝐴(𝑗, 𝑖) from state 𝑗 to state 𝑖 by the
emission probability 𝐵(𝑖, 𝑜௧) of
emitting symbol 𝑜௧ from state 𝑖.

g) Multiply the result by the forward
variable 𝛼௧ିଵ(𝑗) at time step 𝑡 − 1
for state 𝑗.

h) Add the product to 𝛼௧(𝑖).
Step 3: Backward Procedure

a) For each time step 𝑡 from 𝑇 − 1 to
1:

b) For each state 𝑖:
c) Calculate the backward variable

𝛽௧(𝑖) using the following steps:
d) Set 𝛽௧(𝑖) = 0.
e) For each state 𝑗:
f) Multiply the transition probability

𝐴(𝑖, 𝑗) from state 𝑖 to state 𝑗 by the
emission probability 𝐵(𝑗, 𝑜௧ାଵ) of
emitting symbol 𝑜௧ାଵ from state 𝑗.

g) Multiply the result by the
backward variable 𝛽௧ାଵ(𝑗) at time
step 𝑡 + 1 for state 𝑗.

h) Add the product to 𝛽௧(𝑖).

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6483

Step 4: Calculate Posterior Probabilities
a) For every time step 𝑡 from 1 to 𝑇:
b) For every state 𝑖:
c) Calculate the posterior probability

𝛾௧(𝑖) using the following formula:
d) 𝛾௧(𝑖) = ൫𝛼௧(𝑖) ∗ 𝛽௧(𝑖)൯/𝑃(𝑂|𝜆),

where 𝑃(𝑂|𝜆) is the overall
likelihood of the observed
sequence.

Step 5: Calculate Pairwise Probabilities
a) For each time step 𝑡 from 1 to 𝑇 −

1:
b) For each state 𝑖 and state 𝑗:
c) Calculate the pairwise probability

𝜉௧(𝑖, 𝑗) using the following
formula:

d) 𝜉௧(𝑖, 𝑗) = ቀ𝛼௧(𝑖) ∗ 𝐴(𝑖, 𝑗) ∗

𝐵(𝑗, 𝑜௧ାଵ) ∗ 𝛽௙ାଵ(𝑗)ቁ /𝑃(𝑂|𝜆),

where 𝐴(𝑖, 𝑗) is the transition
probability from state 𝑖 to state 𝑗,
and 𝐵(𝑗, 𝑜௧ାଵ) is the emission
probability of emitting symbol
𝑜௧ାଵ from state 𝑗.

Step 6: Output
a) The posterior probabilities 𝛾௧(𝑖)

represent the probability of being
in state 𝑖 at time 𝑡, given the
observed sequence 𝑂.

b) The pairwise probabilities 𝜉௧(𝑖, 𝑗)
represent the probability of
transitioning from state 𝑖 to state 𝑗
at time 𝑡, given the observed
sequence 𝑂.

3.1.5. Baum-welch algorithm

The Baum-Welch Algorithm, also known
as the expectation-maximization (EM) algorithm,
can be applied to image classification tasks using
HMMs. Although HMMs are not the most common
approach for image classification in modern deep
learning, they can still provide a probabilistic
framework for specific scenarios. In image
classification, the Baum-Welch Algorithm can be
used to estimate the parameters of an HMM that
captures the underlying patterns in image data. The
chance of viewing particular picture characteristics
provided the hidden states is defined by these
parameters, which include the distribution of the
beginning states, the probabilities of transitioning
between states, and the emission probabilities. The
steps involved in using the Baum-Welch Algorithm
for image classification are given in Algorithm 4:

Algorithm 4: Baum-Welch Algorithm

Step 1: Data Representation:
 Images must be preprocessed and

represented as sequences of observed
symbols or features. These symbols
can be derived from various image
characteristics such as colour
histograms, texture descriptors, or local
features.

Step 2: HMM Initialization
 The initial parameters of the HMM, the

probability of transition between states
and emission probabilities, and the
distribution of the beginning state are
initialized either randomly or based on
prior knowledge.

Step 3: FB Algorithm
 The FB algorithm is applied to

compute the posterior probabilities of
the hidden states given the observed
image features. This step involves
calculating the forward probabilities
(the likelihood of existing in a specific
condition at a specific time instant
based on the characteristics already
seen) and the backward probabilities.

Step 4: Parameter Update
 The computed posterior probabilities

are used to update the model
parameters using the Baum-Welch
update formulas. These equations find
the values for the model parameters
that maximize the likelihood of the
observable picture characteristics.

Step 5: Iterative Process
 Steps 3 and 4 are repeated until

convergence is achieved in an iterative
process, or a predefined number of
iterations is completed. The iterative
process allows the HMM to refine its
parameters to fit the observed image
data better.

Step 6: Classification
 Once the HMM is trained using the

Baum-Welch Algorithm, it can be used
for image classification. Given a new
image, the HMM can infer the
expected progression of covert states
using the Viterbi Algorithm or estimate
the posterior probabilities of the hidden
states given the observed features.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6484

3.1.6. Modified Viterbi Algorithm

Dynamic programming algorithm Viterbi
can be used for HMM-based image classification
problems. While HMMs are not commonly used for
image classification in modern deep learning, the
Viterbi Algorithm can still provide insights into the
process. The Viterbi Algorithm may determine the
most probable concealed state sequence in a hidden
Markov model (HMM) using a seen picture. Each
hidden state represents a specific class or category,
while the observed image corresponds to a
sequence of symbols or features.

Algorithm 5: Modified Viterbi Algorithm

Step 1: Initialization
a) Initialize the trellis structure 𝑉 with

dimensions (𝑁 × 𝑇), where 𝑁 is
the number of states, and 𝑇 is the
number of time steps.

b) Initialize the backpointer matrix BP
with the exact dimensions.

c) Set the initial probabilities for the
first time step:

d) 𝑉[𝑖, 1] = 𝜋[𝑖] ∗ 𝑏[𝑖, 1], for all states
𝑆𝑖.

Step 2: Recursion
a) For each time step 𝑡 from 2 to 𝑇:
 For each state 𝑆𝑖 from 1 to 𝑁:
 Compute the probability of reaching

state 𝑆𝑖 at time 𝑡:
 𝑉[𝑖, 𝑡] = 𝑚𝑎𝑥(𝑉[𝑗, 𝑡 − 1] ∗ 𝑎[𝑗, 𝑖] ∗

𝑏[𝑖, 𝑡]), for all states 𝑆𝑗.
 This calculation involves

multiplying the probability of being
in state 𝑆𝑗 at the previous time step
(𝑉[𝑗, 𝑡 − 1]), the transition
probability from state 𝑆𝑗 to
𝑆𝑖(𝑎[𝑗, 𝑖]), and the emission
probability of observing the feature
at time 𝑡 given state 𝑆𝑖(𝑏[𝑗, 𝑖]).

b) Update the backpointer matrix:
 𝐵𝑃[𝑖, 𝑡] = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑉[𝑗, 𝑡 − 1] ∗

𝑎[𝑗, 𝑖] ∗ 𝑏[𝑖, 𝑡]), for all states 𝑆𝑗.
 The backpointer matrix stores the

state 𝑆𝑗 index corresponding to the
maximum probability calculation,
indicating the most likely previous
state leading to state 𝑆𝑖 at time 𝑡.

Step 3: Termination
a) Find the maximum probability

among the final time step
probabilities:

 𝑃∗ = 𝑚𝑎𝑥(𝑉[𝑖, 𝑇]), for all states
𝑆𝑖.

b) Set the final state as the one with
the highest probability:

 𝑆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑉[𝑖, 𝑇]), for all
states 𝑆𝑖.

Step 4: Backtracking
a) Starting from step 𝑇's final time, To

discover the expected order of
concealed states, one should follow
the backpointers.

b) Initialize an empty sequence of
states.

c) Append the state 𝑆∗ (the final state
with the highest probability) to the
sequence.

d) For each time step 𝑡 from 𝑇 − 1 to
1:

 Retrieve the index of the following
state from the backpointer matrix:

 𝑆∗ = 𝐵𝑃[𝑆∗, 𝑡 + 1].
 Append 𝑆∗ to the sequence.
 Reverse the sequence to obtain the

correct order of hidden states.
3.2. Tenacious Fish Swarm Optimization (TFSO)

 The Standardized Artificial Fish Swarm
Algorithm (TFSO) is an innovative optimization
approach that creates a cohesive school of artificial
fish exhibiting behaviour reminiscent of real fish.
This algorithm showcases complex and intelligent
behaviour on a macro level, achieved through the
simple actions and interactions of individual fish
within the group. In algorithm optimization, it
demonstrates global optimum approximation
through swarm behaviour, in contrast to the local
optimization performed by individual algorithms.
The TFSO operates as a population-based random
search algorithm, commencing with generating an
initial population through random selection.
Subsequently, it iteratively explores the solution
space to find the most optimal answer. The
algorithm's strength lies in its ability to collectively
move towards a global optimum by leveraging the
collective intelligence of the fish school instead of
relying solely on the efforts of individual fish. By
emulating the behaviour of real fish, the TFSO
offers a unique and practical approach to
optimization problems. Each fish within the school
represents an individual solution candidate, and
their interactions with one another facilitate the
exploration of the solution space. Through
continuous adaptation and learning, the fish swarm
intelligently navigates the optimization landscape,
gradually converging towards the global optimum.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6485

3.2.1. Meaning of TFSO

The state vector comprehensively
represents a fish's characteristics and properties
relevant to the optimization process. It encapsulates
various attributes contributing to the fish's
behaviour and decision-making within the swarm.
These attributes may include position, velocity,
fitness value, search space boundaries, and
additional parameters specific to the optimization
problem. TFSO create a structured representation
that facilitates the algorithm's operations by
expressing a fish's condition through a state vector.
This vector allows for the tracking and
manipulation of individual fish properties during
the optimization process. It enables the algorithm to
assess the fitness of each fish's solution and
determine their contribution to the collective
intelligence of the swarm. The initialization of the
state vector involves assigning initial values to its
components for each fish in the population. The
specific values depend on the problem's
requirements and the algorithm's implementation.
These initial values can be randomly generated or
based on prior problem domain knowledge. By
considering the 𝑌-dimensional nature of the
problem, the state vector accommodates the
necessary dimensions to capture the characteristics
relevant to the optimization task. It ensures that
each fish's state is adequately represented, enabling
them to interact with other fish and adapt their
behaviour to achieve the desired global optimum.

In the context of TFSO, let us consider
that the initial fish population is represented by the
variable 𝑇. This population comprises a group of
artificial fish aiming to solve a 𝑌-dimensional
problem. This research work utilizes a state vector
to track the condition or state of each fish within
the swarm, and the same is expressed as Eq.(1).

 𝑃௦ = (𝑝ଵ , 𝑝ଶ, … . . 𝑝௒) (1)
 𝑄௦ = 𝑔(𝑃௦) indicates the fitness level (i.e.,
satisfaction with food). For every pair of fish, the
𝑌௦,௪ = ‖𝑃௦ − 𝑃௪‖. Euclidean distance is used to
express the relationship. In the case when 𝑠, 𝑤 =
1,2, … . 𝑁, and the various states of the fish are
represented as𝑇, 𝑃௦ and 𝑃௪ respectively.

The efficiency of the TFSO is influenced
by three crucial factors: the fish's visual field, the
step size, and the crowding level. These factors are
represented by the Visual, Step, and Crowded
factors, respectively. The three factors are described
below:

 Visual Factor (Visual): The visual field of a
fish refers to its perception range or the
distance within which it can detect and interact
with other fish. In the TFSO, the Visual factor
determines the neighbourhood of influence for
each fish. A larger visual field allows fish to
perceive a broader range of their surroundings,
facilitating the exchange of information and
collective decision-making within the swarm.
On the other hand, a smaller visual field
restricts interactions to closer proximity,
potentially limiting the exploration and
convergence capabilities of the algorithm.

 Step Factor (Step): The step size represents
the distance a fish can move in each algorithm
iteration. It influences the exploration and
exploitation trade-off of the swarm. A more
significant step size enables fish to cover more
ground in the search space, facilitating
exploration and increasing the chances of
finding a global optimum. However, a more
significant step size may increase the
likelihood of overshooting or missing optimal
solutions. Conversely, a minor step enhances
exploitation by allowing fine-grained
adjustments and precise refinement around
promising solutions. Still, it may lead to slower
convergence and potential stagnation in local
optima.

 Crowded Factor (Crowded): The crowded
level denotes the density or proximity of fish
within the swarm. It determines the level of
competition and congestion within the
population. A higher crowded level implies a
more congested swarm with intense
competition among fish for resources and
space. This can lead to a higher likelihood of
premature convergence towards suboptimal
solutions. Conversely, a lower crowded level
promotes more diverse exploration as fish have
more space to manoeuvre and interact with a
broader range of neighbours. However,
crowded deficient levels may result in a
scattered or disorganized swarm, potentially
hindering efficient information sharing and
convergence.

In the domain of leaf disease
classification, this research draws an analogy
between the exploration behaviour of artificial fish
and the process of classifying data. Artificial fish
exhibit four primary behaviours: Random, Preying,
Swarming, and Following. These behaviours are
employed to identify the most favourable feeding

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6486

locations, which can be likened to identifying
optimal classification outcomes.

 Random Behavior: It explores the search
space without any specific pattern or
predefined strategy. In this, fish randomly
move and investigate different areas in the
search space, allowing for broad exploration.

 Preying Behavior: It targets and focuses on
specific areas or regions in the search space
likely to contain favourable solutions. They
concentrate on those areas to discover and
exploit potential optimal solutions.

 Swarming Behavior: It involves coordination
and collaboration among artificial fish. They
collectively move and communicate with each
other, sharing information and insights. The
artificial fish can enhance their search
efficiency and effectiveness by working
together as a swarm.

 Following Behavior: It learns from the
experiences and decisions of other fish in the
swarm. They observe and adapt their actions
based on the success and behaviour of well-
performing fish. This adaptive behaviour helps
improve the overall performance of the swarm.

3.2.2. Random behavior

Random behaviour is a fundamental aspect
of the Artificial Fish Swarm Algorithm (TFSO) that
mimics the exploration process of real fish. In
TFSO, random behaviour refers to the strategy
employed by artificial fish to explore the search
space without any predefined pattern or specific
direction. This behaviour allows the artificial fish to
survey various possibilities and discover solutions
unbiasedly. The random Behavior in TFSO serves
as a means of broad exploration, helping the
algorithm to escape local optima and find better
solutions. The artificial fish can uncover new
regions and evaluate their fitness by randomly
selecting positions or movements within the search
space. This exploration process is crucial for
discovering promising areas with optimal solutions,
particularly in complex and high-dimensional
problem spaces.

During the random behaviour phase,
artificial fish may probe various regions, sample
different attributes, or explore different
combinations of parameters. The randomness in
their movement introduces diversity into the search
process, preventing the algorithm from getting
trapped in suboptimal solutions. By continuously
exploring different regions, the artificial fish have a

chance to encounter more favourable areas, leading
to improved convergence towards the global
optimum. It is important to note that random
behaviour alone is not sufficient for efficient
optimization. It needs to be complemented by other
behaviours, such as preying, swarming, and
following, to guide the search process towards
optimal solutions collectively. The balance between
random exploration and exploitation of known
reasonable solutions is essential for achieving an
effective trade-off between exploration and
exploitation in TFSO. By incorporating random
behaviour, TFSO introduces an element of
stochasticity that enhances its robustness and
adaptability. This behaviour allows the algorithm to
handle uncertainties in the problem space and
discover diverse solutions. The random exploration
process and other behaviours contribute to the
algorithm's ability to converge towards global
optima and achieve effective optimization results.

Random Position Selection

An artificial fish selects a random position
within the search space at each iteration. This can
be expressed as Eq.(2):

𝑥 = 𝑥௠௜௡ + (𝑥௠௔௫ − 𝑥௠௜௡) ∗ 𝑟𝑎𝑛𝑑 () (2)

Where 𝑥 is the randomly selected position within
the search space, 𝑥௠௜௡ and 𝑥௠௔௫ represent the lower
and upper bounds of the search space, respectively,
and 𝑟𝑎𝑛𝑑() generates a random number between 0
and 1.

Algorithm 6. Random Position Selection

Step 1: Set the minimum value of the search
space as 𝑥௠௜௡.

Step 2: Set the maximum value of the search
space as 𝑥௠௔௫.

Step 3: Generate a random number between 0
and 1, and store it as random_number.

Step 4: Calculate the random position within the
search space using Eq.(16)

Step 5: Return the randomly selected position 𝑥.
Random Movement

After selecting a random position, the
artificial fish performs a random movement in the
search space. This movement can be represented by
adjusting the current position using a random
displacement. Mathematically, it can be expressed
as Eq.(3):

𝑥௡௘௪ = 𝑥 + 𝑟𝑎𝑛𝑑() ∗ 𝑠𝑡𝑒𝑝௦௜௭௘ (3)

Where 𝑥௡௘௪ is the new position after the random
movement, 𝑥 is the current position, rand()

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6487

generates a random number between 0 and 1, and
𝑠𝑡𝑒𝑝௦௜௭௘ represents the magnitude of the random
movement.

Algorithm 7. Random Movement

Step 1: Set 𝑥 as the current position of the
artificial fish.

Step 2: Generate a random number between 0
and 1 using 𝑟𝑎𝑛𝑑().

Step 3: Set 𝑠𝑡𝑒𝑝௦௜௭௘ as the magnitude of the
random movement.

Step 4: Compute the new position after the
random movement using Eq.(3).

Step 5: Return to the new position 𝑥௡௘௪ .

3.2.3. Preying behavior

The predatory behaviour of real fish
inspires the Preying behaviour in TFSO. It involves
the artificial fish targeting and concentrating their
search efforts on regions of the search space with
higher fitness values. The objective is to exploit
these promising areas and increase the chances of
finding optimal solutions. During the Preying
behaviour, the artificial fish evaluate their fitness
values at their current positions in the search space.
These fitness values represent the quality or
suitability of the solutions found by the fish. The
fish then identify the locations with the highest
fitness values among all the individuals in the
swarm. These locations are considered potential
prey locations, likely to contain optimal solutions.

The artificial fish update their positions to
move towards the prey locations using a predefined
strategy. This strategy typically involves moving
towards the selected prey location and introducing a
random perturbation to diversify the search. The
difference between the fish's current position and
the selected prey's position guides the movement
towards the prey's location. The random
perturbation helps explore the search space beyond
the immediate vicinity of the prey location. By
concentrating their search efforts on regions with
higher fitness values, the Preying behaviour allows
the artificial fish to focus on promising areas and
increase the chances of finding optimal solutions.
This behaviour enhances the exploitation of the
search space while still maintaining an element of
exploration through random perturbations.

Fitness Evaluation

Each artificial fish evaluates the fitness
function at its current position in the search space.
Let the fitness value be denoted as 𝑓(𝑥), where 𝑥
represents the fish's position.

Identification of Prey Locations

Identify the locations with the highest
fitness values among all the artificial fish. Let
𝑝𝑟𝑒𝑦௟௢௖௔௧௜௢௡௦ = {𝑥ଵ, 𝑥ଶ, … . 𝑥௞} represent the
positions of these prey locations.

Position Update

Move each artificial fish towards one of
the prey locations based on a predefined strategy.
The position update equation can be written as
Eq.(4):

𝑥௡௘௪ = 𝑥 + 𝑠𝑡𝑒𝑝௦௜௭௘ ∗ ൫𝑥௣௥௘௬ − 𝑥൯

+ 𝑟𝑎𝑛𝑑𝑜𝑚ௗ௜௦௣௟௔௖௘௠௘௡௧
(4)

where 𝑥௡௘௪ represents the new position of the fish,
𝑥 is the current position of the fish, 𝑠𝑡𝑒𝑝௦௜௭௘ is a
parameter controlling the magnitude of the
movement, 𝑥௣௥௘௬ is the position of the selected prey
location, and 𝑟𝑎𝑛𝑑𝑜𝑚ௗ௜௦௣௟௔௖௘௠௘௡௧ represents a
random perturbation or noise introduced to
diversify the search.

Iteration

Repeat the above steps for a certain
number of iterations or until a termination criterion
is met.

Algorithm 8. Preying Behavior

Step 1: Initialize the swarm of artificial fish
with their initial positions.

Step 2: Evaluate the fitness value for each
fish's position using the fitness
function.

Step 3: Set the current iteration counter to 1.
Step 4: While the termination criterion is not

met or the specified number of
iterations is not reached, repeat Step 5
to Step 8.

Step 5: Fitness Evaluation
a) For each fish in the swarm,

Evaluate the fitness value of the
fish's current position using the
fitness function.

Step 6: Identification of Prey Locations
a) Identify the positions of the fish

with the highest fitness values as
the prey locations.

Step 7: Position Update
a) Select one of the prey locations

randomly from prey_locations for
each fish in the swarm.

b) Calculate the new position for the
fish using Eq.(4).

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6488

c) Update the position of the fish to
the new position.

Step 8: Increment the iteration counter.
Step 9: Return the best solution found by the

swarm of artificial fish.
3.2.4. Swarming Behavior

The Swarming behaviour is a crucial
characteristic of the TFSO, inspired by the
collective behaviour observed in swarms of real
fish. It involves the artificial fish in the swarm
aligning their movements and converging towards a
common position or direction. In TFSO, the
Swarming behaviour promotes cooperation and
information sharing among the fish, allowing them
to explore the search space and find optimal
solutions collectively. It leverages the principle that
the collective behaviour of a group can lead to
better results than individuals' isolated behaviour.
The following general characteristics can describe
the Swarming behaviour in TFSO:

 Information Sharing: The fish in the swarm
share information about their positions, fitness
values, and other relevant attributes. This
information exchange allows the fish to gain
insights into the behaviour and movements of
other fish in the swarm.

 Alignment of Movements: The fish align their
movements towards a common position or
direction, which is typically determined based
on the collective behaviour of the swarm. This
alignment encourages cooperation and helps
the fish converge towards better solutions.

 Emergent Behavior: Through the Swarming
Behavior, the fish exhibit emergent behaviour,
meaning that the collective behaviour of the
swarm arises from the interactions and
coordination among individual fish. The
emergent behaviour can lead to complex
patterns and self-organization within the
swarm.

 Exploration and Exploitation: The Swarming
behaviour balances exploration and
exploitation of the search space. The fish
explore new regions by following the
movements of other fish and exploit promising
areas by converging towards positions with
higher fitness values.

 Adaptability: The Swarming behaviour allows
the fish to adapt their movements and
responses to changes in the environment or the
positions of other fish. This adaptability helps

the swarm to adjust its exploration and
exploitation strategies dynamically.

Information Sharing

Information sharing is crucial in
facilitating cooperation and coordination among the
fish in the swarm. Mathematically, TFSO can
represent this information sharing using matrices or
sets of variables. Let's consider a swarm of 𝑁 fish
indexed from 1 to 𝑁. Each fish 𝑖 in the swarm
shares its position vector 𝑃௜ and fitness value 𝐹௜
with the other fish. The shared position matrix,
denoted as 𝑃, is a matrix that contains the position
vectors of all fish in the swarm. It can be
represented as Eq.(5):

𝑃 = [𝑃ଵ, 𝑃ଶ, … , 𝑃ே] (5)

Here, 𝑃௜ represents the position vector of fish 𝑠, and
it typically consists of coordinates or attributes that
define the position in the problem space. The
matrix 𝑃 represents the shared information about
the positions of all fish in the swarm.

The shared fitness values can be
represented using a fitness matrix or a vector. Let's
denote the fitness values of the fish as 𝐹ଵ, 𝐹ଶ, … , 𝐹ே.
TFSO can represent the shared fitness values as
Eq.(6):

𝐹 = [𝐹ଵ, 𝐹ଶ, … , 𝐹ே] (6)

Here, 𝐹௜ represents the fitness value of fish 𝑖, which
measures its performance or quality in the problem
domain. The matrix 𝐹 represents the shared
information about the fitness values of all fish in
the swarm.

By sharing this information, each fish in
the swarm can learn about other fish's positions and
fitness values. This information exchange enables
the fish to make informed decisions, such as
aligning their movements or evaluating the quality
of potential solutions.

Algorithm 9: Information Sharing

Input:
 Position matrix 𝑃 = [𝑃ଵ, 𝑃ଶ, … , 𝑃ே]
 Fitness matrix 𝐹 = [𝐹ଵ, 𝐹ଶ, … , 𝐹ே]
Output:
 Updated position matrix 𝑃
 Updated fitness matrix 𝐹
Procedure:
Step 1: Initialize an empty matrix for shared

positions, 𝑃௦௛௔௥௘ , and an empty
matrix for shared fitness values,
𝐹௦௛௔௥௘ௗ .

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6489

Step 2: For each fish 𝑖 in the swarm:
a) Create a neighbourhood set

𝑁௜ containing the indices of
neighbouring fish based on a
distance criterion.

b) Construct a submatrix 𝑃௜
containing the positions of
fish 𝑖 and its neighbours from
matrix 𝑃.

c) Append 𝑃௜ to 𝑃௦௛௔௥௘ௗ .
d) Construct a submatrix 𝐹௜

containing the fitness values
of fish 𝑖 and its neighbours
from matrix 𝐹.

e) Append 𝐹௜ to 𝐹௦௛௔௥௘ௗ .
Step 3: Update the position matrix 𝑃 by

replacing the original positions with
the shared positions, i.e., 𝑃 =
𝑃௦௛௔௥௘ௗ

Step 4: Update the fitness matrix 𝐹 by
replacing the original fitness values
with the shared fitness values, i.e.,
𝐹 = 𝐹௦௛௔௥௘ௗ

Step 5: Return the updated position matrix
𝑃 and fitness matrix 𝐹.

Perception of Surroundings

The perception of surroundings is an
essential step that allows each fish to evaluate the
positions of its neighbouring fish. This evaluation
helps the fish determine its spatial relationships and
enables them to make informed decisions based on
the proximity of other fish. Mathematically, TFSO
can represent this perception using a set-based
approach. Let's consider a fish in the swarm,
denoted as fish 𝑖. The fish 𝑖 can perceive its
surroundings by evaluating the positions of
neighbouring fish within a specific distance 𝑟.
TFSO denote the set of neighbouring fish as 𝑁௜,
which contains the indices of fish 𝑗 within the
distance of 𝑟 from fish 𝑖. Mathematically, TFSO
can represent the neighbouring fish set 𝑁௜ as Eq.(7):

𝑁௜ = ൛𝑗|𝑑𝑖𝑠𝑡൫𝑃௜ , 𝑃௝൯ <= 𝑟ൟ (7)

Here, 𝑃௜ represents the position vector of fish 𝑖, and
𝑃௝ represents the position vector of fish 𝑗. The
function dist(.,.) represents the distance function
between two positions. The condition
𝑑𝑖𝑠𝑡൫𝑃௜ , 𝑃௝൯ <= 𝑟 ensures that fish 𝑗 is within the
defined distance 𝑟 from fish 𝑖.

In this representation, the neighbouring
fish set 𝑁௜ captures the fish close to fish 𝑖. The
distance criterion 𝑟 defines the range the fish can
perceive its surroundings. By evaluating the

positions of the neighbouring fish, each fish can
gather information about the spatial distribution of
the swarm and make decisions based on this
perceived information.

Alignment of Movement

The alignment of movements is a crucial
step where each fish adjusts its movement direction
towards the centre of mass of its neighbouring fish.
This alignment helps the fish collectively move in a
coordinated manner. Mathematically, TFSO can
represent this alignment using the concept of the
centre of mass. Let's consider a fish in the swarm,
denoted as fish 𝑖. The goal is for fish 𝑖 to align its
movement direction with the collective behaviour
of its neighbouring fish. To achieve this, TFSO
calculates the centre of mass of the neighbouring
fish positions. Mathematically, the centre of mass,
denoted as 𝐶, is calculated using Eq.(8).

𝐶 = (1/|𝑁௜|) ∗ ෍ 𝑃௝
{௝∈ே೔}

 (8)

Here, |𝑁௜| represents the cardinality of the
neighbouring fish set 𝑁௜, which is the number of
fish in the set. ∑ 𝑃௝{௝∈ே೔} represents the sum of the
neighbouring fish's position vectors.

To calculate the centre of mass, TFSO
sums up the position vectors of all the neighbouring
fish and divides them by the cardinality of the set.
This normalization ensures that the centre of mass
represents the average position of the neighbouring
fish. Once the centre of mass 𝐶 is determined, fish 𝑖
aligns its movement direction towards this point.
By doing so, each fish in the swarm aligns its
movements with the overall collective behaviour,
promoting cohesion and coordination among the
fish.

Movement Update

The movement update step involves
updating the position of each fish based on a
predefined movement rule or equation. This update
allows the fish to adjust its position towards the
desired direction, typically towards the
neighbouring fish's centre of mass. Mathematically,
TFSO can represent this movement update using a
specific equation. Let's consider a fish in the
swarm, denoted as fish 𝑖. To update its position,
fish 𝑖 utilizes the following Eq.(9).

𝑃௜ᇲ = 𝑃௜ + 𝑠𝑡𝑒𝑝௦௜௭௘ ∗ (𝐶 − 𝑃௜) (9)

Here, 𝑃௜ represents the current position vector of
fish 𝑖. 𝑃௜ᇲ represents the updated position vector of
fish 𝑖 after the movement update. 𝐶 represents the

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6490

centre of mass, which is the desired direction
towards which the fish wants to move. The 𝑠𝑡𝑒𝑝௦௜௭௘
determines the magnitude or distance of the
movement towards the centre of mass.

The movement update equation calculates
the difference between the current position 𝑃௜ and
the centre of mass 𝐶. This difference is then
multiplied by the 𝑠𝑡𝑒𝑝௦௜௭௘ and added to the current
position, resulting in the updated position 𝑃௜ᇲ. By
applying this equation, each fish adjusts its position
to move towards the centre of mass while
considering the magnitude of movement
determined by the 𝑠𝑡𝑒𝑝௦௜௭௘. This movement update
aligns the fish with the collective behaviour and
enhances the overall coordination within the
swarm.

Iteration and exploration

This process involves iterating through the
steps of information sharing, perception of
surroundings, alignment of movements, and
movement update. This iteration loop allows the
swarm to explore and refine their collective
behaviour over several iterations or until a
termination criterion is met. Mathematically, TFSO
can represent the iteration and exploration process
as follows:

Algorithm 10: Iteration and Exploration

Input:
 Number of iterations: 𝑇

Output:
 Final swarm behaviour

Procedure:
Step 1: Initialize the swarm of artificial

fish with their initial positions
and fitness values.

Step 2: Iterate through the following
steps for 𝑡 = 1 to 𝑇:
a) Perform information sharing

among the fish in the swarm.
b) Calculate the perception of

surroundings for each fish,
evaluating the positions of
neighbouring fish within a
certain distance.

c) Align the movements of
each fish towards the centre
of mass of the neighbouring
fish positions.

d) Update the positions of each
fish based on a predefined
movement rule or equation.

Step 3: Check the termination criterion.

If the criterion is met, terminate
the iteration loop and proceed to
the next step. Otherwise,
continue with the next iteration.

Step 4: Return the final swarm
behaviour, which includes the
updated positions and fitness
values of the fish after the
completion of the iteration loop.

The iteration loop allows the swarm to
explore the problem space, exchange information,
and adapt their movements based on the collective
behaviour of neighbouring fish. This iterative
process enables the swarm to refine their solutions
over time and converge towards optimal or near-
optimal solutions.

3.2.5. Following behaviour

The following behaviour is a crucial aspect
where fish learn from the experiences and decisions
of other fish in the swarm. It allows them to
observe and adapt their actions based on the
success and behaviour of well-performing fish. This
adaptive behaviour plays a significant role in
improving the overall performance of the swarm.
Mathematically, the Following Behavior can be
described as utilizing the knowledge gained from
labelled instances to guide the classification process
for new, unseen instances. This involves leveraging
the information in the labelled examples to make
informed decisions for unlabeled instances. The
following steps are involved in the Following
Behavior:

 Data Collection: Gather a set of labelled
instances, denoted as 𝐷, where each labelled
instance is represented as (𝑥ଵ, 𝑦ଵ). Here, 𝑥ଵ
represents the input features of the labelled
instance, and 𝑦ଵ represents its corresponding
class label.

 Learning Phase: Utilize the labelled instances
to learn and build a model or acquire
knowledge about the underlying patterns and
relationships between the input features and
their corresponding class labels. This learning
phase can involve various techniques, such as
training a classifier using supervised learning
algorithms.

 Classification of Unlabeled Instances: Once
the learning phase is complete, apply the
acquired knowledge to classify new, unlabeled
instances.Given an unlabeled instance 𝑥௨, the
goal is to assign a class label based on the

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6491

learned information from the labelled
instances.

 Decision-making: Utilize the learned model or
knowledge to predict the unlabeled instances.
This involves applying decision rules or
mathematical functions to determine each
unlabeled instance's most likely class label.

3.2.6. Digital noticeboard

A digital noticeboard is utilized in the
optimization process to track and share the health
status of the top synthetic fish. After each iteration,
every fish checks the noticeboard to evaluate its
performance relative to others in the swarm. The
goal is always to maintain the best possible result
on the noticeboard. This is achieved by comparing
each fish's state's value with the objective function's
stored value on the noticeboard. If the current
state's value is higher, the corresponding entry on
the noticeboard is updated to reflect the new state.
The algorithm continues running iterations until all
possible iterations have been completed. At this
point, the state displayed on the noticeboard
represents the best possible solution achieved by
the swarm.

Algorithm 11: Digital Noticeboard

Step 1: Initialize the noticeboard with an
initial state and the corresponding
value of the objective function.

Step 2: Initialize the swarm of synthetic fish
with their initial states.

Step 3: Run iterations of the optimization
process until a termination condition
is met.

Step 4: For each fish in the swarm:
a) Evaluate the fish's current state

by computing the value of the
objective function.

b) Compare the value of the
current state with the value
stored on the noticeboard.

c) If the current state's value is
higher:

d) Update the noticeboard with the
new state and its corresponding
value.

e) Otherwise, no changes are
made to the noticeboard.

Step 5: Check the termination condition:
a) If the termination condition is

satisfied (e.g., reaching a
maximum number of
iterations), proceed to the next

step.
b) Otherwise, go back to step 4

and continue with the next
iteration.

Step 6: Termination
a) At this point, the state displayed

on the noticeboard represents
the best possible solution
achieved by the swarm.

3.2.7. Varying step size

Various factors influence the optimization
outcome of the algorithm, and in this research,
TFSO focuses on examining the impact of the Step
parameter on the convergence speed and accuracy.
By adjusting the value of the Step parameter, TFSO
can control how quickly the algorithm converges
and the precision of the obtained solution.
Increasing the Step parameter allows the artificial
fish to take more significant steps and cover more
ground in each iteration. This accelerates the
convergence rate as the fish explores a more
extensive search space. However, it is crucial to
find the right balance, as excessively large or small
step sizes can impede convergence. When the step
size is too large, especially in the later stages of the
algorithm, the artificial fish may traverse a wide
range of the search space. This can result in the fish
oscillating around the extreme points and struggling
to reach an accurate solution.

On the other hand, using tiny step sizes
can lead to low-frequency oscillations and promote
high-accuracy solutions. However, convergence
may be slowed down due to the limited field of
view of the artificial fish, making it prone to getting
trapped in local extrema. This research applies an
adaptive step-size approach to address the
challenges mentioned above. This adaptive step
size technique helps mitigate the onset of
vibrations, enhances convergence speed, and
improves the accuracy of the optimization process.
Specifically, the algorithm's preying behaviour,
swarming behaviour, and the following behaviour
incorporate different adaptive step size strategies
tailored to their respective tasks.

Algorithm 12: Varying Step Size

Step 1: Initialize the algorithm parameters,
including the Step parameter.

Step 2: Generate an initial population of
artificial fish.

Step 3: Evaluate the fitness of each fish in
the population.

Step 4: While the termination criterion is

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6492

not met, do the following:
a) Apply the preying behaviour to

update the fish positions and
adjust the step size adaptively.

b) Apply the swarming behaviour
to update the fish positions and
adjust the step size adaptively.

c) Apply the following behaviour
to update the fish positions and
adjust the step size adaptively.

d) Evaluate the fitness of each fish
in the updated population.

e) Update the best solution found
so far.

Step 5: Terminate the algorithm and output
the best solution obtained.

The overall process of TFSO is provided
in Algorithm 13.

Algorithm 13: TFSO
Step 1: Initialize Parameters:

 Set the number of artificial fish
(𝑁).

 Set the maximum number of
iterations.

 Set the search space boundaries
(𝑥௠௜௡ 𝑎𝑛𝑑 𝑥௠௔௫).

 Set the step size for random
movement.

 Set the visual field (visual) to
determine the neighborhood.

 Set the crowded level (crowded),
determining the fish density.

 Initialize the state vector for each
fish with random positions within
the search space.

 Evaluate the fitness value for each
fish's initial position.

Step 2: Start Iterations:
 Set the current iteration counter to

1.
 While the termination criterion is

not met or the maximum number of
iterations is not reached, do the
following steps:

Step 3: Preying Behavior:
 Evaluate the fitness value for each

fish's current position.
 Identify the positions of the fish

with the highest fitness values as
prey locations.

 For each fish, select one of the prey
locations randomly.

 Calculate the new position for each
fish using a predefined strategy:

 Update the position based on the
difference between the fish's current
and the selected prey's positions.

 Introduce a random perturbation to
diversify the search.

 Ensure the new position is within
the search space boundaries.

 Evaluate the fitness value for each
fish's new position.

Step 4: Swarming Behavior
 Share information among the fish in

the swarm:
 Update the shared position matrix

(P) with the new positions of all
fish.

 For each fish, calculate the average
position of its neighbours within the
visual field.

 Update the fish's position towards
the average position:

 Adjust the fish's position based on
its current and average positions.

 Ensure the new position is within
the search space boundaries.

 Evaluate the fitness value for each
fish's updated position.

Step 5: Random Behavior
 For each fish, perform the random

movement:
 Select a random position within the

search space.
 Update the fish's position based on

random movement.
 Ensure the new position is within

the search space boundaries.
 Evaluate the fitness value for each

fish's randomly moved position.
Step 6: Check Termination Criterion

 If the termination criterion is met
(e.g., the desired fitness value is
achieved), stop the iterations and
return the best solution found.

 Otherwise, increment the iteration
counter and go to Step 2.

3.3. Fusion of TFSO and HMM

The fusion of TFSO and HMMs offers a
promising approach to enhance image classification
tasks. TFSO, as a nature-inspired optimization
algorithm, exhibits excellent exploration and
exploitation capabilities. By leveraging the
collective intelligence of a fish swarm, TFSO can
effectively navigate complex search spaces and find

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6493

optimal solutions. On the other hand, HMMs are
well-suited for modelling sequential data and
capturing temporal dependencies, making them
suitable for analyzing image sequences. However,
HMMs rely on accurate parameter estimation,
feature selection, and model structure optimization
to achieve optimal performance. By merging TFSO
with HMMs, the fusion approach allows for
optimizing HMM parameters, feature selection, and
model structure using TFSO's optimization
capabilities. TFSO can explore the parameter and
feature spaces to find optimal parameter values,
select informative features, and determine the
optimal model structure. This fusion enables
HMMs to capture the underlying patterns in image
data more accurately, improving classification
accuracy. The integration of TFSO and HMMs
offers a synergistic combination of optimization
and modelling techniques, enhancing the
capabilities of both approaches and providing a
robust framework for image classification tasks.

Algorithm 14: TFSO-HMM
Step 1: Initialize HMM parameters

(transition probabilities, emission
probabilities)

Step 2: Initialize TFSO parameters (swarm
size, maximum iterations, etc.).

Step 3: Generate an initial swarm of fish,
each representing a potential solution
(parameter set) for the HMM.

Step 4: Evaluate the fitness of each fish in
the swarm based on their
corresponding HMM parameters
(classification accuracy on a
training/validation dataset).

Step 5: Set each fish's unique best positions
and fitness values to their initial
positions and fitness values.

Step 6: Determine the fish's best fitness as
the global best position and fitness.

Step 7: Repeat the following steps until
convergence or a maximum number
of iterations is reached:

a) Update the velocity and position of
each fish based on personal and
global best positions and social
interactions within the swarm.

b) Evaluate the fitness of each fish
based on the updated HMM
parameters.

c) Update personal best positions and
fitness values if improved.

d) Update the global best position and
fitness if a fish with better fitness is
found.

Step 8: Extract the optimized parameter set
corresponding to the fish with the
best fitness.

Step 9: Update the HMM parameters with
the optimized parameter set.

Step 10: Classify new or unseen images using
the optimized HMM parameters.

Step 11: Evaluate the classification accuracy
of the optimized HMM.

4. ABOUT THE DATASET

The “Cotton Plant Disease Dataset” is a
comprehensive and focused collection of images
centred around diseases commonly affecting cotton
plants. This dataset consists of a substantial number
of images, totalling 26,100, providing a wealth of
visual information for researchers and practitioners
in plant pathology and agriculture. With a dataset
size of approximately 4GB, the “Cotton Plant
Disease Dataset” offers an extensive representation
of four significant diseases impacting cotton plants:
Aphids, Armyworms, Bacterial Blight, and
Powdery Mildew. These diseases primarily
manifest on the leaves of cotton plants, making the
dataset highly relevant for studying leaf-based
cotton plant diseases.

Additionally, the dataset includes a
valuable subset of images featuring healthy cotton
leaves. This inclusion allows for comparative
analysis and serves as a reference point for
accurately distinguishing diseased plants from
healthy ones. It is important to note that the dataset
does not cover diseases affecting other parts of
cotton plants, such as the stem, buds, flowers, or
bolls. The primary focus of this dataset is to
provide a rich collection of images explicitly
targeting diseases occurring on the leaves of cotton
plants. Researchers and practitioners can leverage
the “Cotton Plant Disease Dataset” to develop and
validate advanced algorithms, machine learning
models, and image recognition techniques. This
dataset can enhance disease identification and
classification accuracy and efficiency in cotton
plants. This, in turn, enables more effective disease
management strategies, leading to improved crop
health and increased yield.

The availability of a substantial number of
images in this dataset allows for comprehensive
analysis and exploration of different disease
manifestations, stages, and variations. Researchers
can delve into each disease’s visual patterns and
characteristics, contributing to developing robust
diagnostic tools and decision support systems for
cotton plant disease management. The “Cotton

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6494

Plant Disease Dataset” available at
https://www.kaggle.com/datasets/dhamur/cotton-
plant-disease

5. PERFORMANCE METRICS

 Classification Accuracy (CA) represents the
effectiveness of a classification model in
accurately distinguishing between healthy and
diseased cotton plant leaves. It measures the
correctness of the model’s predictions,
expressed as the ratio of correctly classified
leaves to the total number of leaves in the
dataset.

 F-Measure (FM), in the context of cotton leaf
disease identification, assesses the overall
performance of a classification model by
combining precision and recall. It provides a
single score representing the harmonic mean of
precision and recall, thus capturing the model’s
ability to accurately identify diseased cotton
leaves and minimize false positives and
negatives.

 Fowlkes-Mallows Index (FMI) in cotton leaf
disease identification quantifies the level of
agreement or similarity between two
techniques or algorithms in correctly
identifying and classifying different diseases in
cotton plant leaves. It measures the agreement
between the pairwise relationships of the
disease identification results obtained from the
two methods, providing a single value that
indicates the degree of similarity or agreement
between them.

 Matthews Correlation Coefficient (MCC) is
a measurement that quantifies the quality of a
classification model in correctly identifying
and classifying different types of diseases
affecting cotton plant leaves. It considers true
positives, false positives, and false negatives,
providing a single value representing the
model’s overall performance.

6. RESULTS AND DISCUSSION

6.1. Assessment of Classifiers using CA and FM
Performance Metrics

Figure 1 presents the CA and FM analysis
of three classification algorithms: RF, SVM, and
TFSO-HMM. The graph showcases the
performance of these algorithms in terms of their
ability to classify instances accurately and provide a
balanced evaluation of precision and recall.

Classification Accuracy (CA) calculates
the proportion of correct predictions out of the total
predictions made, providing an understanding of
how accurate the model is in its classifications. RM
is an ensemble learning algorithm that combines
multiple decision trees to make predictions. Each
decision tree is constructed on a random subset of
features and generates its prediction. The final
prediction is determined by aggregating the
predictions of all the trees through a voting
mechanism. In the analysis, RF achieves a CA of
50.487%. This relatively low accuracy can be
attributed to the limitations of individual decision
trees and the possible presence of irrelevant or
redundant features in the dataset. RF may struggle
to capture the underlying patterns and relationships
in the data, resulting in lower classification
accuracy. SVM is a robust supervised learning
algorithm that aims to find an optimal hyperplane
in the feature space. The hyperplane separates
different classes while maximizing the margin
between them. SVM achieves a CA of 64.333% in
the analysis. SVM's ability to identify the optimal
decision boundary allows it to achieve better
classification accuracy than RF. By maximizing the
margin, SVM can effectively handle complex
decision boundaries and capture intricate patterns in
the data, leading to improved classification
accuracy. TFSO-HMM is a proposed algorithm
combining Hidden Markov Models (HMM)
principles and Tenacious Fish Swarm Optimization
(TFSO). HMM is a statistical model that can
capture the underlying dynamics of sequential data.
TFSO is an optimization algorithm inspired by the
collective behavior of fish swarms, which
emphasizes persistence and adaptability. In the
analysis, TFSO-HMM achieves the highest CA of
95.379%. The integration of TFSO with HMM
enables TFSO-HMM to effectively optimize the
HMM parameters and capture the complex
temporal patterns in the data, resulting in
significantly higher classification accuracy.

Figure 1. CA and FM

0
10
20
30
40
50
60
70
80
90

100

CA FM

R
es

ul
ts

 (
%

)

Performance Metrics

RF SVM TFSO-HMM

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6495

F-Measure (FM) provides a single score
that balances the model's ability to make accurate
positive predictions and effectively identify true
positive instances. RF achieves an FM of 52.013%
in the analysis. This relatively low FM score
indicates that RF may have lower precision and
recall than the other algorithms. RF's ensemble of
decision trees might struggle with accurately
identifying both positive and negative instances,
resulting in a suboptimal F-measure. SVM achieves
an FM of 63.757% in the analysis. The higher FM
score indicates that SVM exhibits better precision
and recall than RF. SVM's ability to find an optimal
hyperplane allows it to effectively separate different
classes and reduce false positives and negatives,
resulting in a higher F-measure. TFSO-HMM
achieves the highest FM of 95.487% in the
analysis. Integrating TFSO with HMM in TFSO-
HMM enhances precision and recall by optimizing
the HMM parameters and capturing complex
temporal patterns. This results in significantly
better class discrimination, leading to a higher F-
measure than RF and SVM.

Table 1.CA and FM Results

Classification Algorithms CA FM
RF 50.487 52.013

SVM 64.333 63.757
TFSO-HMM 95.379 95.487

The working mechanisms of the
classification algorithms contribute to the observed
CA and FM results in Figure 1. RF's ensemble
learning approach may result in lower classification
accuracy and F-measure due to limitations in
individual decision trees. SVM's optimal
hyperplane search enhances its accuracy and F-
measure compared to RF. TFSO-HMM leverages
the optimization process of TFSO and the modeling
capabilities of HMM to achieve significantly higher
classification accuracy and F-measure.

6.2. Assessment of Classifiers using FMI and
MCC Performance Metrics

Figure 2 presents the analysis of two
evaluation metrics, namely the Fowlkes-Mallows
Index (FMI) and Matthews Correlation Coefficient
(MCC), for three classification algorithms: Random
Forest (RF), Support Vector Machine (SVM), and
TFSO-HMM (Tenacious Fish Swarm
Optimization-Based Hidden Markov Model). These
metrics provide insights into the algorithms'
performance regarding clustering quality and
overall correlation between predicted and actual
classifications.

Figure 2. FMI and MCC

The FMI measures the similarity between
the obtained and ground truth clusters. It quantifies
the degree of agreement between predicted and true
labels. Higher FMI scores indicate better clustering
performance. In Figure 2, RF achieves an FMI of
52.016, SVM achieves 63.763, and TFSO-HMM
achieves the highest FMI of 95.488. These results
suggest that TFSO-HMM performs superior
clustering by effectively capturing the underlying
patterns and clustering the instances more
accurately.

The MCC is a correlation coefficient that
considers true positives, true negatives, false
positives, and false negatives. It comprehensively
measures the overall classification performance,
considering both binary classification results and
class imbalance. Higher MCC values indicate better
classification performance. In Figure 2, RF
achieves an MCC of 0.887, SVM achieves 28.669,
and TFSO-HMM achieves the highest MCC of
90.757. These results indicate that TFSO-HMM
outperforms both RF and SVM regarding
classification accuracy and handling class
imbalance.

The superior performance of TFSO-HMM
in terms of FMI and MCC can be attributed to its
unique working mechanism. TFSO-HMM
combines the optimization capabilities of Tenacious
Fish Swarm Optimization (TFSO) with the
modeling capabilities of Hidden Markov Models
(HMM). TFSO allows for efficient exploration of
the search space, optimizing the parameters of the
HMM model. This optimization process enables
TFSO-HMM to accurately capture the underlying
patterns in the data, leading to improved clustering
quality and overall classification performance.

Figure 2 demonstrates the FMI and MCC
analysis of three classification algorithms: Random
Forest, Support Vector Machine, and TFSO-HMM.
The results highlight the superior clustering quality

0

20

40

60

80

100

FMI MCC

R
es

ul
ts

 (
%

)

Performance Metrics

RF SVM TFSO-HMM

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6496

and classification performance achieved by TFSO-
HMM. The unique working mechanism of TFSO-
HMM, combining TFSO optimization with HMM
modeling, enables it to effectively capture
underlying patterns and optimize the clustering
process, leading to higher FMI and MCC scores.
These findings showcase the potential of TFSO-
HMM as a promising approach for clustering and
classification tasks, providing valuable insights for
researchers and practitioners in machine learning.

Table 2.FMI and MCC Results

Classification Algorithms FMI MCC
RF 52.016 0.887

SVM 63.763 28.669
TFSO-HMM 95.488 90.757

7. CONCLUSION

The Tenacious Fish Swarm Optimization-
based Hidden Markov Model (TFSO-HMM)
approach presented in this research offers a robust
and innovative solution for augmented and accurate
cotton leaf disease identification and yield
prediction. The proposed method was evaluated on
the widely recognized and comprehensive "Cotton
Plant Disease Dataset," which served as a
benchmark for assessing the performance of the
TFSO-HMM framework and existing classification
algorithms. Through rigorous experimentation on
the "Cotton Plant Disease Dataset," the superior
performance of the TFSO-HMM method was
demonstrated, surpassing existing approaches in
terms of augmented accuracy and reliable
predictions. By leveraging the unique
characteristics of TFSO and HMM, the proposed
framework exhibited enhanced capabilities in
optimizing the classification process and capturing
temporal dependencies in disease progression and
yield prediction. Utilizing the "Cotton Plant Disease
Dataset" for evaluation enhances the credibility of
the research findings and highlights the practical
applicability of the TFSO-HMM approach in real-
world scenarios. By leveraging this dataset, which
contains diverse instances of cotton leaf diseases,
the proposed method was subjected to thorough
analysis and comparison with existing algorithms,
providing valuable insights into its effectiveness
and potential impact on disease management and
yield optimization. The outcomes of this research
contribute significantly to the advancement of
agricultural practices, empowering farmers,
agronomists, and decision-makers with a reliable
tool for early disease detection and accurate yield
prediction in cotton plants. The proposed TFSO-
HMM framework can potentially mitigate losses

and promote sustainable agriculture by maximizing
crop yield through timely interventions and
informed decision-making.

REFERENCES
[1] Fallahi, A., Mahnam, M., Niaki, S.T.A.: A

discrete differential evolution with local search
particle swarm optimization to direct angle and
aperture optimization in IMRT treatment
planning problem. Appl. Soft Comput. 131,
109798 (2022).
https://doi.org/10.1016/j.asoc.2022.109798.

[2] Venkatesh, J., Ramasamy, K.K., Aruna, M.,
Praveen Kumar Rao, K., Sasikala, N., Nasani,
K.: EAgri: Smart Agriculture Monitoring
Scheme using Machine Learning Strategies. In:
Proceedings of the 2022 International
Conference on Innovative Computing,
Intelligent Communication and Smart
Electrical Systems, ICSES 2022 (2022).
https://doi.org/10.1109/ICSES55317.2022.991
4216.

[3] Vijayalakshmi, B., Ramkumar, C., Niveda, S.,
Pandian, S.C.: Smart Pest Control System in
Agriculture. In: IEEE International Conference
on Intelligent Techniques in Control,
Optimization and Signal Processing, INCOS
2019 (2019).
https://doi.org/10.1109/INCOS45849.2019.895
1351.

[4] Jumat, M.H., Nazmudeen, M.S., Wan, A.T.:
Smart farm prototype for plant disease
detection, diagnosis & treatment using IoT
device in a greenhouse. In: IET Conference
Publications (2018).
https://doi.org/10.1049/cp.2018.1545.

[5] Ivliev, E., Demchenko, V., Obukhov, P.:
Automatic Monitoring of Smart Greenhouse
Parameters and Detection of Plant Diseases by
Neural Networks,
https://www.scopus.com/inward/record.uri?eid
=2-s2.0-85117457142&doi=10.1007%2F978-
981-16-3844-
2_4&partnerID=40&md5=d352869110dacb5b
20dbb305ccd5d8ff, (2022).
https://doi.org/10.1007/978-981-16-3844-2_4.

[6] Marcu, I., Suciu, G., Bǎlǎceanu, C.,
Drǎgulinescu, A.M., Dobrea, M.A.: IoT
Solution for Plant Monitoring in Smart
Agriculture. In: SIITME 2019 - 2019 IEEE
25th International Symposium for Design and
Technology in Electronic Packaging,
Proceedings. pp. 194–197 (2019).
https://doi.org/10.1109/SIITME47687.2019.89
90798.

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6497

[7] Spyroglou, I., Rybka, K., Czembor, P.,
Piaskowska, D., Pernisová, M., Matysik, P.:
Higher alterations in leaf fluorescence
parameters of wheat cultivars predict more
extensive necrosis in response to Zymoseptoria
tritici. Plant Pathol. 71, 1454–1466 (2022).
https://doi.org/10.1111/ppa.13569.

[8] Balram, G., Kumar, K.K.: Crop Field
Monitoring and Disease Detection of Plants in
Smart Agriculture using Internet of Things. Int.
J. Adv. Comput. Sci. Appl. 13, 819–826
(2022).
https://doi.org/10.14569/IJACSA.2022.013079
5.

[9] Saberi Anari, M.: A Hybrid Model for Leaf
Diseases Classification Based on the Modified
Deep Transfer Learning and Ensemble
Approach for Agricultural AIoT-Based
Monitoring. Comput. Intell. Neurosci. 2022,
(2022). https://doi.org/10.1155/2022/6504616.

[10] Gupta, D., Sharma, P., Choudhary, K., Gupta,
K., Chawla, R., Khanna, A., Albuquerque,
V.H.C. d.: Artificial plant optimization
algorithm to detect infected leaves using
machine learning. Expert Syst. 38, e12501
(2021). https://doi.org/10.1111/exsy.12501.

[11] Ramkumar, J., Vadivel, R.: Improved frog leap
inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN).
World J. Eng. 15, 306–311 (2018).
https://doi.org/10.1108/WJE-08-2017-0260.

[12] Ramkumar, J., Vadivel, R.: Performance
Modeling of Bio-Inspired Routing Protocols in
Cognitive Radio Ad Hoc Network to Reduce
End-to-End Delay. Int. J. Intell. Eng. Syst. 12,
221–231 (2019).
https://doi.org/10.22266/ijies2019.0228.22.

[13] Jaganathan, R., Ramasamy, V.: Performance
modeling of bio-inspired routing protocols in
Cognitive Radio Ad Hoc Network to reduce
end-to-end delay. Int. J. Intell. Eng. Syst. 12,
221–231 (2019).
https://doi.org/10.22266/IJIES2019.0228.22.

[14] Jaganathan, R., Vadivel, R.: Intelligent Fish
Swarm Inspired Protocol (IFSIP) for Dynamic
Ideal Routing in Cognitive Radio Ad-Hoc
Networks. Int. J. Comput. Digit. Syst. 10,
1063–1074 (2021).
https://doi.org/10.12785/ijcds/100196.

[15] Vadivel, R., Ramkumar, J.: QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare applications.
Inc. Internet Things Healthc. Appl. Wearable
Devices. 109–121 (2019).
https://doi.org/10.4018/978-1-7998-1090-

2.ch006.
[16] Ramkumar, J., Vadivel, R.: CSIP—cuckoo

search inspired protocol for routing in
cognitive radio ad hoc networks. In: Advances
in Intelligent Systems and Computing. pp.
145–153. Springer Verlag (2017).
https://doi.org/10.1007/978-981-10-3874-7_14.

[17] Lingaraj, M., Sugumar, T.N., Felix, C.S.,
Ramkumar, J.: Query aware routing protocol
for mobility enabled wireless sensor network.
Int. J. Comput. Networks Appl. 8, 258–267
(2021).
https://doi.org/10.22247/ijcna/2021/209192.

[18] Ramkumar, J., Vadivel, R.: Whale
optimization routing protocol for minimizing
energy consumption in cognitive radio wireless
sensor network. Int. J. Comput. Networks
Appl. 8, 455–464 (2021).
https://doi.org/10.22247/ijcna/2021/209711.

[19] Ramkumar, J., Samson Dinakaran, S.,
Lingaraj, M., Boopalan, S., Narasimhan, B.:
IoT-Based Kalman Filtering and Particle
Swarm Optimization for Detecting Skin
Lesion. Presented at the (2023).
https://doi.org/10.1007/978-981-19-8353-5_2.

[20] J, R.: Meticulous Elephant Herding
Optimization based Protocol for Detecting
Intrusions in Cognitive Radio Ad Hoc
Networks. Int. J. Emerg. Trends Eng. Res. 8,
4548–4554 (2020).
https://doi.org/10.30534/ijeter/2020/82882020.

[21] Ramkumar, J., Vadivel, R.: Multi-Adaptive
Routing Protocol for Internet of Things based
Ad-hoc Networks. Wirel. Pers. Commun. 120,
887–909 (2021).
https://doi.org/10.1007/s11277-021-08495-z.

[22] Ramkumar, J.: Bee inspired secured protocol
for routing in cognitive radio ad hoc networks.
Indian J. Sci. Technol. 13, 2159–2169 (2020).
https://doi.org/10.17485/ijst/v13i30.1152.

[23] Ramkumar, J., Kumuthini, C., Narasimhan, B.,
Boopalan, S.: Energy Consumption
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol. 2022 Int.
Conf. Adv. Comput. Technol. Appl. ICACTA
2022. 1–6 (2022).
https://doi.org/10.1109/ICACTA54488.2022.9
752899.

[24] Menakadevi, P., Ramkumar, J.: Robust
Optimization Based Extreme Learning
Machine for Sentiment Analysis in Big Data.
2022 Int. Conf. Adv. Comput. Technol. Appl.
ICACTA 2022. 1–5 (2022).
https://doi.org/10.1109/ICACTA54488.2022.9

Journal of Theoretical and Applied Information Technology

31st October 2023. Vol.101. No 20
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6498

753203.
[25] Ramkumar, J., Jeen Marseline, K.S.,

Medhunhashini, D.R.: Relentless Firefly
Optimization-Based Routing Protocol
(RFORP) for Securing Fintech Data in IoT-
Based Ad-Hoc Networks. Int. J. Comput.
Networks Appl. 10, 668 (2023).
https://doi.org/10.22247/IJCNA/2023/223319.

[26] Jayaraj, D., Ramkumar, J., Lingaraj, M.,
Sureshkumar, B.: AFSORP: Adaptive Fish
Swarm Optimization-Based Routing Protocol
for Mobility Enabled Wireless Sensor
Network. Int. J. Comput. Networks Appl. 10,
119–129 (2023).
https://doi.org/10.22247/ijcna/2023/218516.

[27] Mani, L., Arumugam, S., Jaganathan, R.:
Performance Enhancement of Wireless Sensor
Network Using Feisty Particle Swarm
Optimization Protocol. ACM Int. Conf.
Proceeding Ser. 1–5 (2022).
https://doi.org/10.1145/3590837.3590907.

[28] Sarma, K.K., Das, K.K., Mishra, V., Bhuiya,
S., Kaplun, D.: Learning Aided System for
Agriculture Monitoring Designed Using Image
Processing and IoT-CNN. IEEE Access. 10,
41525–41536 (2022).
https://doi.org/10.1109/ACCESS.2022.316706
1.

[29] Kovvuri, R.R., Kaushik, A., Yadav, S.:
Disruptive technologies for smart farming in
developing countries: Tomato leaf disease
recognition systems based on machine
learning. Electron. J. Inf. Syst. Dev. Ctries. n/a,
e12276 (2023).
https://doi.org/10.1002/isd2.12276.

[30] Al-gaashani, M.S.A.M., Shang, F., Muthanna,
M.S.A., Khayyat, M., Abd El-Latif, A.A.:
Tomato leaf disease classification by exploiting
transfer learning and feature concatenation.
IET Image Process. 16, 913–925 (2022).
https://doi.org/10.1049/ipr2.12397.

[31] Cengil, E., Çınar, A.: Hybrid convolutional
neural network based classification of
bacterial, viral, and fungal diseases on tomato
leaf images. Concurr. Comput. Pract. Exp. 34,
e6617 (2022).
https://doi.org/10.1002/cpe.6617.

[32] Kumar K, K., Kannan, E.: Detection of rice
plant disease using AdaBoostSVM classifier.
Agron. J. 114, 2213–2229 (2022).
https://doi.org/10.1002/agj2.21070.

[33] Abayomi-Alli, O.O., Damaševičius, R., Misra,
S., Maskeliūnas, R.: Cassava disease
recognition from low-quality images using
enhanced data augmentation model and deep

learning. Expert Syst. 38, e12746 (2021).
https://doi.org/10.1111/exsy.12746.

[34] Ravi, V., Acharya, V., Pham, T.D.: Attention
deep learning-based large-scale learning
classifier for Cassava leaf disease
classification. Expert Syst. 39, e12862 (2022).
https://doi.org/10.1111/exsy.12862.

[35] Ganesan, G., Chinnappan, J.: Hybridization of
ResNet with YOLO classifier for automated
paddy leaf disease recognition: An optimized
model. J. F. Robot. 39, 1087–1111 (2022).
https://doi.org/10.1002/rob.22089.

[36] Javidan, S.M., Banakar, A., Vakilian, K.A.,
Ampatzidis, Y.: Tomato leaf diseases
classification using image processing and
weighted ensemble learning. Agron. J. n/a,
(2023). https://doi.org/10.1002/agj2.21293.

[37] Tang, Y., Zhao, J., Huang, H., Zhuang, J., Tan,
Z., Hou, C., Chen, W., Ren, J.: Multiscale
voting mechanism for rice leaf disease
recognition under natural field conditions. Int.
J. Intell. Syst. 37, 12169–12191 (2022).
https://doi.org/10.1002/int.23081.

[38] Ahmed, I., Yadav, P.K.: Plant disease detection
using machine learning approaches. Expert
Syst. 40, e13136 (2022).
https://doi.org/10.1111/exsy.13136.

[39] Sahu, K., Minz, S.: Self-adaptive-deer hunting
optimization-based optimal weighted features
and hybrid classifier for automated disease
detection in plant leaves. Expert Syst. 39,
e12982 (2022).
https://doi.org/10.1111/exsy.12982.

[40] Pavlov, Y.L.: Random forests. Random For.
45, 1–122 (2019).
https://doi.org/10.4324/9781003109396-5.

[41] Cortes, C., Vapnik, V.: Support-vector
networks. Mach. Learn. 20, 273–297 (1995).
https://doi.org/10.1007/bf00994018.

