
Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

393

PARALLEL K-MEANS FOR BIG DATA: ON ENHANCING
ITS CLUSTER METRICS AND PATTERNS

VERONICA S. MOERTINI1, LIPTIA VENICA2
1,2Informatics Department

Parahyangan Catholic University

Bandung – Indonesia

Email: 1moertini@unpar.ac.id, 2liptiavenica@gmail.com

ABSTRACT
K-Means clustering algorithm has been enhanced based on MapReduce such that it works in distributed

Hadoop cluster for clustering big data. We found that the existing algorithm have not included techniques for
computing the cluster metrics necessary for evaluating the quality of clusters and finding interesting patterns.
This research adds this capability. Few metrics are computed in every iteration of k-Means in the Hadoop’s
Reduce function such that when it is converged, the metrics are ready to be evaluated. We have implemented
the proposed parallel k-Means and the experiments results show that the proposed metrics are useful for
selecting clusters and finding interesting patterns.

Keywords: Clustering Big Data, Parallel k-Means, Hadoop MapReduce

1. INTRODUCTION

The high utility of IT and the Internet by
individuals as well as organizations have produced
big data in recent years. Big data comes from various
sources, such as sensor equipment, social media,
website logs, clicks, and stored with either
unstructured, semi structured or structured format.
With the availability and accessibility of these data,
analyzing them using data mining techniques, such as
clustering, for obtaining valuable information has
become a necessity in organizations.

The emerging technology Hadoop with its
MapReduce components have been developed for
analyzing big data in a distributed computing
environment. Hadoop offers few advantages, the one
that is beneficial to small organizations is the
machines in the distributed network can be just
commodity computers [1]. A MapReduce program
must processes data by manipulating key-value pairs
and produce some other form of key-value pairs
designed by developers. With this strict scheme, the
“traditional” data mining techniques, such as k-
Means algorithm, should be enhanced such that it
works in the Hadoop environment.

A good clustering method will produce high
quality clusters with high intra-class similarity and
low inter-class similarity. It should also be able to
discover the valuable hidden patterns [2,3].

We have found two parallel k-Means developed
for Hadoop environment discussed in [4] and [5] (see

Subsection 2.4). Both enhanced k-Means consist of
Map and Reduce algorithms and functions that do the
k-Means computations. However, these algorithms
have not computed sufficient metrics that are
necessary for evaluating the clusters quality and
valuable patterns.

Issues of evaluating the cluster quality: It is
known that k-Means takes k (number of clusters) as
one of its inputs. Finding the best k requires trial and
error by examining and evaluating the clusters based
on few metrics such as the size of each cluster,
cohesion of the clusters, and separation of the clusters
[3]. Thus, parallel k-Means should also compute
these metrics such that the clusters quality can be
evaluated.

Issues of discovering the valuable hidden patterns
or knowledge from dataset: By taking inputs of
dataset and k, k-Means then produces centroids of all
cluster and labels each object in the dataset with its
cluster number. The centroids can be used as a pattern
metric. However, by using only the centroids,
interesting patterns or knowledge may not be
identified correctly/completely. Addressing this need,
[3] have defined few other cluster pattern metrics,
such deviation, minimum, maximum of object
attribute values, and number of objects in each
cluster. Hence, these metrics should also be
computed in the parallel k-Means.

Given the fact that MapReduce works based on
the key-value pairs, the research problem is: What
metrics that are feasible and can be computed

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

394

efficiently from big data? How to enhance the
previously developed parallel k-Means to compute
these metrics efficiently in the distributed
environment? Once the algorithm has been
enhanced, how to use this for obtaining interesting
patterns from big data?

In this research, we enhance the parallel k-Means
to address those issues and conduct experiments
using two sample of big data for obtaining
knowledge. Our main contribution is enhancing the
previously developed parallel k-Means based on
MapReduce such that it has the capability to generate
the necessary metrics for evaluating clusters quality
and discovering interesting patterns.

This paper presents some related literature
review, proposed techniques, experiment results
using two big dataset, conclusion and further works.

2. LITERATURE REVIEW

2.1. Clustering Stages
Among business organizations, data mining

techniques are commonly used in supporting
customer relationship management. The cycle of

using data mining include stages of identifying the
business problem, mining data to transform the data
into actionable information, acting on the
information, measuring the results [6]. When the
problem is lack of data insights, data miners can
define the objective as to obtain knowledge from the
data and select clustering technique to seek solutions.
The processes for clustering data is shown in Fig. 1.
Based on the objective, data miner should gather and
select some raw data. Then, the selected dataset
should be preprocessed that may involve data
cleaning, attribute selection and transformations [3].
Data cleaning needs to be performed as raw dataset
may contain missing values, outliers or unwanted
values. Some attributes may be irrelevant such that
these should be removed. Attribute values may need
to be normalized or transformed into the certain
values and/or types that are accepted by the
algorithms. The patterns resulted from clustering are
then evaluated by some measures to obtain
knowledge, which can be used to design
organizational actions.

raw dataset

pre-
processed

clustering
algorithm

patterns
evaluation

knowledge

Figure.1: Knowledge Discovery Process [7].

2.2. k-Means Algorithm, Cluster Quality and

Patterns Generation
Clustering aims to find similarities between data

objects according to the characteristics found in the
objects and grouping similar objects into clusters [2].
As k-Means algorithm processes matrix data input
where all of the attributes must be numeric, each
object is a vector.

The k-means algorithm partitions a collection of
n vector xj, j = 1,…,n into c groups Gi, i = 1,…,c, and
finds a cluster center (centroid) in each group such
that a cost function of dissimilarity measure is
minimized ([8] as appeared in [9, 11]). If a generic
distance function d(xk,ci) is applied for vector xk in
group i, the overall cost function is

  
  











c

i

c

i Gxk ik

iki cxdJJ
1 1 ,

.)(
 (1)

The partitioned groups are represented by an c x
n binary membership matrix U, where element uij is
1 if the jth data point xj belongs to group i, and 0
otherwise. The cluster center (centroid) ci is the mean
of all vectors in group i:





ik

k

i

i

Gxk

x
G

c
,||

1

 (2)

where |Gi| is the size (object numbers) of Gi.
The k-means algorithm is presented with a dataset

xi, i = 1,…,n. The algorithm determines the centroid
ci and the membership matrix U iteratively using the
following steps: (1) Initialize the cluster center ci, i =
1,…,c; (2) Determine the membership matrix U; (3)
Compute the cost function by Eq. (1). Stop if its
improvement over previous iteration is below a
certain threshold or maximum iteration (defined by
data miners) is reached; (4) Update the cluster center
by Eq. (2). Go to step 2.

The performance of the k-means algorithm
depends on the initial positions of the cluster centers.
k-Means is relatively efficient with O(tkn), where n
is total vectors/objects, k is the cluster numbers, and
t is the iterations. Normally, k, t << n.

Measuring Clustering Algorithm Quality: A good
clustering method will produce high quality clusters
with high intra-class similarity and low inter-class
similarity. It should also be able to discover the
hidden patterns [2]. Other requirements are: (1)
Scalability; (2) Able to deal with noise and outliers;
(3) Interpretability and usability, etc.

Measuring Clustering Results Quality: As
defined in [2], high quality clusters should have high
intra-class similarity and low inter-class similarity.

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

395

To achieve this, data miners should assess the
homogeneity or cohesion of the clusters and the level
of similarity of their members, as well as their
separation.

In examining and evaluating the clusters, [3]
proposes 3 measures:

(a) The number of clusters and the size of each
cluster: A large, dominating cluster which
concentrates most of the records may indicate the
need for further segmentation. Conversely, a small
cluster with a few records merits special attention. If
considered as an outlier cluster, it could be set apart
from the overall clustering solution and studied
separately.

(b) Cohesion of the clusters: A good clustering
solution is expected to be composed of dense
concentrations of records around their centroids. Two
metrics can be calculated to summarize the
concentration and the level of internal cohesion of the
revealed clusters, which are:

(b.1) Standard deviations of cluster attributes and
pooled standard deviations of each cluster: Standard
deviations of the attribute j in a cluster can be defined
as:

𝑆𝐷௝ = ට
(௫೔ିఓ)మ

ேିଵ
 (3)

where xi is the attribute value of object i, µ is the
average of this attributes, N is the total object
members in the corresponding cluster.

The pooled standard deviation of a cluster having
k attributes and N object members can be defined as:

𝑆𝐷 = ට
∑ (ேିଵ)ௌ஽ೕ

మೖ
ೕసభ

௞ேି௞
 (4)

(b.2) Average of squared Euclidean distances

(SSE) between the object and their centroid as
follows:

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑆𝐸 =
ଵ

ே
∑ ∑ 𝑑𝑖𝑠𝑡(𝑥, 𝑐௜)ଶ

௫ఢ஼೔
 ௜ఢ஼

(5)
where Ci is the centroid of cluster i, x is an object

of cluster i, and N is the total objects.
(c) Separation of the clusters: High clusters

should have low inter-cluster similarity or high inter-
cluster dissimilarity. This can measured by
computing the silhouette coefficients of the
clustering results.

The silhouette coefficient of each clustered
object, S(i), is computed as:

))(),(max((

))()((
)(

ibia

iaib
iS


 (6)

where a(i) = average dissimilarity between object
i and all other objects of the cluster to which i belongs
and b(i) = average dissimilarity between object i and
its “neighbor” cluster (the nearest cluster to which i
belongs). In Eq. 6, 0 ≤ S(i) ≤ 1. Large value of S(i)

denotes that object i is well clustered, small value
denotes the opposite and negative value of S(i)
denotes that object i is wrongly clustered. Generally
if the average of S(i) for all clustered objects is greater
than 0.5, then the cluster solution is acceptable.

Patterns Generated from k-Means Output:
Patterns of clusters can be found through profiling [3,
10]. One method of profiling is by comparing the
objects attributes in clusters. Things that can be
compared include the average (means), minimum,
maximum, standard deviation of the attribute values
and percentage of objects having each of the attribute
values. Likewise, the number of object members in
each cluster can also be examined.

By understanding the metrics used to evaluated
clusters quality and patterns generation, it is clear that
size of each cluster and standard deviations can be
used in generating patterns as well as measuring
clusters quality. Thus, computing these metrics is
important.

2.3. Hadoop, HDFS and Map-Reduce

Hadoop is a platform that has been developed for
storing and analyzing big data in distributed systems
[1]. It comes with master-slave architecture and
consists of the Hadoop Distributed File System
(HDFS) for storage and MapReduce for
computational capabilities. Its storage and
computational capabilities scale with the addition of
hosts to a Hadoop cluster, and can reach volume sizes
in the petabytes on clusters with thousands of hosts.
The following is some brief overview of HDFS and
MapReduce.

HDFS: HDFS is a distributed file system
designed for large-scale distributed data processing
under frameworks such as MapReduce and is
optimized for high throughput. It automatically re-
replicates data blocks on nodes (the default is 3
replications).

MapReduce: MapReduce is a data processing
model that has the advantage of easy scaling of data
processing over multiple computing nodes. A
MapReduce program processes data by manipulating
(key/value) pairs in the general form:

map: (k1,v1) ➞ list(k2,v2)
reduce: (k2,list(v2)) ➞ list(k3,v3).
Map receives (key, value) pairs, then based on the

functions designed by developers, it generates one or
more output pairs list (k2, v2). Through a shuffle and
sort phase, the output pairs are partitioned and then
transferred to reducers. Pairs with the same key are
grouped together as (k2, list(v2)). Then the reduce
function (designed by developers) generates the final
output pairs list(k3, v3) for each group.

In some situation, the traffic in the shuffle phase
can be reduced by using local Combiner. Combiner
function is useful in the case when the reducer only
performs a distributive function, such as maximum,

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

396

minimum, and summation (counting). But many
useful functions aren’t distributive such that using
combiner doesn’t necessarily improve performance
[12].

The overall MapReduce processed is shown in
Fig. 2 [1, 13]. A client submit a job to the master,

which then assign and manage Map and Reduce job
parts to slave nodes. Map will read and process
blocks of files stored locally in the slave node. The
Map output of pair key-values are sent to Reducer.

Blocks in
node-1

HDFS

Map

Map

Map

Map

Reduce

Reduce

Reduce

Output1

Output2

Output3

HDFS

Blocks in
node-2

Blocks in
node-3

Blocks in
node-n

shuffle

Client Hadoop
MapReduce

master

Job

Job parts
Job parts

Figure 2: MapReduce Processes.

2.4. Parallel k-Means for Hadoop

We have found two parallel k-Means developed
for Hadoop environment. The core concept of both is
excerpted as follows.

First, in [4], the map function assigns each object
to the closest centroid while the reduce function
performs the procedure of updating the new
centroids. To decrease the cost of network
communication, a combiner function combines the
intermediate values with the same key within the
same map task in a Hadoop node.

The excerpt of the algorithm of Map, Combine
and Reduce (detailed algorithm can be found in [4]):
(a) Map-function: The input dataset is stored in
HDFS as a sequence file of <key, value> pairs, each
of which represents a record/instance/object in the
dataset. Map computes the minimum distance for
each object to all centroids. It then emits strings
comprising of the index of its closest centroid (as
key’) and object attributes (as value).
(b) Combine-function: Processing key-value pair
from Map, Combine partially sums the attribute
values of the points assigned to the same cluster and
number of objects in each cluster. It emits strings
comprising of the index of its cluster centroid (as
key’) and the sum of each attribute value of objects
in this cluster.
(c) Reduce-function: Reduce function sums all the
samples and compute the new centroids (centers)
which are used for next iteration. It then emits key’ is
the index of the cluster, value’ comprising a string
representing the new centroids.

Secondly, in [5], the parallel K-means algorithm
is improved by removing noise, giving pre-computed
value of k and initial clusters (to reduce iterations).
The excerpt of the general idea: The value of each
attribute for each object is evaluated, then based on
this value a GridId is assigned for each object. Object
having attribute values beyond its threshold is
removed. The centroid of the grids are fed into
DBSCAN algorithm to obtain the best k value (the k
initial cluster centers are computed from the sample
of grids). The k and initial clusters are used as input
of Map function of parallel k-Means based on
MapReduce.

Some drawbacks that we found on those existing
parallel k-Means are:
(a) Big data may (most likely) contains noise or
outlier and missing value, hence it must be handled.
If cleaning data is performed before the big data is
fed into k-Means, it will be inefficient. This has not
been addressed in the algorithm.
(b) The Reduce function emits cluster centroids only
as patterns. For some big data, such as organizations
business data, this may not be sufficient.
(c) If some more patterns need to be computed (in the
Reduce) that require detailed information (attribute
values) of each object, Combine (that sums up
attribute values of “local cluster”) cannot be
employed.
(d) In [5], the formula for obtaining GridId is not
presented clearly. While an object may have several
attributes, the GridID of an object is computed based
on a single value of (attribute) value.

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

397

(e) As the parallel DBSCAN algorithm is not
included in the proposed technique, it seems that
initial centroids are still computed at the outside of
Hadoop system.

By examining those drawbacks, we aim to
develop a parallel k-Means with the capability to
preprocess the big dataset and compute suitable
metrics that can be used to evaluate cluster quality as
well as patterns.

3. PROPOSED TECHNIQUE

In this section, we present the analysis of selecting
cluster quality metrics, the enhancement of
providing metrics and pattern components and the
parallel k-Means algorithm based on MapReduce.

Our proposed technique is designed based on the
MapReduce concept as depicted in Section 2.3.
Hence, the parallel k-Means is not applicable for
other than Hadoop distributed environment.

3.1. Selecting Cluster Quality Metrics and
Pattern Components

Big data may consist of millions or even billions
of objects. Clustering big data will produce clusters
where each cluster may have very large number of
object members. The following is the feasibility
review of using metrics depicted in Subsection 2.2
for measuring the quality of big data clusters:
(a) Number of object members: In each iteration, the
number of objects in every clusters are computed
(and used to compute the new centroids), so having
this metrics is feasible.
(b) Standard deviations of cluster attributes and
pooled standard deviations of each cluster: The
computation of µ in (xi - µ) (Eq. 3) requires that all
of attribute values in every object in each cluster be
stored in the slave node memory. Storing the whole
(raw) large number of objects and their attribute
values in the slave nodes memory will not guarantee
scalability (required for good clustering algorithm)
in processing big data. Accessing each object (of
million objects) in each iteration also worsens the
time complexity. As a solution, we propose the
following approach: As in each k-Means iteration
the cluster centroids are closer to the final centroids,
the cluster centroids obtained from the previous
iteration is used as µ in the current iteration such that
while iterating the list of values (that include xi),
Reducer functions compute (xi - µ) along with other
computations (to produce pattern components).
Then, after all of the computations are performed,
the standard deviations of each attribute (SDj) and
pooled standard deviation (SD) can also be
computed.

(c) Separation of the clusters: Computing silhouette
coefficient of each clustered object, S(i), requires
that the whole (raw) large number of objects and
their attribute values be stored in the slave nodes
memory in every k-Means iteration. This is
necessary because a(i) and b(i) computations in Eq.
6 need distance computation from one object to
every other object in its cluster as well as other
clusters. If this metric is adopted for clustering big
data, the computation will worsen the scalability and
time complexity of the parallel k-Means. Hence, it is
not feasible to be adopted.

Based on those analysis, the metrics chosen for
evaluating cluster quality are number of members
and pooled standard deviations for every cluster.

As discussed in Subsection 2.2, number of
members and standard deviation of attributes in
clusters can be regarded as cluster pattern
components. Hence, we can include these as part of
the patterns for reducing computations. Other
components that we adopt are cluster centroids, the
minimum and maximum of attribute values in every
cluster. Computing those 5 pattern components will
not add significant time complexity as it can be
performed along with clustering process in every
iteration.

3.2. Parallel Clustering Technique

In our previous work presented in a conference
[7], we proposed a technique for clustering big data
consisting of two stages that include data sampling
for finding initial centroids and some enhancement as
the following:
(1) Data preprocessing: Attributes selection, cleaning
and transformations are performed along with the
clustering process, in the Map functions that takes
input the raw dataset. Hence, the big data is not
“visited” more than once.
(2) Reducing iterations: MapReduce known for its
inefficiency in iterative processes (such as in k-
Means algorithm) as in each pass the output must be
written in HDFS. Reducing the iterations number is
significant. We propose that initial centroids be
computed by MapReduce from a sample of dataset,
which are expected to be closer to the final centroids.
(3) Adding computations in Reduce function for
computing some pattern components. In this past
research, we had not conducted experiments to
support our concept.

In [7], we present experiment results showing that
the proposed technique is scalable but have not
conducted experiments with real big data set for
evaluating the cluster patterns.

After further works, we find that the sampling
does not always perform well for finding initial

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

398

centroids close to the real ones. Hence, that technique
needs to be revised as depicted on Fig. 3.

patterns

2
enhanced
paralel k-

Means

1
computing

initial
centroids

initial centroids
HDFS

HDFS

Figure 3: Proposed Clustering Technique.

The technique consist of 2 processes where the
detailed design is discussed below.

Process-1:
Determining the initial centroids can be done by
clustering a sample of dataset or other technique. The
algorithm for parallel sampling and clustering the
sample is discussed in [7].

Process-2:

This k-Means performs data preprocessing and
produces metrics for measuring clusters quality and
pattern components of each cluster at each iteration
as follows:
(1) Mapper: Performs
a) Cleaning, attributes selection and

transformations or normalizations;
b) Finding the closest centroid for each object (Eq.

2) and emit ID Cluster as the key and IdObject,
the object distance to its centroid, the attribute
values of this object as the value.

(2) Reducer: By receiving key and list of value,
Reducer produces metrics of cluster quality as well
as pattern components as follows:
a) Compute number of object members in each

cluster, new centroids, sum of the distance of
each object to its centroid (distCluster),
minimum, standard deviation of each attribute
value, pooled standard deviation for each cluster,
and average SSE (Eq. 5). This computation is
performed based on the Section 3.A analysis and
approach.

b) Emit and write the IdCluster and all of the
computation results.

(3) Job (main program): (a) Submitting MapReduce
functions to the master node; (b) Computing the cost
function by summing up all of the distCluster value
(of each cluster), Ji (Eq. 1) obtained from Reduce
output; (c) Checking the convergence by examining
the value of |Ji – Ji-1|, if it is greater than the

minimum cost then replace the initial centroids with
the current centroids and repeat the iteration by
submitting MapReduce functions to the master node.
Otherwise, stop the iteration.
The detailed algorithm is presented below.

Algorithm: Enhanced parallel k-Means
This k-Means consists of four algorithms as depicted
below (as improvement of the proposed algorithm in
[7, 14]).

Algorithm kM-1. configure
Input: Initial centroid file, fInitCentroids
Output: centers[][]
Descriptions: This algorithm is executed once
before map is called where it fills the array of
centroids, centers, from initial centroid file,
fInitCentroids.

Algorithm kM-2. map
Input: initial or current centroids, centers[][]; an
offset key; a line comprising object attribute values,
value; a set of valid min-max value for every
attribute
Output: <key’, value’> pair, where the key’ is the Id
of the closest centroid and value’ is a string
comprise of object information
Steps:
1. Initialize arrRawAtr[] and arrAtr[]
2. Get each of the object attribute value from value,
store in arrRawAtr[],
3. arrAtr[] = results of preprocessing arrRawAtr[],
where preprocessing include data cleaning and
transformation

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

399

3. If arrAtr[] is valid
 determine the object’s cluster based on the
closest centroid
4. construct value’ as a string comprising distance
of the object to its cluster centroid and the values of
arrAtr;
5. emit < index, value’>;

Algorithm kM-3. reduce
Input: index of the cluster, key; list of ordered values
from all of hosts, ListVal; array of centroids from
previous iteration, prevcenters;
Output: < key’, value’> pair, where the key’ is the
index of the cluster, value’ is a string comprising:
centers[] (centroid of a clusters), number of objects
in a cluster, countObj, minimum, maximum,
average, standard deviation of every attribute,
pooled standard deviation for a cluster, minAtrVal[],
maxAtrVal[], StdAtrCluster[], PooldStdCluster;
currentCostFunction, J; averageSSE, AvgSSE.
Steps:
1. Initialize minAtrVal[], maxAtrVal[],
SumDiffAtrPrevCenter[], SumAtr[],StdAtrCluster
[], centers[]
2. countObj = 0; J = 0;
3. While(ListVal.hasNext())
4. get the object attribute values and its distance
to centroid from value
5. for each attribute, add its value to SumAtr[]
accordingly, subtract its value with its previous
centroid stored in prevcenters, compute the square
of this result then add this to SumDiffAtrPrevCenter
accordingly, compare its value to the corresponding
element value in minAtrVal, maxAtrVal, replace
value in minAtrVal, maxAtrVal,
6. J = J + dist;
7. countObj = countObj + 1
8. Compute new centroids by dividing SumAtr with
countObj and store the results in centers;
10. Compute approximate of standard deviation of
every attribute in each cluster using
SumDiffAtrPrevCenter, store the result in
StdAtrCluster accordingly
11. Compute PooldStdCluster using StdAtrCluster
based on Eq. 3 and 4
12. Compute AvgSSE by dividing J by countObj
11. Construct value” as a string comprising
countObj, centers, J, minAtrVal, maxAtrVal,
StdAtrCluster, PooldStdCluster, AvgSSE
12. Emit < key, value”>;

Algorithm kM-4. run (the Hadoop job)
Input: Array of cost function, J; maximum of
iteration, maxIter; minimum of the different

between current and previous iteration of cost
function, Eps.
Output: J
Steps:
1. Initialize J[maxIter];
2. iter = 1;
3. While iter <= maxIter {execute configure, map
and reduce function; get J from the output of reduce
function then store it in J[iter]; if absolute value of
(J[iter] – J[iter-1]) <= Eps then break; else iter =
iter + 1}

4. EXPERIMENTS

We have implemented the algorithms and

performed a series of experiments using big dataset
in a Hadoop cluster with a master (name node) and 6
slave nodes. All of the nodes are commodity
computers having low specification with processor of
Quad-Core running at 3.2 GHz clock and RAM of 8
Gb.

Dataset: The dataset of household energy
consumption is obtained from:
https://archive.ics.uci.edu/ml/datasets/ with the size
of approximately 132 Mb. This archive contains
2075259 measurements (records) gathered between
December 2006 and November 2010 (47 months).
The sample of the dataset are as follows:
9/6/2007; 17:31:00 ; 0.486 ; 0.066; 241.810; 2.000;
0.000 ; 0.000 ; 0.000
9/6/2007; 17:32:00 ; 0.484 ; 0.066; 241.220; 2.000;
0.000 ; 0.000; 0.000
9/6/2007; 17:33:00 ; 0.484 ; 0.066 ; 241.510; 2.000;
0.000 ; 0.000 ; 0.000
Each line presents a record with 9 attributes, the
excerpts are:
(1) Date;
(2) Time;
(3, 4, 5, 6) some results of metrics;
(7) sub_metering_1: energy sub-metering (watt-
hour) that corresponds to the kitchen,
(8) sub_metering_2: energy sub-metering that
corresponds to the laundry room;
(9) sub_metering_3: energy sub-metering that
corresponds to a water-heater and an air-conditioner.

Mining objective: By understanding the dataset,
the objective that is feasible is to obtain energy
consumption patterns of the household. Knowing
this, the power provider may design better services
for this household.

Data Preprocessing: Based on the objective, we
intend to find the patterns of electricity power usage
of sub-metering 1-2-3 based on day number (1 =
Monday, 2 = Tuesday, …, 7 = Sunday) and hour.
Hence, the data preprocessing performed in Map
function is as follows:

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

400

a) Number of day (1, 2, …7) is extracted from Date
and stored as attribute-1;

b) Hour (1, 2,…24) is extracted from Time and
stored as attribute-2;

c) The value of sub_metering_1, _2 and _3 are
taken as is and stored as attribute-3, -4, -5.

Thus, the preprocessed dataset has 5 attributes,
which are day number, hour and 3 sub-metering
measures.

Testing the performance of the proposed parallel
k-Means: For experimenting speed and scalability,

we created several simulation dataset with the size of
0.2, 0.4, 0.8, …, 2 gigabyte as the “multiplications”
of the original dataset. We use HDFS block size of
32 and 64 Mb. We then repeatedly clustered each of
the dataset stored using k = 3 for each of the block
size setting. We then averaged the execution times
on every blocks and plotted the results as depicted
on Fig. 4. The speed with 32 and 64 Mb block size
is almost the same. The time execution plots are
linear, which indicates that the execution of the
proposed k-Means scales linearly to the size of
dataset or guarantee scalability.

Figure 4: Average Iteration Performances on Two HDFS Block Sizes.

Mining knowledge from the dataset: The
experiments for obtaining the best k, patterns and
knowledge are presented as follows.

Selecting the best k using the cluster quality
metrics: This experiment is intended to show how to
use the proposed quality metrics for finding the best
cluster number, k. We cluster the preprocessed

dataset with k = 3, 4, 5, 6 and 7. The count of
iterations until k-Means reach convergence and the
average execution time (in seconds) for each k are: k
= 3: 11 - 60; k = 4: 10 - 61.88; k = 5: 15 - 63.13; k
= 6: 15 - 65 and k = 7: 16 - 66.25. The results for
each metrics are depicted in Table 1, 2 and 3.

Table 1: Comparison of Cluster Members.

Cluster k = 3 k = 4 k = 5 k = 6 k = 7

1 663,773 56,087 55,224 55,213 55,091

2 712,262 692,418 673,913 444,285 671,641

3 699,224 665,814 47,042 46,990 46,807

4 660,940 660,524 574,555 73,335

5 638,556 636,918 223,860

6 317,298 351,961

7 652,564

Total 2,075,259 2,075,259 2,075,259 2,075,259 2,075,259

Table 2: Comparison of Pooled Standard Deviation.
Cls k = 3 k = 4 k = 5 k = 6 k = 7

1 16.20 200.57 174.51 174.47 173.95

2 70.61 35.75 15.37 12.25 14.69

3 132.48 68.75 196.41 196.31 196.01

4 11.53 10.29 8.32 15.39

5 30.42 30.25 19.91

6 9.80 14.87

7 8.44

Table 3: Comparison of Average SSE.

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

401

Cls k = 3 k = 4 k = 5 k = 6 k = 7
1 3.52 13.21 12.57 12.57 12.55

2 6.06 5.01 4.09 3.28 4.06

3 9.06 7.23 14.01 14.01 13.99

4 3.44 3.42 3.02 4.04

5 5.81 5.79 3.87

6 3.09 3.38

7 3.33

 Note: Cls = cluster

Based on the metric results, the best k is selected as
follows:
a) By comparing the number of cluster members

(Table 1), k = 3, 4 and 5 can be selected as the
candidates of the best k as there is no obvious
dominating cluster (there are at least 3 clusters
that have almost equal members).

b) Among the clustering results with k = 3, 4 and
5, by examining the contents of Table 2 and 3,
it is found that for k = 3:
 the maximum of standard deviations

(belongs to cluster 3), which is 132.48, is
less than 200.57 (cluster 1 in k = 4) and
174.51 (cluster 1 in k = 5);

 the maximum of average SSE (belongs to
cluster 3), which is 9.06, is less than 13.21

(cluster 1 in k = 4) and 12.57 (cluster 1 in k
= 5).

Hence, it can be concluded that the best k is 3 and
the clustering patterns can be interpreted from the 3
clusters.

Pattern interpretation of 3 clusters: The
components of the patterns, which are the average
(centroids) and deviation of each attribute for every
cluster and member of each cluster is shown on Fig.
5. The other pattern components, which are the
minimum and maximum of the 5 attribute values are
as follows:
a) Cluster-1: minimum: 1,0,0,0,0; maximum: 7,

10, 45, 76, 13;
b) Cluster-2: minimum: 1, 7, 0, 0, 0; maximum: 7,

23, 81, 80, 11;
c) Cluster-3: minimum: 1,0, 0, 0, 4; maximum: 7,

23, 88, 78, 31.

Figure 5: Patterns of Three Clusters (Cluster-1 = pink, 2 = green, 3 = blue).

As attribute 1, 2, 3, 4, and 5 corresponds to number
of day, hour, results of energy submeter in the
kitchen, laundry room, and water-heater and air-
conditioner, the interpretations of the pattern for
each cluster are as follows:
a) Cluster-1 (pink): As the centroids of submeter-

1,-2,-3 value are low while standard deviations
are also low with almost one-third of the
members, this means that most of the day at the
early of hour, in the whole house (on 3 sub-
meters), the energy consumption are low.
Sometimes the house do not use electricity at all
and the maximum energy usage in 3 submeters
are 45, 76 and 13.

b) Cluster-2 (green): The centroids of the hour is
high, submeter -1,-2,-3 values are low while
standard deviations are rather high on submeter-
1 (kitchen) and -2 (laundry), with almost one-
third of the members. This means that most of

the day at the mid-day, the average energy
consumption are low on 3 sub-meters, but
kitchen and laundry rooms sometime consume
high energy (with maximum of 81 and 80).

c) Cluster-3 (blue): The centroids of the hour is
rather high, submeter -1,-2 (kitchen and
laundry) values are low, submeter-3 value is
high, while standard deviations of the hour,
submeter-1 in the kitchen is high (with
maximum value of 88) and submeter-2 in the
laundry room are quite high (maximum value is
78), and submeter-3 is low, with almost one-
third of the members. This means that most of
the day at around mid-day, the average energy
consumption in the kitchen and laundry are low
but with high fluctuation, while water-heater
and an air-conditioner is almost always high.

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

402

Based on the patterns interpretation of those 3
clusters, the overall knowledge can be summarized
as follows: The family consume low energy at most
of the time. But, they frequently use water-heater
and air condition during mid-day and sometimes do
laundry during also around the mid-day. This
knowledge seems to be logical or make sense.
Hence, this experiments prove that the 3 quality
cluster metrics and 5 components of cluster pattern
can be adopted for clustering big data.

To show that the pattern components are also
useful for clustering other big data, in the Appendix
A, we present the experiment results for mining
historical weather patterns from big data recorded by
weather stations.

5. CONCLUSION

Parallel k-Means based on MapReduce can
further be enhanced by adding the capability for
computing metrics that can be used for evaluating
cluster quality as well as generating patterns from big
data. The computations are included in the Reduce
function. Our experiment results using big datasets
show that time execution scale linearly and the
metrics are useful for finding knowledge. However,
we have not address the metrics for measuring
separation of the clusters. Hence, this issue is left for
further works.

For finding the best k using our proposed
technique, big data is clustered several times. Also, in
every iteration of k-Means, big data is read from
HDFS. Both of these lead to inefficiency. Hence,
further improvement of the proposed technique is
required. One option for reducing the number of
reading HDFS is by storing the big data in parallel
memory. While for finding the best k, other technique
may be employed. One option is by enhancing grid-
based clustering technique in the parallel
computation environment.

ACKNOWLEDGMENT

We like to thank to the Directorate General of
Higher Education of Ministry of Research,
Technology and Higher Education of the Republic
of Indonesia who is funding this research in 2016-
2017 through Hibah Bersaing scheme with contract
number of III/LPPM/2016-06/134-P.

REFERENCES
[1] A. Holmes, 2012. Hadoop in Practice, Manning

Publications Co., USA.
[2] J. Han and M. Kamber, 2011. Data Mining

Concepts and Techniques 2nd Ed., Morgan
Kaufmann Pub., USA.

[3] K. Tsiptsis and A. Chorianopoulos, 2009. Data
Mining Techniques in CRM: Inside Customer
Segmentation, John Wiley and Sons, L., UK.

[4] W. Zhao, H. Ma and Q. He, 2009. “Parallel K-
Means Clustering Based on MapReduce”,
CloudCom 2009, LNCS 5931, pp. 674–679,
Berlin Heidelberg: Springer-Verlag.

[5] L. Ma, L. Gu, B. Li, Y. Ma and J. Wang, 2015.
“An Improved K-means Algorithm based on
Mapreduce and Grid”, International Journal of
Grid Distribution Computing, vol.8, no.1,
pp.189-200.

[6] Berry, M.J.A. and Linoff, G.S., 2004. Data
Mining Techniques for Marketing, Sales and
Customer Relationship Management, 2nd Ed,
Wiley Publ., USA.

[7] V. S. Moertini and L. Venica, 2016. Enhancing
Parallel k-Means Using Map Reduce for
Discovering Knowledge from Big Data,
Proceedings of the 2016 Intl. Conf. on Cloud
Computing and Big Data Analysis (ICCCBDA
2016), pp. 81- 87, Chengdu China, 5-7 July.

[8] Jang, J.-S.R.; Sun, C. –T and Mizutani E., 1997.
Neuro-Fuzzy and Soft Computing, Prentice Hall
Inc., USA.

[9] Moertini, V.S., 2002. “Introduction to Five Data
Clustering Algorithms”, Integral, Vol. 7, No. 2,
pp. 87-96.

[10] S. Chius and D. Tavella, 2011. Data Mining and
Market Intelligent for Optimal Marketing
Returns, Routledge Pub., UK.

[11] S. Padmaja and A. Sheshasaayee, “Clustering
of User Behaviour based on Web Log Data
using Improved K-Means Clustering
Algorithm”, International Journal of
Engineering and Technology (IJET), Vol. 8, No
1, pp. 305-310, 2016.

[12] C. Lam, 2010. Hadoop in Action, Manning
Publ., USA

[13] E. Sammer, 2012. Hadoop Operations, O’Reilly
Media, Inc., USA.

[14] L. Venica, 2015. Algorithm of Parallel
Clustering k-Means with Map Reduce on
Hadoop Distributed System, Final Project,
Informatics Dept., Parahyangan Catholic Univ.,
Indonesia, unpublished.

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

403

APPENDIX A
MINING HISTORICAL PATTERNS FROM WEATHER

DATA

This experiment is intended to show the use of the
proposed technique for obtaining patterns and
knowledge from the big historical data of weather.

Dataset: The data is downloaded from NOAA's
National Centers for Environmental Information,
http://www1.ncdc.noaa.gov/pub/data/noaa/. There
are thousands of files which are stored and organized
based on the measurement year (1901, 1902,
….2015, 2016). Each file represent measure results
from a station in a single year and named using the
format of XXXXXX-NNNNN-YYYY.gz (for
example, 010010-99999-1973.gz and 072010-
99999-1991.gz) where XXXXXX represents the
station number, NNNNN is WBAN weather station
identifier and YYYY denotes year. The size of each
file varies, depending on the frequency of
measurements. Total size of all files are more that
500 Gb. Each file contains records of weather
measures for a station in a year. Each record is
presented in one line and represented in text string
and consists of 31 attributes, such as station
identifier, observation date, time, latitude, longitude
of observation point, elevation, wind direction, wind
speed, visibility distance, air temperature, dew point
temperature, atmospheric pressure and other
attributes. One example of file content (one records)
are as follows:
0207010010999992001010118004+70930-008660FM-
12+0009ENJA V0203501N004610090019N0200001N1-
00711-
00901100351ADDAA112000791AY181061AY231061
GF108991071081004501041999KA1120M-
00401MA1999999100231MD1110041+9999MW1031R
EMSYN094AAXX 01184 01001 11470 83509 11071
21090 30023 40035 51004 69902 70383 8784/ 333 11040
91114;

The objectives: Mining patterns of “snapshots”
of the historical data weather and then comparing the
resulted patterns of each snapshot for observing
weather changes across the periods. In these
experiments, the patterns are produced from the four
selected attributes, which are wind speed,
temperature, dew point temperature and atmospheric
pressure.

Data selection and preprocessing: In order to
observe meaningful weather pattern changes, it
would be improper if the whole weather data are
analyzed at once as the data are measured from all
over places/points of the world at various altitude
and longitude having 4 seasons (summer, fall, winter
and spring) or tropical seasons (simply rainy and
dry). Instead, weather data should be selected from
a station or some nearby stations. Aiming to obtain
historical patterns, we cluster the data from
consecutive “snapshot” periods. Some example of
the periods are 1973-1980, 1981-1985, 1986-1990,
1991-1995, …., 2010-2015. We then cluster the data
at each snapshot time using the four selected
attributes, analyze and compare the patterns
generated.

Data selection and preprocessing in Map
functions:
a) As Map function can take HDFS folder name

containing those thousands of files and the data
weather is presented in files having their station
number and year measured, we define the
station numbers as well as the snapshot periods
as Map variables such that Map select and read
the files associated with the stations and the
snapshots time at each pass.

b) Map then select the 4 attributes and transform
these as follows: (1) Wind speed, temperature,
dew point temperature are divided by 10 (as the
recorded data are multiplied by 10, we
normalized those into their real values); (2)
Pressure is divided by 1000 such that this
attribute value does not differ greatly with the
others, which could lead into the most dominant
attribute (in calculating the object distance using
Euclidean method).

Defining k and clustering process: We have
clustered the snapshots of weather data from few
stations. Here, we present the experiment results of
clustering the 8 snapshot data from station 010010 at
Jan Mayen (Nor-Navy) Norway as an example.
Expecting to obtain patterns related to cold, middle
and hot seasons, we cluster the data of each of the 8
snapshots (1973-1980, 1981-1985, 1986-1990,
1991-1995, …., 2010-2015) into 3 clusters (k = 3).
The number of k-Means iterations (until
convergence is reached) and execution times are
depicted in Table A.1.

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

404

Table A.1: Iterations and execution times of data from a station at Norway
Period #Iterations Time (sec) AvgTime (sec)

1973 - 1980 11 426 39
1981-1985 22 872 40
1986-1990 9 349 39
1991-1995 13 512 39
1996-2000 9 354 39
2001-2005 17 676 40
2006-2010 15 581 39
2011-2015 15 603 40
Average 13.875 546.64 39.32

Interpreting patterns: In Fig. A.1, we present the
sample of patterns obtained from 3 snapshot periods
(1973-1980, 1991-1995 and 2010-2015) only. Each
cluster pattern is represented with blue, magenta and
red plots. The pattern components are centroids,

deviations, minimum, maximum of attribute values
in each cluster and object members.

Wsp: wind speed, Tem: air temperature, Dew: dew point temperature, Prs: atmospheric pressure.

Figure A.1: Patterns of weather from station 010010 at Jan Mayen Norway, with (a) centroids, (b) deviations, (c)
minimum, (d) maximum of attribute values in each cluster, (e) object members in each cluster.

Some observable of weather changes interpreted
from the patterns as follows:
a) Centroids: While the magenta and read seem to

be steady, the blue cluster dew point
temperatures increased starting from 1991-1995
snapshot.

b) Deviations: The wind speed differ greatly in
blue cluster, the attribute values of the blue one

differ the most (have the most variety values),
while the pressure differ slightly only at all
clusters.

c) Minimum attribute values: the blue cluster dew
point temperatures also increased starting from
1991-1995 snapshot.

d) Maximum attribute values: no obvious change
found.

Journal of Theoretical and Applied Information Technology
31st January 2023. Vol.101. No 2

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

405

e) Cluster member: If the weather data were
recorded evenly from this station during those
snapshot, the following is the interpretation: (1)
In 1973-1980, Jan Mayen was mostly
warm/hot; (2) In 1973-1980 and 2011-2015, the
blue cluster (cold weather) have smaller
members; (3) In 1991-1995, the members
number of blue and red cluster differ slightly
suggesting that the cold weather happened
almost as long as hot weather.

The knowledge: The blue cluster, which represent
the cold related seasons at the Jan Mayen Norway
station, is the one that show obvious changes across
the last decades.

