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ABSTRACT 
 

Recommender systems play a very important role in driving businesses. They recommend a set of items to 
the user which have a higher chance of getting consumed. The primary issue addressed in this work is to 
generate a recommendation list with items belonging to various categories so that the user can explore his 
different interests. The proposed method studies the diversity of the recommended list by enhancing the 
adaptive clustering method. In this approach, the dataset is partitioned into 3 sets namely the head part, the 
mid part, and the tail part . Then, different sets of methods are used to improve the diversity of the 
recommendation list. Popular items are extracted from the head part, items in the mid part are extracted  using 
rating-based clustering method and the items in the tail part are extracted using correlation clustering-based 
method, thereby improving the diversity of the recommendation list. 

Keywords: Recommender Systems, Diversity, Clustering, Adaptive, Long Tail. 
 
1. INTRODUCTION  
 

The goal of the RS is to generate a list of 
recommendations to be provided  to the user . The 
list should be such that it increases the satisfaction of 
the user . Many approaches have been investigated 
in the literature . Some of the approaches include 
personalization or customization of the list according 
to the users’ preferences, past history of the user, to 
name a few. Personalization is different from being 
context aware .Other approaches focus the inclusion 
of different items in the list so that the user does not 
get similar recommendations . The list may also 
contain other items which are not totally similar to 
the ones that the user likes and at the same time not 
totally dissimilar ones . In the proposed  work, the 
recommendation list is generated applying  different  
methods to different sets of the given data , thus 
enhancing the diversity in recommendation. 

2. DIVERSITY OF RECOMMENDATIONS 

Authors in [13,42,43,48] studied the 
accuracy and diversity and how they vary in the list. 
The authors discuss that focusing only on accuracy 
would lead to long term failure in case of usability 
of recommendation. The studies indicate that it is 

exceedingly difficult to improve diversity while 
maintaining accuracy in the recommendation. 

The recommendation diversity can either 
be assessed at an individual level or an aggregate 
level. Most of the previous studies [44,45,46] focus 
on individual diversity , based on the average 
dissimilarity between items present in the 
Recommendation lists. Aggregate diversity is 
measured in [13,42,47] . Authors in [43] proposed a 
graph-based approach to obtain diversity. Their 
approach is limited to the data as a whole and there 
exists no specific approach to address the items in 
the long tail. 

Authors in [63] proposed combining  of 
genre coverage and the genres not repeating in the 
list. Such a method includes items from dissimilar 
genres, including human behavior in its calculation . 
authors in [64] include the items in the list, in such a 
way that those items that were successful in the past 
but forgotten. 



Received:  October 18, 2021.     Revised: December 20, 2021.                                                                         
Journal of Theoretical and Applied Information Technology 

31st January 2023. Vol.101. No 2 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
807 

 

 
3.  PROPOSED IDEA : DIVERSITY 
ENHANCEMENT THROUGH ENHANCED 
ADAPTIVE CLUSTERING 

In the proposed approach, the 
recommendation list is generated by applying 
different methods to different set of items of varying 
popularity.  Understanding that humans tend to like 
few genres and would be willing to accept and 
explore some newness in the recommendations, but 

not completely new and unexpected 
recommendations . Therefore, the proposed 
approach enlists the items in such a way that they are 
fairly expected with some newness. The split points 
can be identified by the possible existing elbows . 

 

To diversify the items in the 
recommendation list, items in the recommendation 
list are given from all the three parts, the head, mid 
and tail parts. Enhanced adaptive clustering method 
is applied for long tail items. The recommended list 
contains popular items from head part, items from 
the  mid part  as well as the niche items from tail part. 
The items in the head part are recommended by their 
popularity measure- number of ratings .  

The Mid–items are recommended, 
clustered based on the ratings-values. The items in 
long tail are less popular and therefore are difficult 
to handle in RS. Correlation connected clustering is 
employed for clustering movies in long tail based on 
their similarities. The recommendation list contains 
diverse items. Popular from head part, similar from 

Mid part and niche items can be recommended from  
the tail part. 

This approach is implemented on a subset 
of the movielens dataset and the accuracy of rating 
predictions is evaluated. 

 
 
4. PROPOSED ALGORITHM: ENHANCED 

ADAPTIVE CORRELATION BASED 
CONNECTED CLUSTERING - 
DIVERSITY (EADCCC-D)   

 
The Proposed Algorithm EADCCC-D  splits the 

items  into 3 parts based on number of ratings. This 
work enhances the adaptivity of the algorithm to 
include diverse items from the different parts into the 
recommendation list. For the data set chosen, the 
items are movies. The movies  in the Head Part are 
called Popular Movies (PM) , Mid part are  Rating 
based  Movies clusters (RC) and the tail part are 
Correlation Connected based Movies clusters 
(CCC).  The Fig 1 below illustrates  the separation 
of movies into three regions. The choice of the splits  
uses  the elbow method . The fall point is termed  α-
min, and the lapse Point is  α-max. 

 

Algorithm: Enhanced_Diversity 
_Recommendations: 
 
Step1: Derived variables that are based on users and 
movies are calculated-     

Class (genre) Value-(ni) ni (ni - 1)) 

C1 16 240(16*(16-1)) 

C2 2 1 

C3 1 0 

C4 1 0 

C5 7 42 

 N = ∑ni = 27 Σ(ni(ni - 1)) = 283 

(N* (N-1))                               = 27*(27-1) = 702 

(Σ (ni(ni - 1))) / (N(N - 1))       =   283/702 = 0.403 

Simpsons-diversity Index        =   1 - 0.403=0.596 

Table 1: Sample Simpson Diversity Index 
Calculation For A User: 

 

  Figure 1:   Showing Separation Of Items Into Three Parts 
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User_favourite_genre,User_favourite_cluster,Movie_av
erage_rating ,Movieid_count, Movieid_genre  
 
Step2: Calculate the User_favourite_genre, 
User_favourite_cluster  
 
Step3:  Based on movieid_count, the data is split into 
three parts: head, mid and tail. 
The criterion that is used to split the data is α-min 
and α-max. It is calculated by plotting the sorted 
no of ratings . The split points can be identified 
by the possible existing elbows.  
 

Step4: Movieid_clusters from both mid and tail 
parts are generated. 
 

Step5: A recommendation list is generated. the       
list consists of three sublists.  
 
a) Sublist_head consists of movies present in 

the head part of data whose genre is the 
User_favourite_genre 

 
b) sublist_mid consists of movies present in 

User_favourite_cluster (ratings - based) 
 

 
c) sublist_tail consists of movies present in 

User_favourite_cluster-(tags based)  
 
 
Step6:  sublist_head, sublist_mid and 

sublist_tail is merged to give a final  list. 
 
The proposed method will generate the 
recommendation list with diverse items from the   
A) Head part   B)  Mid part    C) Tail 
part  
 
A) Head part Recommendation:  
 
Popular movies are viewed by many , hence owing 
to those movies, head part recommendations are 
made . The movies in the head part are sorted in 
the descending order of ratings. The 
User_favourite_genre  is found from the 
user_movie  vector and the top movies in the head 
part that are of the same genre as that of 
favourite_genre is used to generate this sublist. 
 
 
 
 

B) Mid  part Recommendation:  
 
The movies are clustered based on 
Average_ratings . Also, they are assigned 
clusterid’ s. A user id is given as an input. The 
User_favourite_genre is extracted using the users’ 
rating patterns. User_favourite_cluster is identified 
from the  ratings-cluster and the 
User_favourite_genre .For the given userId , the 
movies from the User_fav_cluster are extracted. 
This cluster is used to generate the sublist_r. 
 
C) Tail part Recommendation:  
 
Correlation connected clustering is employed in the 
long tail to cluster movies with respect to their tag-
genome scores. A user id is given as input, The 
User_favourite_genre is extracted using the users’ 
rating patterns .The ratings values (>3) are taken 
into consideration while finding the favourite genre 
of the user. The maximally occurring genre in this 
list is chosen as User_favourite_genre every userId, 
the users favourite cluster is found and its clusterid 
is extracted. The movies in this cluster are used to 
generate the sublist_t. 

 
The Flow  Chart in Fig 2 explains the overview of the 

steps used in EADCCC-D  method . 

 

 
 

Figure 2 : Flow Chart Depicting The Steps Used In EADCCC-D 
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5. DATA SET DESCRIPTION 
 

Every user in the dataset had watched and 
rated at least 20 movies. Demographic information 
of users is not given. A userId uniquely identifies a 
user. The data are contained in six files. The dataset 
can be downloaded 
from   http://grouplens.org/datasets/.  
The files  listed below  in table 2 describe the 
attributes  available in the data set   

 

 
 

From this dataset , 100 users data  were 
considered for experimentation . All movies rated 
by these 100 users are extracted. 10 is the number 
of ratings that was chosen as a minimum threshold 
for a movie to be considered. The count of Movies 
satisfying this criterion is 243.The criterion alpha 
for splitting data was calculated using possible 
elbows. The Elbow method detect points with 
maximum curvature . 

 
 
 

6. RESULTS 
 
Enhanced Adaptive correlation based Connected 
clustering- Long tail (EADCCC-LT)[13] is the 
approach in which the item set is divided into 2 parts 
and the correlation-based clustering is applied in the 
tail part. EADCCC-D is the extended approach in 
which the item set is divided into 3 parts , where 
popularity method is applied in head part, ratings-
based approach is applied in the mid part and the 
correlation-based clustering  is applied in the tail 
part. The recommendation list are generated for the 
sample users is shown in Fig 4 and 5. The Fig 4 
shows the for recommendation list generated for 
sample  userId  77.Fig 5 shows the for 
recommendation list generated for sample  userId  
92. Fig 6 shows the accuracy of the 
recommendation  list  for test users in EADCCC-
LT. Fig 7 shows the  accuracy of the 
recommendation  list  for test  users in EADCCC-
D. For example, If the recommendation list contains 
all the movies-watched by a sample user, the 
accuracy will be 100%.  Similarly, If the 
recommendation list contains 5 movies  that have 
been watched by a sample user out of 10 
recommended movies, the accuracy would have 
been 50%. Thus, the accuracy is calculated for both 
the methods for the test  users.  
 

 

 

Performance  Comparisons  

 
           EADCCC-LT is the method in which  the 
data is split into 2 parts as discussed in[26] , in  
comparison with the proposed approach where a 3-
way split is proposed.  
 
 
 
 
 
 

FILE ATTRIBUTES Description  

ratings.csv  userId , 
movieId , rating 
, timestamp 

The ratings given 
by a User for  the 
movie along with  
a timestamp 

genome-
tags.csv 

tagId ,tag Each 
Movie 
described 
in 1128 
tags 

genome-
scores.csv 

movieId ,tagId 
,relevance 

Relevance of each 
tag  for every  
movie  

movies.csv movieId ,title , 
genres 

Title of 
the movie 
along 
with the 
possible 
genres   

tags.csv userId , 
movieId , tag , 
timestamp 
 

The tag justified  
by a User for  
the movie along 
with  a 
timestamp 

Table 2: Dataset Description 

 

Figure 3:  Rating Distribution Of 100 Users- 243  
Movies - Split Points 
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Table 3: Sample Accuracy Calculation For5 Users 
            

UserId 
User_ 
Wat 

Watched_ 
recommended

Accur 
acy 

Sample 
Average 
Accuracy 

1 15 11 0.73  
0.812 2 19 17 0.89 

3 33 21 0.63 
4 16 14 0.87 
5 18 17 0.94 

 
Table No.3  shows the sample accuracy calculation 
of the recommendation  list  for sample users.  
 

The experiment is tested on 100 users dataset and the 
calculated accuracy for test users is shown in the 
accuracy column of Table No.4. It shows that   
EADCCC-LT is slightly higher than that of the using 
EADCCC-D method. 

Table 4: Performance EADCCC-D vs EADCCC-LT 

 

Table No.4  compares the Accuracy and 
Diversity in recommendation  list  for test users using  
EADCCC-LT and using EADCCC-D . 

          
Figure 6: Accuracy  Comparison Between EADCCC-LT and 

EADCCC-D 
 
Fig 6 shows the accuracy of the recommendation  
list  for sample test users using  EADCCC-LT and 
also using EADCCC-D.  

 
Figure 7: Simpsons  Diversity Index Values Comparison 

Between   EADCCC-LT and EADCCC-D 
 
           Fig 7 shows that the Simpsons diversity 
index of the method proposed EADCCC-D is 
higher than that of the EADCCC-LT method. 
          Fig 8 shows that the  Gini index of the 
method proposed EADCCC-D is also  higher than 
that of the EADCCC-LT method. 
           The accuracy of the EADCCC-D is less due 
to the increased diversity of the recommendation 
list. This helps the user in exploring different 

Method Accuracy 
Simpson_ 
diversity_ 
index 

Gini-index

EADCCC-LT 0.834 0.558 0.551 

EADCCC-D 0.796 0.604 0.581 

Figure 5: Output _Screen_Snip For Recommendation
 List:  Userid  92 
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genres of movies that would generally have been 
suppressed by the recommendation list generated 
by the EADCCC-LT method. 

 

Figure 8: Gini  Index Values  Comparison Between   
EADCCC-LT and EADCCC-D 

 
           The Simpson diversity index score always 
varies between 0 and 1. A high score indicates a 
higher diversity, and a low score indicates a lower 
diversity. The comparison indicates that the 
diversity of the recommendation list generated by 
the EADCCC-D method is improved at the cost of 
slightly reduced accuracy. 

 
7. SUMMARY 
 
  The diversity aspect of recommendations 
is an important consideration for the RS along 
with accuracy. The diversity of recommendations 
in the proposed work is improved by three-way 
split of the dataset that is based on the elbow 
points of the curve . Separate models for 
clustering  were built for those parts  and the 
recommendation lists are generated accordingly. 
These lists are then combined to make one single 
list for every user. 
 
          The diversity enhancement of the 
recommendation list is achieved by including 
items with a large number of ratings from the head 
part , items with similar ratings from the mid part  
, and items from long tail . The proposed methods 
were used, and the list would contain items, 
mostly from the same  cluster in the long tail, and 
items with similar ratings to lessen the risk of 
including totally dissimilar items in the 
Recommendation List . Various approaches in 
literature focused on including dissimilar items 
whereas the proposed approach worked on 
producing lists with less dissimilar items, to 
reduce the risk factor. 
           

         In this work, we see that the three-way 
split has indeed increased the diversity within the 
recommendation list when compared to a two-
way split that was used in previous works. This 
work can further be extended by using a multi-
way split technique that divides the dataset into 
multiple parts and applying different methods of 
clustering for each part. 
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