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ABSTRACT 

Satellite Image Classification is an essential aspect of remote sensing image processing. Satellite imagery 
has emerged as a pivotal data source for diverse applications such as land cover classification, urban planning, 
environmental monitoring, and disaster management. Satellite images are often subjected to various sources 
of noise, which can degrade the performance of traditional image classification techniques. Deep 
Convolutional Neural Networks (DCNNs) have shown remarkable success in image analysis tasks and have 
demonstrated potential for handling noisy satellite images. This paper investigates the performance of three 
popular DCNN architectures, namely VGG-16, ResNet-50, and Inception V4, for classifying noisy satellite 
images. To create a diverse and challenging dataset, we introduce noise into the original high-resolution 
satellite images, simulating real-world noise scenarios. The RSI-CB dataset covers various geographic 
regions and land cover types, encompassing the challenges faced during satellite image analysis. It contains 
six categories with 33 sub-classes and over 24,000, 256 X 256 pixel images. This paper contributes to 
advancing the use of DCNNs for satellite image classification in noisy environments. The study offers 
valuable guidance for selecting appropriate architectures based on the noise characteristics of satellite image 
datasets, ultimately enhancing the accuracy and reliability of satellite-based applications in challenging real-
world conditions. 

Keywords: Deep Convolution Neural Network, Remote Sensing Image Classification, VGG-16, ResNet-50, 
Inception V4

1. INTRODUCTION  
 
Remote sensing has transformed our ability to 
understand and monitor the Earth's surface, 
providing invaluable insights into land cover, 
environmental changes, urban development, and 
natural disasters. Classification of satellite imagery, 
which involves designating specific land cover 
categories to individual image pixels, is one of the 
fundamental tasks in remote sensing image 
processing. This classification is essential for 
numerous applications, including urban planning, 
environmental monitoring, agricultural 
management, and emergency response. 
However, the inherent challenges presented by 
satellite imagery frequently disrupt the efficacy of 
conventional image classification techniques. These 
obstacles include varying atmospheric conditions, 
sensor noise, impulse noise, variations in 
illumination, and the complexities of diverse land 

cover types. Despite such obstacles, the need for 
reliable and precise classification has prompted the 
investigation of advanced machine learning 
techniques, particularly Deep Convolutional Neural 
Networks (DCNN). 
DCNNs, a subset of deep learning algorithms, have 
demonstrated remarkable success in 
various computer vision tasks, including image 
classification, object detection, and segmentation [1-
3]. Due to their ability to acquire hierarchical 
features directly from raw data and their capacity to 
capture complex spatial patterns, they are ideally 
adapted for remote sensing image analysis [4-6]. In 
addition, DCNNs have the potential to handle noise 
and variations in satellite imagery that conventional 
methods have difficulty mitigating. 
The benchmark for remote sensing image 
classification (RSI-CB) is available for download at 
https://github.com/lehaifeng/RSI-CB consists of six 
categories and 33 subclasses containing over 24,000 
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images. RSI-CB currently comprises six categories: 
agricultural land, construction land and facilities, 
transportation and facilities, water and water 
conservation facilities, forestry, and other land uses 
[7]. Each of these categories is subdivided into 
several subcategories. The main contributions of this 
paper are as follows: (1) The system consists of six 
categories and thirty-five subclasses. This data set 
can be utilized to effectively develop new data-
driven algorithms and advance state-of-the-art 
techniques due to its large number of images, diverse 
objects, and complex categories. (2) Classical 
DCNN models, such as VGG-16[8], Inception V4 
[9], and ResNet-50 [10] are used to train the Dataset. 
DCNN models trained by RSI-CB have good 
performance and generalization ability. Experiments 
demonstrate that RSI-CB is a more applicable 
standard for remote sensing image classification in 
the era of big data and has numerous potential 
applications [11]. This paper explores the 
classification of large-scale remote sensing images 
using DCNNs.  
By adding impulse noise to high-resolution satellite 
images, we simulate real-world noise scenarios 
to evaluate the robustness and adaptability of our 
chosen DCNN architectures. 
Our contributions to this study extend beyond 
benchmarking the efficacy of deep convolutional 
neural networks (DCNNs) on remote sensing 
imagery. We provide insights regarding the selection 
of suitable architectures based on the noise 
characteristics inherent in satellite image datasets. 
Our research seeks to enhance the accuracy and 
dependability of satellite-based applications in 
challenging real-world conditions by addressing the 
challenges of noise environments. This research 
ultimately advances the use of deep convolutional 
neural networks (DCNNs) for satellite image 
classification, bridging the divide between cutting-
edge deep learning techniques and the needs of 
practical remote sensing applications. 
 
2. RELATED WORK 
 
Basic Requirements for Remote Sensing Image 
Benchmark Using Deep Learning: Deep learning 
models, such as DCNN, have significantly 
advanced in various tasks, including image tracking 
and scene understanding. DCNN models are highly 
complex and contain millions of parameters; 
consequently, they are susceptible to overfitting on 
tiny benchmarks [8-10]. 
Incorporating advanced machine learning 
techniques has led to a revolutionary transformation 
in classifying remote sensing images. Traditional 

methods relied on hand-engineered features and 
pixel-based approaches and frequently needed 
help conveying satellite imagery's inherent 
complexity and variability. Deep learning, 
particularly Deep Convolutional Neural Networks 
(DCNNs), has propelled remote sensing image 
classification into new domains of precision and 
adaptability. 
Initially designed for general image analysis tasks, 
deep convolutional neural networks (DCNNs) have 
effectively confronted remote sensing challenges. 
Several architecture families have been utilized for 
remote sensing image classification, each 
contributing distinctive advantages to the field. 
 
The VGG architecture, introduced by Simonyan and 
Zisserman [8], emphasized the significance of 
network depth when learning complex features. The 
VGG-16 variant, with its uniform architecture and 
stacked 3x3 convolutional layers, demonstrated the 
effectiveness of deep neural networks in image 
analysis. VGG-16's capacity to understand complex 
features incrementally prepared the way for its 
adaptation to remote sensing [8]. Researchers 
recognized its potential to reveal the subtle land 
cover characteristics embedded in satellite images. 
The ResNet family pioneered the concept of residual 
connections [10] by utilizing this foundation. 
Residual networks, such as ResNet-50, mitigated the 
vanishing gradients problem by incorporating 
shortcut connections that allowed the network to 
learn residual mappings. This innovation enabled the 
training of much deeper neural networks and sparked 
a revolution in the classification of remote sensing 
images [10]. The deep architecture of ResNet-50 
demonstrated a remarkable aptitude for learning 
complex features, making it ideally suited for 
capturing the intricate patterns present in satellite 
images. 
In contrast, the Inception architecture introduced a 
novel method for feature extraction by employing 
multiple filter sizes in parallel branches [13]. This 
parallel processing improved the network's ability to 
capture various image details. Utilizing the assets of 
both architectures, the subsequent development of 
Inception-v4, which incorporated elements from the 
ResNet architecture, enhanced its capabilities even 
further [13]. The inherent capacity of the 
architecture to capture features at multiple scales 
complemented the multiscale nature of remote 
sensing images. 
In remote sensing image classification, these 
architectures have been intensively studied on 
various datasets, ranging from multispectral satellite 
images to high-resolution aerial photographs. Zhang 
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et al. [12] examined deep learning architectures, 
such as VGG-16, ResNet-50, and Inception-v3, for 
classifying land cover in high-resolution remote 
sensing images. Their findings underscored the 
importance of architectural depth in remote sensing 
applications by highlighting the benefits of deeper 
architectures in distinguishing complex land cover 
features. 
Recent efforts in the field have broadened the 
investigation to include chaotic data, which is more 
representative of actual remote sensing conditions. 
Researchers have injected synthetic noise into 
remote sensing datasets [14] to simulate the 
unpredictability introduced by atmospheric 
conditions and sensor noise. This direction 
recognizes the practical difficulties encountered in 
satellite image analysis, where noise can induce 
uncertainty in classification results. This paper 
evaluates the performance of three prominent 
DCNN architectures (VGG-16, ResNet-50, and 
Inception V4) under both noisy and noise-free 
conditions. The study provides valuable guidance on 
selecting the most appropriate DCNN architecture 
based on noise characteristics, thereby improving the 
accuracy and reliability of satellite-based 
applications in challenging real-world conditions. It 
also addresses the critical issue of noise in satellite 
image analysis, bridging the gap between cutting-
edge deep learning techniques and practical remote 
sensing requirements. This research is significant for 
satellite image classification because VGG-16's 
depth facilitates capturing intricate patterns, ResNet-
50's skip connections assist in training deep 
networks, and Inception V4 excels at managing 
multiscale and complex features. 
Despite these commendable advancements, there is 
a cavity in the literature regarding evaluating these 
architectures on large-scale remote sensing image 
classification tasks with chaotic data. To address this 
deficiency, this study aims to comprehensively 
assess the performance of the VGG-16, ResNet-50, 
and Inception V4 architectures on the "RSI-CB" 
dataset. By incorporating synthetic noise and 
including diverse land cover categories, the "RSI-
CB" dataset provides a unique perspective for 
evaluating the adaptability of these architectures in a 
remote sensing context characterized by noise. 
 
3. DATASET 

 
3.1. Distribution Characteristics of RSI-CB: 
The RSI-CB benchmark comprises 33 subcategories 
containing approximately 24,000 images, with an 
average of approximately 690 images per category. 
According to Table 1, the significant classes 

correspond to their subclasses [7,11]. Additional 
subcategories are within the main types of 
transportation and facilities, forests, and water and 
water conservation facilities. Table 2 shows the 
frequency of each category.  
RSI-CB has the advantages of spatial resolution, 
quantity, and a novel database construction method. 
The construction of RSI-CB is based not only on the 
meaning of the database but also on the 
crowdsourced data-based method for its potential 
application value in weak-supervised learning to 
achieve automated data annotation and error 
correction [7]. 
Increasing the number of images in these categories 
may improve the chance of the inter-class feature 
response interval having an independent 
distribution, enhancing image classification 
accuracy. 
The RSI-CB construction principles are as follows: 

1. Each category must contain an abundance 
of data. Per category, RSI-CB contains 
approximately 690 patches. 

2. The level of each category is intended to 
enhance the diversity and breadth of the 
standard. The data set consists of 33 leaf 
nodes (sub-classes) connected to six parent 
nodes (parent classes) in a two-level tree 
structure. 

3. The primary substance of the object must 
be easily distinguishable to prevent 
semantic divergence in images. 

4. Each class has various imaging angles, 
sizes, shapes, and colors to increase sample 
diversity, enhancing the model's 
generalization performance and robustness. 
 

4. METHODOLOGY 
 
Adding different levels of impulse noise to the 
images to see how well the models could classify 
them correctly.  Introduced impulse noise with 
varying probabilities to the test images to simulate 
real-world scenarios with different levels of image 
distortion. And trained three popular DCNN 
architectures – VGG-16, ResNet 50, and Inception 
V4 on the dataset and subsequently tested these 
models using the noisy images to assess their 
classification accuracy and performance under noisy 
conditions.  
Data organization comprises three primary aspects: 
selection of the training, validation, and test sets for 
RSI-CB; data augmentation; and data organization 
for model transfer performance. 
1. Randomly selecting data: The training, validation, 
and test sets are chosen randomly according to a 
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particular proportion, and labeling is disrupted 
further to reflect the randomness and objectivity of 
the data. 
2. Data augmentation: We augment all RSI-CB data 
for each image by cutting a fixed-size segment from 
the center and upper-left, upper-right, lower-left, and 
lower-right corners of each image and flipping them 

before feeding them into the DCNN. Thus, the 
original data is multiplied by ten. 
3. Data organization for model transfer performance: 
We examine the transferability of the RSI-CB 
training model to other data sets and the efficacy of 
its transferability.

 
Table 1. The sub-categories corresponding to the large categories in RSI-CB 

Large Class Subclass 
Agricultural land green_farmland, dry_farm, bare_land 

Woodland 
Artificial_grassland, sparse_forest, forest, mangrove, river_protection_forest, 

shrubwood, sapling 
Transportation 

and facility 
airport_runway, avenue, highway, marina, parking lot, crossroads, bridge, 

airplane 
Water area 
and facility 

coastline, dam, Hirst, lakeshore, river, sea, stream 

Construction land 
and facility 

city_building, container, residents, storage_room, pipeline, town 

Other land desert, snow_mountain, mountain, sand beach 
 

Table 2. Different sub-classes and the number of images in each 
Categories Number Categories Number Categories Number 

airplane 351 dry_farm 1309 river 539 
airport_runway 678 Forest 1082 river_protection_forest 524 

artificial_grassland 283 green_farmland 644 Sand beach 536 
avenue 544 highway 223 sapling 879 

bare_land Hirst hirst 628 sea 1028 
bridge 469 lakeshore 438 Shrub wood 1331 

city_building 1014 mangrove 1049 snow_mountain 1153 
coast_line 459 marina 366 sparse_forest 1110 
container 660 mountain 812 storage_room 1307 

crossroads 553 parking lot 467 stream 688 
dam 324 pipeline 198 town 355 

desert 1092 residents 810  
 
4.1. Data Collection and Preparation 
The "RSI-CB 256" dataset, an extensively curated 
collection of remote sensing images encompassing a 
wide variety of land cover types and geographic 
regions, is the foundation of our study. The dataset, 
consisting of over 24,000 high-resolution images 
with a resolution of 256x256 pixels, is a 
comprehensive benchmark for evaluating the 
performance of DCNN architectures in large-scale 
remote sensing image classification. 
Impulse noise is introduced into the original high-
resolution satellite images to make the dataset with 
the complexities encountered in real-world remote 
sensing scenarios. This noise synthesis method is 
inspired by atmospheric distortions and sensor-
induced artifacts, thereby augmenting the dataset's 

realism and applicability to real-world scenarios. 
Noise simulation is used to examine how well the 
chosen DCNN architectures can perform in the 
presence of varying levels and types of noise. 
 
4.2. Deep Convolutional Neural Network 

Architectures 
Our investigation focuses primarily on three notable 
DCNN architectures: VGG-16, ResNet-50, and 
Inception V4. These architectures have attained 
much attention for their capabilities in image 
analysis tasks and have demonstrated remarkable 
success across various datasets [15-17]. 
4.2.1. VGG-16 architecture 
VGG-16 has 16 layers, 13 convolutional layers, and 
three fully linked layers.  
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Figure 1. VGG-16 Architecture 
 

Figure 1 shows the VGG-16 Architecture. All 
convolutional layers feature a 3x3 pixel receptive 
field and are followed by a Rectified Linear Unit 
(ReLU) activation function. The network 
architecture is summarized below: 
VGG-16's input layer takes an RGB image with a 
resolution of 224x224 pixels. The image has three 
color channels (Red, Green, and Blue), each having 
a pixel value ranging from 0 to 255. Convolutional 
Layers: VGG-16 has 13 convolutional layers, each 
using a tiny 3x3 filter with a stride of 1. To extract 
features, these filters are applied to the input image. 
The first layer has 64 filters, followed by layers with 
128, 256, 512, and 512 filters. As we go further into 
the network, the number of filters in each layer rises, 
enabling VGG-16 to learn more complicated 
patterns and higher-level features. 
Activation Function: A Rectified Linear Unit 
(ReLU) activation function is applied element-by-
element after each convolutional layer. The ReLU 
function adds non-linearity, allowing the network to 
learn and represent more complicated data 
connections. 
Max Pooling Layers: A max pooling layer with a 2x2 
window and a stride of 2 is applied after every two 
convolutional layers. Max pooling aids in reducing 
the spatial dimensions of feature maps while 
preserving the most relevant characteristics. It also 
adds some translation invariance, making the model 
more resistant to changes in the location of objects 
in the input image. 
Fully Connected Layers: Three fully connected 
layers follow the convolutional layers. These 
traditional artificial neural network layers link all 
neurons from the previous layer to all neurons in the 
next layer. The first two completely connected layers 
contain 4,096 neurons, followed by a third fully 
connected layer with several neurons equal to the 
number of classes in the classification job (for 
example, 1,000 for ImageNet classification). 

Softmax Activation: The VGG-16 output layer 
employs the softmax activation algorithm. The last 
layer outputs are converted into class probabilities 
using the softmax algorithm. Each output shows the 
likelihood that the input image belongs to a 
particular class. The projected class for the input 
image is the class with the most significant 
probability. 
VGG-16 is distinguished by its deep architecture, 
which employs many convolutional and fully linked 
layers to learn hierarchical representations of input 
data. While it performed well on image classification 
tests, its most significant disadvantage is its high 
computational cost owing to its depth.  Nonetheless, 
VGG-16 is a powerful model that laid the path for 
following advances in deep learning and computer 
vision.  
 
4.2.2. ResNet-50 Architecture 
ResNet-50 is a ResNet (Residual Neural Network) 
family deep convolutional neural network 
architecture. It was developed by Microsoft 
Research experts and has 50 layers. Using residual 
blocks and skip connections is the major innovation 
of ResNet-50. Figure 2 shows the ResNet-50 
Architecture. 
ResNet-50 receives an RGB image with 224x224 
pixels as input. The image has three color channels 
(Red, Green, and Blue), and the pixel values are 
generally scaled to the range [0, 1]. 
Convolutional Layers: The ResNet-50 design starts 
with a conventional convolutional layer with 64 
filters, a 7x7 kernel size, and a stride of 2. To 
minimize the spatial dimensions of the input image, 
this layer conducts a down sampled convolution on 
it. 
Batch Normalisation and Activation: A batch 
normalization layer is added after the first 
convolutional layer, followed by a ReLU activation 
function. Batch normalization normalizes the layer 
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activations to stabilize and accelerate training. The 
activation of the ReLU brings non-linearity into the 
network.

Figure 2. ResNet-50 Architecture 
 

Max Pooling: A max pooling layer with a 3x3 
window and a stride of 2 is applied after the initial 
batch normalization and ReLU layer. Max pooling 
minimizes the spatial dimensions of the feature 
maps, which aids in downsampling and increasing 
translation invariance. 
Residual Blocks: The residual blocks are the main 
building blocks of ResNet-50. The network is 
divided into four phases, each comprising many 
residual blocks. Each residual block contains a 
sequence of convolutional layers with filter 
configurations of 1x1, 3x3, and 1x1. The 1x1 
convolutions are used to lower and increase the 
number of filters, resulting in a more efficient 
network. Each step raises the number of filters by a 
factor of two (64, 128, 256, and 512). 
Shortcut connections in the residual blocks are also 
responsible for "skipping" one or more 
convolutional layers. The output of the 
convolutional layers is added to the output of the 
shortcut connection element by element. This skip 
link allows the gradient to travel straight across the 
network, overcoming the vanishing gradient issue 
and aiding deep network training. 
Global Average Pooling: A global average pooling 
layer is used after the last stage of residual blocks. 
The spatial dimensions of the feature maps are 
reduced to a single value per channel via global 
average pooling, resulting in a fixed-length feature 
vector.  
Fully Connected Layers: The feature vector from the 
global average pooling layer is passed into fully 
connected layers for classification. ResNet-50 
features a final fully connected layer with several 
units equal to the number of categorization classes. 

The output layer employs the softmax activation 
function to generate the final class probabilities. 
 
4.2.3. Inception V4 Architecture 
Inception version 4 is a deep convolutional neural 
network architecture proposed by Google 
researchers. It is an extension and enhancement of 
the original Inception architecture (GoogLeNet), 
combining principles from the Inception and ResNet 
architectures. Figure 3 shows the Inception V4 
Architecture. 
The Inception-v4 architecture is highly complicated, 
with the following essential components and 
features: 
Modules for initialization: The inception modules 
are the fundamental building pieces of Inception-v4. 
These modules use concurrent convolutional filters 
of varying sizes (1x1, 3x3, and 5x5) and max-
pooling procedures. These parallel filters' outputs 
are then concatenated and supplied to the next layer. 
This approach enables the network to catch 
information at different sizes and learn multiple 
representations from input data. 
Factorization and Bottleneck: Inception-v4 employs 
factorization and bottleneck methods to minimize 
computing complexity. Instead of a single 5x5 
convolutional filter, it uses two 3x3 filters, reducing 
the number of parameters while preserving 
expressiveness. This "bottleneck" structure aids in 
the creation of a more complex network. 
Stem and Reduction blocks: Inception-v4 adds 
specialized "stem" and "reduction" blocks at the 
network's beginning and middle, respectively. The 
stem block is in charge of initial feature extraction 
and lowering the spatial dimensions of the input. In 
contrast, the reduction block decreases the spatial 
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dimensions even more while increasing the filters. 
These blocks improve the network's capacity to learn 
hierarchical features. 

 
Figure 3. Inception V4 Architecture 

 
Inception-ResNet: Inception-v4 adds residual 
connections (inspired by ResNet) into certain 
network regions, resulting in the Inception-ResNet 
hybrid design. These residual connections contribute 
to smoother optimization and improved gradient 
flow during training, hence minimizing the 
vanishing gradient issue. 
Inception-v4 is distinguished by its breadth and 
depth, implying that it contains many filters (width) 
and a deep network structure. This enables the model 
to capture more complicated patterns and hierarchies 
in the input data, improving image recognition 
accuracy.  

5. EXPERIMENTAL RESULTS 
 
Accuracy is a fundamental performance metric used 
to assess the correctness of a classification model's 
predictions. It provides a straightforward 
measurement of how well the model's predictions 
correspond to the actual ground truth labels in the 
dataset. The accuracy metric is particularly useful 
when the classes in the dataset are approximately 
balanced, meaning that the number of instances in 
each class is roughly equal. 
"Number of Correctly Classified Instances" refers to 
the number of instances for which the model's 
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predicted class matches the actual ground truth class 
in the accuracy formula. The "Total Number of 
Instances" indicates the extent of the complete 
dataset. 
A higher accuracy value indicates that the model's 
predictions align well with the actual labels, whereas 
a lower accuracy suggests that the model has 
difficulty accurately classifying instances. While 
accuracy provides a comprehensive view of the 
model's performance. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

True Positive (TP) refers to the number of 
predictions where the classifier correctly predicts the 
positive class as positive. 
True Negative (TN) refers to the number of 
predictions where the classifier correctly predicts the 
negative class as negative. 
False Positive (FP) refers to the number of 
predictions where the classifier incorrectly predicts 
the negative class as positive. 
False Negative (FN) refers to the number of 
predictions where the classifier incorrectly predicts 
the positive class as negative. 

 
Table 3 Describes The Overall Performance Of Different Models Based On DCNN.

. Methods 

Trained Data Test Data 

Accuracy 
(without Noise) 

Accuracy     
(with Noise) 

Accuracy 
(without Noise) 

Accuracy      
(with Noise) 

VGG-16 97.43% 95.32% 98.63% 93.46% 

ResNet-50 98.42% 97.30% 80.44% 80.33% 

Inception V4 98.28% 97.17% 96.88 % 94.30% 

Table 4. Shows The Classification Accuracy With Noise And Without Noise 

Method Accuracy without Noise Accuracy with Noise 

VGG-16 

  

ResNet-50 

  

InceptionNet 
V4 
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The test results of the models with noise and without 
noise of VGG-16 and Inception V4 for RSI-CB were 
more than 90%. Regarding Trained data accuracy 
without noise, ResNet-50 achieves the highest 
accuracy of 98.42%, followed by Inception V4 with 
98.28% and VGG-16 with 97.43%. Regarding Test 
data accuracy without noise, VGG-16 achieves the 
highest accuracy of 98.63%, followed by Inception 
V4 with 96.88% and ResNet-50 with 80.44%. This 
indicates that ResNet-50 performs exceptionally 
well in accurately classifying the Trained data 
without noise, and VGG-16 Performs well in 
accurately classifying the test data outperforming the 
other two models. When noise is introduced in the 
Trained data, the performance of the models 
fluctuates. ResNet-50 maintains a high accuracy of 
97.30%, showcasing its robustness against noise. 
Inception V4 model with an impressive accuracy of 
97.17%, indicating its ability to handle noisy data 
effectively. In the Test data, Inception V4 maintains 
a high accuracy of 94.30%, and VGG-16 with an 
accuracy of 93.46%, showcasing its robustness 
against noise. However, VGG-16 experiences a 
significant drop in accuracy to 95.32% in the trained 
data, and ResNet-50 significantly drops to 80.33%, 
suggesting that it is more noise sensitive than the 
other two models. 
It is worth noting that ResNet-50 demonstrates 
consistent performance across both scenarios, while 
Inception V4 shows a notable improvement in 
accuracy when noise is present. On the other hand, 
VGG-16 performs well in the absence of noise but 
struggles to maintain accuracy when noise is 
introduced. 
 
6. CONCLUSION 
 
This paper focuses on the challenges posed by 
noisy environments through the application of Deep 
Convolutional Neural Networks (DCNNs) for 
remote sensing image classification. This paper 
investigates the efficacy of three prominent DCNN 
architectures - VGG-16, ResNet-50, and Inception 
V4 on the RSI-CB 256 dataset, which consists of 
over 24,000 high-resolution images representing 
diverse land cover categories. 
The paper highlights the importance of satellite 
image classification in various applications, 
including urban planning, environmental 
monitoring, and disaster management. It recognizes 
that satellite images are susceptible to multiple noise 
sources, which can hinder conventional 
classification techniques. DCNNs, which are 
renowned for their capacity to acquire complex 

patterns and hierarchical characteristics, show 
promise in dealing with noisy satellite images. 
This paper aims to assess the suitability of DCNN 
architectures under noisy conditions and provide 
guidance for selecting architectures based on noise 
characteristics. To accomplish this, impulse noise is 
introduced into high-resolution satellite images to 
simulate actual noise scenarios. They illustrate the 
diversity of the RSI-CB dataset, which consists of 
six categories with 33 sub-classes and 256x256 pixel 
images. 
This paper compares the performance of VGG-16, 
ResNet-50, and Inception V4 on both trained and test 
data sets through extensive experimentation. While 
all models exhibit high accuracy with clear data, 
their efficacy varies when noise is added. VGG-16 
exhibits consistent performance in both scenarios, 
whereas Inception V4 demonstrates enhanced noise 
accuracy. ResNet-50 performs admirably on clear 
data but struggles to sustain precision when noise is 
present. This paper provides valuable insights into 
selecting suitable architectures based on noise 
characteristics, thereby augmenting the accuracy and 
dependability of satellite-based applications in 
difficult real-world conditions. The authors address 
the crucial issue of noise in satellite image analysis 
by bridging the divide between cutting-edge deep 
learning techniques and the requirements of practical 
remote sensing applications. 
Limitations of this work, This paper provides 
valuable insights into the application of Deep 
Convolutional Neural Networks (DCNNs) for 
satellite image classification in noisy environments, 
with an emphasis on impulse noise. However, it 
provides numerous opportunities for more in-depth 
and exhaustive discussions. To provide a deeper 
comprehension of model performance, it could 
benefit from more detailed quantitative results, such 
as a broader range of evaluation metrics beyond 
accuracy. A comparative analysis with traditional or 
baseline models, discussions on generalization to 
other datasets and real-world applications, and an 
examination of the potential ethical implications of 
satellite image classification would be useful in 
enhancing the context.  
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