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ABSTRACT 

This research presents an innovative approach called Tenacious Fish Swarm Optimization based Hidden 
Markov Model (TFSO-HMM) for augmented accurate cotton leaf disease identification and yield 
prediction. Cotton leaf diseases significantly threaten crop productivity, requiring timely detection and 
precise prediction for effective disease management. The proposed TFSO-HMM framework combines the 
strengths of Tenacious Fish Swarm Optimization (TFSO) and the Hidden Markov Model (HMM) to 
address the challenges associated with disease identification and yield prediction in cotton plants. TFSO, a 
nature-inspired optimization algorithm, optimizes the classification process, enhancing the accuracy of 
disease identification. By harnessing the collective intelligence of fish swarms, TFSO intelligently explores 
the search space to identify the optimal solution. The selected information is then incorporated into the 
HMM framework, which captures the temporal dependencies in disease progression and yield prediction. 
HMM's sequential modelling approach facilitates understanding the dynamic behaviour of cotton leaf 
diseases over time, leading to more accurate predictions. Experimental results on a comprehensive dataset 
demonstrate the superior performance of the TFSO-HMM method over existing approaches in terms of 
accuracy and predictive capability. The augmented accuracy achieved through TFSO-HMM enables early 
detection and precise prediction of cotton leaf diseases, enabling timely interventions for disease 
management and maximizing crop yield. 
Keywords: Tenacious Fish Swarm Optimization, Hidden Markov Model, Cotton Leaf Disease, Yield    
 Prediction, Disease Identification, Augmented Accuracy. 

1. INTRODUCTION 

Identifying and classifying leaf diseases is 
paramount for early detection and effective plant 
health management. The process commences with 
data collection, amassing a comprehensive dataset 
encompassing healthy and diseased leaf images. 
The collected data then undergoes preprocessing, 
wherein various techniques are applied to improve 
image quality and prepare the images for 
subsequent analysis. Feature extraction follows, 
where distinctive characteristics are extracted from 
the preprocessed leaf images. A model is selected 
to perform the classification task, and its 
hyperparameters are fine-tuned for optimal 
performance. The model is trained using the 
available data, and its effectiveness is evaluated and 
validated. In addition, error analysis and diagnosis 
aid in understanding misclassifications and 
improving overall accuracy. The identified diseases 

are ultimately presented as the output result, 
enabling effective decision-making in plant disease 
management. The general steps involved in lead 
disease identification are given in Figure 1. 

 

Figure 1. Image Processing in Leaf Disease 
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Leaf diseases are conditions that affect the 
health and growth of plants by causing damage to 
their leaves. These diseases can be caused by 
bacteria, fungi, viruses, and environmental stressors 
such as extreme temperatures or insufficient water. 
One of the most common types of leaf diseases is 
fungal infections. These infections can cause leaf 
spots, blight, and rust [1]. Symptoms may include 
discoloration of the leaves, yellowing, wilting, and 
leaf drop. The fungus can spread quickly 
throughout the plant and, if left untreated, cause 
significant damage or even death. Bacterial 
infections can also cause leaf diseases, such as 
bacterial leaf spot. This condition is characterized 
by brown or black spots on the leaves, which can 
eventually spread and cause the leaves to die. 
Viruses can also cause leaf diseases, which can be 
more challenging to diagnose and treat. Symptoms 
may include yellowing or mottling of the leaves, 
stunted growth, and distorted leaf shapes [2]. Leaf 
diseases can have a significant impact on plant 
health and productivity. Diseased leaves are less 
able to photosynthesize, which can reduce the 
amount of energy available for growth and fruit 
production. In severe cases, leaf diseases can cause 
defoliation, leading to plant death. Preventing leaf 
diseases involves a combination of good cultural 
practices, such as proper watering and fertilization 
and using fungicides, bactericides, or other 
treatments as necessary. Early detection and prompt 
treatment are also crucial to minimizing damage 
and preventing the spread of disease [3]. 

Cotton leaf diseases can significantly 
impact the overall yield of cotton crops. In addition 
to the reduced photosynthesis and growth of 
diseased leaves, conditions can lead to premature 
plant defoliation, where leaves drop off before they 
should [4]. This reduces the plant’s ability to 
produce bolls, where the cotton fibres are 
harvested. In severe cases, cotton diseases can 
cause complete crop failure, resulting in significant 
economic losses for farmers and impacting the 
global cotton supply. For instance, Fusarium wilt 
can cause up to 100% yield loss in susceptible 
cotton varieties. Cotton farmers use preventative 
and curative measures to control crop diseases [5]. 
Preventive measures include planting disease-
resistant varieties, crop rotation, and maintaining 
healthy soil with proper irrigation, fertilization, and 
tillage. Curative measures involve using fungicides, 
bactericides, or other chemicals to treat diseased 
plants and prevent the spread of disease. However, 
chemical treatments can have negative 
environmental impacts and may lead to the 
development of resistant strains of pathogens over 

time. Therefore, many farmers are adopting 
alternative disease control methods, such as 
biocontrol agents, genetic engineering, and 
precision farming techniques [6]. 

A subfield of AI, machine learning is 
teaching computers to infer meaning from data 
without being told what to look for. In essence, it is 
a way for machines to learn from examples and 
experience and use this knowledge to make 
decisions or predictions about new data. In the 
context of cotton leaf disease identification, 
machine learning can be used to analyze data from 
images of diseased cotton leaves to identify the 
type of disease and predict its severity accurately 
[7]. An extensive collection of tagged photos is 
used to train a machine-learning model, where each 
image is tagged with the corresponding disease type 
and severity level. The trained model may then be 
used to classify new cotton leaf photos, accurately 
identifying the type of disease and predicting its 
severity. This can be especially useful for early 
detection and rapid response to disease outbreaks 
and for developing effective treatment strategies 
[8]. 

There are several approaches to machine 
learning that can be used for cotton leaf disease 
identification, including [9, 10]: 

 In supervised learning, a model is trained using 
data that has already been annotated, where 
each image is tagged with the corresponding 
disease type and severity level. The model can 
then classify new ideas based on the patterns it 
learned from the training data. 

 Unsupervised learning: Includes training a 
model on data that hasn’t been labelled and 
letting it figure out patterns and connections on 
its own. This approach can be helpful when 
there is no prior knowledge about the types of 
diseases or their severity levels. 

 In deep learning, neural networks discover 
hidden connections and patterns in data. 
Algorithms based on deep learning can assess 
photos quickly and accurately, as they can 
learn to recognize patterns at multiple levels of 
abstraction. 

1.1. Motivation 

Cotton is a vital cash crop for many 
countries, and its production significantly 
contributes to food security and economic stability. 
Cotton leaf diseases substantially threaten global 
agricultural resilience and food production. Farmers 
and agricultural organizations can take timely 
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actions to minimize the impact of diseases on 
cotton production by accurately classifying these 
diseases and predicting crop yields. The availability 
of a reliable disease classification and yield 
prediction system can empower farmers to 
implement appropriate preventive measures, adopt 
disease-resistant varieties, and improve crop 
management practices to enhance overall 
productivity. This, in turn, ensures a steady supply 
of cotton for the textile industry and mitigates the 
risk of food shortages. By developing an effective 
cotton leaf disease classification and yield 
prediction system, we can bolster global 
agricultural resilience, contribute to food security, 
and support sustainable development goals related 
to poverty reduction and economic stability in 
cotton-producing regions. 

Bio-inspired optimization, a computational 
approach inspired by biological systems, has the 
potential to address diverse research issues across 
multiple domains [11–24], [25], [26], [27]. These 
algorithms offer versatile and practical solutions by 
emulating adaptive behaviors observed in nature. 
They have been successfully applied in engineering 
design, data mining, scheduling, image processing, 
robotics, and more. 

1.2. Problem Statement 

Cotton leaf diseases significantly threaten 
global agricultural resilience and food security. The 
lack of an accurate and efficient cotton leaf disease 
classification and yield prediction system hinders 
farmers’ ability to identify and manage these 
diseases effectively, resulting in substantial yield 
losses and compromising the availability of cotton 
for the textile industry and other related sectors. 
Farmers face difficulties identifying specific 
diseases affecting their cotton crops without a 
reliable classification system, leading to delayed or 
inadequate interventions. Consequently, the spread 
of diseases goes unchecked, resulting in reduced 
crop productivity and lower yields. The inability to 
accurately predict yield based on disease profiles 
further exacerbates the challenge, as it hampers 
farmers’ capacity to plan for future production 
levels and take proactive measures to mitigate 
potential food shortages. To address these issues, 
there is an urgent need to develop a robust cotton 
leaf disease classification system that can 
accurately identify and classify diseases affecting 
cotton plants. Farmers and agricultural 
organizations can make informed decisions 
regarding disease management strategies, resource 
allocation, and overall production planning by 
integrating a yield prediction component. The 

development of such a system would contribute to 
global agricultural resilience by reducing crop 
losses, ensuring food security, and supporting 
sustainable development goals related to poverty 
reduction and economic stability in cotton-
producing regions. 

1.3. Research Objective 

The objective of this research titled 
“TFSO-HMM: A Novel Method for Accurate 
Cotton Leaf Disease Identification and Yield 
Prediction” is to develop and evaluate a novel 
method that combines Hidden Markov Models 
(HMM) with the enhanced version of Fish Swarm 
Optimization (FSO) for accurate cotton leaf disease 
identification and reliable yield prediction. Based 
on the problem statement related to Motivation 3, 
which highlights the significance of accurate cotton 
leaf disease classification and yield prediction for 
ensuring global agricultural resilience and food 
security, the research objective aims to address this 
challenge by leveraging the capabilities of HMM 
and FSO. The specific objectives are as follows: 

 Develop an enhanced cotton leaf disease 
identification model using HMM: Design a 
Hidden Markov Model that leverages the 
sequential nature of symptom development in 
cotton leaf diseases. The model will learn and 
capture the underlying patterns and transitions 
between disease states, enabling accurate 
identification of specific diseases. Train the 
HMM using a labelled dataset of cotton leaf 
disease samples to learn the disease-specific 
emission and transition probabilities. 

 Enhance Fish Swarm Optimization (FSO) 
for model parameter optimization: Integrate 
the enhanced version of the FSO algorithm 
(namely TFSO) with the HMM framework to 
optimize the model parameters. TFSO will be 
employed to fine-tune the emission and 
transition probabilities of the HMM, 
maximizing the model’s accuracy and 
robustness in cotton leaf disease identification. 
The TFSO algorithm will simulate the 
movement and behaviour of a fish swarm, 
enabling efficient parameter optimization. 

 Evaluate the performance of the TFSO-
HMM method for disease identification and 
yield prediction: Assess the accuracy and 
effectiveness of the TFSO-HMM method in 
accurately identifying cotton leaf diseases. 
Compare the performance of the proposed 
method with other existing classification 
techniques and traditional HMM models. 
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Additionally, incorporate the disease 
identification results into a yield prediction 
model, enabling reliable estimation of crop 
productivity based on disease profiles. 

 Analyze the impact of the TFSO-HMM 
method on global agricultural resilience and 
food security: Evaluate the potential benefits 
of the TFSO-HMM approach for enhancing 
global agricultural resilience and ensuring food 
security. Analyze the implications of accurate 
disease identification and reliable yield 
prediction on optimizing disease management 
strategies, resource allocation, and overall 
cotton production. Assess the potential 
economic and societal impacts of improved 
agricultural practices enabled by the TFSO-
HMM method. 

2. LITERATURE REVIEW 

“Learning Aided System for Agriculture 
Monitoring” [28] combines image processing 
techniques with IoT-CNN architecture to enable 
efficient and accurate monitoring of agricultural 
activities. The system can detect and classify 
agricultural parameters such as crop health, weed 
infestation, and pest presence by capturing and 
analyzing images from IoT devices deployed in the 
fields. An extensive collection of labelled photos 
teaches the IoT-CNN model, allowing it to learn 
and recognize patterns associated with different 
agricultural conditions. This integrated approach 
enhances the monitoring capabilities and enables 
timely decision-making for farmers. “Tomato Leaf 
Disease Recognition Systems” [29] explores using 
machine learning algorithms to develop efficient 
and accurate models for detecting and recognizing 
tomato leaf diseases. These systems can analyze 
leaf images and classify them into different disease 
categories by leveraging advanced machine 
learning techniques, such as convolutional neural 
networks (CNNs) or support vector machines 
(SVMs). Machine learning enables rapid and early 
detection of diseases, allowing farmers to take 
timely action to prevent the spread of infections and 
optimize crop yields. Implementing such systems in 
developing countries can significantly benefit 
small-scale farmers by providing them with 
affordable and accessible tools for disease 
management. 

“Tomato Leaf Disease Classification” [30] 
proposes a methodology that leverages transfer 
learning techniques to utilize pre-trained models 
and extract high-level features from tomato leaf 
images. Combining the learned features with 

handcrafted features through feature concatenation 
improves the classification model’s accuracy and 
robustness in identifying various tomato leaf 
diseases. Transfer learning enables the model to 
benefit from knowledge gained from large-scale 
datasets, while feature concatenation ensures the 
integration of learned and manually designed 
features. This approach enhances the performance 
of the classification system, enabling accurate and 
reliable disease identification. “Hybrid 
Convolutional Neural Network-based 
Classification” [31] proposes a methodology that 
combines different CNN architectures to classify 
diseases effectively based on the type of pathogen 
affecting the tomato plants. By training the hybrid 
CNN model on a diverse dataset of tomato leaf 
images, the system learns to distinguish between 
bacterial, viral, and fungal diseases with high 
accuracy. The hybrid approach leverages the 
strengths of multiple CNN architectures to capture 
both low-level and high-level features, enhancing 
the discriminative power of the model. This 
methodology contributes to plant disease 
classification by providing a comprehensive and 
accurate solution for identifying different diseases 
affecting tomato plants.  

“AdaBoostSVM Classifier” [32] proposes 
a methodology that combines the AdaBoost 
algorithm with support vector machines (SVM) for 
disease classification in rice plants. The AdaBoost 
algorithm is used to enhance the performance of the 
SVM classifier by iteratively adjusting the weights 
of training samples to focus on difficult-to-classify 
instances. The system learns to properly categorize 
and detect different illnesses affecting rice plants by 
being trained on a dataset of tagged photos of rice 
plants using the AdaBoostSVM model. The 
combination of AdaBoost and SVM offers 
improved accuracy and robustness in disease 
detection. “Cassava Disease Recognition” [33] 
proposes a methodology that addresses the 
challenge of limited data and low-quality images 
commonly encountered in cassava disease 
recognition. The enhanced data augmentation 
model generates additional training samples by 
applying various transformations and image 
processing techniques, expanding the dataset and 
improving the model’s generalization ability. Deep 
learning techniques, such as convolutional neural 
networks (CNNs), are then employed to learn and 
extract meaningful features from the augmented 
images. The system achieves accurate and robust 
cassava disease recognition by training the deep 
learning model on the enhanced dataset, even from 
low-quality images.  
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“Attention Deep Learning-based Large-
Scale Learning Classifier” [34] proposes a 
methodology that leverages attention mechanisms 
within deep learning architectures to enhance the 
classifier’s ability to focus on relevant features 
within the Cassava leaf images. The model can 
selectively attend to important regions and patterns 
by incorporating attention mechanisms, improving 
classification accuracy. This approach benefits 
large-scale learning scenarios where the dataset 
consists of many images. The attention-based deep 
learning classifier can efficiently process and 
classify Cassava leaf disease images, enabling rapid 
and accurate identification of various diseases 
affecting Cassava plants. “ResNet with YOLO 
Classifier” [35] proposes a methodology that 
combines the strengths of both ResNet and YOLO 
architectures to improve the accuracy and 
efficiency of disease recognition in paddy leaf 
images. ResNet is utilized for its deep feature 
extraction capabilities, enabling the model to 
capture intricate details and patterns associated with 
different diseases. YOLO, known for its real-time 
object detection capabilities, is integrated to 
accurately localize and classify disease regions 
within the paddy leaf images. Combining these two 
architectures, the hybridized model achieves 
enhanced accuracy and computational efficiency.  

“Weighted Ensemble Learning” [36] 
proposes a methodology that combines image 
processing algorithms with ensemble learning to 
improve the accuracy of disease classification in 
tomato leaves. Image processing techniques extract 
relevant features and characteristics from the leaf 
images, providing valuable information for disease 
identification. Weighted ensemble learning is then 
applied to combine the predictions of multiple 
classifiers, assigning higher weights to more 
accurate classifiers. This approach enhances the 
overall classification performance by leveraging the 
strengths of different models and reducing the 
impact of individual classifier errors. The weighted 
ensemble learning technique ensures robust and 
reliable disease classification in tomato plants. 
“Multiscale Voting Mechanism” [37] proposes a 
methodology that leverages multiscale analysis to 
capture features at different resolutions, allowing 
for more comprehensive disease recognition. The 
voting mechanism combines the predictions of 
multiple classifiers operating at different scales, 
using their collective decisions to make the final 
classification. This approach enhances the 
robustness and accuracy of disease recognition by 
considering various perspectives and avoiding the 
limitations of single-scale analysis. The multiscale 

voting mechanism is designed to handle the 
challenges posed by natural field conditions, where 
variations in lighting, background, and other 
environmental factors can affect disease 
appearance. By incorporating this mechanism, the 
system performs better in identifying rice leaf 
diseases under realistic field conditions. 

“Plant Disease Detection” [38] utilizes 
machine learning algorithms to analyze plant 
images and identify diseases accurately. One 
commonly used technique is the application of 
convolutional neural networks (CNNs), designed to 
learn and extract meaningful features from images. 
Convolutional neural network (CNN) models are 
trained on massive annotated datasets of plant 
photos to recognize patterns and traits associated 
with different illnesses. Another approach is using 
decision trees or random forests, which employ a 
set of rules to classify plant images based on their 
visual features. Support vector machines (SVMs) 
are also utilized, where they create a hyperplane to 
separate different disease classes. Additionally, 
deep learning techniques like recurrent neural 
networks (RNNs) and long short-term memory 
(LSTM) networks have been applied to analyze 
sequential data, such as time series data from 
sensors monitoring plant health. These machine 
learning approaches enable early and accurate 
detection of plant diseases, facilitating timely 
intervention and management strategies. “Self-
Adaptive-Deer Hunting Optimization” [39] 
proposes an optimal weighted feature selection 
mechanism that utilizes the SADHO algorithm to 
identify the most informative and discriminative 
features from the plant leaf images. The 
classification model is optimized for accurate 
disease detection by assigning appropriate weights 
to these selected features. The approach also 
incorporates a hybrid classifier that combines the 
strengths of multiple classification algorithms, such 
as support vector machines (SVM), random forests 
(RF), or artificial neural networks (ANN), to 
improve the overall classification performance. 
This hybrid classifier leverages the complementary 
nature of different algorithms, enhancing the 
robustness and accuracy of disease detection. By 
integrating the SADHO algorithm, weighted feature 
selection, and hybrid classification, this research 
provides an effective solution for automated disease 
detection in plant leaves.  

“Random Forest (RF)” [40] is a robust 
machine-learning algorithm that has gained 
significant attention in cotton leaf disease 
identification. Its working mechanism involves 
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creating an ensemble of decision trees, each trained 
on a different subset of the training data. During the 
classification process, the algorithm combines the 
predictions of all trees to make the final decision. 
This ensemble approach offers several advantages, 
including improved accuracy, robustness to noise, 
and reduce overfitting. In the context of cotton leaf 
disease identification, RF has demonstrated 
excellent performance in accurately classifying 
various disease types based on their symptom 
patterns. Its ability to handle high-dimensional data, 
deal with missing values, and capture complex 
relationships makes it well-suited for this task. 
Using RF, researchers make significant strides in 
automating cotton leaf disease identification, early 
detection, and supporting effective agricultural 
disease management. 

“Support Vector Machines (SVM)” [41] 
have become a popular machine-learning algorithm 
for cotton leaf disease identification due to their 
effective working mechanism. SVM works by 
transforming the input data into a higher-
dimensional feature space using a kernel function, 
where it aims to find an optimal hyperplane that 
separates different disease classes. SVM aims to 
maximize the margin between the decision 
boundary, the support vectors, and the data points 
closest to the boundary. This margin maximization 
approach allows SVM to achieve good 
generalization and robustness in disease 
classification. In the context of cotton leaf disease 
identification, SVM has shown promising results in 
accurately classifying different disease types based 
on their symptom patterns. Its ability to handle 
high-dimensional data, handle nonlinearity through 
kernel functions, and find optimal decision 
boundaries makes it a valuable tool for automated 
disease identification and supporting sustainable 
agricultural practices. 

3. TENACIOUS FISH SWARM OPTIMIZATION 
BASED HIDDEN MARKOV MODEL 

3.1. Hidden Markov Model 

The hidden Markov Model (HMM) 
belongs to the statistical models used for extracting 
concealed information from observed sequences of 
symbols in various applications. HMM uses an 
unconstrained Markov model to represent the 
system. Separating the unknown parameters from 
the known ones is HMM's fundamental difficulty. 
HMM precisely models real-time data and can 
simulate the source data. Multiple machine learning 
strategies have been developed based on HMM, 
which find significant applications in computational 

biology, optical character recognition, and speech 
recognition. HMM is an indispensable tool in 
bioinformatics due to its robustness, manipulability, 
simplicity, and adaptability to handle multiclass 
problems. A discrete stochastic process describes 
the input sequence as an output sequence during the 
HMM procedure. The system continuously 
transitions between states not immediately apparent 
to the user. Each hidden state represents a 
fundamental element of the modelled data, such as 
the level of amino acid present in a protein 
sequence. 

3.1.1. Hidden markov model in image classification 

Hidden Markov models (HMMs) are 
widespread because these probabilistic models are 
effective in many contexts, such as voice 
recognition, NLP, and time series analysis. They 
can also be utilized for image classification tasks. 
An HMM treats an image as a sequence of 
observed symbols or features in image 
classification. These symbols can be derived from 
various image characteristics, such as color, texture, 
or shape. The HMM can learn the underlying 
patterns and structure in the image data by 
capturing the spatial or temporal dependencies 
between these symbols. The key idea behind using 
HMMs for image classification is that underlying 
hidden states influence the observed symbols. 
These hidden states represent the latent factors or 
classes that the image belongs to. For example, in a 
binary classification problem of distinguishing 
between cats and dogs, the hidden states could 
represent the "cat" and "dog" classes. During the 
training phase, the HMM learns the statistical 
properties of the observed symbols and their 
relationship to the hidden states. Calculating the 
chance of detecting a specific symbol given a 
hidden state requires calculating the distribution of 
the starting state and the probability of transitioning 
between different concealed states. 

Once the HMM is trained, it can be 
applied to classify new images. This involves 
inferring probable hidden-states-sequence (Viterbi 
algorithm) or estimating the posterior probabilities 
of hidden states given the observed symbols. The 
image is assigned to a specific class or category 
based on the inference results. By leveraging the 
temporal or spatial dependencies captured by the 
HMM, image classification systems based on 
HMMs can effectively model the relationships 
between different parts or features of an image. 
This can lead to improved classification accuracy 
and the ability to handle variations within image 
datasets. 
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HMMs can be used for image 
classification by treating the image as a sequence of 
observed symbols and leveraging the probabilistic 
modelling capabilities of HMMs. The steps 
involved in HMMs when applied for image 
classification are: 

 Image Representation: Convert each image 
into a sequence of symbols or features that 
capture relevant information. For example, 
images can be divided into smaller regions or 
patches, and features like colour histograms, 
texture descriptors, or local binary patterns can 
be extracted from each patch. 

 Symbolization: Map the extracted features to 
discrete symbols or discrete levels to create an 
observed symbol sequence. This step is 
essential because HMMs operate on discrete 
symbols. The symbols should capture 
discriminative information about the image 
patches. 

 HMM Training: Train an HMM model using 
a labelled dataset of images. Each picture in the 
training set is mapped to a series of symbols. 
The HMM learns the underlying statistical 
patterns and dependencies between the 
observed symbols and hidden states. 

 Hidden States: Define a set of hidden states 
that capture the underlying characteristics or 
classes of images. These hidden states 
represent the latent or unobservable factors 
contributing to the observed symbols. For 
example, if classifying images like "cat" or 
"dog," the hidden states can represent different 
visual patterns associated with each class. 

 Model Parameters: Calculate the HMM's 
transition probabilities (A), emission 
probability (B), and starting state distribution 
(). Given a set of concealed states, the 
likelihood of being in each beginning state is 
represented by a distribution, and state 
transition probabilities capture the probability 
of moving between initial states, and emission 
probabilities model the probability of 
witnessing each symbol.  

 Inference: Given a new image to classify, 
apply the trained HMM model to perform 
inference. This involves computing the most 
likely sequence of hidden states (Viterbi 
algorithm) or estimating the posterior 
probabilities of hidden states given the 
observed symbols. 

 Classification: Assign the image to a class 
based on the inference results. The assigned 
class can be determined by considering the 
most likely hidden state sequence or using a 
decision rule based on the posterior 
probabilities. 

 Evaluation and Iteration: Metrics like 
precision, recall, accuracy, and F1-score may 
be used to evaluate the efficacy of an HMM-
based image categorization system. If 
necessary, iterate and refine the model and 
feature representation to improve classification 
performance. 

3.1.2. Stochastic process 

The fundamental principle behind 
modelling a process is collecting instances derived 
from it. This allows us to understand different 
aspects of the procedure and make predictions 
based on historical data. Stochastic models serve 
three primary purposes:  

(i) Elaborate process details for improved 
outcomes,  

(ii) Forecast results, and  

(iii) Perform classification by predicting a single 
variable 𝑘 based on input values from a limited 
and unordered set, where the input data 𝑥 is 
defined as (𝑥 , 𝑥 , 𝑥 , … . , 𝑥 ).  

In a stochastic model, events can be 
predicted with certainty. A stochastic model 
introduces a state of non-determinism, meaning it 
performs its process randomly. The term 
"stochastic" derives from "random." On the other 
hand, a deterministic model makes only one 
prediction for each set of inputs. The stochastic 
model is driven by a probabilistic event sequence in 
which different numbers determine each step's 
result. To rephrase, the probabilistic outcomes 
predicted by the stochastic model consider both the 
probability value and the weighted likelihood. 
Probability distributions for outcomes may be 
predicted using stochastic process modelling, which 
accounts for random changes in input across time. 
One definition of a stochastic process in the field of 
joint probability is a random variable 𝑋 = 𝑋 ; while 
the prediction of a deterministic model is always 
the same given a specific set of inputs. In the 
stochastic model, each step in the process has a 
different likelihood of success, and the whole thing 
is predicated on that. To rephrase, the probabilistic 
outcomes predicted by the stochastic model 
consider both the probability value and the 
weighted likelihood. 
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Stochastic process modelling is a tool to 
predict probability distributions for potential 
outcomes, accommodating random variations in 
input over a specified period. A stochastic process 
is characterized by a random variable 𝑋 =
{𝑋 ; 𝑡 ∈ 𝑇} in the space of joint probability. It takes 
a state space 𝑆 (i.e., a standard set) and is indexed 
by 𝑇, representing discrete-time intervals. 

3.1.3. Markov processes and markov chains 

 There are many stochastic processes, but 
the most prominent are Markov chains & Markov 
processes. These models represent the behaviour of 
systems whose next state is determined purely by 
the existing state, making them effectively 
memoryless. 

Markov Process 

A Markov process is characterized by its 
ability to reduce memory utilization. It is a 
stochastic process in which the dispersion of the 
following state depends solely on the present state, 
disregarding previous states or events. This 
property allows for efficient modelling and 
analysis, as a finite number of states can describe 
the process. The conditions for a stochastic process 
X(t) to be considered a Markov process are as 
follows: 

 Finite State Count: A Markov process must 
have a finite number of possible states or 
outcomes. This means the system can exist in a 
limited and well-defined set of states, and 
transitions between states occur according to 
specific rules. 

 Constant Probabilities over Time: The 
probabilities associated with transitioning 
between states remain constant as time 
progresses. This implies that the transition 
probabilities are independent of time, ensuring 
the system's dynamics are consistent 
throughout the process. 

 Memorylessness: One of the critical 
characteristics of a Markov process is its 
property of memorylessness. According to this 
characteristic, past events have no bearing on 
the likelihood of an inevitable future state 
occurring. No extrinsic factors influence the 
conditional likelihood of a future state 
transition.  

By satisfying these conditions, a stochastic 
process can be classified as a Markov process, 
enabling the application of specific mathematical 

techniques to analyze and model the system's 
behaviour. 

Markov Chain 

Markov chains are a special kind of 
Markov process that adheres to memoryless 
conditions and has a discrete state space. It consists 
of a sequence of states, where transition probabilities 
determine the transition from one state to the next. 
The chain moves from state to state based on 
probabilistic transitions, forming a stochastic 
process with Markovian properties. Markov chains 
are widely used in various fields, including 
mathematics, physics, economics, and computer 
science, for modeling systems with probabilistic 
dynamics and predicting future states based on 
current observations. 

3.1.4. Hidden markov models  

HMM is a probability-based model that 
employs two simultaneous stochastic processes: a 
state transition process governed by the Markov 
property and an output process that produces 
random sequences. The Markov model describes 
the sequence of variables using initial and 
transformation probabilities. In contrast, the output 
model generates characters from a given alphabet 
with only one element. The state transition 
sequence is hidden, meaning the variables' states 
are not directly observed but inferred from the 
output symbols within the sequence. Therefore, 
HMM can be characterized by its states, state, 
transition, and output probabilities. HMM serves as 
an architecture for processing inputs, and a 
quintuple represents its formal definition 
(𝑆, 𝑉, 𝜋, 𝐴, 𝐵), It includes the following 
components: 

 𝑆 = {𝑆 , 𝑆 , 𝑆 , … . , 𝑆 }: Represents the set of 
states, with 𝑁, indicating the total number of 
states. 

 The Markov chain is denoted as a triplet 
(𝑆, 𝜋, 𝐴), where the states are hidden and not 
directly observed. 

 Vocabulary is defined as a set 
 𝑉 = {𝑣 , 𝑣 , 𝑣 , … … , 𝑣 , }. 

 𝜋: 𝑆 → [0,1] = {𝜋 , 𝜋 , 𝜋 , … . , 𝜋 }: Represents 
the initial stage of the probability distribution, 
indicating the probability of each state. It 
satisfies the condition Σ(𝑠 ∈ 𝑆)𝜋(𝑠) =
Σ(𝑖 = 1) 𝜋 = 1. 

 The probability of transitioning from one state 
𝑆  to another state 𝑆  is represented by 
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 𝐴 = 𝑎 , where 𝑎 ∈ [0,1] for every 

individual transition between 𝑆  and 𝑆 , and it 
satisfies the condition Σ(𝑖 ∈ 𝑆)𝑎 = 1. 

 𝐵 = 𝑏 𝑠 indicates the output probability, 

where 𝑣  corresponds to the state 𝑆 . 

HMM proves useful for modelling 
processes when the system's state is unknown. Its 
fundamental concept involves generating a 
sequence of numbers randomly. Typically, when 
observing output events, HMM is considered a 
generative model used to generate sequences for 
observation. Algorithmically, an observed sequence 
𝑂 = 𝑜 , 𝑜 , 𝑜 , … . , 𝑜 , where 𝑜 ∈ 𝑉 can be 
generated by an HMM. 

3.1.5. Forward algorithm 

Hidden Markov Models (HMMs) rely on 
the forward algorithm, which is essential in many 
fields. The probability of transitioning between 
states at every step in an observable sequence is 
computed. The forward algorithm provides 
valuable insights into the likelihood of different 
hidden state sequences, enabling us to make 
inferences and perform tasks such as decoding and 
parameter estimation. In HMMs, the underlying 
system is modelled as a probabilistic framework 
comprising two stochastic processes: a Markov 
process governing the state transitions and an 
output process determining the emitted symbols. 
Given the observed sequence, the forward 
algorithm allows us to efficiently compute the 
probabilities of being in different states at each time 
step. By calculating the emission and transition 
probability based on the starting state distribution, 
the algorithm recursively calculates the forward 
variables, representing the probabilities of being in 
each state at a specific time. By employing the 
forward algorithm, we can analyze and understand 
the dynamics of the hidden states in an HMM. It 
lays the groundwork for tasks like estimating states, 
predicting sequences, and finding the most likely 
order of hidden states given an observational 
sequence. Additionally, the forward algorithm 
serves as a building block for other algorithms in 
HMMs, such as the backward algorithm, the Baum-
Welch algorithm for parameter estimation, and the 
Viterbi algorithm for decoding. Here's a step-by-
step representation of the forward algorithm: 

Algorithm 1. Forward Algorithm 
Step 1: Initialize the forward variable 𝜶 at 

time 𝒕 = 𝟏 
a) For each state 𝑖: 
b) Set 𝛼 (𝑖) = 𝜋(𝑖) ∗ 𝐵(𝑖, 𝑜 ), where 

𝜋(𝑖) is the initial state distribution, and 
𝐵(𝑖, 𝑜 ) is the probability of emitting 
the first observed symbol from state 𝑖. 

Step 2: Recursion 
a) For each time step 𝑡 from 2 to 𝑇: 
b) For each state 𝑗: 
c) Calculate the forward variable 𝛼  

using 𝛼 = 0. 
d) For each state 𝑖: 
e) Add 𝛼 += 𝛼 (𝑖) ∗ 𝐵(𝑗, 𝑜 ), where 

𝐴(𝑖, 𝑗) is the transition probability 
from state 𝑖 to state 𝑗, and 𝐵(𝑗, 𝑜 ) is 
the probability of emitting a symbol 𝑜  
from state 𝑗. 

Step 3: Termination 
a) Figure out the forward chance at the 

last time step 𝑇: 
b) Set 𝑃(𝑂|𝜆) = 0. 
c) For each state i: 
d) Add (𝑂|𝜆)+= 𝛼𝑇(𝑖), where 𝛼𝑇(𝑖) 

represents the forward variable at time 
𝑇 for state 𝑖. 

Step 4: Output 
a) The prospective possibilities Given the 

sequence 𝑂, the probabilities of being 
in state 𝑗 at time 𝑡 are represented by 
𝛼 .   

b) The forward probability 𝑃(𝑂|𝜆) 
represents the overall likelihood of the 
observed sequence 𝑂 given the HMM 
parameters 𝜆. 

3.1.6. Backward algorithm 

The backward algorithm is an essential 
component of HMMs and complements the forward 
algorithm in providing a complete understanding of 
the underlying system. It allows us to compute the 
probabilities of future observations given a 
particular state at each time step. The backward 
algorithm is crucial in bioinformatics parameter 
estimation, decoding, and sequence alignment. In 
HMMs, the backward algorithm operates in tandem 
with the forward algorithm, providing a 
complementary perspective on the observed 
sequence. At each time step, the forward algorithm 
determines the likelihood of several possible states. 
The backward algorithm computes the probabilities 
of future observations given a specific state at each 
time step. This information is valuable in 
deciphering the significance and impact of different 
hidden states on future observations. The backward 
algorithm starts by initializing the backward 
variable at the last time step to capture the 
probabilities of the final observations given each 
state. It then recursively calculates the backward 
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variables at earlier time steps, considering the 
transition and emission probabilities. By utilizing 
these probabilities, the backward algorithm 
effectively propagates the information from future 
observations to the present, allowing us to estimate 
the likelihood of observing specific sequences of 
symbols. 

By employing the backward algorithm, we 
comprehensively understand the HMM by 
considering past and future information. This 
information is crucial for decoding tasks, where the 
sequence seen is used to infer the most likely 
sequence of concealed states. Additionally, the 
backward algorithm plays a pivotal role in 
parameter estimation techniques such as the Baum-
Welch algorithm, which relies on the backward 
probabilities to update the model parameters and 
improve their accuracy iteratively. 

Algorithm 2. Backward Algorithm 

 Initialization 
 Set 𝛽 (𝑖) = 1 for every state 𝑖 at the last 

time step 𝑇. 
 Recursion 
 For every time step 𝑡 from 𝑇 − 1 to 1: 
 For every state 𝑖: 
 Calculate the backward variable 𝛽 (𝑖) using 

the following steps: 
 Set 𝛽 (𝑖) = 0. 
 For each state 𝑗: 
 Calculate the backward probability for state 

𝑖 at time step 𝑡: 
 Multiply the transition probability 𝐴(𝑖, 𝑗) 

from state 𝑖 to state 𝑗 by the emission 
probability 𝐵(𝑗, 𝑜 ) of emitting symbol 
𝑜  from state 𝑗. 

 Multiply the result by the backward variable 
𝛽 (𝑗) at time step 𝑡 + 1 for state 𝑗. 

 Add the product to 𝛽 (𝑖). 
 Termination 
 Calculate the backward probability at the 

first time step 𝑡 = 1: 
 Set 𝑃(𝑂|𝜆) = 0. 
 For each state 𝑖: 
 Calculate the contribution of state 𝑖 to the 

overall backward probability: 
 Multiply the initial state distribution 𝜋(𝑖) by 

the emission probability 𝐵(𝑖, 𝑜 ) of emitting 
the first observed symbol from state 𝑖. 

 Multiply the result by the backward variable 
𝛽 (𝑖) at time step 1 for state 𝑖. 

 Add the product to 𝑃(𝑂|𝜆). 
 Output 

 The backward probabilities 𝛽 (𝑖) represent 
the probability of being in state 𝑖 at time 𝑡, 
given the observed sequence 𝑂. 

 The backward probability 𝑃(𝑂|𝜆) represents 
the overall likelihood of the observed 
sequence 𝑂 given the HMM parameters 𝜆. 

3.1.7. Forward-Backward Algorithm 

The Forward-Backward (FB) algorithm 
estimates the posterior & pairwise probability of a 
Hidden Markov Model (HMM) by fusing the 
forward and backward methods. Based on the 
observed sequence, it provides valuable 
information about the underlying states and their 
transitions. 

Algorithm 3. Forward-Backward Algorithm 

Step 1: Initialize 
a) Set the forward variable 𝛼 (𝑖) =

𝜋(𝑖) ∗ 𝐵(𝑖, 𝑜 ) for each state 𝑖 at 
time step 𝑡 = 1. 

b) Set the backward variable 𝛽 (𝑖) =
1 for each state 𝑖 at the last time 
step 𝑇. 

Step 2: Forward Procedure 
a) For every time step 𝑡 from 2 to 𝑇: 
b) For every state 𝑖: 
c) Calculate the forward variable 

𝛼 (𝑖) using the following steps: 
d) Set 𝛼 (𝑖) = 0. 
e) For each state 𝑗: 
f) Multiply the transition probability 

𝐴(𝑗, 𝑖) from state 𝑗 to state 𝑖 by the 
emission probability 𝐵(𝑖, 𝑜 ) of 
emitting symbol 𝑜  from state 𝑖. 

g) Multiply the result by the forward 
variable 𝛼 (𝑗) at time step 𝑡 − 1 
for state 𝑗. 

h) Add the product to 𝛼 (𝑖). 
Step 3: Backward Procedure 

a) For each time step 𝑡 from 𝑇 − 1 to 
1: 

b) For each state 𝑖: 
c) Calculate the backward variable 

𝛽 (𝑖) using the following steps: 
d) Set 𝛽 (𝑖) = 0. 
e) For each state 𝑗: 
f) Multiply the transition probability 

𝐴(𝑖, 𝑗) from state 𝑖 to state 𝑗 by the 
emission probability 𝐵(𝑗, 𝑜 ) of 
emitting symbol 𝑜  from state 𝑗. 

g) Multiply the result by the 
backward variable 𝛽 (𝑗) at time 
step 𝑡 + 1 for state 𝑗. 

h) Add the product to 𝛽 (𝑖). 
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Step 4: Calculate Posterior Probabilities 
a) For every time step 𝑡 from 1 to 𝑇: 
b) For every state 𝑖: 
c) Calculate the posterior probability 

𝛾 (𝑖) using the following formula: 
d) 𝛾 (𝑖) = 𝛼 (𝑖) ∗ 𝛽 (𝑖) /𝑃(𝑂|𝜆), 

where 𝑃(𝑂|𝜆) is the overall 
likelihood of the observed 
sequence. 

Step 5: Calculate Pairwise Probabilities 
a) For each time step 𝑡 from 1 to 𝑇 −

1: 
b) For each state 𝑖 and state 𝑗: 
c) Calculate the pairwise probability 

𝜉 (𝑖, 𝑗) using the following 
formula: 

d) 𝜉 (𝑖, 𝑗) = 𝛼 (𝑖) ∗ 𝐴(𝑖, 𝑗) ∗

𝐵(𝑗, 𝑜 ) ∗ 𝛽 (𝑗) /𝑃(𝑂|𝜆), 

where 𝐴(𝑖, 𝑗) is the transition 
probability from state 𝑖 to state 𝑗, 
and 𝐵(𝑗, 𝑜 ) is the emission 
probability of emitting symbol 
𝑜  from state 𝑗. 

Step 6: Output 
a) The posterior probabilities 𝛾 (𝑖) 

represent the probability of being 
in state 𝑖 at time 𝑡, given the 
observed sequence 𝑂. 

b) The pairwise probabilities 𝜉 (𝑖, 𝑗) 
represent the probability of 
transitioning from state 𝑖 to state 𝑗 
at time 𝑡, given the observed 
sequence 𝑂. 

 

3.1.5. Baum-welch algorithm 

The Baum-Welch Algorithm, also known 
as the expectation-maximization (EM) algorithm, 
can be applied to image classification tasks using 
HMMs. Although HMMs are not the most common 
approach for image classification in modern deep 
learning, they can still provide a probabilistic 
framework for specific scenarios. In image 
classification, the Baum-Welch Algorithm can be 
used to estimate the parameters of an HMM that 
captures the underlying patterns in image data. The 
chance of viewing particular picture characteristics 
provided the hidden states is defined by these 
parameters, which include the distribution of the 
beginning states, the probabilities of transitioning 
between states, and the emission probabilities. The 
steps involved in using the Baum-Welch Algorithm 
for image classification are given in Algorithm 4: 

Algorithm 4: Baum-Welch Algorithm 

Step 1: Data Representation: 
 Images must be preprocessed and 

represented as sequences of observed 
symbols or features. These symbols 
can be derived from various image 
characteristics such as colour 
histograms, texture descriptors, or local 
features. 

Step 2: HMM Initialization 
 The initial parameters of the HMM, the 

probability of transition between states 
and emission probabilities, and the 
distribution of the beginning state are 
initialized either randomly or based on 
prior knowledge. 

Step 3: FB Algorithm 
 The FB algorithm is applied to 

compute the posterior probabilities of 
the hidden states given the observed 
image features. This step involves 
calculating the forward probabilities 
(the likelihood of existing in a specific 
condition at a specific time instant 
based on the characteristics already 
seen) and the backward probabilities. 

Step 4: Parameter Update 
 The computed posterior probabilities 

are used to update the model 
parameters using the Baum-Welch 
update formulas. These equations find 
the values for the model parameters 
that maximize the likelihood of the 
observable picture characteristics. 

Step 5: Iterative Process 
 Steps 3 and 4 are repeated until 

convergence is achieved in an iterative 
process, or a predefined number of 
iterations is completed. The iterative 
process allows the HMM to refine its 
parameters to fit the observed image 
data better. 

Step 6: Classification 
 Once the HMM is trained using the 

Baum-Welch Algorithm, it can be used 
for image classification. Given a new 
image, the HMM can infer the 
expected progression of covert states 
using the Viterbi Algorithm or estimate 
the posterior probabilities of the hidden 
states given the observed features. 
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3.1.6. Modified Viterbi Algorithm 

Dynamic programming algorithm Viterbi 
can be used for HMM-based image classification 
problems. While HMMs are not commonly used for 
image classification in modern deep learning, the 
Viterbi Algorithm can still provide insights into the 
process. The Viterbi Algorithm may determine the 
most probable concealed state sequence in a hidden 
Markov model (HMM) using a seen picture. Each 
hidden state represents a specific class or category, 
while the observed image corresponds to a 
sequence of symbols or features. 

Algorithm 5: Modified Viterbi Algorithm 

Step 1: Initialization 
a) Initialize the trellis structure 𝑉 with 

dimensions (𝑁 × 𝑇), where 𝑁 is 
the number of states, and 𝑇 is the 
number of time steps. 

b) Initialize the backpointer matrix BP 
with the exact dimensions. 

c) Set the initial probabilities for the 
first time step: 

d) 𝑉[𝑖, 1] = 𝜋[𝑖] ∗ 𝑏[𝑖, 1], for all states 
𝑆𝑖. 

Step 2: Recursion 
a) For each time step 𝑡 from 2 to 𝑇: 
 For each state 𝑆𝑖 from 1 to 𝑁: 
 Compute the probability of reaching 

state 𝑆𝑖 at time 𝑡: 
 𝑉[𝑖, 𝑡] = 𝑚𝑎𝑥(𝑉[𝑗, 𝑡 − 1] ∗ 𝑎[𝑗, 𝑖] ∗

𝑏[𝑖, 𝑡]), for all states 𝑆𝑗. 
 This calculation involves 

multiplying the probability of being 
in state 𝑆𝑗 at the previous time step 
(𝑉[𝑗, 𝑡 − 1]), the transition 
probability from state 𝑆𝑗  to 
𝑆𝑖(𝑎[𝑗, 𝑖]), and the emission 
probability of observing the feature 
at time 𝑡 given state 𝑆𝑖(𝑏[𝑗, 𝑖]). 

b) Update the backpointer matrix: 
 𝐵𝑃[𝑖, 𝑡] = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑉[𝑗, 𝑡 − 1] ∗

𝑎[𝑗, 𝑖] ∗ 𝑏[𝑖, 𝑡]), for all states 𝑆𝑗. 
 The backpointer matrix stores the 

state 𝑆𝑗 index corresponding to the 
maximum probability calculation, 
indicating the most likely previous 
state leading to state 𝑆𝑖 at time 𝑡. 

Step 3: Termination 
a) Find the maximum probability 

among the final time step 
probabilities: 

 𝑃∗ = 𝑚𝑎𝑥(𝑉[𝑖, 𝑇]), for all states 
𝑆𝑖. 

b) Set the final state as the one with 
the highest probability: 

 𝑆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑉[𝑖, 𝑇]), for all 
states 𝑆𝑖. 

Step 4: Backtracking 
a) Starting from step 𝑇's final time, To 

discover the expected order of 
concealed states, one should follow 
the backpointers. 

b) Initialize an empty sequence of 
states. 

c) Append the state 𝑆∗ (the final state 
with the highest probability) to the 
sequence. 

d) For each time step 𝑡 from 𝑇 − 1 to 
1: 

 Retrieve the index of the following 
state from the backpointer matrix: 

 𝑆∗ = 𝐵𝑃[𝑆∗, 𝑡 + 1]. 
 Append 𝑆∗ to the sequence. 
 Reverse the sequence to obtain the 

correct order of hidden states. 
3.2. Tenacious Fish Swarm Optimization (TFSO) 

 The Standardized Artificial Fish Swarm 
Algorithm (TFSO) is an innovative optimization 
approach that creates a cohesive school of artificial 
fish exhibiting behaviour reminiscent of real fish. 
This algorithm showcases complex and intelligent 
behaviour on a macro level, achieved through the 
simple actions and interactions of individual fish 
within the group. In algorithm optimization, it 
demonstrates global optimum approximation 
through swarm behaviour, in contrast to the local 
optimization performed by individual algorithms. 
The TFSO operates as a population-based random 
search algorithm, commencing with generating an 
initial population through random selection. 
Subsequently, it iteratively explores the solution 
space to find the most optimal answer. The 
algorithm's strength lies in its ability to collectively 
move towards a global optimum by leveraging the 
collective intelligence of the fish school instead of 
relying solely on the efforts of individual fish. By 
emulating the behaviour of real fish, the TFSO 
offers a unique and practical approach to 
optimization problems. Each fish within the school 
represents an individual solution candidate, and 
their interactions with one another facilitate the 
exploration of the solution space. Through 
continuous adaptation and learning, the fish swarm 
intelligently navigates the optimization landscape, 
gradually converging towards the global optimum. 
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3.2.1. Meaning of TFSO 

The state vector comprehensively 
represents a fish's characteristics and properties 
relevant to the optimization process. It encapsulates 
various attributes contributing to the fish's 
behaviour and decision-making within the swarm. 
These attributes may include position, velocity, 
fitness value, search space boundaries, and 
additional parameters specific to the optimization 
problem. TFSO create a structured representation 
that facilitates the algorithm's operations by 
expressing a fish's condition through a state vector. 
This vector allows for the tracking and 
manipulation of individual fish properties during 
the optimization process. It enables the algorithm to 
assess the fitness of each fish's solution and 
determine their contribution to the collective 
intelligence of the swarm. The initialization of the 
state vector involves assigning initial values to its 
components for each fish in the population. The 
specific values depend on the problem's 
requirements and the algorithm's implementation. 
These initial values can be randomly generated or 
based on prior problem domain knowledge. By 
considering the 𝑌-dimensional nature of the 
problem, the state vector accommodates the 
necessary dimensions to capture the characteristics 
relevant to the optimization task. It ensures that 
each fish's state is adequately represented, enabling 
them to interact with other fish and adapt their 
behaviour to achieve the desired global optimum.
  

In the context of TFSO, let us consider 
that the initial fish population is represented by the 
variable 𝑇. This population comprises a group of 
artificial fish aiming to solve a 𝑌-dimensional 
problem. This research work utilizes a state vector 
to track the condition or state of each fish within 
the swarm, and the same is expressed as Eq.(1). 

 𝑃 = (𝑝 , 𝑝 , … . . 𝑝 ) (1) 
 𝑄 = 𝑔(𝑃 ) indicates the fitness level (i.e., 
satisfaction with food). For every pair of fish, the 
𝑌 , = ‖𝑃 − 𝑃 ‖. Euclidean distance is used to 
express the relationship. In the case when 𝑠, 𝑤 =
1,2, … . 𝑁, and the various states of the fish are 
represented as𝑇, 𝑃  and 𝑃  respectively.  

The efficiency of the TFSO is influenced 
by three crucial factors: the fish's visual field, the 
step size, and the crowding level. These factors are 
represented by the Visual, Step, and Crowded 
factors, respectively. The three factors are described 
below: 

 Visual Factor (Visual): The visual field of a 
fish refers to its perception range or the 
distance within which it can detect and interact 
with other fish. In the TFSO, the Visual factor 
determines the neighbourhood of influence for 
each fish. A larger visual field allows fish to 
perceive a broader range of their surroundings, 
facilitating the exchange of information and 
collective decision-making within the swarm. 
On the other hand, a smaller visual field 
restricts interactions to closer proximity, 
potentially limiting the exploration and 
convergence capabilities of the algorithm. 

 Step Factor (Step): The step size represents 
the distance a fish can move in each algorithm 
iteration. It influences the exploration and 
exploitation trade-off of the swarm. A more 
significant step size enables fish to cover more 
ground in the search space, facilitating 
exploration and increasing the chances of 
finding a global optimum. However, a more 
significant step size may increase the 
likelihood of overshooting or missing optimal 
solutions. Conversely, a minor step enhances 
exploitation by allowing fine-grained 
adjustments and precise refinement around 
promising solutions. Still, it may lead to slower 
convergence and potential stagnation in local 
optima. 

 Crowded Factor (Crowded): The crowded 
level denotes the density or proximity of fish 
within the swarm. It determines the level of 
competition and congestion within the 
population. A higher crowded level implies a 
more congested swarm with intense 
competition among fish for resources and 
space. This can lead to a higher likelihood of 
premature convergence towards suboptimal 
solutions. Conversely, a lower crowded level 
promotes more diverse exploration as fish have 
more space to manoeuvre and interact with a 
broader range of neighbours. However, 
crowded deficient levels may result in a 
scattered or disorganized swarm, potentially 
hindering efficient information sharing and 
convergence. 

In the domain of leaf disease 
classification, this research draws an analogy 
between the exploration behaviour of artificial fish 
and the process of classifying data. Artificial fish 
exhibit four primary behaviours: Random, Preying, 
Swarming, and Following. These behaviours are 
employed to identify the most favourable feeding 
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locations, which can be likened to identifying 
optimal classification outcomes.  

 Random Behavior: It explores the search 
space without any specific pattern or 
predefined strategy. In this, fish randomly 
move and investigate different areas in the 
search space, allowing for broad exploration. 

 Preying Behavior: It targets and focuses on 
specific areas or regions in the search space 
likely to contain favourable solutions. They 
concentrate on those areas to discover and 
exploit potential optimal solutions. 

 Swarming Behavior: It involves coordination 
and collaboration among artificial fish. They 
collectively move and communicate with each 
other, sharing information and insights. The 
artificial fish can enhance their search 
efficiency and effectiveness by working 
together as a swarm. 

 Following Behavior: It learns from the 
experiences and decisions of other fish in the 
swarm. They observe and adapt their actions 
based on the success and behaviour of well-
performing fish. This adaptive behaviour helps 
improve the overall performance of the swarm. 

3.2.2. Random behavior 

Random behaviour is a fundamental aspect 
of the Artificial Fish Swarm Algorithm (TFSO) that 
mimics the exploration process of real fish. In 
TFSO, random behaviour refers to the strategy 
employed by artificial fish to explore the search 
space without any predefined pattern or specific 
direction. This behaviour allows the artificial fish to 
survey various possibilities and discover solutions 
unbiasedly. The random Behavior in TFSO serves 
as a means of broad exploration, helping the 
algorithm to escape local optima and find better 
solutions. The artificial fish can uncover new 
regions and evaluate their fitness by randomly 
selecting positions or movements within the search 
space. This exploration process is crucial for 
discovering promising areas with optimal solutions, 
particularly in complex and high-dimensional 
problem spaces. 

During the random behaviour phase, 
artificial fish may probe various regions, sample 
different attributes, or explore different 
combinations of parameters. The randomness in 
their movement introduces diversity into the search 
process, preventing the algorithm from getting 
trapped in suboptimal solutions. By continuously 
exploring different regions, the artificial fish have a 

chance to encounter more favourable areas, leading 
to improved convergence towards the global 
optimum. It is important to note that random 
behaviour alone is not sufficient for efficient 
optimization. It needs to be complemented by other 
behaviours, such as preying, swarming, and 
following, to guide the search process towards 
optimal solutions collectively. The balance between 
random exploration and exploitation of known 
reasonable solutions is essential for achieving an 
effective trade-off between exploration and 
exploitation in TFSO. By incorporating random 
behaviour, TFSO introduces an element of 
stochasticity that enhances its robustness and 
adaptability. This behaviour allows the algorithm to 
handle uncertainties in the problem space and 
discover diverse solutions. The random exploration 
process and other behaviours contribute to the 
algorithm's ability to converge towards global 
optima and achieve effective optimization results. 

Random Position Selection 

An artificial fish selects a random position 
within the search space at each iteration. This can 
be expressed as Eq.(2): 

𝑥 = 𝑥 + (𝑥 − 𝑥 ) ∗ 𝑟𝑎𝑛𝑑 () (2) 

Where 𝑥 is the randomly selected position within 
the search space, 𝑥  and 𝑥  represent the lower 
and upper bounds of the search space, respectively, 
and 𝑟𝑎𝑛𝑑() generates a random number between 0 
and 1. 

Algorithm 6. Random Position Selection 

Step 1: Set the minimum value of the search 
space as 𝑥 . 

Step 2: Set the maximum value of the search 
space as 𝑥 . 

Step 3: Generate a random number between 0 
and 1, and store it as random_number. 

Step 4: Calculate the random position within the 
search space using Eq.(16) 

Step 5: Return the randomly selected position 𝑥. 
Random Movement 

After selecting a random position, the 
artificial fish performs a random movement in the 
search space. This movement can be represented by 
adjusting the current position using a random 
displacement. Mathematically, it can be expressed 
as Eq.(3): 

𝑥 = 𝑥 + 𝑟𝑎𝑛𝑑() ∗ 𝑠𝑡𝑒𝑝  (3) 

Where 𝑥  is the new position after the random 
movement, 𝑥 is the current position, rand() 
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generates a random number between 0 and 1, and 
𝑠𝑡𝑒𝑝  represents the magnitude of the random 
movement. 

Algorithm 7. Random Movement 

Step 1: Set 𝑥 as the current position of the 
artificial fish. 

Step 2: Generate a random number between 0 
and 1 using 𝑟𝑎𝑛𝑑(). 

Step 3: Set 𝑠𝑡𝑒𝑝  as the magnitude of the 
random movement. 

Step 4: Compute the new position after the 
random movement using Eq.(3). 

Step 5: Return to the new position 𝑥 . 
 

3.2.3. Preying behavior 

The predatory behaviour of real fish 
inspires the Preying behaviour in TFSO. It involves 
the artificial fish targeting and concentrating their 
search efforts on regions of the search space with 
higher fitness values. The objective is to exploit 
these promising areas and increase the chances of 
finding optimal solutions. During the Preying 
behaviour, the artificial fish evaluate their fitness 
values at their current positions in the search space. 
These fitness values represent the quality or 
suitability of the solutions found by the fish. The 
fish then identify the locations with the highest 
fitness values among all the individuals in the 
swarm. These locations are considered potential 
prey locations, likely to contain optimal solutions. 

The artificial fish update their positions to 
move towards the prey locations using a predefined 
strategy. This strategy typically involves moving 
towards the selected prey location and introducing a 
random perturbation to diversify the search. The 
difference between the fish's current position and 
the selected prey's position guides the movement 
towards the prey's location. The random 
perturbation helps explore the search space beyond 
the immediate vicinity of the prey location. By 
concentrating their search efforts on regions with 
higher fitness values, the Preying behaviour allows 
the artificial fish to focus on promising areas and 
increase the chances of finding optimal solutions. 
This behaviour enhances the exploitation of the 
search space while still maintaining an element of 
exploration through random perturbations. 

Fitness Evaluation 

Each artificial fish evaluates the fitness 
function at its current position in the search space. 
Let the fitness value be denoted as 𝑓(𝑥), where 𝑥 
represents the fish's position. 

Identification of Prey Locations 

Identify the locations with the highest 
fitness values among all the artificial fish. Let 
𝑝𝑟𝑒𝑦 = {𝑥 , 𝑥 , … . 𝑥 } represent the 
positions of these prey locations. 

Position Update 

Move each artificial fish towards one of 
the prey locations based on a predefined strategy. 
The position update equation can be written as 
Eq.(4): 

𝑥 = 𝑥 + 𝑠𝑡𝑒𝑝 ∗ 𝑥 − 𝑥

+ 𝑟𝑎𝑛𝑑𝑜𝑚  
(4) 

where 𝑥  represents the new position of the fish, 
𝑥 is the current position of the fish, 𝑠𝑡𝑒𝑝  is a 
parameter controlling the magnitude of the 
movement, 𝑥  is the position of the selected prey 
location, and 𝑟𝑎𝑛𝑑𝑜𝑚  represents a 
random perturbation or noise introduced to 
diversify the search. 

Iteration 

Repeat the above steps for a certain 
number of iterations or until a termination criterion 
is met. 

Algorithm 8. Preying Behavior 

Step 1: Initialize the swarm of artificial fish 
with their initial positions. 

Step 2: Evaluate the fitness value for each 
fish's position using the fitness 
function. 

Step 3: Set the current iteration counter to 1. 
Step 4: While the termination criterion is not 

met or the specified number of 
iterations is not reached, repeat Step 5 
to Step 8. 

Step 5: Fitness Evaluation 
a) For each fish in the swarm, 

Evaluate the fitness value of the 
fish's current position using the 
fitness function. 

Step 6: Identification of Prey Locations 
a) Identify the positions of the fish 

with the highest fitness values as 
the prey locations. 

Step 7: Position Update 
a) Select one of the prey locations 

randomly from prey_locations for 
each fish in the swarm. 

b) Calculate the new position for the 
fish using Eq.(4). 
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c) Update the position of the fish to 
the new position. 

Step 8: Increment the iteration counter. 
Step 9: Return the best solution found by the 

swarm of artificial fish. 
3.2.4. Swarming Behavior 

The Swarming behaviour is a crucial 
characteristic of the TFSO, inspired by the 
collective behaviour observed in swarms of real 
fish. It involves the artificial fish in the swarm 
aligning their movements and converging towards a 
common position or direction. In TFSO, the 
Swarming behaviour promotes cooperation and 
information sharing among the fish, allowing them 
to explore the search space and find optimal 
solutions collectively. It leverages the principle that 
the collective behaviour of a group can lead to 
better results than individuals' isolated behaviour. 
The following general characteristics can describe 
the Swarming behaviour in TFSO: 

 Information Sharing: The fish in the swarm 
share information about their positions, fitness 
values, and other relevant attributes. This 
information exchange allows the fish to gain 
insights into the behaviour and movements of 
other fish in the swarm. 

 Alignment of Movements: The fish align their 
movements towards a common position or 
direction, which is typically determined based 
on the collective behaviour of the swarm. This 
alignment encourages cooperation and helps 
the fish converge towards better solutions. 

 Emergent Behavior: Through the Swarming 
Behavior, the fish exhibit emergent behaviour, 
meaning that the collective behaviour of the 
swarm arises from the interactions and 
coordination among individual fish. The 
emergent behaviour can lead to complex 
patterns and self-organization within the 
swarm. 

 Exploration and Exploitation: The Swarming 
behaviour balances exploration and 
exploitation of the search space. The fish 
explore new regions by following the 
movements of other fish and exploit promising 
areas by converging towards positions with 
higher fitness values. 

 Adaptability: The Swarming behaviour allows 
the fish to adapt their movements and 
responses to changes in the environment or the 
positions of other fish. This adaptability helps 

the swarm to adjust its exploration and 
exploitation strategies dynamically. 

Information Sharing 

Information sharing is crucial in 
facilitating cooperation and coordination among the 
fish in the swarm. Mathematically, TFSO can 
represent this information sharing using matrices or 
sets of variables. Let's consider a swarm of 𝑁 fish 
indexed from 1 to 𝑁. Each fish 𝑖 in the swarm 
shares its position vector 𝑃  and fitness value 𝐹  
with the other fish. The shared position matrix, 
denoted as 𝑃, is a matrix that contains the position 
vectors of all fish in the swarm. It can be 
represented as Eq.(5): 

𝑃 = [𝑃 , 𝑃 , … , 𝑃 ] (5) 

Here, 𝑃  represents the position vector of fish 𝑠, and 
it typically consists of coordinates or attributes that 
define the position in the problem space. The 
matrix 𝑃 represents the shared information about 
the positions of all fish in the swarm. 

The shared fitness values can be 
represented using a fitness matrix or a vector. Let's 
denote the fitness values of the fish as 𝐹 , 𝐹 , … , 𝐹 . 
TFSO can represent the shared fitness values as 
Eq.(6): 

𝐹 = [𝐹 , 𝐹 , … , 𝐹 ] (6) 

Here, 𝐹  represents the fitness value of fish 𝑖, which 
measures its performance or quality in the problem 
domain. The matrix 𝐹 represents the shared 
information about the fitness values of all fish in 
the swarm. 

By sharing this information, each fish in 
the swarm can learn about other fish's positions and 
fitness values. This information exchange enables 
the fish to make informed decisions, such as 
aligning their movements or evaluating the quality 
of potential solutions. 

Algorithm 9: Information Sharing 

Input: 
 Position matrix 𝑃 = [𝑃 , 𝑃 , … , 𝑃 ] 
 Fitness matrix 𝐹 = [𝐹 , 𝐹 , … , 𝐹 ] 
Output: 
 Updated position matrix 𝑃 
 Updated fitness matrix 𝐹 
Procedure: 
Step 1: Initialize an empty matrix for shared 

positions, 𝑃 , and an empty 
matrix for shared fitness values, 
𝐹 . 
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Step 2: For each fish 𝑖 in the swarm: 
a) Create a neighbourhood set 

𝑁  containing the indices of 
neighbouring fish based on a 
distance criterion. 

b) Construct a submatrix 𝑃  
containing the positions of 
fish 𝑖 and its neighbours from 
matrix 𝑃. 

c) Append 𝑃  to 𝑃 . 
d) Construct a submatrix 𝐹  

containing the fitness values 
of fish 𝑖 and its neighbours 
from matrix 𝐹. 

e) Append 𝐹   to 𝐹 . 
Step 3: Update the position matrix 𝑃 by 

replacing the original positions with 
the shared positions, i.e., 𝑃 =
𝑃   

Step 4: Update the fitness matrix 𝐹 by 
replacing the original fitness values 
with the shared fitness values, i.e., 
𝐹 = 𝐹  

Step 5: Return the updated position matrix 
𝑃 and fitness matrix 𝐹. 

Perception of Surroundings 

The perception of surroundings is an 
essential step that allows each fish to evaluate the 
positions of its neighbouring fish. This evaluation 
helps the fish determine its spatial relationships and 
enables them to make informed decisions based on 
the proximity of other fish. Mathematically, TFSO 
can represent this perception using a set-based 
approach. Let's consider a fish in the swarm, 
denoted as fish 𝑖. The fish 𝑖 can perceive its 
surroundings by evaluating the positions of 
neighbouring fish within a specific distance 𝑟. 
TFSO denote the set of neighbouring fish as 𝑁 , 
which contains the indices of fish 𝑗 within the 
distance of 𝑟 from fish 𝑖. Mathematically, TFSO 
can represent the neighbouring fish set 𝑁  as Eq.(7): 

𝑁 = 𝑗|𝑑𝑖𝑠𝑡 𝑃 , 𝑃 <= 𝑟  (7) 

Here, 𝑃  represents the position vector of fish 𝑖, and 
𝑃  represents the position vector of fish 𝑗. The 
function dist(.,.) represents the distance function 
between two positions. The condition 
𝑑𝑖𝑠𝑡 𝑃 , 𝑃 <= 𝑟 ensures that fish 𝑗 is within the 
defined distance 𝑟 from fish 𝑖. 

In this representation, the neighbouring 
fish set 𝑁  captures the fish close to fish 𝑖. The 
distance criterion 𝑟 defines the range the fish can 
perceive its surroundings. By evaluating the 

positions of the neighbouring fish, each fish can 
gather information about the spatial distribution of 
the swarm and make decisions based on this 
perceived information. 

Alignment of Movement 

The alignment of movements is a crucial 
step where each fish adjusts its movement direction 
towards the centre of mass of its neighbouring fish. 
This alignment helps the fish collectively move in a 
coordinated manner. Mathematically, TFSO can 
represent this alignment using the concept of the 
centre of mass. Let's consider a fish in the swarm, 
denoted as fish 𝑖. The goal is for fish 𝑖 to align its 
movement direction with the collective behaviour 
of its neighbouring fish. To achieve this, TFSO 
calculates the centre of mass of the neighbouring 
fish positions. Mathematically, the centre of mass, 
denoted as 𝐶, is calculated using Eq.(8). 

𝐶 = (1/|𝑁 |) ∗ 𝑃
{ ∈ }

 (8) 

Here, |𝑁 | represents the cardinality of the 
neighbouring fish set 𝑁 , which is the number of 
fish in the set. ∑ 𝑃{ ∈ }  represents the sum of the 
neighbouring fish's position vectors. 

To calculate the centre of mass, TFSO 
sums up the position vectors of all the neighbouring 
fish and divides them by the cardinality of the set. 
This normalization ensures that the centre of mass 
represents the average position of the neighbouring 
fish. Once the centre of mass 𝐶 is determined, fish 𝑖 
aligns its movement direction towards this point. 
By doing so, each fish in the swarm aligns its 
movements with the overall collective behaviour, 
promoting cohesion and coordination among the 
fish. 

Movement Update 

The movement update step involves 
updating the position of each fish based on a 
predefined movement rule or equation. This update 
allows the fish to adjust its position towards the 
desired direction, typically towards the 
neighbouring fish's centre of mass. Mathematically, 
TFSO can represent this movement update using a 
specific equation. Let's consider a fish in the 
swarm, denoted as fish 𝑖. To update its position, 
fish 𝑖 utilizes the following Eq.(9). 

𝑃 = 𝑃 + 𝑠𝑡𝑒𝑝 ∗ (𝐶 − 𝑃 ) (9) 

Here, 𝑃  represents the current position vector of 
fish 𝑖. 𝑃  represents the updated position vector of 
fish 𝑖 after the movement update. 𝐶 represents the 
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centre of mass, which is the desired direction 
towards which the fish wants to move. The 𝑠𝑡𝑒𝑝  
determines the magnitude or distance of the 
movement towards the centre of mass. 

The movement update equation calculates 
the difference between the current position 𝑃  and 
the centre of mass 𝐶. This difference is then 
multiplied by the 𝑠𝑡𝑒𝑝  and added to the current 
position, resulting in the updated position 𝑃 . By 
applying this equation, each fish adjusts its position 
to move towards the centre of mass while 
considering the magnitude of movement 
determined by the 𝑠𝑡𝑒𝑝 . This movement update 
aligns the fish with the collective behaviour and 
enhances the overall coordination within the 
swarm. 

Iteration and exploration 

This process involves iterating through the 
steps of information sharing, perception of 
surroundings, alignment of movements, and 
movement update. This iteration loop allows the 
swarm to explore and refine their collective 
behaviour over several iterations or until a 
termination criterion is met. Mathematically, TFSO 
can represent the iteration and exploration process 
as follows: 

Algorithm 10: Iteration and Exploration 

Input: 
 Number of iterations: 𝑇 

Output: 
 Final swarm behaviour 

Procedure:  
Step 1: Initialize the swarm of artificial 

fish with their initial positions 
and fitness values. 

Step 2: Iterate through the following 
steps for 𝑡 = 1 to 𝑇: 
a) Perform information sharing 

among the fish in the swarm. 
b) Calculate the perception of 

surroundings for each fish, 
evaluating the positions of 
neighbouring fish within a 
certain distance. 

c) Align the movements of 
each fish towards the centre 
of mass of the neighbouring 
fish positions. 

d) Update the positions of each 
fish based on a predefined 
movement rule or equation. 

Step 3: Check the termination criterion. 

If the criterion is met, terminate 
the iteration loop and proceed to 
the next step. Otherwise, 
continue with the next iteration. 

Step 4: Return the final swarm 
behaviour, which includes the 
updated positions and fitness 
values of the fish after the 
completion of the iteration loop. 

The iteration loop allows the swarm to 
explore the problem space, exchange information, 
and adapt their movements based on the collective 
behaviour of neighbouring fish. This iterative 
process enables the swarm to refine their solutions 
over time and converge towards optimal or near-
optimal solutions. 

3.2.5. Following behaviour 

The following behaviour is a crucial aspect 
where fish learn from the experiences and decisions 
of other fish in the swarm. It allows them to 
observe and adapt their actions based on the 
success and behaviour of well-performing fish. This 
adaptive behaviour plays a significant role in 
improving the overall performance of the swarm. 
Mathematically, the Following Behavior can be 
described as utilizing the knowledge gained from 
labelled instances to guide the classification process 
for new, unseen instances. This involves leveraging 
the information in the labelled examples to make 
informed decisions for unlabeled instances. The 
following steps are involved in the Following 
Behavior: 

 Data Collection: Gather a set of labelled 
instances, denoted as 𝐷, where each labelled 
instance is represented as (𝑥 , 𝑦 ). Here, 𝑥  
represents the input features of the labelled 
instance, and 𝑦  represents its corresponding 
class label. 

 Learning Phase: Utilize the labelled instances 
to learn and build a model or acquire 
knowledge about the underlying patterns and 
relationships between the input features and 
their corresponding class labels. This learning 
phase can involve various techniques, such as 
training a classifier using supervised learning 
algorithms. 

 Classification of Unlabeled Instances: Once 
the learning phase is complete, apply the 
acquired knowledge to classify new, unlabeled 
instances.Given an unlabeled instance 𝑥 , the 
goal is to assign a class label based on the 
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learned information from the labelled 
instances. 

 Decision-making: Utilize the learned model or 
knowledge to predict the unlabeled instances. 
This involves applying decision rules or 
mathematical functions to determine each 
unlabeled instance's most likely class label. 

3.2.6. Digital noticeboard 

A digital noticeboard is utilized in the 
optimization process to track and share the health 
status of the top synthetic fish. After each iteration, 
every fish checks the noticeboard to evaluate its 
performance relative to others in the swarm. The 
goal is always to maintain the best possible result 
on the noticeboard. This is achieved by comparing 
each fish's state's value with the objective function's 
stored value on the noticeboard. If the current 
state's value is higher, the corresponding entry on 
the noticeboard is updated to reflect the new state. 
The algorithm continues running iterations until all 
possible iterations have been completed. At this 
point, the state displayed on the noticeboard 
represents the best possible solution achieved by 
the swarm. 

Algorithm 11: Digital Noticeboard 

Step 1: Initialize the noticeboard with an 
initial state and the corresponding 
value of the objective function. 

Step 2: Initialize the swarm of synthetic fish 
with their initial states. 

Step 3: Run iterations of the optimization 
process until a termination condition 
is met. 

Step 4: For each fish in the swarm: 
a) Evaluate the fish's current state 

by computing the value of the 
objective function. 

b) Compare the value of the 
current state with the value 
stored on the noticeboard. 

c) If the current state's value is 
higher: 

d) Update the noticeboard with the 
new state and its corresponding 
value. 

e) Otherwise, no changes are 
made to the noticeboard. 

Step 5: Check the termination condition: 
a) If the termination condition is 

satisfied (e.g., reaching a 
maximum number of 
iterations), proceed to the next 

step. 
b) Otherwise, go back to step 4 

and continue with the next 
iteration. 

Step 6: Termination 
a) At this point, the state displayed 

on the noticeboard represents 
the best possible solution 
achieved by the swarm. 

 

3.2.7. Varying step size 

Various factors influence the optimization 
outcome of the algorithm, and in this research, 
TFSO focuses on examining the impact of the Step 
parameter on the convergence speed and accuracy. 
By adjusting the value of the Step parameter, TFSO 
can control how quickly the algorithm converges 
and the precision of the obtained solution. 
Increasing the Step parameter allows the artificial 
fish to take more significant steps and cover more 
ground in each iteration. This accelerates the 
convergence rate as the fish explores a more 
extensive search space. However, it is crucial to 
find the right balance, as excessively large or small 
step sizes can impede convergence. When the step 
size is too large, especially in the later stages of the 
algorithm, the artificial fish may traverse a wide 
range of the search space. This can result in the fish 
oscillating around the extreme points and struggling 
to reach an accurate solution. 

On the other hand, using tiny step sizes 
can lead to low-frequency oscillations and promote 
high-accuracy solutions. However, convergence 
may be slowed down due to the limited field of 
view of the artificial fish, making it prone to getting 
trapped in local extrema. This research applies an 
adaptive step-size approach to address the 
challenges mentioned above. This adaptive step 
size technique helps mitigate the onset of 
vibrations, enhances convergence speed, and 
improves the accuracy of the optimization process. 
Specifically, the algorithm's preying behaviour, 
swarming behaviour, and the following behaviour 
incorporate different adaptive step size strategies 
tailored to their respective tasks. 

Algorithm 12: Varying Step Size 

Step 1: Initialize the algorithm parameters, 
including the Step parameter. 

Step 2: Generate an initial population of 
artificial fish. 

Step 3: Evaluate the fitness of each fish in 
the population. 

Step 4: While the termination criterion is 
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not met, do the following: 
a) Apply the preying behaviour to 

update the fish positions and 
adjust the step size adaptively. 

b) Apply the swarming behaviour 
to update the fish positions and 
adjust the step size adaptively. 

c) Apply the following behaviour 
to update the fish positions and 
adjust the step size adaptively. 

d) Evaluate the fitness of each fish 
in the updated population. 

e) Update the best solution found 
so far. 

Step 5: Terminate the algorithm and output 
the best solution obtained. 

 

The overall process of TFSO is provided 
in Algorithm 13. 

Algorithm 13: TFSO 
Step 1: Initialize Parameters: 

 Set the number of artificial fish 
(𝑁). 

 Set the maximum number of 
iterations. 

 Set the search space boundaries 
(𝑥  𝑎𝑛𝑑 𝑥 ). 

 Set the step size for random 
movement. 

 Set the visual field (visual) to 
determine the neighborhood. 

 Set the crowded level (crowded), 
determining the fish density. 

 Initialize the state vector for each 
fish with random positions within 
the search space. 

 Evaluate the fitness value for each 
fish's initial position. 

Step 2: Start Iterations: 
 Set the current iteration counter to 

1. 
 While the termination criterion is 

not met or the maximum number of 
iterations is not reached, do the 
following steps: 

Step 3: Preying Behavior: 
 Evaluate the fitness value for each 

fish's current position. 
 Identify the positions of the fish 

with the highest fitness values as 
prey locations. 

 For each fish, select one of the prey 
locations randomly. 

 Calculate the new position for each 
fish using a predefined strategy: 

 Update the position based on the 
difference between the fish's current 
and the selected prey's positions. 

 Introduce a random perturbation to 
diversify the search. 

 Ensure the new position is within 
the search space boundaries. 

 Evaluate the fitness value for each 
fish's new position. 

Step 4: Swarming Behavior 
 Share information among the fish in 

the swarm: 
 Update the shared position matrix 

(P) with the new positions of all 
fish. 

 For each fish, calculate the average 
position of its neighbours within the 
visual field. 

 Update the fish's position towards 
the average position: 

 Adjust the fish's position based on 
its current and average positions. 

 Ensure the new position is within 
the search space boundaries. 

 Evaluate the fitness value for each 
fish's updated position. 

Step 5: Random Behavior 
 For each fish, perform the random 

movement: 
 Select a random position within the 

search space. 
 Update the fish's position based on 

random movement. 
 Ensure the new position is within 

the search space boundaries. 
 Evaluate the fitness value for each 

fish's randomly moved position. 
Step 6: Check Termination Criterion 

 If the termination criterion is met 
(e.g., the desired fitness value is 
achieved), stop the iterations and 
return the best solution found. 

 Otherwise, increment the iteration 
counter and go to Step 2. 

 

3.3. Fusion of TFSO and HMM 

The fusion of TFSO and HMMs offers a 
promising approach to enhance image classification 
tasks. TFSO, as a nature-inspired optimization 
algorithm, exhibits excellent exploration and 
exploitation capabilities. By leveraging the 
collective intelligence of a fish swarm, TFSO can 
effectively navigate complex search spaces and find 
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optimal solutions. On the other hand, HMMs are 
well-suited for modelling sequential data and 
capturing temporal dependencies, making them 
suitable for analyzing image sequences. However, 
HMMs rely on accurate parameter estimation, 
feature selection, and model structure optimization 
to achieve optimal performance. By merging TFSO 
with HMMs, the fusion approach allows for 
optimizing HMM parameters, feature selection, and 
model structure using TFSO's optimization 
capabilities. TFSO can explore the parameter and 
feature spaces to find optimal parameter values, 
select informative features, and determine the 
optimal model structure. This fusion enables 
HMMs to capture the underlying patterns in image 
data more accurately, improving classification 
accuracy. The integration of TFSO and HMMs 
offers a synergistic combination of optimization 
and modelling techniques, enhancing the 
capabilities of both approaches and providing a 
robust framework for image classification tasks. 

Algorithm 14: TFSO-HMM 
Step 1: Initialize HMM parameters 

(transition probabilities, emission 
probabilities) 

Step 2: Initialize TFSO parameters (swarm 
size, maximum iterations, etc.). 

Step 3: Generate an initial swarm of fish, 
each representing a potential solution 
(parameter set) for the HMM. 

Step 4: Evaluate the fitness of each fish in 
the swarm based on their 
corresponding HMM parameters 
(classification accuracy on a 
training/validation dataset). 

Step 5: Set each fish's unique best positions 
and fitness values to their initial 
positions and fitness values. 

Step 6: Determine the fish's best fitness as 
the global best position and fitness. 

Step 7: Repeat the following steps until 
convergence or a maximum number 
of iterations is reached: 

a) Update the velocity and position of 
each fish based on personal and 
global best positions and social 
interactions within the swarm. 

b) Evaluate the fitness of each fish 
based on the updated HMM 
parameters. 

c) Update personal best positions and 
fitness values if improved. 

d) Update the global best position and 
fitness if a fish with better fitness is 
found. 

Step 8: Extract the optimized parameter set 
corresponding to the fish with the 
best fitness. 

Step 9: Update the HMM parameters with 
the optimized parameter set. 

Step 10: Classify new or unseen images using 
the optimized HMM parameters. 

Step 11: Evaluate the classification accuracy 
of the optimized HMM. 

 

4. ABOUT THE DATASET 

The “Cotton Plant Disease Dataset” is a 
comprehensive and focused collection of images 
centred around diseases commonly affecting cotton 
plants. This dataset consists of a substantial number 
of images, totalling 26,100, providing a wealth of 
visual information for researchers and practitioners 
in plant pathology and agriculture. With a dataset 
size of approximately 4GB, the “Cotton Plant 
Disease Dataset” offers an extensive representation 
of four significant diseases impacting cotton plants: 
Aphids, Armyworms, Bacterial Blight, and 
Powdery Mildew. These diseases primarily 
manifest on the leaves of cotton plants, making the 
dataset highly relevant for studying leaf-based 
cotton plant diseases. 

Additionally, the dataset includes a 
valuable subset of images featuring healthy cotton 
leaves. This inclusion allows for comparative 
analysis and serves as a reference point for 
accurately distinguishing diseased plants from 
healthy ones. It is important to note that the dataset 
does not cover diseases affecting other parts of 
cotton plants, such as the stem, buds, flowers, or 
bolls. The primary focus of this dataset is to 
provide a rich collection of images explicitly 
targeting diseases occurring on the leaves of cotton 
plants. Researchers and practitioners can leverage 
the “Cotton Plant Disease Dataset” to develop and 
validate advanced algorithms, machine learning 
models, and image recognition techniques. This 
dataset can enhance disease identification and 
classification accuracy and efficiency in cotton 
plants. This, in turn, enables more effective disease 
management strategies, leading to improved crop 
health and increased yield. 

The availability of a substantial number of 
images in this dataset allows for comprehensive 
analysis and exploration of different disease 
manifestations, stages, and variations. Researchers 
can delve into each disease’s visual patterns and 
characteristics, contributing to developing robust 
diagnostic tools and decision support systems for 
cotton plant disease management. The “Cotton 



Journal of Theoretical and Applied Information Technology 

31st October 2023. Vol.101. No 20 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6494 

 

Plant Disease Dataset” available at 
https://www.kaggle.com/datasets/dhamur/cotton-
plant-disease 

5. PERFORMANCE METRICS 

 Classification Accuracy (CA) represents the 
effectiveness of a classification model in 
accurately distinguishing between healthy and 
diseased cotton plant leaves. It measures the 
correctness of the model’s predictions, 
expressed as the ratio of correctly classified 
leaves to the total number of leaves in the 
dataset. 

 F-Measure (FM), in the context of cotton leaf 
disease identification, assesses the overall 
performance of a classification model by 
combining precision and recall. It provides a 
single score representing the harmonic mean of 
precision and recall, thus capturing the model’s 
ability to accurately identify diseased cotton 
leaves and minimize false positives and 
negatives. 

 Fowlkes-Mallows Index (FMI) in cotton leaf 
disease identification quantifies the level of 
agreement or similarity between two 
techniques or algorithms in correctly 
identifying and classifying different diseases in 
cotton plant leaves. It measures the agreement 
between the pairwise relationships of the 
disease identification results obtained from the 
two methods, providing a single value that 
indicates the degree of similarity or agreement 
between them.  

 Matthews Correlation Coefficient (MCC) is 
a measurement that quantifies the quality of a 
classification model in correctly identifying 
and classifying different types of diseases 
affecting cotton plant leaves. It considers true 
positives, false positives, and false negatives, 
providing a single value representing the 
model’s overall performance. 

 

6. RESULTS AND DISCUSSION 

6.1. Assessment of Classifiers using CA and FM 
Performance Metrics 

Figure 1 presents the CA and FM analysis 
of three classification algorithms: RF, SVM, and 
TFSO-HMM. The graph showcases the 
performance of these algorithms in terms of their 
ability to classify instances accurately and provide a 
balanced evaluation of precision and recall. 

 

Classification Accuracy (CA) calculates 
the proportion of correct predictions out of the total 
predictions made, providing an understanding of 
how accurate the model is in its classifications. RM 
is an ensemble learning algorithm that combines 
multiple decision trees to make predictions. Each 
decision tree is constructed on a random subset of 
features and generates its prediction. The final 
prediction is determined by aggregating the 
predictions of all the trees through a voting 
mechanism. In the analysis, RF achieves a CA of 
50.487%. This relatively low accuracy can be 
attributed to the limitations of individual decision 
trees and the possible presence of irrelevant or 
redundant features in the dataset. RF may struggle 
to capture the underlying patterns and relationships 
in the data, resulting in lower classification 
accuracy. SVM is a robust supervised learning 
algorithm that aims to find an optimal hyperplane 
in the feature space. The hyperplane separates 
different classes while maximizing the margin 
between them. SVM achieves a CA of 64.333% in 
the analysis. SVM's ability to identify the optimal 
decision boundary allows it to achieve better 
classification accuracy than RF. By maximizing the 
margin, SVM can effectively handle complex 
decision boundaries and capture intricate patterns in 
the data, leading to improved classification 
accuracy. TFSO-HMM is a proposed algorithm 
combining Hidden Markov Models (HMM) 
principles and Tenacious Fish Swarm Optimization 
(TFSO). HMM is a statistical model that can 
capture the underlying dynamics of sequential data. 
TFSO is an optimization algorithm inspired by the 
collective behavior of fish swarms, which 
emphasizes persistence and adaptability. In the 
analysis, TFSO-HMM achieves the highest CA of 
95.379%. The integration of TFSO with HMM 
enables TFSO-HMM to effectively optimize the 
HMM parameters and capture the complex 
temporal patterns in the data, resulting in 
significantly higher classification accuracy. 

 

Figure 1. CA and FM 
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F-Measure (FM) provides a single score 
that balances the model's ability to make accurate 
positive predictions and effectively identify true 
positive instances. RF achieves an FM of 52.013% 
in the analysis. This relatively low FM score 
indicates that RF may have lower precision and 
recall than the other algorithms. RF's ensemble of 
decision trees might struggle with accurately 
identifying both positive and negative instances, 
resulting in a suboptimal F-measure. SVM achieves 
an FM of 63.757% in the analysis. The higher FM 
score indicates that SVM exhibits better precision 
and recall than RF. SVM's ability to find an optimal 
hyperplane allows it to effectively separate different 
classes and reduce false positives and negatives, 
resulting in a higher F-measure. TFSO-HMM 
achieves the highest FM of 95.487% in the 
analysis. Integrating TFSO with HMM in TFSO-
HMM enhances precision and recall by optimizing 
the HMM parameters and capturing complex 
temporal patterns. This results in significantly 
better class discrimination, leading to a higher F-
measure than RF and SVM. 

Table 1.CA and FM Results 

Classification Algorithms CA FM 
RF 50.487 52.013 

SVM 64.333 63.757 
TFSO-HMM 95.379 95.487 

 

The working mechanisms of the 
classification algorithms contribute to the observed 
CA and FM results in Figure 1. RF's ensemble 
learning approach may result in lower classification 
accuracy and F-measure due to limitations in 
individual decision trees. SVM's optimal 
hyperplane search enhances its accuracy and F-
measure compared to RF. TFSO-HMM leverages 
the optimization process of TFSO and the modeling 
capabilities of HMM to achieve significantly higher 
classification accuracy and F-measure. 

6.2. Assessment of Classifiers using FMI and 
MCC Performance Metrics 

Figure 2 presents the analysis of two 
evaluation metrics, namely the Fowlkes-Mallows 
Index (FMI) and Matthews Correlation Coefficient 
(MCC), for three classification algorithms: Random 
Forest (RF), Support Vector Machine (SVM), and 
TFSO-HMM (Tenacious Fish Swarm 
Optimization-Based Hidden Markov Model). These 
metrics provide insights into the algorithms' 
performance regarding clustering quality and 
overall correlation between predicted and actual 
classifications. 

 

Figure 2. FMI and MCC 

The FMI measures the similarity between 
the obtained and ground truth clusters. It quantifies 
the degree of agreement between predicted and true 
labels. Higher FMI scores indicate better clustering 
performance. In Figure 2, RF achieves an FMI of 
52.016, SVM achieves 63.763, and TFSO-HMM 
achieves the highest FMI of 95.488. These results 
suggest that TFSO-HMM performs superior 
clustering by effectively capturing the underlying 
patterns and clustering the instances more 
accurately. 

The MCC is a correlation coefficient that 
considers true positives, true negatives, false 
positives, and false negatives. It comprehensively 
measures the overall classification performance, 
considering both binary classification results and 
class imbalance. Higher MCC values indicate better 
classification performance. In Figure 2, RF 
achieves an MCC of 0.887, SVM achieves 28.669, 
and TFSO-HMM achieves the highest MCC of 
90.757. These results indicate that TFSO-HMM 
outperforms both RF and SVM regarding 
classification accuracy and handling class 
imbalance. 

The superior performance of TFSO-HMM 
in terms of FMI and MCC can be attributed to its 
unique working mechanism. TFSO-HMM 
combines the optimization capabilities of Tenacious 
Fish Swarm Optimization (TFSO) with the 
modeling capabilities of Hidden Markov Models 
(HMM). TFSO allows for efficient exploration of 
the search space, optimizing the parameters of the 
HMM model. This optimization process enables 
TFSO-HMM to accurately capture the underlying 
patterns in the data, leading to improved clustering 
quality and overall classification performance. 

Figure 2 demonstrates the FMI and MCC 
analysis of three classification algorithms: Random 
Forest, Support Vector Machine, and TFSO-HMM. 
The results highlight the superior clustering quality 
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and classification performance achieved by TFSO-
HMM. The unique working mechanism of TFSO-
HMM, combining TFSO optimization with HMM 
modeling, enables it to effectively capture 
underlying patterns and optimize the clustering 
process, leading to higher FMI and MCC scores. 
These findings showcase the potential of TFSO-
HMM as a promising approach for clustering and 
classification tasks, providing valuable insights for 
researchers and practitioners in machine learning. 

Table 2.FMI and MCC Results 

Classification Algorithms FMI MCC 
RF 52.016 0.887 

SVM 63.763 28.669 
TFSO-HMM 95.488 90.757 

 

7. CONCLUSION 

The Tenacious Fish Swarm Optimization-
based Hidden Markov Model (TFSO-HMM) 
approach presented in this research offers a robust 
and innovative solution for augmented and accurate 
cotton leaf disease identification and yield 
prediction. The proposed method was evaluated on 
the widely recognized and comprehensive "Cotton 
Plant Disease Dataset," which served as a 
benchmark for assessing the performance of the 
TFSO-HMM framework and existing classification 
algorithms. Through rigorous experimentation on 
the "Cotton Plant Disease Dataset," the superior 
performance of the TFSO-HMM method was 
demonstrated, surpassing existing approaches in 
terms of augmented accuracy and reliable 
predictions. By leveraging the unique 
characteristics of TFSO and HMM, the proposed 
framework exhibited enhanced capabilities in 
optimizing the classification process and capturing 
temporal dependencies in disease progression and 
yield prediction. Utilizing the "Cotton Plant Disease 
Dataset" for evaluation enhances the credibility of 
the research findings and highlights the practical 
applicability of the TFSO-HMM approach in real-
world scenarios. By leveraging this dataset, which 
contains diverse instances of cotton leaf diseases, 
the proposed method was subjected to thorough 
analysis and comparison with existing algorithms, 
providing valuable insights into its effectiveness 
and potential impact on disease management and 
yield optimization. The outcomes of this research 
contribute significantly to the advancement of 
agricultural practices, empowering farmers, 
agronomists, and decision-makers with a reliable 
tool for early disease detection and accurate yield 
prediction in cotton plants. The proposed TFSO-
HMM framework can potentially mitigate losses 

and promote sustainable agriculture by maximizing 
crop yield through timely interventions and 
informed decision-making. 
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