

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

COMPARISON OF CLASSIFICATION METHODS AND CLUSTERING HYBRID DEEP NEURAL NETWORK DETECTION OF SENSITIVE INGREDIENTS IN FOOD PRODUCTS

T.H.F HARUMY^{1*}, D.S GINTING², F.Y MANIK³

Faculty Of Computer Sciences Universitas Sumatera Utara Departement Of Computer Science Indonesia¹ Faculty Of Computer Sciences Universitas Sumatera Utara Departement Of Computer Science Indonesia² Faculty Of Computer Sciences Universitas Sumatera Utara Departement Of Computer Science Indonesia³

^{1*}hennyharumy@usu.ac.id, fuzy.yustika@usu.ac.id, dewisartikabrginting@usu.ac.id

ABSTRACT

I.

Cases of Death of Indonesian People Due to Food Poisoning, Especially Packaged Foodstuffs are Assessed as High Enough. According to BPOM data, cases of food poisoning are more than 2000 cases per year. This is due to the lack of literacy received by the community about the composition of ingredients in food products. So that innovation is needed with an in-depth analysis of the design of a smart system that can be used by the public to identify certain compositions or ingredients shown in the composition table of a product. Before designing a smart system, an in-depth analysis will be carried out using the Hybrid Deep Neural Network method and comparing it with other methods in order to get the best method that can be implemented in the smart system later. This study aims to classify and cluster product image data and food composition data by developing a hybrid deep neural network and comparing with other methods, namely KNN, Tree, SVM, and linear regression as well as clustering using Hierarchical clustering and K-Means methods. a system designed from a combination of these methods can provide accurate, effective and efficient detection results. The stages of the research method are (1) Observation and Collection of Image Data and categorical composition of Food Composition, Nutritional Value, and Characteristics of food, (2) propocesing categorical datasets (3) Embedded Image data (4) Clustering data using Hierarchical Clustering and K-Means (5) classification of image data using Deep Neural Network (6) classification of image data using KNN, Tree, SVM, and linear regression (7) Training and testing models (8) Comparing and Evaluation Models. From the results of the analysis, it was found that for Categorical data, the RMSE value of the KNN model was 0.085, the MSE value was 0.007, the MAE value was 0.068 and the R2 value was 0.158. Furthermore, the Tree model has the RMSE value of 0.118, the MSE value is 0.014, the MAE value is 0.091 and the R2 value is 0.608. Furthermore, the SVM model, the RMSE value is 0.091, the MSE value is 0.008, the MAE value is 0.078 and the R2 value is 0.044. Furthermore, the Neural Network RMSE value is 0.117, the MSE value is 0.014, the MAE value is 0.089 and the R2 value is 0.574. and the last is linear regression, the RMSE value is 0.086, the MSE value is 0.007, the MAE value is 0.067 and R2 is 0.153. so that the best model in this case is KNN which is 0.915 or 91, 5%. Furthermore, for Categorical, the results are that the KNN precision value is 0.457, then the Tree precision value is 0.390, for the SVM method the precision value is 0.311, the Precision Neural Network value is 0.387, the nave Bayes precision value is 0.336 and the logistic Regression is 0.349 and the highest precision value is for this case is KNN. Furthermore, for Hierarchy clustering, very good results were found with the number of Clusters as much as 2 clusters, namely Sweet and Salty, and more Salty clusters were seen and for hypertension disease, the highest calorie content of sensitive ingredients was Fat and Salt 36.56%.

Keywords: Deep Neural Network, Sensitive Ingredients, Food Products

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

1. INTRODUCTION

Cases of deaths of Indonesian people due to food poisoning, especially dangerous packaged food ingredients, are considered quite high. In 2021, 44 volunteers and refugees in East Java were suspected of having food poisoning and dozens of children in Papua were suspected of being poisoned after eating food from an event. According to BPOM (Food and Drug Administration) data, cases of food poisoning are more than 2000 cases per year. In 2019, the number of victims of food poisoning in Indonesia reached 3,637 people [1][2][3]

This is due to the lack of literacy received by coastal communities about the terms contained in food products and the composition of ingredients in food products, especially processed foods such as instant noodles, snacks. In addition, coastal communities do not understand and care less about the impact of health factors from consuming packaged food, so an innovation with in-depth analysis of a smart system that can be used by the community to identify certain compositions and ingredients is seen in the composition. packaged food table is needed easier to use It is a smart application, and it is hoped that this system can show the content, dosage, composition of packaged food products that are right for consumption, especially by coastal communities, and can identify the composition of ingredients that are halal and safe for consumption for the Muslim community in Indonesia.[4][5]

According to research data from the Ministry of Transportation of the Republic of Indonesia, currently almost 85% of coastal communities have used smartphones, so that with this data coastal communities have a good level of readiness to use application systems. this system. The specific objective of this research is the absence of an intelligent system to detect the composition of food ingredients that are good and safe for consumption based on images and barcodes using the hybrid deep neural network method. The neural network method is known as one of the artificial intelligence methods that can be used to detect based on image recognition, barcodes and text. [6][7][8]

However, currently there is no development of hybrid deep neural network, conventional neural network and recurrent neural network methods that can be combined in an intelligent system to detect sensitive food products which are expected to provide accurate, effective and efficient detection results.

2. PROBLEM STATEMENT

Furthermore, the formulation of the problem statement in this study is:

How to analyse sensitive food ingredients in food product samples using neural network method in hybrid and ow is the accuracy level of the Hybrid Deep Neural Network method analysis on sensitive food ingredients contained in Food Product Samples.

Feasibility study in this study requires in-depth research, testing methods.[1][9]

Development of a model so that it can be tested on an intelligent system to detect the composition, whether a food ingredient is good for consumption or bad.

3. RESEARCH OBJECTIVE

The scope of this research is to classify, and cluster sensitive food ingredients, as well as compare with other methods in order to obtain the best model, namely, SVM, Random Forest, KNN, Tree and others.

4. **RESEARCH CONTRIBUTION**

The contribution of this research is that this study aims to classify and cluster product image data and food composition data by developing a hybrid deep neural network and comparing it with other methods, namely KNN, Tree, SVM, and linear regression as well as clustering using the Hierarchy clustering method and K- Means, so it is hoped that the system designed from the combination of these methods can provide accurate, effective and efficient detection results.

5. RESEARCH HYPOTHESIS

The first hypothesis in this study is the classification and clustering model can classify and cluster sensitive food ingredients > 90%.

© 2023 Little Lion Scientific

: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

6. PROPOSED METHODOLOGY

ISSN:

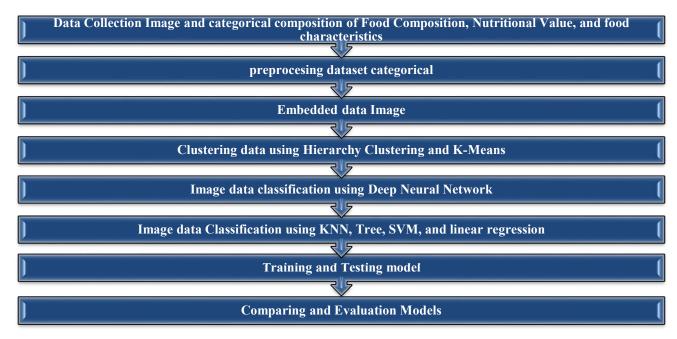


Fig 1. Proposed Methodology

7. Result And Discussion

a. Data Collection Image and categorical composition of Food Composition, Nutritional Value, and food characteristics

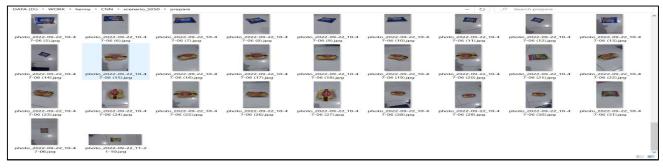
In this phase, observations will be made from literature, journals and previous research regarding the composition of sensitive food ingredients, nutritional values and people's diets. The data collected is as follows:

- Image data and barcodes on the composition of sensitive foodstuffs, especially instant noodles, snack foods, based on BPOM (Food and Drug Administration) data.
- Nutritional value standard data.
- Data on the characteristics of a healthy diet and the types of food often consumed by coastal communities are in accordance with BPOM (Food and Drug Administration) and Ministry of Health standards.
- Data on Dominant diseases that often suffer from coastal communities. Furthermore, image data analysis was carried out using the deep learning method.

Journal of Theoretical and Applied Information Technology

<u>31st January 2023. Vol.101. No 2</u> © 2023 Little Lion Scientific

ISSN: 1992-8645	wv	ww.jatit.org	E-ISSN: 1817-3195		
Energy /Calorie	Total Calories	Energy / Calorie (Gram)	Translation results Nutritional	Disease	
Total fat	70 kkal	1.5	2	Diabetes	
Saturated Fat	70 kkal	1.5	8	Hypertensi	
Protein	70 kkal	1	3	Diarhhea	
Carbohidrat	70 kkal	12	4	Diabetes	
Sugar	70 kkal	1	5	hypertension	
Salt	70 kkal	0.85	6	Diarrhea	
Total fat	50kkal	1.5	2	Diabetes	
Saturated Fat	50kkal	1.5	8	hypertension	
Protein	50kkal	1	3	Diarrhea	
Carbohidrat	50kkal	12	4	Diabetes	
Sugar	50kkal	1	5	Diabetes	
Salt	50kkal	0.85	6	Diabetes	
Total fat	140kkal	1.5	2	hypertension	
Protein	140kkal	1.5	8	Diarrhea	
karbohidrat total	140kkal	1	4	hypertension	
protein	140kkal	12	4	Diarrhea	
Food Fiber	140kkal	1	6	Diabetes	
Sugar	140kkal	0.85	7	Diarrhea	
Salt	140kkal	0.85	7	hypertension	


Fig 2. Dataset Categorical

b. Preprocesing dataset categorical

In this phase, preprocessing of data is carried out. For Categorical Data, there are 5 inputs, namely composition, energy, calories, nutrition and the target output is diseases. As for the image data used data from food product packaging as much as 155 data. The selection of critique criteria from (Food and Drug Administration) and Ministry of Health standards. In this phase, the data that has been collected will be preprocessed[10][11][12]. Data Reduction is used to handle missing values or missing and incomplete data in the database as well as cleaning data noise

c. Embedded data Image

Next is the embedded data image from 155 data to 2048 image data to facilitate a better clustering process. because the image will be seen from the right side, top left and bottom.

Fig 3. Dataset Image

- a. Clensing data to form a balanced dataset according to the model and system to be tested.
- b. Data Transformation where the data will be normalized and generalized.

Journal of Theoretical and Applied Information Technology <u>31st January 2023. Vol.101. No 2</u>

I – Januar	y 2023. V	01.101.100	
© 2023 Ľ	ittle Lioi	1 Scientific	

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-3195

Info 155 instances (no missing data) 2048 features No target variable.	hiddei origin	image name	image ILITABMAS 2022/PC image	size	width	height	n0 True	n1 True	n2 True	n3 True	n4 True	n5 True
5 meta attributes	2000 C	Salty (1)	Salty (1).jpg	53658	1280	577	0.608288	0.213648	0.186337	0.538389	0.594145	0.2118
Variables	2	Salty (10)	Salty (10).jpg	73251	577	1280	0.636605	0.163991	0.106744	0.00821081	0.666854	0.4593
Show variable labels (if present)	3	Salty (11)	Salty (11).jpg	71332	577	1280	0.564696	0.23306	0.0570265	0.0496928	0.478588	0.5780
Visualize numeric values	4	Salty (12)	Salty (12).jpg	41834	1280	577	0.190776	0.09008	0.034221	0.552464	1.11683	0.4227
Color by instance dasses	5	Salty (13)	Salty (13).jpg	37145	577	1280	0.0903077	0.272774	0.322589	0.0405952	0.619074	0.298
Selection	6	Salty (14)	Salty (14).jpg	46472	577	1280	0.294089	0.127391	0.337821	0.0857414	0.514751	0.1031
Select full rows	7	Salty (15)	Salty (15).jpg	37145	577	1280	0.0903077	0.272774	0.322589	0.0405952	0.619074	0.2981
	8	Salty (16)	Salty (16).jpg	60294	577	1280	0.185416	0.126477	0.0314233	0	0.576921	0.724
	9	Salty (17)	Salty (17).jpg	64961	577	1280	0.610985	0.0206004	0.186725	0.0317245	0.44146	0.901
	10	Salty (18)	Salty (18).jpg	83794	577	1280	0.168866	0.15431	0.116759	0.279677	0.807597	<mark>0.592</mark>
	11	Salty (19)	Salty (19).jpg	59090	577	1280	0.127998	0.146361	0.0914075	0.054275	0.375682	0.634
	12	Salty (2)	Salty (2).jpg	55469	1280	577	0.105013	0.0717495	0.0780224	0.626319	0.563256	0,461
	. 13	Salty (20)	Salty (20).jpg	64907	577	1280	0.344993	0.110214	0.16476	0.301022	0.776391	0.69
	> 14	Salty (21)	Salty (21).jpg	57711	577	1280	0.186542	0.35132	0.0471304	0.0859937	0.80198	0.785
	15	Salty (22)	Salty (22).jpg	64920	577	1280	0.244517	0.114293	0.0238502	0.122886	0.835627	1.0
	16	Salty (23)	Salty (23).jpg	64786	577	1280	0,469569	0.120215	0.0963205	0.464431	0.54471	0.367
	- 23	Salty (24)	Salty (24).jpg	71288	577	1280	0.477667	0.15374	0.234122	0.263137	0.451594	0.677
		Salty (25)	Salty (25),jpg	61836	577	1280	0.437603	0.0683696	0.0767257	0.804415	0.523086	0.380
	10.000	Salty (26)	Salty (26).jpg	66112	577	1280	0.353551	0.180026	0.0873054	0.116345	0.451101	0.760
	10.00	Salty (27)	Salty (27).jpg	58702	577	1280	0.612785	0.0101642	0.0537983	0.132266	0.575787	0.601
		Salty (28)	Salty (28).jpg	64601	577	1280	0.893759	0.212819	0.184461	0.0549303	0.492494	0.597
	336	Salty (29)	Salty (29).jpg	62313	577	1280	0.539893	0.263326	0.152256	0.292633	0.590303	0.406
	23	Salty (3)	Salty (3).jpg	46472	577	1280	0.294089	0.127391	0.337821	0.0857414	0.514751	0.103
	24	Salty (30)	Salty (30).jpg	56714	577	1280	0.213986	0.130258	0.175123	0.626465	0,472073	0.14
	53	Salty (31)	Salty (30).jpg	53447	577	1280	0.576519	0.174873	0.235817	0.240868	0.696647	0.705
		Salty (32)	Salty (32).jpg	59822	577	1280	0.47863	0.142366	0.0699957	0.109648	0.300739	0.551
	2010	Salty (33)	Salty (33).jpg	48356	577	1280	0.345755	0.359184	0.513823	0.113536	0.480877	0.524
Restore Original Order		Salty (34)	Salty (33).jpg Salty (34).jpg	65615	577	1280	0.588297	0.040973	0.0673312	0.0547002	0.505171	0.390
Send Automatically	<	and (a)	and to dika	02012	201	1200	1000 C 1000 C		1.0.000.000 m			,

Fig 4. Dataset Embedded Image

d. Clustering data using Hierarchy Clustering and K-Means

Furthermore, data clustering is carried out using Hierarchical Clustering and K-Means[13][10][14] with the number of clusters 2 and the number of iterations being 300 with 2048 data.

In the Clustering Process, it was found that the grouping results were very good, in the sense that the K - Means model could classify sweet and salty food products very well.

Journal of Theoretical and Applied Information Technology <u>31st January 2023. Vol.101. No 2</u> © 2023 Little Lion Scientific

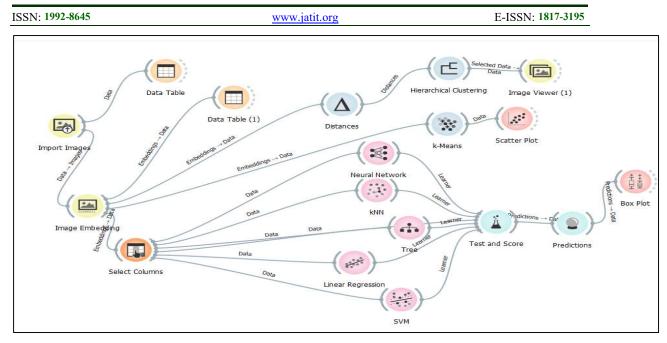
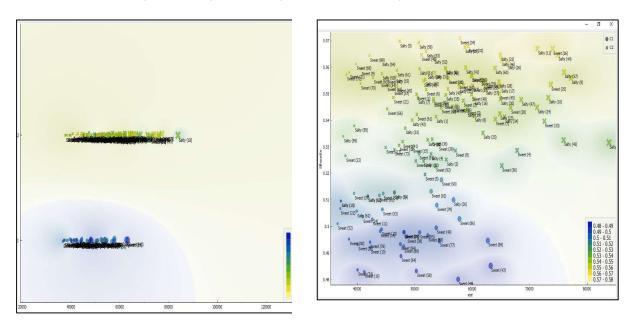



Fig 5. Clustering Models Using Hierarchical Clustering And K-Means

f.

Fig 6. Clustering Models Of Sweet And Salty Products

e. Image data classification using Deep Neural Network

The next step is to classify the image data using a Deep Neural Network with 2048 image data as input. In the Neural Network method, the activation function tanh, adam, with hidden layers is 100, 100, 500.

Model	MSE	RMSE	MAE	R2
kNN	0.007	0.085	0.068	<mark>0.15</mark> 8
Tree	0.014	0.118	0.091	-0,608
SVM	0.008	0.091	0.078	0.044
Neural Network	0 <mark>.</mark> 014	0.117	0.089	-0.574
Linear Regression	0.007	0.086	0.067	0.153

Fig 7. Image Data Classification Using Deep Neural Network

E-ISSN: 1817-3195 Classification of image data using KNN, Tree, SVM, and linear regression

Classification of image data uses other methods such as KNN, , SVM, Linear Regression, and Tree which will later train the Hybrid Deep Neural Network model on the system using hyperparameters, hidden layers and activation functions[15][16][6]. From the results of the analysis, it was found that for Categorical data, the RMSE value of the KNN model was 0.085, the MSE value was 0.007, the MAE value was 0.068 and the R2 value was 0.158. Furthermore, the Tree model has the RMSE value of 0.118, the MSE value is 0.014, the MAE value is 0.091 and the R2 value is 0.608. Furthermore, the SVM model, the RMSE value is 0.091, the MSE value is 0.008, the MAE value is 0.078 and the R2 value is 0.044. Furthermore, the Neural Network RMSE value is 0.117, the MSE value is 0.014, the MAE value is 0.089 and the R2 value is 0.574. and the last is linear regression, the RMSE value is 0.086, the MSE value is 0.007, the MAE value is 0.067 and R2 is 0.153. so that the best model in this case is KNN which is 0.915 or 91, 5%. [8][17][18].

g. Categorical data classification using neural Network, KNN, Tree, SVM, dan linear regression

Journal of Theoretical and Applied Information Technology <u>31st January 2023. Vol.101. No 2</u> © 2023 Little Lion Scientific

E-ISSN: 1817-3195

	1	Komposisi Minyak Nabati	Energy /Calorie	Total Calories	ergy / Calorie (Grar 12.00	ional Adequacy Rat	Disease Diabetes
	2	Lesitin kedelai	Food Fiber	50kkal	1.00	2	hypertension
	3	tepung Tapioka	Sugar	50kkal	0.85	4	Diabetes
	4	Karamel	Salt	50kkal	0.85	2	hypertension
	5	Perisa Vanila	Food Fiber	50kkal	3.00		Diarrhea
	6	Perisa Susu	Sugar	50kkal	2.00		Diabetes
	7	Perisa Pandan	Salt	50kkal	1.50	2	hypertension
	8	Flour	Total fat	70kkal	3.00	4	Diarrhea
	9	Sugar	Carbohidrat	70kkal	2.00	3	hypertension
	10	Minyak nabati	Saturated Fat	70kkal	1.50	2	hypertension
	11	Lemak nabati	protein	70kkal	- 1.00	1	Diarrhea
	12	kakao bubuk	Carbohidrat	70kkal	11.00	1	Diabetes
	13	Dekstrosa	Sugar	70kkal	5.00	2	Diabetes
>	14	Pati jagung	Salt	70kkal		2	hypertension
	15	Sirup Tinggi Fru	Total fat	70kkal	12.00	2	Diarrhea
	16	Maltodekstrin	Carbohidrat	70kkal	= 1.00	4	hypertension
	17	Pengembang N	Saturated Fat	70kkal	0.85		hypertension
	18	salt	protein	70kkal	0.85	2	Diabetes
	19	Lesitin kedelai	Carbohidrat	70kkal	0.85	- 2	hypertension
	20	Perisa Sintetik	Sugar	70kkal	- 0.85	2	Diarrhea
	21	Flour Gluten	Salt	45kal	2.00	3	hypertension
	22	Sugar	Saturated Fat	45kal	= 1.50	2	hypertension
	23	Air	Protein	45kal	= 1.00		Diabetes
	24	minyak Nabati	Carbohidrat	45kal	6.00		hypertension
	25	Margarin pewar	Sugar	45kal	2.00	1	Diarrhea
	26	Ekstrak Anato	Salt	45kal	0.15		hypertension
	27	Kurikumin	Protein	45kal	6.00		hypertension
	28	Pengawet kaliu	Carbohidrat	45kal	2.00		hypertension
	29	Antioksidan	Sugar	45kal	0.15	1	Diabetes
						2	

ISSN: 1992-8645

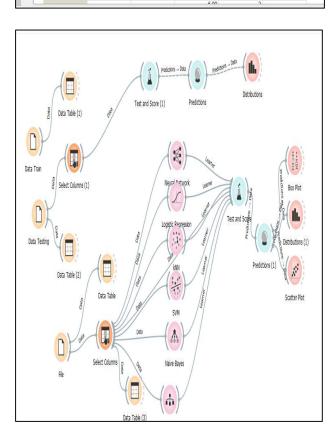
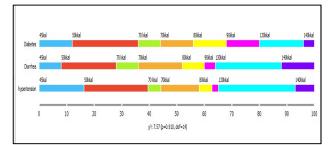



Fig 8 . Categorical Data Classification Using Deep Neural Network KNN, Tree, SVM, And Linear Regression

www.jatit.org h. Training and Testing model

Furthermore, the training process is carried out on the Neural Network method and other models as well as Testing.

Disease	Komposisi	Neural Network	ogistic Regression	WN	SIM	Naive Bayes	Tree	al Network (Diab	ral Network (Diam	Network (hyperte	ic Regression (Di	A E ic Regressic
Diarthea	Bumbu Kecap	Nabetes	hypertension	hypetension	hypertension	hypertension	hypertension	0.829947	0.00237949	0.167773	0.251742	0.112687
Diabetes	Acur	hypertension	Diamhea	Diamhea	hypertension	Dianhea	hypertension	1.10034e-05	0.00242738	0.997562	0.0913206	0.482911
hypetension	Sugar	hypertension	hypertension	Diabetes	hypertension	hypertension	hypertension	0.00035084	0.359600	0.629961	0.217458	0.135363
Diamhea	sat	hypertension	hypertension	Diamhea	hypertension	hypertension	Dianhea	0.00239458	0.00385947	0.993156	0,273617	0.312756
hypetension	Mnyaknabati	Dianhea	Diabetes	hypetension	hypertension	Diabetes	hypertension	0.150646	0.618979	0.230376	0.352256	0.322231
Dishster	Sinn Gulma	hinedenin	hunerteriorin	bunetersion	hunedepsion	hunerhenoinn	hineterion	arrand 7.65	0.00045485	11 001 COR	0.162760	0.006462

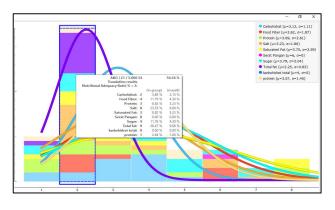
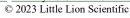



Fig 9. Classification Result Neural Network

Journal of Theoretical and Applied Information Technology 31st January 2023. Vol.101. No 2

E-ISSN: 1817-3195

ISSN: 1992-8645 www.jati.org Construction (=3.063, =5.000) (Construction (=2.063, =5.000)

Fig 9. Classification Result Calori / Energy

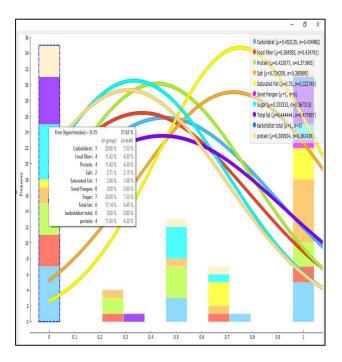


Fig 10. Classification Result Tree

Furthermore, for Hierarchy clustering, excellent results were found with the number of Clusters as much as 2 clusters, namely Sweet and Salty, and more Salty clusters were seen and for the results of disease classification, more results were found for Hypertension with the highest calorie content of sensitive ingredients being Fat and Salt 36,56 %.

i. Comparing and Evaluation Models


Furthermore, Comparing and Evaluation of the Model is carried out by looking at the RMSE, MSE, MAE, Precision, Recall, AUC values, CA values and F1 values

Model	AUC	CA	F1	Precision	Recall
kNN	0.573	0.452	0.454	0.457	0.452
Tree	0.548	0.376	0.382	0.390	0.376
SVM	0.497	0.419	0.337	0.311	0.419
Neural Network	0.540	0.398	0.392	0.387	0.398
Naive Bayes	0.429	0.323	0.329	0.336	0.323
Logistic Regression	0.493	0.409	0.365	0.349	0.409

Figure 11. Result And Comparing Research

8. CONCLUSION

From the results of the analysis, it was found that for Categorical data, the RMSE value of the KNN model was 0.085, the MSE value was 0.007, the MAE value was 0.068 and the R2 value was 0.158. Furthermore, the Tree model has the RMSE value of 0.118, the MSE value is 0.014, the MAE value is 0.091 and the R2 value is 0.608. Furthermore, the SVM model, the RMSE value is 0.091, the MSE value is 0.008, the MAE value is 0.078 and the R2 value is 0.044. Furthermore, the Neural Network RMSE value is 0.117, the MSE value is 0.014, the MAE value is 0.089 and the R2 value is 0.574. and the last is linear regression, the RMSE value is 0.086, the MSE value is 0.007, the MAE value is 0.067 and R2 is 0.153. so that the best model in this case is KNN which is 0.915 or 91, 5% . Furthermore, for Categorical, the results are that the KNN precision value is 0.457, then the Tree precision value is 0.390, for the SVM method the precision value is 0.311, the Precision Neural Network value is 0.387, the nave Bayes precision value is 0.336 and the logistic Regression is 0.349 and the highest precision value is for this case is KNN. Furthermore, for

ISSN: 1992-8645	www.jatit.org	E-ISSN: 1817-319
Hierarchy clustering, very good results were found with the number of Clusters as much as 2 clusters, namely Sweet and Salty, and more Salty clusters were seen and for hypertension disease, the highest calorie content of sensitive ingredients was Fat and Salt 36.56%. It is known that the DeepNeural Network can analyze sensitive food ingredients in food product samples using the hybrid Neural Network method and the accuracy of the Hybrid Deep Neural Network method analysis on sensitive food ingredients contained in Food Product Samples is 91,5%.[19][20] . strengths and weakness from the result is Strengths of the Research are known that the Deep Hybrid Neural Network can classify with an accuracy rate of 91.5% by studying cases of sensitive material samples of food products and Weakness of the Research is that currently the number of criteria used still uses image data and	 Detection," Nano Legastron, Nano Legastron, 2018. [2] W. M. Blom Et Al., Of Eliciting Dose V For Use In For Assessment," Food 168, No. August, P. [3] M. Suprun Et Al., Novel Bead-Based Sensitive And Relia Epitope-Specific A Food Allergy (Scienter 9, 1, (18425), 10.103) 	Conductive Polymer For Food Spoilage ett., Vol. 18, No. 7, Pp. , "Updated Full Range Yalues For Cow's Milk pod Allergen Risk <i>Chem. Toxicol.</i> , Vol.
categorical data and it is still possible to use		Y. Manik, And Altaha,

9. FUTURE RESEARCH

other data and analysis methods.

For further research, more than 2 clusters can be used and increase the number of criteria to be able to further increase the accuracy value of this case. Furthermore, the implementation of this Hybrid Method can be carried out in applications such as mobile applications to make it easier for users to detect sensitive ingredients in packaged food products.

10. CONFLICTS OF INTEREST

The author declares that there is no conflict of interest in this study, both at the time of data collection and research results.

11. AUTHOR CONTRIBUTIONS

For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should.

12. ACKNOWLEDGMENTS

The authors acknowledge the financial support provided by the Indonesian Ministry of Research and Technology.

- "Optimization Classification Of Diseases Which Is Dominant Suffered By Coastal Areas Using Neural Network," 2021 Int. Conf. Data Sci. Artif. Intell. Bus. Anal. Databia 2021 - Proc., Pp. 136-141, 2021.
- [5] T. H. F. Harumy, "Applied Aproach Impact Information Security For Government And Company (A Review)," 2021.
- [6] T. H. F. Harumy And F. Y. Manik, "Comparison Of Artificial Neural Network Classification Methods For Diseases That Are Dominately Suffered By Coastal Communities," J. Theor. Appl. Inf. Technol., Vol. 100, No. 18, 2022.
- [7] T. H. F. Harumy, H. Y. Chan, And G. C. Sodhy, "Prediction For Dengue Fever In Indonesia Using Neural Network And Regression Method," In Journal Of Physics: Conference Series, 2020.
- [8] T. H. F. Harumy, "Optimization Neural Network Of Election Of Investment Sector And Mapping Of The Best Investment Are In The Terrible Area," J. Phys. Conf. Ser., Vol. 1566, No. 1, 2020.
- [9] J. Enguehard, P. O'halloran, And A. Gholipour, "Semi-Supervised Learning With Deep Embedded Clustering For Image Classification And Segmentation," Ieee Access, Vol. 7, Pp. 11093-11104, 2019.

SSN: 1992-8645	www.jatit.org	E-ISSN: 1817-319
10] S. Hegde And M. R. Mundada, "Enhanced		
Deep Feed Forward Neural Network		
Model For The Customer Attrition		
Analysis In Banking Sector," Int. J. Intell.		
<i>Syst. Appl.</i> , Vol. 11, No. 7, Pp. 10–19,		
2019.		
11]I. Martin-Diaz, S. Member, D. Morinigo-		
Sotelo, And O. Duque-Perez, "An		
Experimental Comparative Evaluation Of		
Machine Learning Techniques For Motor		
Fault," Vol. 9994, No. C, 2018.		
[12] M. Halil Ibrahim Nese, "Classification Of		
Ecg Arrhythmia With Machine Learning," 2017.		
[13] R. M. Khalil And A. Al-Jumaily, "Machine		
Learning Based Prediction Of Depression		
Among Type 2 Diabetic Patients," Pp. 0–4,		
2020.		
[14] K. P. Seng, L. Ang, S. Member, And C. S.		
Ooi, "A Combined Rule-Based & Machine		
Learning Audio-Visual Emotion		
Recognition Approach," Vol. 3045, No. C,		
Pp. 1–11, 2016.		
[15] X. Kong, S. Gong, L. Su, N. Howard, And		
Y. Kong, "Ebiomedicine Automatic		
Detection Of Acromegaly From Facial		
Photographs Using Machine Learning		
Methods," Ebiomedicine, Vol. 27, Pp. 94-		
102, 2018.		
[16] A. Sharma And S. Daniel, "Machine		
Learning Approaches For Breast Cancer		
Diagnosis And Prognosis."		
[17] T. H. F. Harumy, H. Y. Chan, And G. C.		
Sodhy, "Prediction For Dengue Fever In		
Indonesia Using Neural Network And		
Regression Method," J. Phys. Conf. Ser.,		
Vol. 1566, No. 1, Pp. 1–8, 2020. [18] T. H. F. Harumy, "Optimization Neural		
Network Of Election Of Investment Sector		
And Mapping Of The Best Investment Are		
In The Terrible Area," J. Phys. Conf. Ser.,		
Vol. 1566, No. 1, Pp. 1–6, 2020.		
[19] T. H. F. Harumy, M. Zarlis, S. Effendi,		
And M. S. Lidya, "Prediction Using A		
Neural Network Algorithm Approach (A		
Review)," 2021, Pp. 325–330.		
20] D. S. B. Ginting, T. H Harumy, F. A. F.		
Nasution, And M. E. S. Siregar, "Analysis		
Skin Health Patterns In Highlands Area		
With Apriori And Bayes Contributions,"		
Pp. 83–87, 2021.		