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ABSTRACT 

This paper develops a novel feature extraction model based on Generative Adversarial Networks (GAN) 
and Convolution Neural Network (CNN) to detect the oral cancer with high accuracy. The main objective 
of this work is to classify the input Oral Cavity Squamous Cell Carcinoma (OCSCC) image as healthy or 
sick. The methods used here are, Modified Deep Convolution Generative Adversarial Networks 
(MDCGAN) as feature extractor and Modified Convolution Neural Network (MCNN) is used for 
classification oral cancer images. Before extracting process, the first step is to image enhancement. For this 
step, first input image is resized, contrast enhanced and finally RGB color space is converted into YCbCr 
color space. For contrast enhancement in this work uses the Improved CLAHE method. The study found 
that proposed work gives best result than existing approaches. Performance of the proposed technique in 
terms of classification precision during the testing phase. The suggested method achieving impressive 
accuracy, precision, recall, and f1-score rates of 97.83%, 97.50%, 95.12%, and 96.30%, respectively, for 
magnification 400x, and 98.11% accuracy for magnification 100x. during the testing phase. The originality 
of this work is in the application of the MDCGAN feature extraction model, which is based on deep 
learning, to obtain pertinent features for classification. The overall quantity and caliber of the features 
extrapolated from the OCSCC image determine how well oral cancer will be predicted. The accuracy will 
grow if feature sizes are expanded. GAN is typically used to increase the dataset's image count. However, 
in our method, deep feature extraction is done via GAN. The generator components of our suggested 
MDCGAN model operate similarly to conventional GAN. This section is used to increase the dataset's 
sample size for each image. The accuracy will grow if feature sizes are expanded. However, MCNN 
replaces the discriminator component of traditional GAN. The detection precision for oral cancer prediction 
will increase with the use of this innovative MDCGAN feature model. Therefore, MDCGAN is far superior 
to conventional deep learning algorithms for such image classification applications. 
Keywords: Oral Cancer, Deep Learning, Classifiers, Real-Time, CNN, MDCGAN, DCGAN 
 
1. INTRODUCTION 
 
 Oral squamous cell carcinomas (OSCC) 
account for more than 90% of all oral cancers, a 
heterogeneous group of tumors that develop 
from the mucosal lining of the oral cavity [1, 2]. 
Oral squamous cell carcinoma (OSCC) is the 
sixth most prevalent subtype of head and neck 
squamous cell carcinoma (HNSCC) on a global 
basis [4]. An estimated 657,000 new cases are 

diagnosed each year, resulting in a severe 
mortality rate of more than 330,000. It is worth 
noting that oral squamous  
 
 
cell carcinoma (OSCC) is particularly prevalent 
in South Asian countries. India had the most 
cases, accounting for over one-third of the total, 
despite Pakistan having the greatest prevalence 
of malignancies in both men and women, 
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ranking second overall [5]. Alcohol 
consumption, smoking, poor oral hygiene, HPV 
exposure, genetic predisposition, lifestyle 
choices, ethnicity, and geographical location are 
all risk factors for oral squamous cell carcinoma 
(OSCC). The earliest detection of oral squamous 
cell carcinoma (OSCC) is critical in order to 
properly execute treatment options, slow the 
disease's progression, and reduce death and 
hospitalization rates [6]. Nonetheless, the general 
prognosis for oral squamous cell carcinoma 
(OSCC) remains poor, as evidenced by a 50% 
cure rate [7, 8]. The fundamental method for 
identifying oral squamous cell carcinoma 
(OSCC) is to examine clinical specimens 
histologically under a microscope [9, 10]. 
However, this process can be time-consuming 
and error-prone, limiting the efficacy of 
diagnostic pathology methods [11]. As a result, 
providing clinicians with appropriate diagnostic 
tools for the evaluation and detection of oral 
squamous cell carcinoma (OSCC) is critical. 
There have been noteworthy advances in the 
field of study relevant to the use of artificial 
intelligence (AI) for the goal of supplementing 
clinical tests in recent years. The increased use of 
diagnostic imaging has allowed researchers to 
study the possible applications of artificial 
intelligence (AI) in the processing of healthcare 
pictures. Deep learning (DL) has proven to be 
particularly effective in addressing a variety of 
challenges linked with healthcare image 
processing, such as aberrant picture detection 
[14, 15]. On a wide scale, computer-aided 
diagnostic (CAD) techniques have showed 
successful development and deployment in a 
variety of cancer types, including breast, lung, 
and prostate cancer [16-18].  
The current body of literature on the use of deep 
learning (DL) in the diagnosis of oral cancer has 
been demonstrated to be limited in breadth. 
Nonetheless, numerous studies have had hopeful 
results. Dev et al., for example, used 
Convolutional Neural Network (CNN) and 
Random Forest algorithms to detect keratin 
pearls in oral histology images. Their research 
yielded classification rates of 96.88% and 
98.05%, respectively, using CNN and Random 
Forest techniques [19]. Similarly, Das et al. used 
deep learning (DL) algorithms to classify oral 
biopsy pictures using Broder's histological 
grading system. Their convolutional neural 
network (CNN) implementation achieved a 
significant classification accuracy of 97.5% [20]. 
Folmsbee et al. found that Active Learning (AL) 

performed better than Random Learning (RL) by 
3.26% in a separate study. This was especially 
evident when Convolutional Neural Networks 
(CNN) were used to categorize oral cancer 
pictures into seven unique groups [21]. Martino 
et al. also did research on a variety of deep 
learning architectures, including U-Net, SegNet, 
U-Net with VGG16 encoder, and U-Net with 
ResNet50 encoder. Their study's goal was to 
categorize oral images into three unique groups: 
carcinoma, noncarcinoma, and nontissue. In 
comparison to the regular U-Net model, the U-
Net model with ResNet50 as the encoder 
performed better [22]. Amin et al. did a study on 
the binary categorization of images of oral 
illnesses. The feature extractors and upgraded 
versions of the Inception V3, VGG16, and 
ResNet50 networks were used in the study [23]. 
The aforementioned findings highlight the 
potential of deep learning (DL) in the diagnosis 
of oral cancer. Various models have shown 
promising results in a variety of image 
processing tasks. The combined deep learning 
approach utilizing Modified Deep Convolutional 
Generative Adversarial Network (MDCGAN) 
and Modified Deep Convolutional Neural 
Network (MDCNN), aims to enhance the 
efficiency of oral cancer detection during both 
training and testing stages. The main 
contributions of this novel approach are 
mentioned here: 

● Image Enhancement: The proposed 
approach includes a process of image 
enhancement using resizing and 
contrast enhancement with the 
Improved CLAHE method to prepare 
the input images for better analysis. 

● Novel Feature Extraction Model: This 
paper introduces a Modified Deep 
Convolutional Generative Adversarial 
Network (MDCGAN) for feature 
extraction, which can improve the 
accuracy of oral cancer prediction. 

● MCNN Classification: The traditional 
Discriminator in GAN is replaced with 
a Modified Convolutional Neural 
Network (MCNN) for feature 
discrimination, aiding in accurate 
classification of oral cancer images. 
 

2. RELATED WORK 
 
 Oral cancer is a significant global health 
challenge, and researchers have been actively 
exploring the potential of artificial intelligence 
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(AI) and machine learning to aid in its detection 
and diagnosis. Du et al. [1] conducted a study on 
the incidence trends of lip, oral cavity, and 
pharyngeal cancers based on global burden data 
from 1990 to 2017, providing valuable insights 
into the disease's epidemiology. Li et al. [2] 
focused on the role of circ_LPAR3 in the 
progression of OSCC, contributing to the 
understanding of cancer pathogenesis. In the 
context of head and neck cancer, Perdomo et al. 
[4] explored the burden in Central and South 
America and discussed preventive measures, 
while Anwar et al. [5] investigated clinic 
pathological features and risk factors in a high-
risk population in Pakistan. Chakraborty et al. 
[6] presented a review of advances in oral cancer 
detection, showcasing the importance of 
technological developments in improving 
diagnostic accuracy. Moreover, Eckert et al. [7] 
shed light on the HIF-1-dependent metabolism in 
oral squamous cell carcinoma, providing insights 
into tumor behavior and potential therapeutic 
targets. AI and machine learning have played a 
crucial role in oral cancer risk prediction, as 
demonstrated by Ghosh et al. [8], who proposed 
a deep reinforced neural network model for 
automated risk assessment based on cyto-
spectroscopic analysis. While the field of oral 
cancer detection has been significantly impacted 
by AI, similar advancements have been observed 
in other areas of cancer research.  
Deif and Hammam [9] applied deep learning 
techniques for skin lesions classification, 
highlighting the broader applicability of AI in 
medical image analysis. Similarly, Kong et al. 
[10] used computer-aided evaluation for 
neuroblastoma on whole-slide histology images, 
demonstrating the potential of AI in various 
cancer types. In the context of diagnostic 
accuracy, Santana and Ferreira [11] discussed 
diagnostic errors in surgical pathology, 
emphasizing the importance of technological 
support to minimize discrepancies. Moreover, AI 
has shown promise in predicting outcomes and 
treatment efficacy, as observed in Deif et al. 
[14], where a hybrid XGBoost-AHP approach 
was used for an automated triage system during 
the COVID-19 pandemic. AI has ushered in a 
new era of clinical biomarkers, as seen in Echle 
et al.'s work [15], where deep learning was 
utilized for cancer pathology, including oral 
cancer. Additionally, Duggento et al. [16] 
focused on deep computational pathology in 
breast cancer, further exemplifying AI's potential 
as a clinical tool. Wang et al. [17] and 

Goldenberg et al. [18] showcased AI's 
application in lung cancer and prostate cancer, 
respectively, demonstrating its versatility across 
different cancer types. In the realm of oral cancer 
specifically, Das et al. [19] worked on the 
automatic identification of clinically relevant 
regions in oral tissue histological images for oral 
squamous cell carcinoma diagnosis. 
Furthermore, Das et al. [20] employed transfer 
learning and convolutional neural networks for 
the automated classification of cells in oral 
squamous cell carcinoma epithelial tissue, 
showcasing the utility of deep learning models in 
this domain.  
Folmsbee et al. [21] emphasized the importance 
of active deep learning in improving training 
efficiency for tissue classification in oral cavity 
cancer. Martino et al. [22] utilized deep learning-
based pixel-wise lesion segmentation on oral 
squamous cell carcinoma images, highlighting 
the potential for automated segmentation and 
analysis. Amin et al. [23] presented a 
concatenated deep learning model for 
histopathological image analysis, further 
demonstrating AI's potential for oral squamous 
cell carcinoma classification. Finally, recent 
studies have explored AI in oral cancer risk 
prediction. Alhazmi et al. [26] investigated the 
application of AI and machine learning for 
predicting oral cancer risk, while Chu et al. [27] 
focused on treatment outcome prediction in oral 
cancer. Welikala et al. [28] proposed an 
automated detection and classification system for 
oral lesions using deep learning, emphasizing the 
potential for early oral cancer detection. In 
conclusion, the literature survey reveals a wealth 
of research on AI's application in oral cancer 
detection and diagnosis. From epidemiological 
studies to advanced deep learning models, AI 
continues to pave the way for improved 
detection, risk prediction, and treatment 
outcomes in oral cancer. 
 
3.  METHODOLOGY 
 
 The architecture presented in Figure 1 is 
designed for discovering and detecting oral 
cancer using both offline and online techniques. 
During the offline training phase, a dataset of 
cancer tissue images is collected, annotated with 
cancer-affected and healthy regions, and pre-
processed for further analysis. To learn features 
and distinguish between cancerous and healthy 
tissues, a deep learning model called MDCGAN 
is employed. Additionally, a MCNN is trained to 
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classify whether an image is healthy or not. In 
the online testing phase, in which real-time oral 
images are fed into the system, they are sourced 
from various places, including patients' oral 
cavity images. These images undergo essential 
pre-processing steps, such as resizing, contrast 
enhancement, and color space conversion, to 
ensure they are in an appropriate format for 
further analysis. Subsequently, the system 
extracts relevant features from the pre-processed 
images using feature extraction techniques, 
which play a crucial role in detecting cancer-
affected regions. By identifying potential 
cancerous areas within the oral images, the 
derived features are then fed into the trained 
MCNN model to detect whether the patient is 
affected by cancer or not. This integrated 
approach aims to enhance the accuracy and 
efficiency of oral cancer detection. 
The proposed DCGANOCIS-based oral cancer 
detection model is structured into three main 
stages: (i) image pre-processing, (ii) feature 
extraction using MDCGAN, and (iii) MCNN-
based oral cancer prediction. Further details 
regarding each of these phases are elaborated in 
the following subsections.  
 
3.1 Pre-Processing  
This section presents the details of the pre-
processing steps applied to prepare oral cancer 
images for subsequent feature extraction model 
and identification in oral cancer. The pre-
processing include image resizing, contrast 
enhancement, and color space conversion. These 
steps are crucial in standardizing the images and 
enhancing their quality, ultimately facilitating 

the accuracy and effectiveness of the cancer 
identification process. 
 
 
3.1.1 Image resizing  
In the first step of the pre-processing, the input 
oral cavity cancer image is resized from its 
original size (1665×1393×3) to a new size of 
227x227x3. This process is commonly referred 
to as image resizing. Resizing the image ensures 
that it is in a standardized format, making it 
suitable for further analysis and feature 
extraction in the subsequent stages of the oral 
cancer detection process. 
 
3.1.2 Contrast enhancement 
The Improved Contrast Limited Adaptive 
Histogram Equalization (I- CLAHE) algorithm is 
a technique used to enhance the contrast of an 
image. The process begins by loading a scaled 
picture, which could have been resized before 
enhancement. The green component of the image 
undergoes Discrete Wavelet Transform (DWT) 
to extract its frequency information. 
Subsequently, the Inverse Discrete Wavelet 
Transform (IDWT) is applied to reconstruct the 
enhanced green component. To further improve 
the contrast, the CLAHE technique is employed 
on the blue component of the image. I-CLAHE 
enhances the local contrast while limiting over-
amplification of noise. Finally, the original red 
component, the newly enhanced green 
component, and the improved blue component 
are combined to create an upgraded RGB image 
with enhanced contrast and improved visual 
quality. Algorithm for improved CLAHE is in 
Table 1. 

 
Table 1. Algorithm for improved CLAHE 

Algorithm: Improved CLAHE 
Input: Resized image 
Output: Enhanced RGB image 

Steps: 

     1.  Apply DWT to the green component 
     2. Reconstruct enhanced green component 

     3. Apply CLAHE to the blue component 
     4. Combine the RGB components to create the upgraded RGB image 
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Figure 1. Overall architecture of proposed DCGANOCIS model 

3.1.3 Color space conversion 
In computer graphics and digital imaging, the 
commonly used color space is the red, green, and 
blue (RGB) color space. It represents color using 
three primary hues - red, green, and blue - with 
each component ranging from 0 to 255. 
However, the RGB color space has some 
limitations, especially when dealing with 
changes in lighting conditions. To address these 
challenges, the YCbCr color space is derived 
from the RGB color space. The YCbCr color 
space separates color information from 
luminance information. The conversion 
equations transform RGB values into YCbCr 
values. The luminance component (𝑌) represents 
brightness, while the chrominance components 
(𝐶𝑏 𝑎𝑛𝑑 𝐶𝑟) represent color difference 
information.  

 
 

𝑌 = 0.412453 ∗ 𝑅 + 0.357580 ∗ 𝐺 + 0.180423 ∗ 𝐵  (1) 
𝐶𝑏 = 0.21267 ∗ 𝑅 + 0.715160 ∗ 𝐺 + 0.072169 ∗ 𝐵  (2) 
𝐶𝑟 = 0.019334 ∗ 𝑅 + 0.119193 ∗ 𝐺 + 0.950227 ∗ 𝐵 (3) 

 
This color space can provide color and 
illumination robustness, efficient representation, 
and capture discriminative color information. 
 
3.2 Feature Extraction Model 
The feature extraction model transforms pre-
processed data into informative representations, 
leading to improved performance in oral cancer 
diagnosis. Figure 2 illustrates the architecture of 
the proposed MDCGAN model. 
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Figure 2. Architecture of proposed MDCGAN model 

3.2.1 Modified Deep Convolutional 
Generative Adversarial Network 
Deep Convolutional Generative Adversarial 
Network (DCGAN) is a novel feature extraction 
model that leverages the strengths of both GAN 
and CNN for feature extraction from pre-
processed images. In MDCGAN, the 
discriminator in a standard GAN is replaced with 
a MCNN. This modification for the model to 
explicitly focus on feature extraction rather than 
image generation. The generator network takes 
random noise as input and uses fractional stride 
convolutions up sample the noise into a feature 
map. Batch normalization and relu, activations 
are applied to improve stability and introduce 
non-linearity. It utilizes minimax adversarial 

training, where the generator aims to create 
synthetic feature map that can deceive the 
discriminator into misclassifying it as real, while 
the discriminator aims to accurately distinguish 
between real and synthetic data. The 
mathematical formulation is defined as: 
Fୈ = 𝐸~ೌ

 [𝑙𝑜𝑔 𝑙𝑜𝑔 𝐷(𝑎) ] + 𝐸௭~
ቂ𝑙𝑜𝑔 𝑙𝑜𝑔 ቀ1 −

𝐷൫𝐺(𝑧)൯ቁ ቃ                                    

   (4) 
 

𝐹 =   𝐸௭~
ቂ𝑙𝑜𝑔 𝑙𝑜𝑔 ቀ1 − 𝐷൫𝐺(𝑧)൯ቁ ቃ                      (5) 

Where, 𝑝 is the 𝑎 distribution, 𝑝௭ is the 𝑧 
distribution, 𝐷(𝑎) is the possibility for real 
distribution, 𝐺(𝑧) is the generated sample, 
𝐹 𝑎𝑛𝑑 𝐹  are the discriminator and generator 
objective function respectively, and 𝐸 is the 
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expectation, Layer configurations of generator is 
shown in Table 2. 

 

 
 

Table 2. Layer configurations of generator in MDCGAN model 
 

Layer Input Size Output Size Number of Filters Kernel Size Stride 
Input Noise 100 - - - - 
Dense 100 7x7x256 256 - - 
ConvTranspose1 7x7x256 14x14x128 128 5x5 2 
ConvTranspose2 14x14x128 28x28x64 64 5x5 2 
ConvTranspose3 28x28x64 227x227x3 3 7x7 4 
Output (Tanh) 227x227x3 227x227x3 - - - 

 
In proposed MDCGAN, MCNN act as the 
discriminator, which has learned to distinguish 
between real and fake images, is utilized as a 
feature extraction module. By passing generator 
output to the discriminator layers up to a certain 
intermediate point before the final classification 

layer, meaningful features are extracted. These 
extracted features can then be used for oral 
cancer prediction. Table 3 presents the 
configurations of the layers employed in the 
discriminator model 

 
Table 3. Layer configurations of discriminator in MDCGAN model 

Layer Input Size Output Size Number of Filters Kernel Size Stride 
Input Image 227x227x3 - - - - 

Conv1 227x227x3 113x113x64 64 3x3 2 
MaxPool1 113x113x64 56x56x64 - 2x2 2 

Conv2 56x56x64 28x28x128 128 3x3 2 
MaxPool2 28x28x128 14x14x128 - 2x2 2 

Conv3 14x14x128 7x7x256 256 3x3 2 
MaxPool3 7x7x256 3x3x256 - 2x2 2 

Flatten 3x3x256 2304 - - - 
Output (Feature Vector) 1x2304 1 - - - 

 
3.3 Classification using MCNN 
After feature extraction, the 1x1024 feature map 
is reshaped into a 32x32 matrix to be used for 
classification using the MCNN architecture, 
which is the customized version of the traditional 
CNN architecture specifically designed to 
improve performance for an oral cancer 
detection. The modifications in MCNN involves 
the expansion of the network architecture with 
the addition of more convolutional layers. This 
strategic augmentation deepens the hierarchy of 
feature representations within the model, 
enabling it to learn more intricate and abstract 
features. The initial layers of the MCNN capture 
fundamental low-level features  

 
such as edges, textures, and color gradients, 
while the subsequent deeper layers progressively 
learn higher-level features that encapsulate more 
complex and informative patterns. This 
hierarchical learning allows the model to 
recognize the complex spatial relationships and 
nuanced structures present in oral cancer images, 
thus facilitating better detection accuracy. These 
deep layers enable the model to recognize 
complex patterns associated with oral cancer, 
leading to better detection accuracy. Figure 3 
illustrates the architecture of the proposed 
MCNN model. 
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Figure 3. Architecture of proposed MCNN model 

Convolutional layer: The convolutional layer is 
a fundamental building block of CNN that plays 
a crucial role in detecting patterns and features 
within input image. Comprising learnable 
channels or neurons with small receptive fields, 
the layer performs convolutions with filters over 
the input, generating feature maps that capture 
spatially specific information. By adapting its 
parameters during training, the CNN learns to 
recognize increasingly complex features, 
enabling it to efficiently extract relevant 
information and reduce data redundancy. The 
convolution process is defined as, 

𝐶
 = 𝐹൫∑ b୬

௫∈ோ
𝐶௫

ିଵ ∗ 𝜔
 + 𝑏

൯                          
(6) 

where, 𝐶
 denotes the output of the 𝑖௧ kernel in 

the convolutional layer 𝑗, 𝑅 is the convolution 
region, 𝜔

 is the weight in convolutional layer in, 

𝑏
 denotes the bias vector, and 𝐹(∗) is a 

nonlinear activation function. 
 
Pooling layer: Following the convolutional 
layer, the CNN employs a max pool layer, which 
serves to reduce dimensions and extract essential 
feature information from the previous output. By 
selecting the maximum value within small 
regions, this layer effectively retains the most 
significant features while discarding less relevant 
details, aiding in preventing overfitting. In this 
architecture, the combination of convolutional 
and max pool layers creates a powerful feature 
extraction process, enabling the network to learn 
and generalize complex patterns efficiently, 
making it robust for classification. The pooling 
operation is defined as, 
𝐶

 = 𝐹൫𝜔
 ∗ 𝑚𝑎𝑥൫𝐶

ିଵ൯ + 𝑏
൯                         (7) 

where 𝑚𝑎𝑥(∗) represents the max pooling 
function, 𝐶

 is the output of the pooling layer. 
 
Fully Connected layer: The final step in a CNN 
involves using a fully connected layer to map the 
extracted feature information into the classifier. 
This process includes flattening the feature maps, 
performing a weighted sum with learnable 
weights and biases, applying an activation 
function for non-linearity, and obtaining the 
output for prediction. Mathematically the process 
is explained as, 
𝑂 = 𝐹(𝜔𝐶ିଵ + 𝑏)                                            
(8) 
Where, 𝑂 is the output for the final connected 
layer and 𝑘 is the network. 
 
Loss function: The binary cross-entropy loss 
function applies stronger penalties to the model's 
confident incorrect predictions, thereby 
encouraging the network to improve its predicted 
probabilities towards the true labels during 
training. The objective in classification tasks is 
to minimize the binary cross-entropy loss as it 
enables effective training of MCNN. The loss 
function is in eqn. 9. 

𝐿 = −
ଵ

ே
∗ ∑ nே

ୀଵ 𝑦 ∗𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑛𝑤(𝐼))  +

(1 − 𝑦) ∗𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝑛𝑤(𝐼))                         
(9) 

Where, N is the number of total samples used for 
training,  𝑦 be the true label of the sample 𝑛 , 
𝐼 be the input for training sample 𝑛, and 𝑛𝑤 
represents the neural network weights. Layer 
configurations of the proposed MCNN model in 
Table 4. 
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Table 4. Layer configurations of the proposed MCNN model 

Layer Input Size Output Size Number of Filters Kernel Size Stride 

Input Image 48x48x1 - - - - 
Conv1 48x48x1 48x48x32 32 3x3 1 
ReLU1 48x48x32 48x48x32 - - - 

MaxPool1 48x48x32 24x24x32 - 2x2 2 
Conv2 24x24x32 24x24x64 64 3x3 1 
ReLU2 24x24x64 24x24x64 - - - 

MaxPool2 24x24x64 12x12x64 - 2x2 2 
Conv3 12x12x64 12x12x128 128 3x3 1 

ReLU3 12x12x128 12x12x128 - - - 
MaxPool3 12x12x128 6x6x128 - 2x2 2 
Flatten 6x6x128 4608 - - - 

Dense1 (FC1) 4608 512 512 - - 
ReLU4 512 512 - - - 
Dense2(FC2) 512 2 2 - - 

Softmax 2 2 - - - 
 
The proposed MCNN architecture consists of 
three convolutional layers, generating 32, 64, and 
128 filters, respectively. These layers effectively 
detect local patterns and extract intricate features 
from input images, resulting in feature maps with 
dimensions of 48x48x32, 24x24x64, and 
12x12x128, respectively. Subsequently, three 
pooling layers with a stride of 2x2 are applied to 
reduce spatial dimensions, leading to feature 
maps of 24x24x32, 12x12x64, and 6x6x128. 
After flattening the output of the last pooling 
layer, the feature vector becomes a 1D 
representation of length 4608, which serves as 
input to the two fully connected layers. The first 
fully connected layer contains 512 neurons, 
while the final classification layer has two 
neurons with a softmax activation function, 
producing probabilities for the binary 
classification task. It demonstrates its 
effectiveness in image classification by using 
convolutional and pooling layers to capture local 
and global patterns and extract meaningful 
features. The softmax activation function refines 
the predictions, providing probabilities for the 
two classes, making the MCNN an efficient and 
reliable system for binary image classification 
tasks, such as distinguishing between healthy 
and sick patients in oral cancer classification. 
 
3.4 Proposed DCGANOCIS model 
The proposed DCGANOCIS model can be 
utilized for oral cancer prediction by leveraging 
the feature extraction capabilities of the 

MDCGAN to generate oral cancer feature maps. 
Oral cancer images are then passed through the 
MDCGAN layers up to an intermediate point, 
allowing the extraction of meaningful features 
that capture essential characteristics learned 
during adversarial training. Subsequently, these 
extracted features are fed into an MCNN 
classifier specifically trained for oral cancer 
prediction. The MCNN classifier learns to 
associate specific feature patterns with the 
presence or absence of oral cancer, enabling it to 
make accurate predictions. The proposed 
DCGANOCIS model offers a comprehensive 
and effective solution for oral cancer prediction, 
and aid in the early detection and diagnosis of 
oral cancer,  
 
 
 
contributing to improved patient outcomes and 
healthcare interventions. Overall, the proposed 
model represents a promising advancement in 
the field of oral cancer prediction, leveraging the 
power of deep learning and generative 
adversarial networks to address critical 
challenges in healthcare. 
 
4. RESULTS AND DISCUSSIONS 
 
 In this section, the experimental 
analysis and comparative results of the proposed 
DCGANOCIS model are illustrated. The model's 
performance is evaluated, and a comparison is 
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made with other relevant methods to assess its 
effectiveness and capabilities. 
This research aim to highlight the unique aspects 
and potential of our approach in improving the 
accuracy and efficiency of oral cancer diagnosis. 
The limitations and potential conflicting 
perspectives in the research is 
AI in Medical Diagnosis: While AI has shown 
promise in various medical fields, including 
image analysis, there are ongoing discussions 
and debates within the medical community about 
its role in diagnosis and treatment. Some 
perspectives emphasize the potential benefits of 
AI, such as increased efficiency and accuracy, 
while others raise concerns about overreliance on 
technology and the importance of human 
expertise in medical decision-making. 
Diagnostic Criteria: The criteria for diagnosing 
oral cancer, like many other medical conditions, 
can vary across different medical institutions and 
regions. It's crucial to acknowledge that our AI 
models are trained on specific criteria, and 
variations in diagnostic criteria may impact the 
model's performance in different settings. Future 
research should consider standardizing 
diagnostic criteria to enhance model robustness 

Employed a range of performance 
metrics, including accuracy, sensitivity, 
specificity, and precision, to evaluate the AI 
models' effectiveness in oral cancer detection. 
These metrics are commonly used in medical 
image analysis to assess diagnostic accuracy and 
the model's ability to correctly identify cancerous 
regions 
 
4.1 Experimental Setup 
 
The implementation of the proposed oral cancer 
prediction method is carried out using MATLAB 
R2020a on a Windows 10 operating system with 
64-bit architecture and 32 GB RAM. This setup 
offers an efficient and straightforward approach 
to execute the method effectively. 
 
4.2 Data Description 
 
The dataset used in this study is publicly 
available Dataset [29], which consists of two 
magnifications, each containing images 
categorized into two groups: healthy and sick. 

The first set comprises 528 images captured from 
biopsy slides, with a magnification of 100x. 
Among these, 89 images represent 
histopathological samples with normal 
epithelium of the oral cavity, while the 
remaining 439 images belong to the Oral 
Squamous Cell Carcinoma (OSCC) category. 
Figure 4 presents a selection of images from the 
OSCC dataset captured at a magnification of 
100x. 
The second set comprises 696 images captured 
from biopsy slides, with a magnification of 400x. 
Among these, 201 images represent 
histopathological samples with normal 
epithelium of the oral cavity, while the 
remaining 495 images belong to the OSCC 
category. Figure 5 depicts a selection of images 
from the OSCC dataset captured at a 
magnification of 400x. Overall dataset 
description is presented in Table 5. 
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Figure 4. Sample images from OSCC dataset captured at magnification 100x  
(a) Healthy (b) Sick  
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 (a) (b) 

Figure 5. Sample images from OSCC dataset captured at magnification 400x  
(a) Healthy (b) Sick  

Table 5. Dataset description 

Magnification Classes Number of Images Total Images 

100x 
Sick (OSCC) 495 

696 
Healthy 201 

400x 
Sick (OSCC) 439 

528 
Healthy 89 

 
4.3 Performance metrics  

 
The evaluation of the prediction algorithms in 
this work is based on several performance 
metrics. The paper considers the following 
evaluation metrics to assess the effectiveness of 
the proposed model: 

Detection Accuracy (𝐷𝐴): The accuracy of the 
proposed model is evaluated by computing the 
ratio of true positive, true negative, false 
positive, and false negative predictions. This 
equation provides a measure of how well the 
model correctly identifies both healthy and sick 
instances in the dataset. 

𝐷𝐴 =
்ା்ே

்ାிା்ேାிே
                                

(10) 

Precision Rate (𝑃𝑅): The precision rate is the 
ratio of true positives to all positive predictions 
made by the model, including both true positives 
and false positives. It is also known as a high 
positive predictive value. Precision measures the 
accuracy of the model's positive predictions and 
how well it avoids false positive identifications. 

𝑃𝑅 =
்

்ା
                                                        

(11) 

Recall Rate (𝑅𝑅): It refers to the ratio of true 
positives in the dataset to the sum of true 
positives and false negatives. It measures the 
model's ability to correctly identify positive 
instances and is particularly relevant when 
evaluating the model's performance in detecting 
the target condition. 

𝑅𝑅 =
்

்ାிே
                     

(12) 

F1-Score(𝐹௦): F1 score is the weighted average 
of precision and recall, providing a balanced 
evaluation of the model's performance on both 
positive and negative instances. 

𝐹௦ = 2 ∗
௦∗ோ

(௦∗ோ)
                                  

(13) 

 
4.4 Loss and Accuracy Curve 
Figure 6 illustrates accuracy curve of the 
proposed model for training (80%) and testing 
(20%). The graph underscores the effectiveness 
of the model with an impressive 98.11% 
accuracy, highlighting its high performance. In 
Figure 7, the loss curve of the proposed model is 
shown. The loss values indicate that the model 
achieved its best validation loss value of 0.02 to 
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0.1 during both the training and testing phases. 
The model was trained and tested for 100 epochs 
during the accuracy and loss validation stages. 
Hyperparameters used for this study is listed in 
Table 6. 

 

 

Table 6. Hyperparameters used for classification 
Parameters Values 
Loss function 
Optimizer function 
Metrics 
Epochs 
Batch size 
Learning rate 

MAE and MAE 
Adam 

Accuracy 
100 
32 

0.0001 

 
 

 
Figure 6. Accuracy curve for the proposed model 

 

4.5 Comparative Analysis 
In this section, the comparative analysis of the 
proposed DCGANOIS model is deployed for the 
efficient detection of oral cancer. The methods 
considered for comparative analysis are KNN 
[26], ResNet101 [27] and ANN [28]. Table 7 
illustrates the partitioning of two OSCC datasets 
into separate training and testing phases, 
considering two magnification levels: 400x and 
100x. The numbers in parentheses indicate the 
split ratios used, with 70% and 80% of the 
samples allocated for training, while the 
remaining 30% and 20% are designated for 
testing, respectively.  
 
 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 7. Loss curve for the proposed model 
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Table 7. Train-Test Splitting for OSCC Datasets at Different Magnifications 

Classes 
Magnification: 400x Magnification: 100x 

Training (70%) Testing (30%) Training (70%) Testing (30%) 

Healthy 62 27 141 60 

Sick 307 132 347 148 

 Training (80%) Testing (20%) Training (80%) Testing (20%) 

Healthy 71 18 161 40 

Sick 351 88 396 99 

 

The performance of the proposed DCGANOIS 
model is thoroughly assessed and compared to 
three conventional methods: KNN, ResNet101, 
and ANN. The evaluation is based on the 
accuracy metric with 80% of the training data for 
two magnifications, 100x and 400x. For 
magnification 100x, the conventional methods 
achieve moderate accuracy values of 87.42%, 
91.82%, and 88.68% for KNN, ResNet101, and 
ANN, respectively. However, the proposed 
methods, both with and without MDCGAN, 
exhibit remarkable improvements, achieving 

significantly higher accuracies of 95.60% and 
97.50%, respectively. Similarly, for 
magnification 400x, the conventional methods 
achieve accuracies of 88.94%, 93.27%, and 
90.87% for KNN, ResNet101, and ANN, 
respectively. Nevertheless, the proposed methods 
demonstrate exceptional performances, attaining 
remarkable accuracies of 96.63% and 97.60%, 
respectively. For a more comprehensive 
understanding of the performance metrics, 
detailed analysis can be presented in Table 8. 

Table 8.  Comparative analysis based on 70% training and 30% testing data 

Methods TP FP TN FN 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Magnification: 100x 
KNN [26] 21 6 14 118 87.42 77.78 60 60.87 

ResNet101 [27] 23 4 9 123 91.82 85.19 71.88 77.97 
ANN [28] 20 7 11 121 88.68 74.07 64.52 68.97 

Proposed without 
MDCGAN 

25 2 5 127 95.60 92.59 83.33 87.72 

Proposed with MDCGAN 26 1 3 130 97.50 96.30 90 92.86 
Magnification: 400x 

KNN [26] 49 11 12 136 88.94 81.67 80.33 80.99 
ResNet101 [27] 53 7 7 141 93.27 88.33 88.33 88.33 

ANN [28] 51 9 10 138 90.87 85 93.88 84.30 
Proposed without 

MDCGAN 
57 3 4 144 96.63 95 93.44 94.21 

Proposed with MDCGAN 58 2 3 145 97.60 96.67 95.08 95.87 

 

The proposed DCGANOIS model's performance 
is thoroughly evaluated and compared to three 
conventional methods, namely KNN, ResNet101 
and ANN. The evaluation is conducted using the 
accuracy metric with 80% of the training data for 

two different magnifications, 100x and 400x. For 
magnification 100x, the conventional methods 
achieve moderate accuracy values of 80.19%, 
90.57%, and 85.71% for KNN, ResNet101 and 
ANN, respectively. However, the proposed 
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methods, both with and without MDCGAN, 
demonstrate remarkable improvements, 
achieving significantly higher accuracies of 
95.28% and 98.11%, respectively. Likewise, for 
magnification 400x, the conventional methods 
are achieving accuracies of 86.33%, 91.30%, and 
89.86% for KNN, ResNet101, and ANN, 
respectively. Nonetheless, the proposed methods, 
attaining remarkable accuracies of 93.53% and 

97.83%, respectively. These findings clearly 
highlight the superiority of the proposed 
DCGANOIS model, as it consistently 
outperforms the conventional methods across 
both magnification levels. For a more 
comprehensive understanding of the 
performance metrics, detailed analysis can be 
found in Table 9.  

 

Table 9.  Comparative analysis based on 80% training and 20% testing data 

Methods TP FP TN FN 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Magnification: 100x 
KNN [26] 12 6 15 73 80.19 66.67 44.44 53.33 

ResNet101 [27] 15 3 7 81 90.57 83.33 68.18 75 
ANN [28] 13 5 10 77 85.71 72.22 56.52 63.41 

Proposed without 
MDCGAN 

16 2 3 85 95.28 88.89 84.21 86.49 

Proposed with 
MDCGAN 

17 1 1 87 98.11 94.44 94.44 94.44 

Magnification: 400x 
KNN [26] 33 7 12 87 86.33 82.50 73.33 77.65 

ResNet101 [27] 36 4 8 90 91.30 90 81.82 85.71 
ANN [28] 36 4 10 88 89.86 90 78.26 83.72 

Proposed without 
MDCGAN 

37 3 6 93 93.53 92.50 86.05 89.16 

Proposed with 
MDCGAN 

39 1 2 96 97.83 97.50 95.12 96.30 

 
 
The above analysis indicates that utilizing 80% 
of the training data in the proposed DCGANOIS 
model led to superior performance in oral cancer 
prediction, surpassing the conventional methods' 
accuracy levels.   
 
The proposed method outperforms existing 
techniques in terms of performance metrics, 
mainly due to its effective use of preprocessing 
techniques that enhance the input data. 
Additionally, the utilization of MDCGAN 
feature extraction reduces computational 
complexity by removing less informative 
features, further contributing to improved results. 
As a result, the oral cancer prediction using the 
proposed DCGANOIS model significantly 
enhances prediction accuracy through the 
integration of the MCNN architecture. 
 
 
 
 

 
 
5. CONCLUSION 
 
The proposed DCGANOIS model is utilized for 
disease prediction, demonstrating enhanced 
efficiency in oral cancer detection using the 
OSCC dataset. To improve classification 
accuracy, an improved CLAHE method is 
employed for data preprocessing. Additionally, 
the model leverages MDCGAN for feature 
extraction, feeding the relevant features to the 
MCNN for classification. Comparative analysis 
with conventional techniques highlights the 
model's superiority, achieving impressive 
accuracy, precision, recall, and f1-score rates of 
97.83%, 97.50%, 95.12%, and 96.30%, 
respectively, for magnification 400x, and 
98.11% accuracy for magnification 100x. These 
results underscore the model's effectiveness in 
disease prediction, outperforming conventional 
methods. The study proposes further exploration 
of additional datasets and advanced algorithms to 
enhance the classifier's performance, anticipating 
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continuous advancements in disease prediction 
and diagnosis with evolving technology in 
medical research and healthcare.  
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