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ABSTRACT 
K-Means clustering algorithm has been enhanced based on MapReduce such that it works in distributed 

Hadoop cluster for clustering big data. We found that the existing algorithm have not included techniques for 
computing the cluster metrics necessary for evaluating the quality of clusters and finding interesting patterns. 
This research adds this capability. Few metrics are computed in every iteration of k-Means in the Hadoop’s 
Reduce function such that when it is converged, the metrics are ready to be evaluated. We have implemented 
the proposed parallel k-Means and the experiments results show that the proposed metrics are useful for 
selecting clusters and finding interesting patterns.      
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1. INTRODUCTION 

The high utility of IT and the Internet by 
individuals as well as organizations have produced 
big data in recent years. Big data comes from various 
sources, such as sensor equipment, social media, 
website logs, clicks, and stored with either 
unstructured, semi structured or structured format. 
With the availability and accessibility of these data, 
analyzing them using data mining techniques, such as 
clustering, for obtaining valuable information has 
become a necessity in organizations. 

The emerging technology Hadoop with its 
MapReduce components have been developed for 
analyzing big data in a distributed computing 
environment. Hadoop offers few advantages, the one 
that is beneficial to small organizations is the 
machines in the distributed network can be just 
commodity computers [1]. A MapReduce program 
must processes data by manipulating key-value pairs 
and produce some other form of key-value pairs 
designed by developers. With this strict scheme, the 
“traditional” data mining techniques, such as k-
Means algorithm, should be enhanced such that it 
works in the Hadoop environment. 

A good clustering method will produce high 
quality clusters with high intra-class similarity and 
low inter-class similarity. It should also be able to 
discover the valuable hidden patterns [2,3].  

We have found two parallel k-Means developed 
for Hadoop environment discussed in [4] and [5] (see 

Subsection 2.4). Both enhanced k-Means consist of 
Map and Reduce algorithms and functions that do the 
k-Means computations. However, these algorithms 
have not computed sufficient metrics that are 
necessary for evaluating the clusters quality and 
valuable patterns.  

Issues of evaluating the cluster quality: It is 
known that k-Means takes k (number of clusters) as 
one of its inputs. Finding the best k requires trial and 
error by examining and evaluating the clusters based 
on few metrics such as the size of each cluster,  
cohesion of the clusters, and separation of the clusters 
[3]. Thus, parallel k-Means should also compute 
these metrics such that the clusters quality can be 
evaluated.   

Issues of discovering the valuable hidden patterns 
or knowledge from dataset: By taking inputs of 
dataset and k, k-Means then produces centroids of all 
cluster and labels each object in the dataset with its 
cluster number. The centroids can be used as a pattern 
metric. However, by using only the centroids, 
interesting patterns or knowledge may not be 
identified correctly/completely. Addressing this need, 
[3] have defined few other cluster pattern metrics, 
such deviation, minimum, maximum of object 
attribute values, and number of objects in each 
cluster.  Hence, these metrics should also be 
computed in the parallel k-Means.  

Given the fact that MapReduce works based on 
the key-value pairs, the research problem is: What 
metrics that are feasible and can be computed 
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efficiently from big data? How to enhance the 
previously developed parallel k-Means to compute 
these metrics efficiently in the distributed 
environment?  Once the algorithm has been 
enhanced, how to use this for obtaining interesting 
patterns from big data?  

In this research, we enhance the parallel k-Means 
to address those issues and conduct experiments 
using two sample of big data for obtaining 
knowledge. Our main contribution is enhancing the 
previously developed parallel k-Means based on 
MapReduce such that it has the capability to generate 
the necessary metrics for evaluating clusters quality 
and discovering interesting patterns.  

This paper presents some related literature 
review, proposed techniques, experiment results 
using two big dataset, conclusion and further works.  

 
2. LITERATURE REVIEW 

2.1. Clustering Stages 
Among business organizations, data mining 

techniques are commonly used in supporting 
customer relationship management. The cycle of 

using data mining include stages of identifying the 
business problem, mining data to transform the data 
into actionable information, acting on the 
information, measuring the results [6]. When the 
problem is lack of data insights, data miners can 
define the objective as to obtain knowledge from the 
data and select clustering technique to seek solutions.  
The processes for clustering data is shown in Fig. 1.   
Based on the objective, data miner should gather and 
select some raw data. Then, the selected dataset 
should be preprocessed that may involve data 
cleaning, attribute selection and transformations [3]. 
Data cleaning needs to be performed as raw dataset 
may contain missing values, outliers or unwanted 
values. Some attributes may be irrelevant such that 
these should be removed. Attribute values may need 
to be normalized or transformed into the certain 
values and/or types that are accepted by the 
algorithms. The patterns resulted from clustering are 
then evaluated by some measures to obtain 
knowledge, which can be used to design 
organizational actions.  

 

raw dataset

pre-
processed

clustering 
algorithm

patterns 
evaluation

knowledge
 

Figure.1:  Knowledge Discovery Process [7]. 

   
2.2. k-Means Algorithm, Cluster Quality and 

Patterns Generation 
Clustering aims to find similarities between data 

objects according to the characteristics found in the 
objects and grouping similar objects into clusters [2]. 
As k-Means algorithm processes matrix data input 
where all of the attributes must be numeric, each 
object is a vector.  

The k-means algorithm partitions a collection of 
n vector xj, j = 1,…,n into c groups Gi, i = 1,…,c, and 
finds a cluster center (centroid) in each group such 
that a cost function of dissimilarity  measure is 
minimized ([8] as appeared in [9, 11]). If a generic 
distance function d(xk,ci) is applied for vector xk in 
group i, the overall cost function is 
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The partitioned groups are represented by an c x 
n binary membership matrix U, where element uij is 
1 if the jth data point xj belongs to group i, and 0 
otherwise. The cluster center (centroid) ci is the mean 
of all vectors in group i: 
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where |Gi| is the size (object numbers) of Gi.   
The k-means algorithm is presented with a dataset 

xi, i = 1,…,n. The algorithm determines the centroid 
ci and the membership matrix U iteratively using the 
following steps: (1) Initialize the cluster center ci, i = 
1,…,c; (2) Determine the membership matrix U; (3) 
Compute the cost function by Eq. (1).  Stop if its 
improvement over previous iteration is below a 
certain threshold or maximum iteration (defined by 
data miners) is reached; (4) Update the cluster center 
by Eq. (2). Go to step 2. 

The performance of the k-means algorithm 
depends on the initial positions of the cluster centers. 
k-Means is relatively efficient with O(tkn), where n 
is total vectors/objects, k is the cluster numbers, and 
t is the iterations. Normally, k, t << n.  

Measuring Clustering Algorithm Quality: A good 
clustering method will produce high quality clusters 
with high intra-class similarity and low inter-class 
similarity. It should also be able to discover the 
hidden patterns [2]. Other requirements are: (1) 
Scalability; (2) Able to deal with noise and outliers; 
(3) Interpretability and usability, etc.    

Measuring Clustering Results Quality:  As 
defined in [2], high quality clusters should have high 
intra-class similarity and low inter-class similarity. 
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To achieve this, data miners should assess the 
homogeneity or cohesion of the clusters and the level 
of similarity of their members, as well as their 
separation.  

In examining and evaluating the clusters, [3] 
proposes 3 measures: 

(a) The number of clusters and the size of each 
cluster: A large, dominating cluster which 
concentrates most of the records may indicate the 
need for further segmentation. Conversely, a small 
cluster with a few records merits special attention. If 
considered as an outlier cluster, it could be set apart 
from the overall clustering solution and studied 
separately. 

(b) Cohesion of the clusters: A good clustering 
solution is expected to be composed of dense 
concentrations of records around their centroids. Two 
metrics can be calculated to summarize the 
concentration and the level of internal cohesion of the 
revealed clusters, which are:  

(b.1) Standard deviations of cluster attributes and 
pooled standard deviations of each cluster:  Standard 
deviations of the attribute j in a cluster can be defined 
as:  

𝑆𝐷௝ = ට
(௫೔ିఓ)మ

ேିଵ
          (3) 

where xi is the attribute value of object i, µ is the 
average of this attributes, N is the total object 
members in the corresponding cluster. 

The pooled standard deviation of a cluster having 
k attributes and N object members can be defined as: 
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(b.2) Average of squared Euclidean distances 

(SSE) between the object and their centroid as 
follows:  
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(5)  
where Ci is the centroid of cluster i, x is an object 

of cluster i, and N is the total objects. 
(c) Separation of the clusters: High clusters 

should have low inter-cluster similarity or high inter-
cluster dissimilarity. This can measured by 
computing the silhouette coefficients of the 
clustering results.  

The silhouette coefficient of each clustered 
object, S(i), is computed as: 
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where a(i) = average dissimilarity between object 
i and all other objects of the cluster to which i belongs 
and b(i) = average dissimilarity between object i and 
its “neighbor” cluster (the nearest cluster to which i 
belongs). In Eq. 6, 0 ≤ S(i) ≤ 1. Large value of S(i) 

denotes that object i is well clustered, small value 
denotes the opposite and negative value of S(i) 
denotes that object i is wrongly clustered. Generally 
if the average of S(i) for all clustered objects is greater 
than 0.5, then the cluster solution is acceptable.  

Patterns Generated from k-Means Output: 
Patterns of clusters can be found through profiling [3, 
10]. One method of profiling is by comparing the 
objects attributes in clusters. Things that can be 
compared include the average (means), minimum, 
maximum, standard deviation of the attribute values 
and percentage of objects having each of the attribute 
values. Likewise, the number of object members in 
each cluster can also be examined.   

By understanding the metrics used to evaluated 
clusters quality and patterns generation, it is clear that  
size of each cluster and standard deviations can be 
used in generating patterns as well as measuring 
clusters quality. Thus, computing these metrics is 
important.  

 
2.3.  Hadoop, HDFS and Map-Reduce 

Hadoop is a platform that has been developed for 
storing and analyzing big data in distributed systems 
[1]. It comes with master-slave architecture and 
consists of the Hadoop Distributed File System 
(HDFS) for storage and MapReduce for 
computational capabilities. Its storage and 
computational capabilities scale with the addition of 
hosts to a Hadoop cluster, and can reach volume sizes 
in the petabytes on clusters with thousands of hosts. 
The following is some brief overview of HDFS and 
MapReduce. 

HDFS: HDFS is a distributed file system 
designed for large-scale distributed data processing 
under frameworks such as MapReduce and is 
optimized for high throughput. It automatically re-
replicates data blocks on nodes (the default is 3 
replications).   

MapReduce: MapReduce is a data processing 
model that has the advantage of easy scaling of data 
processing over multiple computing nodes. A 
MapReduce program processes data by manipulating 
(key/value) pairs in the general form:  

map: (k1,v1) ➞ list(k2,v2) 
reduce: (k2,list(v2)) ➞ list(k3,v3). 
Map receives (key, value) pairs, then based on the 

functions designed by developers, it generates one or 
more output pairs list (k2, v2). Through a shuffle and 
sort phase, the output pairs are partitioned and then 
transferred to reducers. Pairs with the same key are 
grouped together as (k2, list(v2)). Then the reduce 
function (designed by developers) generates the final 
output pairs list(k3, v3) for each group.  

In some situation, the traffic in the shuffle phase 
can be reduced by using local Combiner. Combiner 
function is useful in the case when the reducer only 
performs a distributive function, such as maximum, 
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minimum, and summation (counting). But many 
useful functions aren’t distributive such that using 
combiner doesn’t necessarily improve performance 
[12].  

The overall MapReduce processed is shown in 
Fig. 2 [1, 13]. A client submit a job to the master, 

which then assign and manage Map and Reduce job 
parts to slave nodes. Map will read and process 
blocks of files stored locally in the slave node. The 
Map output of pair key-values are sent to Reducer. 
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Figure 2: MapReduce Processes. 

 
2.4. Parallel k-Means for Hadoop 

We have found two parallel k-Means developed 
for Hadoop environment. The core concept of both is 
excerpted as follows. 

First, in [4], the map function assigns each object 
to the closest centroid while the reduce function 
performs the procedure of updating the new 
centroids. To decrease the cost of network 
communication, a combiner function combines the 
intermediate values with the same key within the 
same map task in a Hadoop node.  

The excerpt of the algorithm of Map, Combine 
and Reduce (detailed algorithm can be found in [4]):  
(a) Map-function: The input dataset is stored in 
HDFS as a sequence file of <key, value> pairs, each 
of which represents a record/instance/object in the 
dataset. Map computes the minimum distance for 
each object to all centroids. It then emits strings 
comprising of the index of its closest centroid (as 
key’) and object attributes (as value). 
(b) Combine-function: Processing key-value pair 
from Map, Combine partially sums the attribute 
values of the points assigned to the same cluster and 
number of objects in each cluster. It emits strings 
comprising of the index of its cluster centroid (as 
key’) and the sum of each attribute value of objects 
in this cluster.  
(c) Reduce-function:  Reduce function sums all the 
samples and compute the new centroids (centers) 
which are used for next iteration. It then emits key’ is 
the index of the cluster, value’ comprising a string 
representing the new centroids. 

Secondly, in [5], the parallel K-means algorithm 
is improved by removing noise, giving pre-computed 
value of k and initial clusters (to reduce iterations). 
The excerpt of the general idea: The value of each 
attribute for each object is evaluated, then based on 
this value a GridId is assigned for each object. Object 
having attribute values beyond its threshold is 
removed. The centroid of the grids are fed into 
DBSCAN algorithm to obtain the best k value (the k 
initial cluster centers are computed from the sample 
of grids). The k and initial clusters are used as input 
of Map function of parallel k-Means based on 
MapReduce. 

Some drawbacks that we found on those existing 
parallel k-Means are:  
(a) Big data may (most likely) contains noise or 
outlier and missing value, hence it must be handled. 
If cleaning data is performed before the big data is 
fed into k-Means, it will be inefficient. This has not 
been addressed in the algorithm.  
(b) The Reduce function emits cluster centroids only 
as patterns. For some big data, such as organizations 
business data, this may not be sufficient.  
(c) If some more patterns need to be computed (in the 
Reduce) that require detailed information (attribute 
values) of each object, Combine (that sums up 
attribute values of “local cluster”) cannot be 
employed.  
(d) In [5], the formula for obtaining GridId is not 
presented clearly. While an object may have several 
attributes, the GridID of an object is computed based 
on a single value of (attribute) value. 
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(e) As the parallel DBSCAN algorithm is not 
included in the proposed technique, it seems that 
initial centroids are still computed at the outside of 
Hadoop system. 

By examining those drawbacks, we aim to 
develop a parallel k-Means with the capability to 
preprocess the big dataset and compute suitable 
metrics that can be used to evaluate cluster quality as 
well as patterns. 

 
 

3. PROPOSED TECHNIQUE 
 
In this section, we present the analysis of selecting 
cluster quality metrics, the enhancement of 
providing metrics and pattern components and the 
parallel k-Means algorithm based on MapReduce.  

Our proposed technique is designed based on the 
MapReduce concept as depicted in Section 2.3. 
Hence, the parallel k-Means is not applicable for 
other than Hadoop distributed environment.  
 
3.1. Selecting Cluster Quality Metrics and 
Pattern Components 

Big data may consist of millions or even billions 
of objects. Clustering big data will produce clusters 
where each cluster may have very large number of 
object members. The following is the feasibility 
review of using metrics depicted in Subsection 2.2 
for measuring the quality of big data clusters: 
(a) Number of object members: In each iteration, the 
number of objects in every clusters are computed 
(and used to compute the new centroids), so having 
this metrics is feasible. 
(b) Standard deviations of cluster attributes and 
pooled standard deviations of each cluster: The 
computation of µ in  (xi - µ) (Eq. 3) requires that all 
of attribute values in every object in each cluster be 
stored in the slave node memory.  Storing the whole 
(raw) large number of objects and their attribute 
values in the slave nodes memory will not guarantee 
scalability (required for good clustering algorithm) 
in processing big data. Accessing each object (of 
million objects) in each iteration also worsens the 
time complexity. As a solution, we propose the 
following approach: As in each k-Means iteration 
the cluster centroids are closer to the final centroids, 
the cluster centroids obtained from the previous 
iteration is used as µ in the current iteration such that 
while iterating the list of values (that include xi), 
Reducer functions compute (xi - µ) along with other 
computations (to produce pattern components). 
Then, after all of the computations are performed, 
the standard deviations of each attribute (SDj) and 
pooled standard deviation (SD) can also be 
computed.  

(c) Separation of the clusters: Computing silhouette 
coefficient of each clustered object, S(i), requires 
that the whole (raw) large number of objects and 
their attribute values be stored in the slave nodes 
memory in every k-Means iteration. This is 
necessary because a(i) and b(i) computations in Eq. 
6 need distance computation from one object to 
every other object in its cluster as well as other 
clusters.  If this metric is adopted for clustering big 
data, the computation will worsen the scalability and 
time complexity of the parallel k-Means. Hence, it is 
not feasible to be adopted.  

Based on those analysis, the metrics chosen for 
evaluating cluster quality are number of members 
and pooled standard deviations for every cluster.  
  

As discussed in Subsection 2.2, number of 
members and standard deviation of attributes in 
clusters can be regarded as cluster pattern 
components. Hence, we can include these as part of 
the patterns for reducing computations. Other 
components that we adopt are cluster centroids, the 
minimum and maximum of attribute values in every 
cluster. Computing those 5 pattern components will 
not add significant time complexity as it can be 
performed along with clustering process in every 
iteration.  

      
3.2. Parallel Clustering Technique  

In our previous work presented in a conference 
[7], we proposed a technique for clustering big data 
consisting of two stages that include data sampling 
for finding initial centroids and some enhancement as 
the following:  
(1) Data preprocessing: Attributes selection, cleaning 
and transformations are performed along with the 
clustering process, in the Map functions that takes 
input the raw dataset. Hence, the big data is not 
“visited” more than once.    
(2) Reducing iterations: MapReduce known for its 
inefficiency in iterative processes (such as in k-
Means algorithm) as in each pass the output must be 
written in HDFS. Reducing the iterations number is 
significant. We propose that initial centroids be 
computed by MapReduce from a sample of dataset, 
which are expected to be closer to the final centroids. 
(3) Adding computations in Reduce function for 
computing some pattern components. In this past 
research, we had not conducted experiments to 
support our concept.  

In [7], we present experiment results showing that 
the proposed technique is scalable but have not 
conducted experiments with real big data set for 
evaluating the cluster patterns.  

After further works, we find that the sampling 
does not always perform well for finding initial 
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centroids close to the real ones. Hence, that technique 
needs to be revised as depicted on Fig. 3. 

 

patterns

2
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paralel k-

Means

1
computing  

initial 
centroids 

initial centroids
HDFS

HDFS

 
 

Figure 3: Proposed Clustering Technique. 

 
The technique consist of 2 processes where the 
detailed design is discussed below. 
 
Process-1:    
Determining the initial centroids can be done by 
clustering a sample of dataset or other technique. The 
algorithm for parallel sampling and clustering the 
sample is discussed in [7].    
 
Process-2:  

This k-Means performs data preprocessing and 
produces metrics for measuring clusters quality and 
pattern components of each cluster at each iteration 
as follows:  
(1) Mapper: Performs  
a) Cleaning, attributes selection and 

transformations or normalizations;  
b) Finding the closest centroid for each object (Eq. 

2) and emit ID Cluster as the key and IdObject, 
the object distance to its centroid, the attribute 
values of this object as the value.  

(2) Reducer: By receiving key and list of value, 
Reducer produces metrics of cluster quality as well 
as pattern components as follows:  
a) Compute number of object members in each 

cluster, new centroids, sum of the distance of 
each object to its centroid (distCluster), 
minimum, standard deviation of each attribute 
value, pooled standard deviation for each cluster, 
and average SSE (Eq. 5). This computation is 
performed based on the Section 3.A analysis and 
approach.  

b) Emit and write the IdCluster and all of the 
computation results.   

(3) Job (main program): (a) Submitting MapReduce 
functions to the master node; (b) Computing the cost 
function by summing up all of the distCluster value 
(of each cluster), Ji (Eq. 1) obtained from Reduce 
output; (c) Checking the convergence by examining 
the value of  |Ji – Ji-1|,  if it is greater than the 

minimum cost then replace the initial centroids with 
the current centroids and repeat the iteration by 
submitting MapReduce functions to the master node. 
Otherwise, stop the iteration. 
The detailed algorithm is presented below. 

 
Algorithm: Enhanced  parallel k-Means 
This k-Means consists of four algorithms as depicted 
below (as improvement of the proposed algorithm in 
[7, 14]).  
 
 
Algorithm kM-1. configure  
Input: Initial centroid file, fInitCentroids 
Output: centers[][] 
Descriptions: This algorithm is executed once 
before map is called where it fills the array of 
centroids, centers, from initial centroid file, 
fInitCentroids.  
 
 
Algorithm kM-2. map  
Input: initial or current centroids, centers[][]; an 
offset key; a line comprising object attribute values, 
value; a set of valid  min-max value for every 
attribute 
Output: <key’, value’> pair, where the key’ is the Id 
of the closest centroid and value’ is a string 
comprise of object information 
Steps: 
1. Initialize arrRawAtr[] and arrAtr[]  
2. Get each of the object attribute value from value, 
store in arrRawAtr[],  
3. arrAtr[] = results of preprocessing arrRawAtr[], 
where preprocessing include data cleaning and 
transformation 
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3. If arrAtr[] is valid 
       determine the object’s cluster based on the 
closest centroid 
4.    construct value’ as a string comprising distance 
of the object to its cluster centroid and the values of 
arrAtr; 
5.  emit < index, value’>; 
 
Algorithm kM-3. reduce  
Input: index of the cluster, key; list of ordered values 
from all of hosts, ListVal; array of centroids from 
previous iteration, prevcenters; 
Output: < key’, value’> pair, where the key’ is the 
index of the cluster, value’ is a string comprising:  
centers[] (centroid of a clusters), number of objects 
in a cluster, countObj, minimum, maximum, 
average, standard deviation of every attribute, 
pooled standard deviation for a cluster, minAtrVal[], 
maxAtrVal[], StdAtrCluster[], PooldStdCluster; 
currentCostFunction, J; averageSSE, AvgSSE. 
Steps: 
1.   Initialize minAtrVal[], maxAtrVal[], 
SumDiffAtrPrevCenter[], SumAtr[],StdAtrCluster 
[], centers[] 
2.   countObj = 0; J = 0;  
3.   While(ListVal.hasNext()) 
4.       get the object attribute values and its distance 
to centroid  from value 
5.       for each attribute,  add its value to SumAtr[] 
accordingly,  subtract its value with its previous 
centroid stored in  prevcenters, compute the square 
of this result then add this to SumDiffAtrPrevCenter 
accordingly, compare its value to the corresponding 
element value in minAtrVal, maxAtrVal, replace 
value in minAtrVal, maxAtrVal,   
6.          J = J + dist; 
7.          countObj = countObj + 1 
8.   Compute new centroids by dividing SumAtr with 
countObj and store the results in centers; 
10. Compute approximate of standard deviation of 
every attribute in each cluster using 
SumDiffAtrPrevCenter, store the result in 
StdAtrCluster accordingly  
11. Compute PooldStdCluster using StdAtrCluster 
based on Eq. 3 and 4  
12. Compute AvgSSE by dividing J by countObj 
11. Construct value” as a string comprising 
countObj, centers, J, minAtrVal, maxAtrVal, 
StdAtrCluster, PooldStdCluster, AvgSSE  
12. Emit < key, value”>; 
  
Algorithm kM-4. run (the Hadoop job) 
Input: Array of cost function, J; maximum of 
iteration, maxIter; minimum of the different 

between current and previous iteration of cost 
function, Eps.  
Output: J 
Steps:  
1. Initialize J[maxIter];  
2. iter = 1;  
3. While iter <= maxIter {execute configure, map 
and reduce function; get J from the output of reduce 
function then store it in J[iter];  if absolute value of 
(J[iter] – J[iter-1]) <= Eps then break; else iter = 
iter + 1} 

 
4. EXPERIMENTS 

 
We have implemented the algorithms and 

performed a series of experiments using big dataset 
in a Hadoop cluster with a master (name node) and 6 
slave nodes. All of the nodes are commodity 
computers having low specification with processor of 
Quad-Core running at 3.2 GHz clock and RAM of 8 
Gb. 

Dataset: The dataset of household energy 
consumption is obtained from:  
https://archive.ics.uci.edu/ml/datasets/ with the size 
of approximately 132 Mb. This archive contains 
2075259 measurements (records) gathered between 
December 2006 and November 2010 (47 months). 
The sample of the dataset are as follows: 
9/6/2007; 17:31:00 ; 0.486 ; 0.066; 241.810; 2.000; 
0.000 ; 0.000 ; 0.000 
9/6/2007; 17:32:00 ; 0.484 ; 0.066; 241.220; 2.000; 
0.000 ; 0.000; 0.000 
9/6/2007; 17:33:00 ; 0.484 ; 0.066 ; 241.510; 2.000; 
0.000 ; 0.000 ; 0.000 
Each line presents a record with 9 attributes, the 
excerpts are:  
(1) Date;  
(2) Time;  
(3, 4, 5, 6) some results of metrics;   
(7) sub_metering_1: energy sub-metering (watt-
hour) that corresponds to the kitchen,  
(8) sub_metering_2: energy sub-metering that 
corresponds to the laundry room;  
(9) sub_metering_3: energy sub-metering that 
corresponds to a water-heater and an air-conditioner. 

Mining objective: By understanding the dataset, 
the objective that is feasible is to obtain energy 
consumption patterns of the household. Knowing 
this, the power provider may design better services 
for this household. 

Data Preprocessing:  Based on the objective, we 
intend to find the patterns of electricity power usage 
of sub-metering 1-2-3 based on day number (1 = 
Monday, 2 = Tuesday, …, 7 = Sunday) and hour. 
Hence, the data preprocessing performed in Map 
function is as follows: 
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a) Number of day (1, 2, …7) is extracted from Date 
and stored as attribute-1; 

b) Hour (1, 2,…24) is extracted from Time and 
stored as attribute-2; 

c) The value of sub_metering_1, _2 and _3 are 
taken as is and stored as attribute-3, -4, -5.  

Thus, the preprocessed dataset has 5 attributes, 
which are day number, hour and 3 sub-metering 
measures. 
 

Testing the performance of the proposed parallel 
k-Means: For experimenting speed and scalability, 

we created several simulation dataset with the size of 
0.2, 0.4, 0.8, …, 2 gigabyte as the “multiplications” 
of the original dataset. We use HDFS block size of 
32 and 64 Mb. We then repeatedly clustered each of 
the dataset stored using k = 3 for each of the block 
size setting. We then averaged the execution times 
on every blocks and plotted the results as depicted 
on Fig. 4. The speed with 32 and 64 Mb block size 
is almost the same. The time execution plots are 
linear, which indicates that the execution of the 
proposed k-Means scales linearly to the size of 
dataset or guarantee scalability. 

 

 
Figure 4:  Average Iteration Performances on Two HDFS Block Sizes. 

 
Mining knowledge from the dataset: The 
experiments for obtaining the best k, patterns and 
knowledge are presented as follows. 

Selecting the best k using the cluster quality 
metrics: This experiment is intended to show how to 
use the proposed quality metrics for finding the best 
cluster number, k. We cluster the preprocessed 

dataset with k = 3, 4, 5, 6 and 7. The count of 
iterations until k-Means reach convergence and the 
average execution time (in seconds) for each k are: k 
= 3: 11 -  60; k = 4: 10 - 61.88;  k = 5: 15 - 63.13; k 
= 6: 15 - 65 and k = 7: 16 - 66.25. The results for 
each metrics are depicted in Table 1, 2 and 3.  

  
Table 1: Comparison of Cluster Members. 

Cluster k = 3 k = 4 k = 5  k = 6  k = 7  

1 663,773 56,087 55,224 55,213 55,091 

2 712,262 692,418 673,913 444,285 671,641 

3 699,224 665,814 47,042 46,990 46,807 

4   660,940 660,524 574,555 73,335 

5     638,556 636,918 223,860 

6       317,298 351,961 

7         652,564 

Total 2,075,259 2,075,259 2,075,259 2,075,259 2,075,259 

 
Table 2: Comparison of Pooled Standard Deviation. 
Cls k = 3 k = 4 k = 5 k = 6 k = 7 

1 16.20 200.57 174.51 174.47 173.95 

2 70.61 35.75 15.37 12.25 14.69 

3 132.48 68.75 196.41 196.31 196.01 

4   11.53 10.29 8.32 15.39 

5     30.42 30.25 19.91 

6       9.80 14.87 

7         8.44 

 
 
 

Table 3: Comparison of Average SSE. 
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Cls k = 3 k = 4 k = 5 k = 6 k = 7 
1 3.52 13.21 12.57 12.57 12.55 

2 6.06 5.01 4.09 3.28 4.06 

3 9.06 7.23 14.01 14.01 13.99 

4   3.44 3.42 3.02 4.04 

5     5.81 5.79 3.87 

6       3.09 3.38 

7         3.33 

 Note: Cls = cluster

 
Based on the metric results, the best k is selected as 
follows: 
a) By comparing the number of cluster members 

(Table 1), k = 3, 4 and 5 can be selected as the 
candidates of the best k as there is no obvious 
dominating cluster (there are at least 3 clusters 
that have almost equal members).  

b) Among the clustering results with k = 3, 4 and 
5,   by examining the contents of Table 2 and 3, 
it is found that for k = 3:   
 the maximum of standard deviations 

(belongs to cluster 3), which is 132.48, is 
less than 200.57 (cluster 1 in k = 4) and 
174.51 (cluster 1 in k = 5);  

 the maximum of average SSE (belongs to 
cluster 3), which is 9.06, is less than 13.21 

(cluster 1 in k = 4) and 12.57 (cluster 1 in k 
= 5).  

Hence, it can be concluded that the best k is 3 and 
the clustering patterns can be interpreted from the 3 
clusters. 

Pattern interpretation of 3 clusters: The 
components of the patterns, which are the average 
(centroids) and deviation of each attribute for every 
cluster and member of each cluster is shown on Fig. 
5. The other pattern components, which are the 
minimum and maximum of the 5 attribute values are 
as follows: 
a) Cluster-1: minimum: 1,0,0,0,0; maximum: 7, 

10, 45, 76, 13;  
b) Cluster-2: minimum: 1, 7, 0, 0, 0; maximum: 7, 

23, 81, 80, 11;  
c) Cluster-3: minimum: 1,0, 0, 0, 4; maximum: 7, 

23, 88, 78, 31. 
 

 
 

Figure 5: Patterns of Three Clusters (Cluster-1 = pink, 2 = green, 3 = blue). 

As attribute 1, 2, 3, 4, and 5 corresponds to number 
of day, hour, results of energy submeter in the  
kitchen, laundry room, and  water-heater and air-
conditioner,  the interpretations of the pattern for 
each cluster are as follows: 
a) Cluster-1 (pink): As the centroids of submeter-

1,-2,-3 value are low while standard deviations 
are also low with almost one-third of the 
members, this  means that most of the day at the 
early of hour, in the whole house (on 3 sub-
meters), the energy consumption are low. 
Sometimes the house do not use electricity at all 
and the maximum energy usage in 3 submeters 
are 45, 76 and 13.   

b) Cluster-2 (green): The centroids of the hour is 
high, submeter -1,-2,-3 values are low while 
standard deviations are rather high on submeter-
1 (kitchen) and -2 (laundry), with almost one-
third of the members. This  means that most of 

the day at the mid-day, the average energy 
consumption are low on 3 sub-meters, but 
kitchen and laundry rooms sometime consume 
high energy (with maximum of 81 and 80).   

c) Cluster-3 (blue): The centroids of the hour is 
rather high, submeter -1,-2 (kitchen and 
laundry) values are low, submeter-3 value is 
high, while standard deviations of the hour, 
submeter-1 in the kitchen is high (with 
maximum value of 88) and submeter-2 in the 
laundry room are quite high (maximum value is 
78), and submeter-3 is low, with almost one-
third of the members. This means that most of 
the day at around mid-day, the average energy 
consumption in the kitchen and laundry are low 
but with high fluctuation, while water-heater 
and an air-conditioner is almost always high.  
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Based on the patterns interpretation of those 3 
clusters, the overall knowledge can be summarized 
as follows: The family consume low energy at most 
of the time. But, they frequently use water-heater 
and air condition during mid-day and sometimes do 
laundry during also around the mid-day. This 
knowledge seems to be logical or make sense. 
Hence, this experiments prove that the 3 quality 
cluster metrics and 5 components of cluster pattern 
can be adopted for clustering big data.    

To show that the pattern components are also 
useful for clustering other big data, in the Appendix 
A, we present the experiment results for mining 
historical weather patterns from big data recorded by 
weather stations. 
   
5. CONCLUSION 

Parallel k-Means based on MapReduce can 
further be enhanced by adding the capability for 
computing metrics that can be used for evaluating 
cluster quality as well as generating patterns from big 
data. The computations are included in the Reduce 
function. Our experiment results using big datasets 
show that time execution scale linearly and the 
metrics are useful for finding knowledge. However, 
we have not address the metrics for measuring 
separation of the clusters. Hence, this issue is left for 
further works. 

For finding the best k using our proposed 
technique, big data is clustered several times. Also, in 
every iteration of k-Means, big data is read from 
HDFS. Both of these lead to inefficiency. Hence, 
further improvement of the proposed technique is 
required. One option for reducing the number of 
reading HDFS is by storing the big data in parallel 
memory. While for finding the best k, other technique 
may be employed. One option is by enhancing grid-
based clustering technique in the parallel 
computation environment.  
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APPENDIX A 
MINING HISTORICAL PATTERNS FROM WEATHER 

DATA 
 
This experiment is intended to show the use of the 
proposed technique for obtaining patterns and 
knowledge from  the big historical data of weather. 

Dataset: The data is downloaded from NOAA's 
National Centers for Environmental Information, 
http://www1.ncdc.noaa.gov/pub/data/noaa/.  There 
are thousands of files which are stored and organized 
based on the measurement year (1901, 1902, 
….2015, 2016). Each file represent measure results 
from a station in a single year and named using the 
format of XXXXXX-NNNNN-YYYY.gz (for 
example, 010010-99999-1973.gz and 072010-
99999-1991.gz) where XXXXXX represents the 
station number, NNNNN is WBAN weather station 
identifier and YYYY denotes year. The size of each 
file varies, depending on the frequency of 
measurements. Total size of all files are more that 
500 Gb. Each file contains records of weather 
measures for a station in a year. Each record is 
presented in one line and represented in text string 
and consists of 31 attributes, such as station 
identifier, observation date, time, latitude, longitude 
of observation point, elevation, wind direction, wind 
speed, visibility distance, air temperature, dew point 
temperature, atmospheric pressure and other 
attributes. One example of file content (one records) 
are as follows: 
0207010010999992001010118004+70930-008660FM-
12+0009ENJA V0203501N004610090019N0200001N1-
00711-
00901100351ADDAA112000791AY181061AY231061
GF108991071081004501041999KA1120M-
00401MA1999999100231MD1110041+9999MW1031R
EMSYN094AAXX  01184 01001 11470 83509 11071 
21090 30023 40035 51004 69902 70383 8784/ 333 11040 
91114; 

The objectives: Mining patterns of “snapshots” 
of the historical data weather and then comparing the 
resulted patterns of each snapshot for observing 
weather changes across the periods. In these 
experiments, the patterns are produced from the four 
selected attributes, which are wind speed, 
temperature, dew point temperature and atmospheric 
pressure.  

Data selection and preprocessing: In order to 
observe meaningful weather pattern changes, it 
would be improper if the whole weather data are 
analyzed at once as the data are measured from all 
over places/points of the world at various altitude 
and longitude having 4 seasons (summer, fall, winter 
and spring) or tropical seasons (simply rainy and 
dry).  Instead, weather data  should be selected from 
a station or some nearby stations. Aiming to obtain 
historical patterns, we cluster the data from 
consecutive “snapshot” periods. Some example of 
the periods are 1973-1980, 1981-1985, 1986-1990, 
1991-1995, …., 2010-2015. We then cluster the data 
at each snapshot time using the four selected 
attributes, analyze and compare the patterns 
generated.    

Data selection and preprocessing in Map 
functions: 
a) As Map function can take HDFS folder name 

containing those thousands of files and the data 
weather is presented in files having their station 
number and year measured, we define the 
station numbers as well as the snapshot periods 
as Map variables such that Map select and read 
the files associated with the stations and the 
snapshots time at each pass.  

b) Map then select the 4 attributes and transform 
these as follows: (1) Wind speed, temperature, 
dew point temperature are divided by 10 (as the 
recorded data are multiplied by 10, we 
normalized those into their real values); (2) 
Pressure is divided by 1000 such that this 
attribute value does not differ greatly with the 
others, which could lead into the most dominant 
attribute (in calculating the object distance using 
Euclidean method). 

Defining k and clustering process:  We have 
clustered the snapshots of weather data from few 
stations. Here, we present the experiment results of 
clustering the 8 snapshot data from station 010010 at 
Jan Mayen (Nor-Navy) Norway as an example. 
Expecting to obtain patterns related to cold, middle 
and hot seasons, we cluster the data of each of the 8 
snapshots (1973-1980, 1981-1985, 1986-1990, 
1991-1995, …., 2010-2015) into 3 clusters (k = 3). 
The number of k-Means iterations (until 
convergence is reached) and execution times are 
depicted in Table A.1.  
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Table A.1: Iterations and execution times of data from a station at Norway 
Period #Iterations Time (sec) AvgTime (sec) 

1973 - 1980 11 426 39 
1981-1985 22 872 40 
1986-1990 9 349 39 
1991-1995 13 512 39 
1996-2000 9 354 39 
2001-2005 17 676 40 
2006-2010 15 581 39 
2011-2015 15 603 40 
Average 13.875 546.64 39.32 

 
Interpreting patterns:  In Fig. A.1, we present the 
sample of patterns obtained from 3 snapshot periods 
(1973-1980, 1991-1995 and 2010-2015) only. Each 
cluster pattern is represented with blue, magenta and 
red plots. The pattern components are centroids, 

deviations, minimum, maximum of attribute values 
in each cluster and object members.  
 
 
  

 
Wsp: wind speed, Tem: air temperature, Dew: dew point temperature, Prs: atmospheric pressure. 

Figure A.1: Patterns of weather from station 010010 at Jan Mayen Norway, with (a) centroids, (b) deviations, (c) 
minimum, (d) maximum of attribute values in each cluster, (e) object members in each cluster.  

 
Some observable of weather changes interpreted 
from the patterns as follows: 
a) Centroids: While the magenta and read seem to 

be steady, the blue cluster dew point 
temperatures increased starting from 1991-1995 
snapshot. 

b) Deviations: The wind speed differ greatly in 
blue cluster, the attribute values of the blue one 

differ the most (have the most variety values), 
while the pressure differ slightly only at all 
clusters.  

c) Minimum attribute values: the blue cluster dew 
point temperatures also increased starting from 
1991-1995 snapshot.   

d) Maximum attribute values: no obvious change 
found. 
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e) Cluster member: If the weather data were 
recorded evenly from this station during those 
snapshot, the following is the interpretation: (1) 
In 1973-1980, Jan Mayen was mostly 
warm/hot; (2) In 1973-1980 and 2011-2015, the 
blue cluster (cold weather) have smaller 
members; (3) In 1991-1995, the members 
number of blue and red cluster differ slightly 
suggesting that the cold weather happened 
almost as long as hot weather.  
 

The knowledge: The blue cluster, which represent 
the cold related seasons at the Jan Mayen Norway 
station, is the one that show obvious changes across 
the last decades. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


