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ABSTRACT 
 

In this article, a modification of Shor's algorithm for multiple 2n number systems of quantum computer was 
implemented. Work was carried out to study the number systems of quantum computers, the features of their 
use in quantum programming, as well as the simplification of computations by Shor's algorithm itself. The 
purpose of Shor's algorithm is to factorize any number in less time. The modification of Shor's algorithm 
developed in the course of the study makes it possible to simplify the calculations of the algorithm, to reduce 
the volume of circuits (schemes), at least to two digits of a number, which will allow getting rid of 
unnecessary calculations. This article is devoted to the operation of the algorithm in different number systems. 
Because working with real quantum computers is available to the narrow circle of researchers, the application 
of the modification in the emulator can affect the computational speed; in this case, there may be cases when 
the modification can work more accurately. The author's modification reduces the number of required qubits 
to 2, practically without reducing the performance of the algorithm and its execution time. Consequently, the 
cost of the quantum circuit itself also decreases several times (by 5–6 times, since not 12, but 2 qubits are 
required). 
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1. INTRODUCTION  
 

The basis of all computer security is modern 
cryptography, which includes various areas of 
mathematical knowledge, such as information 
theory, coding theory, number theory, probability 
theory and computational complexity theory. To 
date, cryptographic methods of information 
protection have become an integral part of a secure 
computer system, without which no area of human 
activity and society as a whole can do. 

The fundamental concept of cryptography is 
encryption. Messages available over the 
communication channel are encrypted with 
confidentiality of information and decrypted by 
trusted users using complex mathematical 
algorithms.  

Throughout the existence of man, scientists 
have come up with different approaches to 
encryption, from simple substitution and substitution 
ciphers to more complex algorithms used on the 
Internet, such as the RSA public key encryption 
algorithm. Modern cryptographic algorithms are 

based on the fact that some problems do not have 
algorithms that would solve it in less than 
exponential time from the size of the input. 
However, the emergence of stable quantum 
computers will make it possible to solve such 
problems in a fairly short time [1–5]. 

Classical methods of information protection 
approaches become obsolete over time, and in order 
to maintain the security of computer systems, one 
has to look for new or alternative approaches to 
cryptographic methods of information protection. 
New approaches are quantum and post-quantum 
cryptography, the rapid development of which is 
observed in world science. The phenomena of 
quantum physics, which give rise to the existence 
and development of a new approach to 
cryptography, called quantum, it is possible to 
design and implement a communication system that 
allows you to detect channel eavesdropping with 
high probability [6]. Fixing such eavesdropping is 
ensured by the fact that any attempt to measure 
interrelated parameters in a quantum communication 
channel introduces disturbances into the system, 
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while the signals that were transmitted inside the 
channel are destroyed or changed, which gives a 
signal to the participants in the communication about 
an interception attempt, and also provides an 
opportunity to fix the interceptor's activity [3, 7–9]. 

To date, the development of quantum computer 
cryptographic systems is one of the most promising 
and significant areas in the field of IT and science, 
forcing humanity to invent and create new more 
reliable and tamper-proof algorithms that will 
replace mathematical cryptography algorithms. In 
particular, post-quantum cryptography offers more 
secure information transfer systems based on hash 
functions. In recent years, it has been determined 
that algorithms already exist that have been able to 
survive quantum superiority by being cryptanalytic 
for classical methods of cryptanalysis [10–12].  

But this is at this point in time, the question is 
how long can such algorithms be relevant and how 
long can such solutions survive quantum 
superiority? No one is able to answer this question 
with certainty and accuracy. Nevertheless, the 
improvement or complete processing of such 
algorithms may be a necessary transition bridge from 
mathematical cryptography algorithms, being a 
necessary measure to ensure digital security in a 
digital race in which the loser may incur both 
financial and reputational losses and problems of a 
state nature threatening the sovereignty of the state 
[13-23]. 

The creation of new algorithms that are more 
reliable and protected from hacking is necessary 
right now [24-28]. They are needed as the 
replacement for existing mathematical 
cryptographic algorithms, as well as to ensure the 
digital security in the digital race, in which the loser 
can bear both financial and reputational losses and 
the problems of state nature that threaten to the 
sovereignty of the state. 

The improvement is possible in the reducing the 
size of the quantum algorithm circuit to 2 qudits, 
when in the standard version, Shor's algorithm uses 
8 qudits. Using the special "parallel" version of 
Shor's algorithm, which requires no longer 8, but 7 
qudits to decompose the number 15 into prime 
factors, it is possible to achieve the overall 
calculation accuracy of approximately 90%. The 
improvement is aimed at preserving such result 
using less number of schemes, thereby increasing the 
efficiency of calculations by 75% in the equal period 
of time, if we count from the standard execution of 
the Shor’s algorithm. 

According to the literature [29, 30], the standard 
algorithm, as disadvantage, has the increased size of 
scheme. The problem is that the number of qubits 

used for decomposition of numbers into the prime 
factors will be larger. The calculations will be less 
productive and efficient. 

Therefore, in this study, a new modified 
cryptography algorithm has been developed that 
reduces the size of the quantum algorithm circuit to 
2 qudits, which potentially leads to a 25%-75% 
increase in computational efficiency due to the 
reduction of the circuit and the use of fewer qubits 
for the same expansions of the same numbers, in 
comparison with the original Shor algorithm. 

In this article, emulation of the Shor’s algorithm 
for quants with even number of states was 
implemented. The purpose of this work was to study 
mathematical component and to develop the Shor’s 
algorithm, based on qudits with even number of 
states. 

 
2. MATHEMATICAL RATIONALE 

 
Shor's algorithm is a polynomial-time 

quantum computer algorithm for integer 
factorization. This algorithm runs in polynomial 
time, the elapsed time is polynomial in log N of the 
size of the integer given as input. This algorithm uses 
a set of quantum gates called "Quantum Gates" of 
order O((log N)2 (log log N) (log log log N) using fast 
multiplicationto solve the integer factorization problem 
using quantum computer. This method factorization is 
the most efficient in comparison with classical 
factorization algorithms. Efficiency is due to the 
quantum Fourier transform and modular 
exponentiation using repeated squares.  

It is known that the smallest, as well as the largest 
unit of information used in a quantum computer, is a 
qubit, which, like a classical bit, has two states: 1 and 
0. Difference lies in the fact that a qubit is in 
superposition until the moment of its measurement 
and after measurement is already taking on the form 
of a classical bit. What state we get depending on the 
qubit amplitude. The classical notation for amplitudes 
in Dirac notation is as follows: 

 
A|0> + B|1> (1) 

 
where A and B are amplitudes expressed as a 

complex number. The state of the qubit amplitudes 
is also commonly written as a vector. Since getting 
0 or 1 during measurement is random, you need to 
know the probability of getting one of the states. The 
probability of obtaining a state depends entirely on 
the amplitude, and in the case of an amplitude of 0, 
the probability will be calculated as follows: 

 
|A|2 (2) 
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In a quantum computer, the amplitude is 

changed using quantum gates, or gates, which are 
described by unitary square matrices over the space 
of complex numbers. In other words, a matrix is 
unitary if and only if there is a matrix inverse to it. 
The result of the transformation will be a vector 
obtained by multiplying a qubit vector by a matrix, 
of course, the dimension of the gate matrix must 
correspond to the dimension of the vector. For 
example, the Hadamard H-gate, which is described 
by the matrix: 

 

𝐻 =
1

√2

1 1
1 −1

 (3) 

 
and the qubit is described by the expression: 
 

𝑞 = 1 ∨ 0 >
1
0

 (4) 

 
Together they will produce the following result: 

 
 

𝐻𝑞 = 𝐻 ∨ 0 ≥
1

√2

1 1
1 −1

1
0

=
1

√2

1
1

=
1

√2
0 >

+1

√2
1 > (5) 

 
 
The Hadamard gate is one of the most useful 

quantum gates. This gate is sometimes defined as the 
square root of the NOTgate. This is due to the fact 
that this gate transforms a|0›-part of the qubit into 
(|0›+|1›)/ √ 2–"half way" between |0› and |1› states 
in the geometric interpretation of the qubit on the 
Bloch sphere (Figure 1). 

 

 
 

Figure 1: Bloch Sphere 

To transfer the translation of one-qubit gates to 
qudits – (an extended version of qubits) with an even 
number of states, it is enough to use the product of 
the tensor product of the corresponding one-qubit 
gate itself to the appropriate size: 

 
𝐻⊗  (6) 

 
The productivity of quantum computers is based 

on the use of quantum phenomena: superposition, 
reversibility, and parallelism. According to the 
superposition principle, the state of quantum system 

is described by linear combination of wave functions 
(ψ-functions): 

 

 𝜓 = 𝐶 𝜓  (7) 

Shor's quantum algorithm runs in polynomial 
time (the elapsed time is polynomial in log N, where 
N is the size of the integer given in the input). It takes 
quantum gates of order of complexity O((log N)2 (log 
log N) (log log log N). The idea of its efficiency is given 
by the following rough estimate: the problem of 
factorization of an integer M∼ 2800 cannot be solved 
in a reasonable time on a classical computer, while the 
application of the quantum algorithm at a clock 
frequency of 1 MHz would require a couple of days 
[29].The algorithm uses the reduction of the 
factorization problem to finding the period of the 
function like: 

 
f(x) = ax(mod M) (8) 

 
where a is chosen randomly. It can be shown 

that in most cases the period r is even and the 
number ar/2±1 has a common factor with N, 
which is found using the classical Euclidean 
algorithm. Shor's algorithm includes the detailed 
description of the efficient execution of the Uf 
operation. Finding the period f(x) uses quantum 
modification of the fast Fourier transformation 
(whose role in the simpler Simon problem was 
played by the Hadamard transform Hn). 

 
3. SHOR’S ALGORITHM 

 
Shor's algorithm is a huge leap in the 

development of modern cryptography [30]. Peter 
Shor's algorithm was developed in 1994, and 7 years 
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later, in 2001, its efficiency and performance were 
demonstrated to IBM specialists. The result of the 
work of a group of IBM enthusiasts was the 
factorization of the number 15 into factors of 3 and 
5, using quantum computer with 7 qubits [31]. Its 
notability and importance lie in the fact that the 
Shor’s algorithm is potential threat to modern 
public key cryptosystems [32]. At thismoment, the 
most popular is the RSA public key algorithm, 
which can be cracked byfinding the M factors with 
which the encryption took place. With a 
sufficiently large number M, it will not be possible 
to break the algorithm by any of the most well-
known modern classical algorithms. The only ones 
capable of doing this are the modern Pollard-
Strassen algorithm and the algorithm of Shanks 
(quadratic form method), which require too much 
time [33]. 

As mentioned earlier, Shor's algorithm is based 
on finding the period of the function ax (mod N). On 
the Figure 2 the diagram (scheme) applicable to 
finding the period of a function is demonstrated. 

 

 
 

Figure 2: Implementation of Shor's Algorithm on the 
Quantum Emulator 

The presented scheme is intended for the 
decomposition of the number 15 into the prime 
factors. You can see that the circuit is divided into 
two conditional parts, the first is for input, the second 
for function output. That is, the first 4 qubits are 
allocated for the input data, and the second 4 qubits 
are allocated for the output of the result [34-37]. 

The first step in the algorithm is to apply N 
Hadamard gates to the upper case, after which we get 
an equiprobable superposition of all the upper case 
boolean states: 

 

𝑥, 0 >

1

√𝑁

 (9) 

 
After that, the unitary transformation is 

applied, which translates the state of the lowercase 
(lower register) to function (1), the upper case 
remains unchanged: 

 

𝑥, 0 > 𝑈
→

1

√𝑁
𝑥, 𝑓(𝑥) >

1

√𝑁

 (10) 

 
The last step uses the quantum Fourier 

transformation: 
 

𝑒 ∨ 𝑘, 𝑓(𝑥) >

1

𝑁

 (11) 

 
The result is k, tx mod M> with probability of: 
 

1

𝑁
𝑒

: ≡

 (12) 

 
On the Figure 3 the section of code responsible 

for the calculations performed by the Fourier gate is 
demonstrated. 

 

 
 

Figure 3: Calculation of the Fourier Gate 

Let's consider the implementation of Shor’s 
factorization algorithm with following parameter 
values: 

p = 3, q = 5, N = pq = 15, 
Φ(N) = (5 − 1)(3 − 1) = 8, 
a = 7, f(x)=7x mod 15. 
We represent the function f(x) : {0, 1}4→ {0, 1}4 

in the following form: f(x)=7x mod 15.Since 4 is the 
order of 7 in Z(15) and 74 = 1(15), 

 
(72)x1 · (71)x0 mod 15 = 4x1 · 7x0 mod 15 (13) 

 



Journal of Theoretical and Applied Information Technology 

15th October 2023. Vol.101. No 19 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5884 

 

Schematic implementation of Shor's algorithm 
for selected values [38] on quantum emulator is 

demonstrated in the Figure 4. 

 
 

 
 

Figure 4: Implementation of the Shor Algorithm in the Emulator for f(x) = 7x mod 15 

Thus, blocks Hn and QFT in the Figure 1 to us 
are known. 

Now it is important to understand the construction 
of the blocks labeled 1, ×7 and ×4. Block 1 is the X 
operator on the lowest qubit of the |y> register.  

The result of the operation of this block in |y> 
is the value 1, which, in accordance with equation 
(1), will need to be multiplied by 7, if the bit x0 = 
1, and multiplied by 4, if the bit x1 = 1. In the 
Figure 4 the multiplication of |y> containing 1, by 
7 is demonstrated, there is dependence x0, which is 
the setting of the remaining bits of the number 7 in 
the register by the CNOT(x0) operators. 

 

 
 

Figure 5: Multiply |y>, Containing 1, by 7 

On Figure 6 shows the multiplication of the 
register |y> by 4 depending on bit x1. 

 

 
 

 
Figure 6: Shor's Algorithm. Operation ×4 

Multiplying a number by 4 is a cyclic shift by 2, 
which is implemented a little more complicated than 
multiplying |y> by 7. It does this by replacing the 
places of the bits – (y0 y2) and (y1 y3). In this case, 
all replacements are carried out by three CNOT 
operators, controlled also by bit x1. After these 
operations and the quantum Fourier transform in 
the |x> register, the value becomes 0 × 0100 = 4: 

y/2n = 4/24 = 1/4 
The fraction 1/4 itself is suitable as a candidate 

for the role of k and r due to the small denominator. 
Substituting the value 4 into the f(x) function, we get 
f(4) = 74(15) = 1. 

After we have found the period r, it is necessary 
to find the values of p and q. 

 
GCD (74/2 + 1, 15) = GCD (50, 15) = 5 (14) 

 
GCD (74/2 − 1, 15) = GCD (48, 15) = 3 (15) 

 
The answer is multipliers 3 and 5. 
Factorization of a number by the Shor’s 

algorithm consists of 2 stages: finding the 
factorization period and calculating the factors of the 
number. The first step is to find the factorization 
period, which can be done using the following 
function: 

 
(7 ) ∗ (7 ) (15) = 7 (15) (16) 

 
where 7 is the order of the number. 
On the Figure 7 you can see the result of 

executing the circuit from Figure 2. 
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Figure 7: The Result of Finding the Factorization Period for the Original Shor's Algorithm 

The first line of the output prints the 
resulting number when measured, and the 
subsequent lines show the probability of obtaining 
the state when measured. 

After obtaining the period of the function, you 
can get the decomposition of the number by finding 
the greatest common divisor: 

 
p = gcd(ar/2 + 1, N) (17) 

 
q = gcd(ar/2 – 1, N) (18) 

 
Note that not every r can lead to the desired 

result. So, for r = 8, or for r = 0, whichis quite a 
possible result, we get p = 15 and q = 1. 

In this research work, it was experimentally 
found that the desired results of the factorization 
algorithm can be obtained with such good values y, 

thanks to which, as a result of finding the 
factorization period, favorable r is obtained [29–41]. 

The main idea of the implemented Shor’s 
algorithm, in the framework of the study,is to 
reduce the size of the quantum algorithm circuit 
(scheme) by changing the basic representation of 
values in the form of binary notation of number in the 
number of different number system. It makes it 
possible to reduce the size of the circuit (scheme) to 
2 qudits. In the implemented one, the number of state 
vectors is reduced to two, which significantly reduces 
the "width" of the scheme. In this case, only the first 
vector of states is measured. 

Below is an implementation of Shor's algorithm on 
vectors consisting of 16 possible states, so you can 
decompose a number using a scheme consisting of only 
two vectors. On the Figure 8 shows the result of the 
modification. The result, as a whole, differs little from 
the usual Shor’s algorithm only that after measuring the 
first state vector the number 4 was obtained. 

 

. 
 

Figure. 8: The result of Finding the Factorization Period of the Shor’s Algorithm Modification 
Before calculating the factorization period, it is 

necessary to check for the existence of the 
factorization period. On Figure 9 the check for the 
existence of the factorization period for 8 qubits is 
demonstrated. 

 

 
 

Figure 9: Checking for the Existence of the Factorization 
Period of the Classical Shor’s Algorithm 

Let us check the modification of the Shor’s 
algorithm. Figure 10 demonstrates the existence of 
the modification of the factorization period. 

 
 

Figure 10: Checking for the Existence of a Modification 
of the Shor’s Algorithm 

After the factorization period has been 
calculated, the factorization of the number takes 
place. Figure 11 shows the result of factoring the 
number 15. 

 
 

Figure 11: Finding the Multipliers 
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The parallel encryption scheme is new 
implementation of so-called Shor’s algorithm, the 
first quantum method in the history of science to 
factorize numbers, invented by programmer Peter 
Shor specifically for quantum computers in 1994 
[42].  

Using a special "parallel" version of Shor’s 
algorithm that requires 7 qubits instead of 8 qubits to 
factorize the number 15 into prime factors. It was 
invented by Russian physicist Alexei Kitaev, who 
today works at the California Institute of 
Technology and is on the advisory board of the 
Russian Quantum Center. It is worth noting the 
development of the group of scientists at the 
Massachusetts University, who modified the Shor’s 
algorithm, and experimentally proved the 
correctness of the algorithm by factoring the 
number 15 by 5 and 3 with a total calculation 
accuracy of 99%. Such accuracy indicates that this 
modification of Shor's algorithm decomposes 
numbers [43–45]. 

 
4. RESULTS AND DISCUSSION 

 
4.1 Implementation of Shor's Algorithm by A. 
Kitaev's Method 

The difference between the classic 
implementation of Shor's algorithm and Kitaev's 

algorithm is that Kitaev's algorithm uses different 
method of qubit binding. 

For example, the scheme: 
 

 
 

Figure 12: Example of Linked Qubits 

can be converted as: 
 

 
 

Figure 13: Related Qubits in Kitaev's Algorithm 

In this case, gate X will be applied to qubit b1 in 
the event that after the measurement on qubit b0, one 
is obtained. This circuit must be executed 
sequentially and, in contrast to the usual CNOT gate, 
the property of quantum connectivity disappears. 
However, using this approach, the number of used 
qubits can be reduced. For example, for the 
factorization algorithm for the number 15 onthe basis 
7, the scheme will look like in Figure 14. 

 

 
 

Figure 14: Shor’s Algorithm Implemented by the Kitaev’s Method 

It can be noted that the number of qubits in this 
scheme has decreased to 7, instead of 8 in the classical 
implementation of the Shor’s algorithm, while the 
state of the qubits remains the same, as well as the 
overall accuracy of calculations. At the same time, 
this scheme is performed sequentially, unlike the 
usual scheme. One of the authors of this algorithm, 
Isaac Chuang, stated that to factorize the number 15 
— the smallest odd composite number that is not 
representable as power of prime number (limitation of 
Shor’s algorithm) — traditionally requires 8–12 
qubits, while their quantum computer requires only 5 
to 7 qubits. 

Experimentally, five 40Ca+ ions were was used 
in the superposition state and enclosed in the 
quadrupole ion trap or in the Pol’s trap. Quantum 

computer uses laser pulses as logic switches, where 
4 atoms are used to perform the operation, and one 
atom is used for extraction and interpretation of the 
data. 

According to the results of the experiments, the 
probability of error in the calculating of the period 
was less than one percent.  

However, the researchers themselves pointed out 
in their work that, in order to get such level of 
probability actually, the experiment should be 
repeated 8 (eight) times. Scientists estimated the 
probability of obtaining the reliable period from the 
first time at about 50%. It is worth noting that few 
years ago, American physicists from the University of 
Santa Barbara were able to implement Shor's quantum 
algorithm on the system with three qubits. The 
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algorithm gave the correct answer about in the 48 
percent of the time (cases). 

 
4.2 Shor's Algorithm on Qudits with Even 
Number of States 

It was previously indicated that the Shor’s 
algorithm is divided schematically into two 
conditional parts, equal in the number of used qubits. 
The first part is intended for the inputs of the 
exponential function, the other is used to output the 
result of the function (8).Translation of calculations 
into even-degree qudits for the Shor’s algorithm will 
allow to reduce the number of used quanta in the 
quantum processor to two, while not changing the 
complexity of the calculations. At the same time, 
single gates used in computing systems on qubits 
are easily transferred to new states using the tensor 
product of the gate itself. In this case, the scheme of 
the Shor’s algorithm will look like this (Figure 15): 

 

 
 

Figure 15: Shor's Algorithm in Qudits of Even Degree 

This implementation is able to reduce the 
number of quanta used to calculate the Shor’s 
algorithm in quantum processors, with reduced 
quanta noise. The operation of this algorithm is 
demonstrated in the created emulator. 

 
4.3 System Requirements to Run the Algorithm 

The modification of the Shor’s algorithm 
developed during the study can be used on any modern 
digital computer using the Python3.8+ interpreter. The 
program should be launched in the emulator, or in the 
terminal of the computer, or in the development 
environment. 

RAM:8Gb. 
GPU Memory:2Gb. 
Operating system:Windows 10 ×32, ×64;Linux: 

Ubuntu18+, Debian. 

 
4.4 Evaluation of the Work of Algorithms: 

On Figure 16 the memory consumption 
required to implement the Shor’s algorithm 
emulator is demonstrated. 

 

 
 

Figure 16: Memory Consumption of the Classic Shor’s 
Algorithm 

As a result of the measurement, it can be seen 
that the entire algorithm occupies 49.781MiB of 
memory. Figure 17 shows the memory consumption 
for the implemented emulation of a modified version 
of Shor's algorithm. 

 

 
 

Figure 17: Memory Consumption of the Shor’s Algorithm 
on Qudits 

As a result of the measurement, it can be seen 
that the entire algorithm occupies 49.816MiB of 
memory. Figure 18 shows graphs of the time it takes 
for the algorithms to perform factorization. On them, 
the indicators of time for modification are visualized 
in orange color, and the indicators for the classical 
algorithm are displayed in blue color. 
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Figure 18: Graph of Indicators of the Time of Execution of the Algorithms 

Table 1. Comparison of the Speed of Calculating the Factorization Period 

Measured value / 
The algorithm 

Classic Shor's algorithm 
Shor's algorithm in Kitaev's 
implementation 

Modification for multiples of 2m 
qubits 

Average execution time 0.022440991401672362 0.0432834607672362 0.028712222576141356 
Number of quants used 8 7 2 
RAM consumption 49.781MiB 49.77MiB 49.816MiB 

 
The novelty of the research work done is to modify 

the Shor’s algorithm in such a way that this method will 
reduce the number of quantum processor quanta used 
by changing the basic representation of values in the 
form of binary notation of number into a number of 
another number system. It makes possible to reduce the 
size of the circuit (scheme) from eight to two, while not 
greatly changing the complexity of calculations.  

Experimentally, it was found that the desired 
results of the factorization algorithm can be obtained 
with such good values y, thanks to which, as a result of 
finding the factorization period, favorable values r [9] 
are obtained. As a result of measurements, it can be 
seen that the entire algorithm occupies 49.816 MiB of 
memory, being an acceptable value.  

 
5. CONCLUSION 

 
In this article, a new modified cryptography 

algorithm has been developed that reduces the size 
of the quantum algorithm circuit to 2 qudits, which 
potentially leads to a 25%-75% increase in 
computational efficiency due to the reduction of the 
circuit and the use of fewer qubits for the same 
expansions of the same numbers, in comparison with 
the original Shor algorithm. The problem of integer 
factorization is extremely important since quite a 
few systems use the RSA public key. In the course 
of research, the classical Shor algorithm was 
implemented for an even number of qubits.  

The modification of Shor's algorithm developed 
during the research can be used on any modern 
computer using the Python3.8+ interpreter. According 
to the graph of indicators of the time it takes to perform 

factorization, the dynamics of the execution time of the 
modification of the algorithm is clearly visible, in 
comparison with the original. On the graph, the time 
indicators for modification are visualized in orange 
color, and the indicators for the classical algorithm are 
visualized in blue color. Containing a smaller volume 
of quantum circuits (schemes), at least one vector of 
states is required for input data, while the algorithm is 
not inferior in the speed of finding the factorization 
period, and the accuracy of calculations does not 
exceed the value of the value by the classical Shor’s 
algorithm, as well as the scheme proposed by Isaac 
Chuang. In this case, the classic Shor’s algorithm 
uses 2M qubits, where M = log2N. The modification 
developed in the course of the research for multiple of 
two qubits is oriented at demonstrating the operation 
of the algorithm in other number systems and 
showing the decent result. Further research should 
be aimed at studying the application of the new 
modified Shor’s algorithm. 
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