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ABSTRACT 

 

Mobility-Enabled Wireless Sensor Networks (ME-WSNs) are a specialized class of wireless sensor networks 
(WSNs) that incorporate the capability of node mobility. Node mobility in ME-WSNs introduces several 
advantages but brings new challenges in efficiently routing data packets and allowing intruders to join the 
network. To address the routing challenges in ME-WSNs and enhance Quality of Service (QoS), an 
“Augmented Dolphin Swarm Optimization-Based Secured Gaussian Ad-Hoc On-Demand Distance Vector 
(ADSO-SGAODV)” routing protocol is proposed. ADSO-SGAODV works by efficiently discovering and 
maintaining routes for data transmission while conserving energy and ensuring secure communication. It 
employs a hybrid optimization-based approach, combining Gaussian AODV and Dolphin Swarm 
Optimization (DSO). ADSO-SGAODV utilizes a Support Vector Machine (SVM) to ensure intelligent 
decision-making in route selection. ADSO-SGAODV selects cluster heads based on fuzzy logic and specific 
criteria such as energy level and distance to the base station. This feature enhances network scalability and 
load balancing, ensuring efficient utilization of resources in a dynamic ME-WSN environment. ADSO-
SGAODV focuses on providing robust security measures to safeguard data during transmission. Secure 
Communication protocols are implemented to encrypt data, preventing unauthorized access and maintaining 
data confidentiality. Trust-Based Access Control with Encryption is employed in ADSO-SGAODV to 
establish trust among nodes and ensure data communication integrity within the network. Through extensive 
simulations in various scenarios, ADSO-SGAODV has demonstrated a superior packet delivery ratio, 
throughput, energy consumption, and adaptability to node mobility. The protocol’s intelligent and energy-
efficient working mechanism makes it a promising solution for enhancing QoS in ME-WSNs, addressing the 
unique challenges posed by mobility, and ensuring reliable and secure data transmission in dynamic 
environments. 
Keywords:QoS, AODV, Gaussian, Routing, Security, WSN  
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1. INTRODUCTION 

Mobility-Enabled Wireless Sensor 
Networks (ME-WSNs) have emerged as a 
promising technology for various applications, 
including environmental monitoring, disaster 
management, and healthcare. These networks 
consist of small, low-power sensor nodes that can 
move freely within a given area, enabling 
dynamic data collection and transmission [1]. 
However, the dynamic mobility of nodes 
introduces significant challenges in terms of 
energy efficiency and network longevity. The 
primary problem in ME-WSNs lies in developing 
routing strategies and protocols that can adapt to 
node mobility while optimizing energy 
consumption and prolonging the network’s 
lifetime [2]. Unlike traditional static Wireless 
Sensor Networks (WSNs), where nodes remain 
stationary, ME-WSNs require routing solutions 
that can cope with the continuous movement of 
nodes, intermittent connectivity disruptions, and 
varying link qualities [3]. 

Routing protocols are designed for 
traditional static WSNs and are based on 
assumptions of stable network topologies and 
reliable links. However, in ME-WSNs, the 
mobility of nodes can cause frequent topology 
changes and link quality variations, leading to 
unpredictable network conditions [4]. Using static 
routing protocols in such dynamic environments 
can lead to inefficient energy utilization and 
premature depletion of node energy. Nodes may 
consume excessive energy trying to establish 
connections with unreachable or low-quality 
nodes, resulting in energy wastage and reduced 
network lifetime [5]. 

The scalability poses an additional 
complexity in ME-WSNs. As the number of 
nodes increases and the network becomes denser, 
routing solutions must efficiently handle the 
growing complexity and manage energy usage 
effectively. Scalable and adaptive routing 
algorithms are essential for optimizing energy 
resources and ensuring reliable data transmission, 
even in large-scale ME-WSNs [6]. Innovative 
routing algorithms and protocols must be 
developed specifically for ME-WSNs to address 
these challenges. These solutions should 
dynamically adapt to node mobility, optimize 
energy consumption, and strike a balance between 
energy efficiency and data transmission 
reliability. A key aspect is to design routing 
protocols that can efficiently detect and react to 

node movements, topology changes, and 
variations in link quality. These protocols should 
incorporate mechanisms for predicting node 
movements, selecting energy-efficient paths, and 
dynamically adjusting routing decisions based on 
real-time network conditions [7]. By overcoming 
the energy efficiency challenge in ME-WSNs, the 
limited power resources of individual nodes can 
be effectively utilized, leading to an extended 
network lifetime and enabling sustainable and 
efficient wireless sensor network deployments in 
various applications. Energy-efficient routing 
strategies help conserve energy and enhance the 
network’s overall performance by reducing 
packet loss, improving data reliability, and 
minimizing delays [8]. 

Researchers and engineers are actively 
exploring new approaches to tackle the problem 
of energy-efficient routing in ME-WSNs. They 
are investigating novel routing protocols that can 
adapt to the dynamic nature of ME-WSNs and 
optimize energy consumption while ensuring 
reliable data transmission [9]. These efforts 
involve leveraging concepts from mobile ad hoc 
networks, opportunistic networking, and network 
coding to design efficient and robust routing 
solutions. The successful development of energy-
efficient routing protocols for ME-WSNs holds 
excellent potential for enabling numerous 
applications and advancing the field of wireless 
sensor networks [10]. From environmental 
monitoring systems that can adapt to changing 
conditions to disaster management networks that 
can provide real-time data in dynamic scenarios, 
ME-WSNs have the potential to revolutionize 
various domains. By prolonging the network’s 
lifetime, optimizing energy usage, and balancing 
energy efficiency with data transmission 
reliability, ME-WSNs can contribute to 
sustainable and efficient wireless sensor network 
deployments, ultimately benefiting society [11], 
[12]. 

1.1 Problem Statement 

The problem in Mobility-Enabled 
Wireless Sensor Networks (ME-WSNs) lies in 
devising energy-efficient routing strategies and 
protocols that can adapt to the dynamic mobility 
of nodes while optimizing energy consumption 
and prolonging the network’s lifetime. Balancing 
reliable data transmission and energy 
conservation becomes challenging due to node 
mobility, intermittent connectivity disruptions, 
and varying link qualities. Traditional static WSN 
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routing protocols are unsuitable for the dynamic 
environment of ME-WSNs, and their usage can 
lead to inefficient energy utilization and 
premature depletion of node energy. Additionally, 
scalability poses a further complexity, requiring 
routing solutions that can handle the increasing 
complexity and node density while optimizing 
energy usage. To address this problem, innovative 
routing algorithms and protocols must be 
developed that can dynamically adapt to node 
mobility, optimize energy consumption, and 
balance energy efficiency and data transmission 
reliability. By solving this energy efficiency 
challenge, ME-WSNs can effectively utilize 
limited power resources, extend the network’s 
lifetime, and enable sustainable and efficient 
wireless sensor network deployments in diverse 
applications. 

1.2 Motivation 

The motivation to address the challenge 
of energy-efficient routing in Mobility-Enabled 
Wireless Sensor Networks (ME-WSNs) stems 
from the need to maximize the utilization of 
limited power resources and prolong the 
network’s lifetime. Energy efficiency is a critical 
concern in ME-WSNs, where sensor nodes 
operate on battery power and are often deployed 
in environments where maintenance or battery 
replacement access is impractical or costly. By 
developing energy-efficient routing strategies and 
protocols, we can enhance the sustainability and 
longevity of ME-WSNs, ensuring their 
continuous operation and reliable data 
transmission. Additionally, energy-efficient 
routing directly reduces the carbon footprint and 
environmental impact associated with wireless 
sensor network deployments. Furthermore, 
improved energy efficiency translates to cost 
savings, as it minimizes the need for frequent 
battery replacement or recharging, making ME-
WSNs more economically viable. Ultimately, the 
motivation to achieve energy-efficient routing in 
ME-WSNs lies in enabling sustainable, reliable, 
and cost-effective wireless sensor network 
solutions supporting various applications, ranging 
from environmental monitoring to smart cities 
and beyond. 

1.3 Objective 

The research objective is to develop 
novel energy-efficient routing algorithms and 
protocols for Mobility-Enabled Wireless Sensor 
Networks (ME-WSNs) that can adapt to the 

dynamic nature of node mobility while optimizing 
energy consumption. The objective includes: 

 Designing energy-aware routing 
algorithms: Develop innovative routing 
algorithms that consider node mobility, 
intermittent connectivity disruptions, 
and varying link qualities to make 
efficient routing decisions that minimize 
energy consumption. These algorithms 
should dynamically adapt to the 
changing network topology and optimize 
routing paths to prolong the network’s 
lifetime. 

 Incorporating energy efficiency 
metrics: Integrate energy efficiency 
metrics into the routing protocols to 
prioritize energy-aware routing 
decisions. This involves considering 
factors such as residual energy levels of 
nodes, energy consumption rates, and 
the energy cost associated with 
communication and data transmission. 

 Mobility patterns: Node’s mobility 
patterns have an impact on energy 
consumption. Develop routing strategies 
that leverage mobility patterns to 
minimize unnecessary data 
transmissions and optimize node 
movements to conserve energy. 

 Evaluating trade-offs between energy 
efficiency and other performance 
metrics: Investigate the trade-offs 
between energy efficiency and other 
performance metrics such as data 
delivery reliability, latency, and network 
throughput. Develop mechanisms to 
balance these trade-offs and optimize 
overall network performance while 
maintaining energy efficiency. 

 

By achieving these research objectives, 
we aim to enhance the energy efficiency of ME-
WSNs, extend the network’s lifetime, and 
promote sustainable wireless sensor network 
deployments. The research outcomes will 
contribute to developing energy-efficient routing 
solutions that can be applied in various 
applications, optimizing energy consumption and 
improving overall network performance in 
dynamic environments. 
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2. LITERATURE REVIEW 
“Reliability Enhancement of Packet 

Delivery” [13] is proposed for WSN to enhance 
the packet delivery in multi-hop networks. The 
packets are forwarded peer-to-peer but with 
message control, leading to reduced header size. 
The network buffer size is also enhanced by 
analyzing it with popular WSN protocols to 
demonstrate its better efficiency. “Cascading 
Model” [14] is proposed for wireless sensor 
networks to define the network’s load. Two 
metrics are used for evaluation: “sink-oriented 
link” and “sink-oriented node.” The distribution 
of load along with wireless links is propelled 
through schemes for which re-distribution was 
built. Simulation results are generated to portray 
its tolerance level based on idle capacity. 

“Topology Optimization Scheme” [15] 
was proposed for detecting the environments in 
WSN. Assessment is done to predict the proposed 
algorithm’s behaviour and generate findings. 
Performance metrics are used to measure the 
active findings of the node, and results are 
generated to prove its efficiency. “Energy cum 
Density Aware Cluster Routing Protocol” [16] is 
proposed for retrieving the data in WSN. The 
network is divided into layers of equal size, and 
the cluster members are sorted in descending 
order. The feasibility of a cluster is also measured 
using a cluster merge algorithm. A relaying 
algorithm is introduced to locate the sensor nodes 
with the most significant weight value. Evaluation 
is performed using MATLAB simulation, and the 
results demonstrate its energy and network 
lifetime performance. “Range-Free Localization” 
[17] is proposed for accurate network localization 
in WSN. The hop count threshold is initiated for 
the constraint of transmitted messages. Reliable 
anchor pairs, namely, super and suboptimal 
anchor ones, are generated, and the ranging errors 
are reduced. The coordinates of the regular nodes 
are calculated to calculate the simulation results. 

 

“Coverage and Energy-aware Protocol” 
[18] is proposed for handling the coverage 
overlapping and density of sensors in WSN. 
Borovka algorithm, self-stabilizing techniques, 
and energy efficiency were incorporated, and a 
Minimum Spanning Tree was built. Balanced 
clusters are generated using the simulation results 
to showcase their outperformance. “Data 
Collection Protocol based on Clustering” [19] is 

proposed for creating a reliable and stable route 
for transmitting data. Two clusters are formed: 
Tentative Cluster Head (CH) and fuzzy logic-
based final CHs selection for selecting the node 
based on available energy. The taproot principle 
is incorporated for building the route among Base 
Station and Cluster Head. The Digital Magnetic 
Compass technique localizes nodes and measures 
mobile nodes’ motion. Simulation results are 
generated to enhance the enhanced networks’ 
reliability and scalability. “Evolutionary 
Computing Strategy” [20] is proposed for 
deploying wireless communication technology to 
study the life span of Mobile Wireless Sensor 
Networks. The system model is built to extend the 
life span of the network. An optimization model 
is built, and numerical simulation outputs are 
generated. “Tree-based Routing Protocol” [21] is 
developed in the proposed study to decrease the 
end-to-end delay and increase power usage 
efficiency in IoT networks. A geographic routing 
algorithm is introduced for reliable network 
enhancement, and control packets are updated at 
a minimum rate for managing the network 
routing. The performance of the proposed study is 
proved better than other techniques through 
simulation output. “Power-Aware Path Routing” 
[22] is proposed to cover WBAN hubs through 
multi-hop communication. Radii Shrinking 
Planning, 2-covered Area Stretching Planning, 
and Graph Transformation Planning were 
introduced by applying various constraints to 
decrease the power usage in the network. 
Experimental results are generated to showcase its 
outcome over other existing techniques. 

 

“QoS-aware Opportunistic Routing” 
[23] is proposed for measuring the QoS level in 
the Opportunistic routing (OR)paradigm. The 
QoS level is measured using the forwarder set, 
and the packet loss and average queuing delay are 
decreased. The network’s performance is 
enhanced by obtaining the simulation results for 
the algorithm proposed. “Starfish Routing 
Algorithm” [24] is proposed to reduce the 
minimum routing cost by incorporating central 
ring-canal and radial canals in the network. 
Radius is determined dynamically for every 
sensor node, reducing the delivery delay. The 
energy consumption is also enhanced, for which 
simulation results are obtained. The efficiency of 
the technique is proved through conventional 
technique comparisons. “Hierarchical 
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Computation Strategic Making” [25] is proposed 
for optimizing the energy in WSN. Different 
network activities are constrained in every sensor-
based cluster, and Optimization is carried out. The 
accuracy is generated by information processing, 
and experimental outcomes are generated to prove 
its efficiency. “Source Location Privacy” [26] is 
proposed for latency scheduling and attacker 
distance generation. A genetic algorithm is 
presented using the fitness criteria function for 
generating the Pareto- Optimal schedules. The 
model’s efficiency is evaluated using simulation 
results to prove its outcome. “Robust Delay and 
Energy Constrained Scheduling” [27] are 
proposed in the study for optimization 
formulation, and polynomial-time power control 
is proposed. The transmission time is reduced, 
and the polynomial-time heuristic scheduling 
algorithm is employed to calculate the subset of 
transmitting nodes. The karmarkar-Karp 
algorithm is also used for distributing the node 
transmitted to demonstrate its delay, run time, and 
robustness performance in Low-Rate Wireless 
Personal Area Networks. Bio-inspired 
Optimization Routing Protocols [28], [29], [38]–
[42], [30]–[37] plays a significant role in the 
network to achieve better efficiency. 

 

“Cluster Sub-graph Selection Routing 
(CSSR)” [43] has been developed as an 
innovative routing protocol tailored explicitly for 
wireless ad-hoc networks. The primary objective 
of CSSR is to enable efficient communication by 
organizing the network into clusters. Each cluster 
is assigned a designated cluster head responsible 
for inter-cluster communication. This hierarchical 
clustering approach effectively reduces the 
routing overhead and improves the scalability of 
the network. CSSR utilizes advanced sub-graph 
selection techniques to optimize the routing paths 
within the clusters, resulting in significantly 

reduced transmission delays and enhanced data 
delivery efficiency. “Energy-efficient Adaptive 
cum Cooperative Routing (EEACR)” [44] is a 
cutting-edge routing protocol designed to address 
the energy consumption challenges in wireless 
sensor networks. The protocol focuses on 
balancing energy consumption and prolonging the 
overall network lifetime. EEACR employs 
adaptive mechanisms that dynamically adjust the 
transmission power levels based on the proximity 
of neighbouring nodes. This adaptive feature 
ensures efficient energy utilization and extends 
the operational lifespan of individual nodes. 
Additionally, EEACR encourages cooperative 
communication among closely located nodes, 
which reduces reliance on long-distance 
transmissions and further enhances the overall 
energy efficiency of the network. With its 
adaptive and cooperative strategies, EEACR is a 
highly suitable solution for resource-constrained 
sensor networks, providing sustainable and 
energy-efficient data communication. 

 

3. AUGMENTED SECURITY WITH 
ENHANCED GAUSSIAN AODV 

3.1. Gaussian AODV 

3.1.1. Gaussian-based Route Discovery 

In EG-AODV, Gaussian functions can 
be used to estimate the route lifetime and stability. 
Let’s denote the Gaussian function as 𝒢(𝑥) and 
the stability metric as 𝑆(𝑥). The estimated 
stability of a route 𝑅 can be expressed as: 

𝑆(𝑅) = 𝒢(xଵ) ∗ 𝒢(xଶ) ∗ 𝒢(xଷ) ∗ … . .
∗ 𝒢(x୬) 

(1) 

where, 𝑥ଵ, 𝑥ଶ, … … 𝑥௡ represents the individual 
stability metrics of the links along the route 𝑅. 

Each 𝑥 is calculated using specific link 
characteristics and can be represented as a 
function of those parameters. 

3.1.2. Adaptive Route Maintenance 

To adaptively determine the frequency 
and intensity of route maintenance, EG-AODV 
can use Gaussian functions to model the stability 
of the routes. Let 𝑀 represent the maintenance 
metric of a route, and 𝑓(𝑀) be a function that 
determines the maintenance frequency. The 
maintenance frequency can be calculated as: 

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  𝑓(𝑀)  
=  𝒢(𝑀) 

(2) 

where, 𝑀 can be derived from stability metrics, 
such as packet loss rate, link quality, and other 
relevant parameters. 
 

3.1.3. Load Balancing 

For load balancing in EG-AODV, 
Gaussian models can distribute traffic load evenly 
among multiple paths. Let 𝐿 represent the load 
metric of a path, and 𝐵(𝐿) be a function that 



 
Journal of Theoretical and Applied Information Technology 

15th October 2023. Vol.101. No 19 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6119 

 

determines the load balancing factor. The load 
balancing factor can be calculated using Eq.(3). 

𝐿𝑜𝑎𝑑 𝐵𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =  𝐵(𝐿)  
=  𝒢(𝐿) 

(3) 

where, 𝐿 is determined based on factors like link 
quality, available bandwidth, and node’s residual 
energy. 

3.1.4. Fault Tolerance 

Gaussian-based techniques in EG-
AODV can enhance fault tolerance by quickly 
detecting and recovering from link failures or 
route disruptions. Let 𝐹 represent the fault metric 
of a link or route, and 𝑅(𝐹) be a function that 
determines the route recovery pr

The route recovery probability can be 
calculated as: 

𝑅𝑜𝑢𝑡𝑒 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
=  𝑅(𝐹)  =  𝒢(𝐹) 

(4) 

where, 𝐹 is determined based on link stability, 
packet loss rate, and other relevant parameters. 

3.1.5. Energy Efficiency 

EG-AODV can optimize energy 
consumption by considering the residual energy 
levels of nodes in the network. Let 𝐸 represent the 
energy metric of a node or route, and 𝐸(𝐸) be a 
function that determines the energy efficiency 
factor. The energy efficiency factor can be 
calculated using Eq.(5). 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 
=  𝐸(𝐸)  =  𝒢(𝐸) 

(5) 

where 𝐸 is determined based on the residual 
energy level of nodes and can be used to select 
routes that minimize energy usage. 

By incorporating these Gaussian-based 
mathematical models, EG-AODV can make more 
informed routing decisions, adapt to dynamic 
network conditions, and improve reliability, 
scalability, and energy efficiency. 

Algorithm 1: Gaussian-based AODV 
Routing 

Step 1: Initialization 
Nodes set up routing tables and 
metrics. 

Step 2: Route Discovery 
Broadcast a Route Request (RREQ) 
packet with destination, source, and 
stability metrics. Update the routing 
table with RREQ. 

Step 3: Route Reply 
Check RREQ in the routing table, 
calculate the stability metric, and 
update the table. If the node is the 
destination, send a Route Reply 

(RREP) packet with a stability 
metric. 

Step 4: Route Maintenance 
Regularly monitor route metrics and 
trigger Route Error (RERR) if 
thresholds are exceeded, updating 
routing tables. 

Step 5: Load Balancing 
Evaluate load on routes and 
distribute traffic evenly using load 
balancing factors calculated with 
Gaussian functions and load 
metrics. 

Step 6: Fault Tolerance 
Monitor link stability and faults and 
select alternative routes with higher 
recovery probability based on 
Gaussian functions and fault 
metrics. 

Step 7: Energy Efficiency 
Consider node energy levels, 
calculate energy efficiency factor 
with Gaussian functions, and select 
routes minimizing energy usage. 

Step 8: Data Transmission 
Transmit data along established 
routes, monitor metrics, and 
perform maintenance or error 
handling as needed. 

 

3.2. Dolphin Swarm Optimization 

The intended IDS was motivated by the 
dolphin’s reputation for intelligence, seen in the 
animal’s skill at finding and snatching its prey. 
Dolphins have several attractive biological traits 
and lifestyle behaviours, including echolocation, 
communication, teamwork, and division of 
labour. Our SVM-based intrusion detection 
system uses dolphin biology, lifestyle behaviours, 
and swarm intelligence to improve detection rates 
and precision. The intelligence of dolphins is well 
known. This research identifies harmful 
behaviour and optimizes our detection rate using 
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the dolphins’ biological traits and lifestyle, 
specifically: 

(a). Echolocation: 

Dolphins have excellent vision, although 
they are of limited use when hunting in low light. 
Because of this, dolphins utilize their 
echolocation ability to hunt in the dark. It calls out 
and gauges its prey’s distance, size, and position 
based on the strength of the echoes it receives. 
Therefore, dolphins use echolocation to gain a 
more accurate picture of their environment. 

(b). Division of Labor and Joint Effort: 

Predatory behaviour in dolphins 
typically results from a large group of dolphins 
sharing the load. One dolphin cannot successfully 
attack and kill a vast prey item by itself. Dolphin 
pods communicate with one another to divide up 
tasks. For instance, the dolphins closest to the 
prey follow their every move, while the dolphins 
farther away form a protective perimeter around 
them. 

(c). Sharing of Data: 

Research suggests that dolphins can 
communicate with one another using a unique 
language and a wide range of vocalizations. The 
dolphins employ this unique ability to alert other 
dolphins to the current position of the prey during 
the cooperative and division of labour phase of the 
hunt. The dolphin’s enhanced and relevant 
responses during the predation directly result 
from this. 

 

Algorithm 2: Dolphin Swarm Optimization 

Input: 

 Network traffic data (packets/events) 
to be analyzed for potential 
intrusions. 

 

Output: 

 Identified potential intrusion events. 
 Responses were taken to mitigate or 

neutralize detected threats. 

 

Procedure:  

Step 1: Initialize the SVM-based 
intrusion detection system and 
relevant parameters. 

Step 2: Set up data structures to store 
packets/events and their 
characteristics. 

Step 3: For each network packet/event: 
 Simulate echolocation 

by assessing the 
packet’s characteristics 
and properties. 

 Measure the “echo 
strength” of the packet, 
representing its 
relevance to potential 
threats. 

 Group similar 
packets/events into 
clusters based on 
echolocation results. 

Step 4: Emulate division of labour and 
joint effort: 

 Assign different 
responsibilities to each 
cluster of packets for 
better threat detection. 

 Establish 
communication 
channels between the 
clusters. 

 Enable information 
exchange regarding the 
characteristics of 
potential threats. 

Step 5: Cooperative detection: 
 Encourage cooperation 

among different clusters 
for comprehensive 
threat analysis. 

 Utilize the unique 
language or pattern of 
communication to 
coordinate efforts. 

Step 6: Analyze the results from 
echolocation and cooperative 
detection: 

 Identify potential 
intrusion events based 
on the collective 
intelligence of the 
system. 
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Step 7: Trigger appropriate responses to 
mitigate or neutralize detected 
threats: 

 Implement actions 
based on the severity of 
the threat and 
predefined response 
policies. 

Step 8: Continuously optimize the 
intrusion detection system: 

 Based on feedback and 
results, adjust 
parameters, 
communication 
protocols, and detection 
strategies. 

Step 9: Repeat the process for new 
network data to ensure ongoing 
and adaptive protection against 
emerging threats. 

 

The dolphin-inspired system operates 
with three steps: individual echo-based searching, 
communication for assistance in hunting larger 
prey, and finishing the predation process. The 
proposed secure routing system selects Cluster 
Heads (CHs) for groups of nodes. CH nodes act 
like dolphins, scanning nearby nodes for 
cooperation or malicious behaviour. Malicious 
nodes are immediately removed and blocked by 
analyzing the service history provided to the 
network. Trusted nodes meeting specific criteria 
become additional CHs, forming a safe cluster of 
cooperating nodes. The proposed secure routing 
system employs a Support Vector Machine 
(SVM), a supervised machine-learning technique, 
to locate and isolate harmful nodes. SVM 
distinguishes cooperatives from malicious nodes, 
enhancing the security of ME-WSN. 

3.3. Support Vector Machine 

To adapt the Support Vector Machine 
(SVM) algorithm to detect malicious nodes in 
ME-WSNs, this research modifies the feature 
space and labels of nodes accordingly. The goal is 
to train the SVM to classify nodes as malicious or 
non-malicious based on specific features 
extracted from the network. Here’s how we can 
approach this: 

3.3.1. Feature Extraction 

In the context of WSNs, we need to 
extract relevant features from each node to 

characterize its behaviour and communication 
patterns. Some potential features for malicious 
node detection in WSNs include: 

 Network Activity: Number of packets 
transmitted and received by the node. 

 Node Mobility: If the nodes are mobile, 
the speed and direction of movement. 

 Energy Consumption: Battery level and 
power usage patterns. 

 Communication Behavior: The 
frequency and duration of 
communication with other nodes. 

 Neighbour Information: Number of 
neighbours and their behaviour. 

 Packet Header Analysis: Analysis of 
packet headers for unusual or abnormal 
patterns. 

 Each node will be represented as a 
feature vector in the feature space with 
these extracted features. 

3.3.2. Labels 

Labelled data is a must to train the SVM, 
i.e., nodes with known malicious or non-
malicious behaviour. Nodes with a history of 
malicious behaviour should be labelled as 
“malicious” (label = +1), and those with a history 
of normal behaviour should be labelled as “non-
malicious” (label = -1). 

3.3.3. SVM Formulation 

This research formulates the SVM for 
malicious node detection in ME-WSNs. It utilizes 
the soft margin SVM formulation, as it allows for 
some misclassifications in case the data is not 
perfectly separable. The objective function for the 
soft margin SVM can be defined as Eq.(6) 

𝑚𝑖𝑛௪,௕

1

2
‖𝑤‖ଶ + 𝐶 ෍ 𝑒௜

ே

௜ୀଵ

 

Subject to the constraints 

𝑦௜(𝑤்𝑥௜ + 𝑏) ≥ 1 − 𝑒௜ 

𝑒௜ ≥ 0 

(6) 

where 𝑤 is the weight vector of the hyperplane, 𝑥௜  
is the feature vector of the 𝑖-th node,  𝑦௜   is the 
label for the 𝑖-th node. (+1 for malicious, -1 for 
non-malicious), and 𝐶 is the regularization 
parameter that controls the trade-off between 
maximizing the margin and allowing 
misclassifications. 
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3.3.4. Training and Prediction 

Once we have the labelled data and 
define the objective function, we can use various 
optimization techniques (e.g., Gradient Descent 
or Quadratic Programming) to find the optimal 
values of 𝑤 and 𝑏 that best separate the malicious 
and non-malicious nodes. This research uses the 
trained SVM model to detect malicious nodes in 
real time to predict the label of new nodes based 
on their feature vectors. If a node is classified as 
“malicious,” appropriate actions can be taken, 
such as isolating the node, restricting its access, or 
notifying the network administrator. 

Adapting SVM for malicious node 
detection in ME-WSNs allows us to classify 
nodes as malicious or non-malicious based on 
extracted features. SVM’s ability to handle non-
linear feature spaces through the kernel trick 
makes it a versatile and powerful tool for 
identifying malicious behaviour and anomalies in 
Wireless Sensor Networks. Its pseudocode is 
provided in Algorithm 2. 

 

Algorithm 3: Enhanced SVM 

Input: 

 Feature matrix X: A matrix 
containing the features of each node 
in the Wireless Sensor Network 
(WSN). Each row represents a node, 
and each column corresponds to a 
specific feature. 

 Labels Y: A vector containing the 
class labels for each node in the WSN. 
It indicates whether each node is 
malicious or non-malicious. 

 Regularization parameter C: A 
hyperparameter balances maximizing 
the margin and allowing 
misclassifications in the SVM model. 

 

Output: 

 Trained SVM Model: A model 
trained on the input data (X and Y), 
ready to classify new nodes in the 
WSN as malicious or non-malicious. 

 

Procedure: 

Step 1: The algorithm takes the feature 
matrix X, labels Y, and 
regularization parameter C as 
input. 

Step 2: Using the soft margin SVM 
formulation, it aims to find an 
optimal hyperplane that separates 
malicious and non-malicious 
nodes effectively. 

Step 3: By adjusting the regularization 
parameter C, the algorithm 
balances the trade-off between 
maximizing the margin and 
allowing some misclassifications. 

Step 4: The optimization process 
determines the optimal weight 
vector and bias term that define 
the hyperplane, achieved through 
techniques like Gradient Descent 
or Quadratic Programming. 

Step 5: With the trained SVM model, the 
algorithm can classify new nodes 
as malicious or non-malicious by 
extracting their features and 
predicting their labels. 

Step 6: A predicted label of +1 indicates 
the node is classified as malicious, 
while a label of -1 indicates a non-
malicious node. 

Step 7: Depending on the predicted label, 
appropriate actions can be taken to 
respond to potential malicious 
nodes and secure the WSN. 

 

3.4. Secure Communication  

3.4.1. Selection of the best training features 

The success of a machine learning 
system relies heavily on the quality of its training 
data and the weight vectors used for detection. In 
the context of Intrusion Detection Systems (IDS), 
eliminating unused training features can 
significantly enhance performance. This leads to 
reduced memory requirements and computation 
time while increasing detection accuracy. In ME-
WSN, specific data characteristics may pose 
challenges for categorization. Misleading 
correlations can slow down the intrusion detection 
process. Redundant features may already convey 
information present in other features, leading to 
longer computing times and reduced IDS 
precision. 
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To address these issues, feature selection 
is employed to find a minimal set of relevant 
characteristics that effectively distinguish 
instances in the training data. It remains 
challenging to accurately differentiate irrelevant 
from essential features for IDS. Current models 
and functions struggle to capture the intricate 
interactions among various attackers’ traits and 
attributes. This research uses the Dolphin Swarm 
Algorithm (DSA) as a novel meta-heuristic 
optimization technique for feature selection. DSA 
aims to simplify and enhance the proposed IDS 
capability by identifying the most valuable 
features from the training set. The IDS is then 
trained using this narrowed-down feature set to 
identify intrusions. 

Enhanced SVMs can independently 
detect malicious nodes, and the Proposed IDS 
leverages DSO to further improve efficiency and 
detection rates. The Dolphin Swarm Optimization 
(DSO) method selects the best features from a 
pool of candidates, treating them as individual 
“dolphins” and scoring them based on fitness and 
convergence. The Dolphin Swarm-optimized [45] 
SVM performs better than previous approaches in 
IDS evaluation. It exhibits lower false positive 
rates, faster detection times, and reduced network 
CH (Cluster Head) overhead. This demonstrates 
the effectiveness of the proposed approach in 
enhancing the detection capabilities of IDS in 
complex network environments. 

3.4.2. Multi-Head Cluster 

In the conventional clustering method, a 
single Cluster Head (CH) is assigned to each 
cluster, which is solely responsible for the 
operation of the entire cluster. The designated CH 
exclusively handles all communications and data 
transfers. However, this conventional approach 
can introduce unnecessary overhead and latency 
in dense network settings, which may severely 
impact network performance, especially in delay-
sensitive environments like Mobile Edge 
Wireless Sensor Networks (ME-WSNs). The 
security framework proposed in this research uses 
a multi-cluster head approach to overcome these 
performance limitations. Instead of having a 
single CH for each cluster, multiple nodes within 
a cluster can take on the role of CH. This 
distribution of responsibilities helps distribute the 
workload and reduces the burden on a single CH, 
particularly in dense network scenarios. By 

allowing multiple nodes to act as CHs within a 
cluster, the network’s performance is enhanced, 
and delays are minimized. This approach ensures 
efficient and reliable communication in dense 
network environments, improving overall 
performance. 

3.5. Fuzzy-based Cluster Head Selection 

The suggested setup uses the Fuzzy 
Logic (FL) method to select the best Cluster Head 
(CH). To ensure qualified CHs, a hybrid fuzzy 
multi-criteria group selection architecture is 
employed, considering various factors. Multi-
Criterion Decision Making (MCDM) is used to 
address such complexities. The process involves 
two stages: 

 

Stage 1: Select CH with relevant criteria and 
sub-criteria. 

Stage 2: Apply FL to determine the importance 
of each criterion and sub-criterion by 
identifying Similarity to the Ideal 
Solution (TOPSIS) to choose the best 
node for the CH role. 

The FL phase determines the weights for 
the criteria and sub-criteria generated in the first 
stage. These estimated weights are then used to 
select the most suitable node for the CH position. 
The selected node must have an output value 
higher than or equal to a predefined threshold to 
be chosen as the CH. This hybrid approach 
ensures reliable and secure CH selection in the 
network. 

3.5.1. Criteria and subcriteria for evaluation of 
CHs 

Selecting the best possible CH is crucial 
for increased cluster and network stability. 
Currently, available methods for selecting CHs in 
the literature only consider certain sets of criteria. 
The following critical factors are considered in 
this research for safe and optimum CH selection. 

 Interaction with nearby nodes: The 
node’s Social Contact (SC) is the 
fraction of the network’s total nodes it 
has interacted with throughout its 
lifetime, based on its confidence profile 
and social activity. A higher SC ensures 
efficient data distribution. 

 Typical separation between other 
nodes: The average distance to a node’s 
neighbours is obtained by summing the 



 
Journal of Theoretical and Applied Information Technology 

15th October 2023. Vol.101. No 19 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6124 

 

distances to each of them, providing 
valuable spatial information. 

 Integrity: For ME-WSN nodes, 
integrity (I) measures their security 
compliance success ratio in the face of 
compromise attempts. 

 Speed of a node: In ME-WSNs, CH 
selection considers node speed, 
favouring low-speed nodes to reduce the 
frequent change in cluster head. 

Let’s pretend that the speeds of the 𝑡 
nodes be 𝑉𝑒𝑙ଵ, 𝑉𝑒𝑙ଶ, … . , 𝑉𝑒𝑙௧ . Using Eq.(7), it is 
possible to determine the order of nodes using 
their velocities (the variable 𝑀௩௘௟): 

𝑀௩௘௟ =
1

𝑡
(𝑣𝑒𝑙(𝑠) − 𝑣𝑒𝑙௢)∀௦𝜔𝜏௧ (7) 

wherein 𝑣𝑒𝑙௢ is the average speed at instant 𝑓. 

 

Priority of nodes in cluster 𝑆 for 
selecting CHs based on their speeds can be 
calculated using Eq.(8). 

𝑀௩௘௟ೄ
= ൣ𝑀௩௘௟భ

𝑀௩௘௟మ
𝑀௩௘௟య

… … 𝑀௩௘௟೟
൧ (8) 

All communications in a clustered-based 
ME-WSN occur through the CH. The CH 
performs operations such as data collection, 
processing, and routing. Node nodes with greater 
resources (such as batteries, memory, processing 
speed, and network throughput) should be chosen 
as CH and expressed as Eq.(9). 

𝑅𝑈 =
𝑅𝑈௕ − 𝑅𝑈௠௜௡

𝑅𝑈௠௔௫ − 𝑅𝑈௠௜௡

 (9) 

wherein 𝑅𝑈௠௜௡ , 𝑅𝑈௠௔௫  and 𝑅𝑈௕ denote the 
lowest, maximum, and remaining energy, storage, 
processing power, and network throughput for a 
node. 

 

A higher 𝑅𝑈 indicates that the node is a 
better candidate for becoming CH. 

 Distance of Transmission: A node with a 
more extensive transmission range is 
desired since it increases its chances of 
being selected as a CH. A ME-WSN 
node’s transmission range is the maximum 
radio range and range at which it is 
reachable for communication purposes. 

 History of Node’s Previous CH 
duration: This criterion favours nodes that 
have already proven themselves to be CH 
in the past. 

 Node Travel Direction: Transportation 
nodes headed in the same direction must be 
considered more. 

 Ratio of Delivered Packets: The Packet 
Delivery Ratio indicates how many packets 
were successfully delivered to the target 
endpoint relative to the number of packets 
sent from the origin node. 

3.4. Hierarchical Fuzzy Process 

The FL is a method for making decisions 
in complex situations with multiple criteria and 
options. It calculates the importance of each 
criterion and alternative by using Eigenvectors 
corresponding to the Eigenvalue. A higher weight 
indicates greater importance of a criterion 
compared to others. The process for selecting a 
CH involves seven different steps, which are 
discussed below. 

Step 1:  Establishment of a hierarchy 

Tasks like figuring out potential options, 
criteria, and subcriteria fall under this category. 

Step 2:  The Matrix Construction for 
Comparing Two Variables 

 When comparing two attributes, say 𝑠 
and 𝑤, you get a square matrix, 𝐷௧×௧, where 𝑑௦௪ 
indicates the relative weight of attribute 𝑠 relative 
to attribute 𝑤. This process is repeated for all 𝑡 
attributes. When 𝑠 = 𝑤 and 𝑑௪௦ = 1/𝑑௦௪, in the 
matrix𝑑௦௪ = 1. 

𝐷௧×௧ =

⎝

⎜
⎜
⎛

𝑑ଵଵ𝑑ଵଶ𝑑ଵଷ   …  …  𝑑ଵ௧

𝑑ଶଵ𝑑ଶଶ𝑑ଶଷ   …  …  𝑑ଶ௧

𝑑ଷଵ𝑑ଷଶ𝑑ଷଷ   …  …  𝑑ଷ௧

…  …  …  …  …  …  …
…  …  …  …  …  …  …
𝑑௧ଵ𝑑௧ଶ𝑑௧ଷ   …  …  𝑑௧௧ ⎠

⎟
⎟
⎞

 (10) 

 

Step 3:  The Normalized Decision Matrix: Its 
Construction 

𝑢௦௪ = 𝑑௦௪/ ෍ 𝑑௦௪ ,     𝑠

௧

ௐୀଵ

= 1,2, … . . , 𝑡;   𝑤
= 1,2, … … , 𝑡 

(11) 
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Step 4:  Establishing a normalized weighted 
decision matrix 

𝑛௦ = ෍ 𝑢௦௪/𝑡

௧

ௐୀଵ

,     𝑠 = 1,2, … . , 𝑡 (12) 

𝑁 =

⎝

⎜
⎛

𝑛ଵ

𝑛ଶ

⋮
⋮

𝑛௧ ⎠

⎟
⎞

 (13) 

 

Step 5:  Eigenvector and row-matrix 
calculations 

𝐻
= 𝑇𝑡ℎ 𝑟𝑜𝑜𝑡 𝑣𝑎𝑙𝑢𝑒

/ ෍ 𝑇𝑡ℎ 𝑟𝑜𝑜𝑡 𝑣𝑎𝑙𝑢𝑒 
(14) 

𝑅𝑜𝑤 𝑚𝑎𝑡𝑟𝑖𝑥 = ෍ 𝑑௦௪ ∗ ℎ௪ଵ

௧

௪ୀଵ

 (15) 

 

Step 6:  Determine the largest eigenvalue 

∋௠௔௫= 𝑟𝑜𝑤 𝑚𝑎𝑡𝑟𝑖𝑥/𝐻 (16) 

 

Step 7: The Indices of Consistency and 
Consistency Ratios 

𝑈𝑆 = (∋௠௔௫− 𝑡)/(𝑡 − 1) (17) 

𝑈𝐵 = 𝑈𝐵/𝐵𝑆 (18) 

The matrix order is denoted by 𝑡, and the 
Consistency Index is 𝐵𝑆. 
 

3.5. Multi-Objective Decision-Making 

Multi-Objective Decision-Making 
(MODM) is used to make decisions when there 
are multiple factors to consider. It considers 
uncertainties and imprecise information to rank 
potential alternatives. The method involves 
comparing the alternatives based on their 
proximity to the Positive IDEAL solution (PIS) 
and their distance from the Negative IDEAL 
solution (NIS) to identify the best option. 
Decision-makers assign weights to criteria and 

alternatives; the final rankings are determined by 
combining these weighted averages. This 
approach benefits complex decision scenarios 
with multiple criteria and conflicting objectives. 
 

Step 1: FL Decision Matrix Creation 

 Eq.(19) shows that if a node 𝑠 has 𝑡1-hop 
neighbours, then the matrix 𝐹௦ will have the form 
[(𝑡 + 1)𝑝(𝑛𝑜. 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎)] (no.of criteria)]: 

 𝐹௦ =

൮

𝑟(ଵ,ଵ)𝑟(ଵ,ଶ)𝑟(ଵ,ଷ)𝑟(ଵ,ସ)

𝑟(ଶ,ଵ)𝑟(ଶ,ଶ)𝑟(ଶ,ଷ)𝑟(ଶ,ସ)

⋮           ⋮           ⋮           ⋮
𝑟(௧ାଵ,ଵ)𝑟(௧ାଵ,ଶ)𝑟(௧ାଵ,ଷ)𝑟(௧ାଵ,ସ)

൲ 
(19) 

wherein 𝐹௦ is the neighbour table of node 𝑠, 
including details on the attributes 𝑑ଵ, 𝑑ଶ, … . , 𝑑௧ାଵ 
of its 1-hop neighbours 𝑡, from 𝑈ଵ to 𝑈௧. 

Step 2: Normalization of Criterion Values 

 Normalizing criterion values such that 
they all fall within the same range is necessary for 
unbiased CH selection. For a node to be chosen as 
a CH, it must meet specific requirements with a 
high value. Normalization with Eq.(20) works 
well for PIS. However, there are circumstances 
where nodes with lower values are better off being 
labelled CHs. Standardizing “Negative Criteria” 
can be standardized using Eq.(21). 

 𝑅(௦,௪) =
௥(ೞ,ೢ)ି௠௜௡

∀ೞቀೝ(ೞ,ೢ)ቁ

ቈ௠௔௫
∀ೞቀೝ(ೞ,ೢ)ቁ

ି௠௜௡
∀ೞቀೝ(ೞ,ೢ)ቁ

቉

 (20) 

𝑅(௦,௪)

=
𝑚𝑎𝑥∀௦൫௥(ೢ)൯ − 𝑟(௦,௪)

ቂ𝑚𝑎𝑥∀௦൫௥(ೞ,ೢ)൯ − 𝑚𝑖𝑛∀௦൫௥(ೞ,ೢ)൯ቃ
 (21) 

 Each entity in 𝐹௦ is normalized, and the 
resulting normalized decision matrix for node 𝑠 is 
represented as 𝑂௦, where: 

𝑅௔

=

⎝

⎜⎜
⎛

𝑅(ଵ,ଵ)𝑅(ଵ,ଶ)𝑅(ଵ,ଷ)𝑅(ଵ,ସ)

𝑅(ଶ,ଵ)𝑅(ଶ,ଶ)𝑅(ଶ,ଷ)𝑅(ଶ,ସ)

𝑅(ଷ,ଵ)𝑅(ଷ,ଶ)𝑅(ଷ,ଷ)𝑅(ଷ,ସ)

⋮            ⋮            ⋮            ⋮
𝑅(௧ାଵ,ଵ)𝑅(௧ାଵ,ଶ)𝑅(௧ାଵ,ଷ)𝑅(௧ାଵ,ସ)⎠

⎟⎟
⎞

 
(22) 
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Step 3: Each criterion is given a rank value and 
weight. 

 After normalizing the decision matrix, 
weights or preferences are assigned to each 
criterion. The criteria and their weights vary 
depending on the specific application. Factors 
considered more critical to the decision-making 
process are significant, while others may receive 
lower weight. In this research, the number of 
neighbours, social contacts, and travel speed are 
deemed crucial for selecting a CH, thus receiving 
greater emphasis than other criteria. 

Step 4: Fuzzy decision matrix construction 
with weighted normalization 

 The research involves constructing a 
weighted normalized fuzzy decision matrix, 
incorporating the predefined threshold fuzzy 
membership function values. Each criterion’s 
value is assigned a priority class based on its 
corresponding membership function value, 
computed using the canonical fuzzy model. The 
weighted normalized fuzzy decision matrix is 
represented in Eq.(23). 

𝑅 =

⎝

⎜
⎛

𝑅ଵ,ଵ    𝑅ଵ,ଶ𝑅ଵ,ଷ𝑅ଵ,ସ

𝑅ଶ,ଵ𝑅ଶ,ଶ𝑅ଶ,ଷ𝑅ଶ,ସ

𝑅ଷ,ଵ    𝑅ଷ,ଶ𝑅ଷ,ଷ𝑅ଷ,ସ

⋮            ⋮            ⋮            ⋮
𝑅(௧ାଵ,ଵ)𝑅(௧ାଵ,ଶ)𝑅(௧ାଵ,ଷ)𝑅(௧ାଵ,ସ)⎠

⎟
⎞

 (23) 

 

Step 5: Identification of Fuzzy Positive and 
Fuzzy Negative Ideal Solutions 

This research obtains the Fuzzy Positive 
Ideal Solution (𝐹𝑢𝑧𝑃𝐼𝑆) and the Fuzzy Negative 
Ideal Solution (𝐹𝑢𝑧𝑁𝐼𝐺) using Eq.(24) and 
Eq.(25). 

  𝐹𝑃𝐼𝑆∗ =
(𝑅ଵ

ା, … . . , 𝑅௧
ା) 

= ቂቀmax
௦

𝑅௦௪|𝑠 = 1, … . ,4ቁ   𝑎𝑛𝑑 𝑤

= 1, … . , (𝑡 + 1)ቃ 

(24) 

𝐹𝑁𝐼𝑆ି = (𝑅ଵ
ି, … . . , 𝑅௧

ି) 

= ቂቀmin
௦

𝑂௦௪|𝑠 = 1, … . ,4ቁ   𝑎𝑛𝑑 𝑤

= 1, … . , (𝑡 + 1)ቃ 

 

(25) 

Step 6: Separation of each option from FPIS 
and FNIS using Euclidean Distance 

 The distance between each option and 
the 𝐹𝑢𝑧𝑃𝐼𝑆 and 𝐹𝑢𝑧𝑁𝐼𝐺 is determined using 𝑡-
dimensional Euclidean distance, where Eq.(26) 
represent the same. 

𝑌ା = ෍ ඩ ෍ (𝑅௦௪ − 𝑅௪
ା)ଶ

(௧ାଵ)

௪ୀଵ

ସ

௦ୀଵ

 (26) 

𝑌ି = ෍ ඩ ෍ (𝑅௦௪ − 𝑅௪
ି)ଶ

(௧ାଵ)

௪ୀଵ

ସ

௦ୀଵ

 (27) 

 

Step 7: Ranking Index 

After constructing the weighted 
normalized fuzzy decision matrix, the alternatives 
are ranked based on their distances to the 𝐹𝑢𝑧𝑃𝐼𝑆 
and 𝐹𝑢𝑧𝑁𝐼𝑆. This ranking uses a proximity 
coefficient, often called the Ranking Index. 
Eq.(28) is used for calculating the Ranking Index 
to determine the relative closeness of each 
alternative to the ideal and non-ideal solutions, 
helping to identify the best option among the 
alternatives. 

𝑈. 𝑈 =
𝑌ି

𝑌ା + 𝑌ି
 (28) 

 

 After employing the hybrid fuzzy 
decision-making approach with multiple criteria, 
selecting a CH involves comparing the rank value 
of each node to a predetermined threshold value, 
representing the node’s preference. The node with 
the highest rank value is compared to the cutoff 
value. If the rank value exceeds or exceeds the 
cutoff value, it is designated as a CH. Conversely, 
typical nodes with rank values below the specified 
liking threshold are labelled. This process allows 
for identifying the most preferred nodes as CHs 
based on their ranking concerning the threshold. 

3.6. Trust-Based Access Control with 
Encryption 

Trust-Based Access Control with 
Encryption (TB-ACE) is a sophisticated security 
framework that combines the principles of trust-
based access control and advanced encryption 
techniques to ensure data confidentiality, 
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integrity, and availability in distributed systems. 
TB-ACE operates by dynamically granting access 
privileges to authorized entities based on their 
established level of trustworthiness, considering 
factors such as reputation, competence, and past 
behaviour. The encryption aspect of TB-ACE 
ensures that sensitive data remains protected 
during transmission and storage, safeguarding 
against potential threats like unauthorized access, 
data tampering, and eavesdropping. This 
innovative approach eliminates the need for 
centralized authority. It enhances the overall 
security posture of the system, making it well-
suited for modern, decentralized environments 
with dynamic user access requirements. 

The proposed Trust-Based Access 
Control with Encryption (TB-ACE) method 
comprises five essential components that 
contribute to its derived framework: 

(a). Trust Threshold Initialization 

At the time “f,” the trust level of each 
node “v” towards another node “u” can be 
described using the following formulas for the 
four confidence metrics (Competence, Social 
Contact, Availability, and Integrity): 

 𝐹ௗ,௩
௎ (𝑓): Trust towards “𝑢” based on 

competence. 
 𝐹ௗ,௩

ா௎(𝑓): Trust towards “𝑢” based on 
Social Contact. 

 𝐹ௗ,௩
஽ (𝑓): Trust towards “𝑢” based on 

availability. 
 𝐹ௗ,௩

ௌ (𝑓): Trust towards “𝑢” based on 
integrity. 

 

Each node generates its public key 
(A(s,pub)) and private key (A(s,priv)). To obtain a 
certificate for the key pair, a node searches for a 
trusted neighbour within a single hop, known as 
the Neighbourhood Trustful Certifier (NTC). The 
certificate is issued to the node only if its trust 
value meets or exceeds a predefined threshold, 
denoted by ”𝐹௙௟“This threshold ensures that only 
nodes with sufficient trust can obtain certificates. 

 

(b) Using trust-based keys 

When a node “s” wants to validate its 
key pair, it requests the NTC “c” (a node with a 
high integrity trust score, 𝐹௙௟) to verify the key. If 

the integrity trust score of node “s” 𝐹௦,௖
ௌ (𝑓) is 

greater than or equal to”𝐹௙௟“, then the certificate 
is issued to “𝑠”. Each certificate has a validity 
period and needs to be updated after expiration. 

 

(c). Distribution of Trust-Based Public Key 

When a node reaches a trust level 
meeting or exceeding the threshold ”𝐹௙௟“ it 
notifies its 1-hop neighbours and shares its public 
key certificate and public key. For two nodes that 
have never been within a single hop of each other, 
the requesting node seeks information from its 
immediate neighbours about the destination 
node’s public key certificate. If a neighbouring 
node “𝑐” has the certificate, it sends the target 
node’s public key certificate back to the 
requesting node “𝑠”. 

(e). Decryption and Encryption 

To encrypt a message sent from node 
“s,” the sender uses its public key (A(s,pub)). The 
recipient node decrypts the encrypted message 
using its private key (A(s,priv)). 

 

(f). Updating and Revocation of Keys 

A public/private key pair certificate 
becomes invalid after its validity period. Nodes 
can detect revoked keys through expired 
certificates. 

The TB-ACE method combines trust-
based access control and advanced encryption 
techniques to ensure data confidentiality, 
integrity, and availability in distributed systems. 
Incorporating trust metrics enhances 
communication and access control security, 
making it suitable for modern, decentralized 
environments with dynamic user access 
requirements. 

 

Algorithm 4: TB-ACE 

Input: 

 A set of nodes in a distributed system. 
 Trust values between nodes are based on 

various metrics. 
 Predefined Trust Threshold (𝐹௙௟) for access 

control. 
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 Public and private keys for each node. 

 

Output: 

 Certificate issued to nodes’ key pairs based 
on trust validation. 

 Public key distribution among trusted 
nodes. 

 Encrypted and decrypted messages are 
exchanged securely between nodes. 

 

Procedure: 

Step 1: Trust Threshold Initialization: 
 Predefine a Trust Threshold 

(𝐹௙௟) to determine the 
minimum trust level required 
for access control. 

Step 2: Node Setup: 
 Each node generates its own 

public and private keys for 
encryption and decryption. 

 Based on trust values, find a 
trusted neighbor 
(Neighbourhood Trustful 
Certifier - NTC) within one 
hop. 

Step 3: Certificate Issuance: 
 When a node requests 

certificate validation from the 
NTC, check if its trust level 
meets or exceeds the Trust 
Threshold. 

 If the trust level meets the 
threshold, issue a certificate for 
the node’s key pair with a 
defined validity period. 

Step 4: Trust-Based Public Key Distribution: 
 When a node’s trust level 

reaches or exceeds the Trust 
Threshold, notify its 1-hop 
neighbours. 

 Share its public key certificate 
and public key with 1-hop 
neighbours. 

Step 5: Message Encryption and Decryption: 
 To encrypt a message, the 

sender node uses its public key. 
 The recipient node decrypts the 

encrypted message using its 
private key. 

Step 6: Certificate Updates and Revocation: 

 After the certificate’s validity 
period expires, it becomes 
invalid. 

 Nodes identify revoked keys 
through expired certificates, 
ensuring secure access control 
and encryption. 

 

4.SIMULATION SETTINGS AND 
PERFORMANCE METRICS 

Analyzing routing protocols in Mobile 
Environmental Wireless Sensor Networks 
(MEWSN) involves conducting simulations to 
assess their performance. In this study, a 
comparison is made between the proposed routing 
protocol and the existing ones by utilizing NS3 
simulations. Researchers have encountered 
difficulties in modelling and implementing 
protocols in MEWSN, especially in terms of the 
overall network performance. Hence, the study 
examines the proposed and current routing 
protocols’ design, strengths, and limitations. The 
findings highlight the superior performance of the 
NS3 simulator when implemented with the C++ 
programming language. 

 

Table 1: Simulation Settings 

Setting Value 

Bandwidth 100Hz 

Initial energy level at 
nodes 

10J 

MAC Protocol Version 
CW-

MAC802.11DCF 

Network Boundary 
Limit 

1.5km x 1.5km x 
1.5km 

Node density 350 

Packet size 74 bytes 

Rate of data transmission 10kbps 

Runtime 300s 

Sensor nodes 
transmission range 

≈350m 

Sink density 4 
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Size of packet header 10 bytes 

Transmission power 20W 

Node Count 50 to 250 

Malicious Node 
10% in the Node 

Count 

 

5. RESULTS AND DISCUSSION 

5.1. Delay Analysis 

Figure 2 provides a detailed analysis of 
the delay performance of three distinct ad-hoc 
routing protocols: CSSR, EEACR, and ADSO-
SGAODV, across different node density 
scenarios. Delay, measured in milliseconds (ms), 
represents the time data packets traverse from the 
source node to the destination node. It is a crucial 
metric for evaluating the efficiency of the 
protocols in real-time communication scenarios. 
Analyzing the average delay values obtained from 
Table 2, this research can draw the following: 

 

 

Figure 2. Delay 

 

CSSR protocol exhibits an average delay 
of 4664.6 ms. CSSR relies on forming clusters of 
nodes and selecting sub-graphs for routing 
decisions. While it shows acceptable delay 
performance, it tends to increase as the node 
density rises, especially in dense networks where 

contention and interference between clusters 
impact packet delivery times. EEACR protocol 
demonstrates an average delay of 4301.8 ms. 
EEACR aims to optimize energy efficiency while 
promoting cooperative communication among 
nodes. Its delay performance remains relatively 
stable across node densities, indicating its ability 
to efficiently handle data packets. 

ADSO-SGAODV protocol outperforms 
both CSSR and EEACR with an average delay of 
2882.0 ms. ADSO-SGAODV utilizes 
optimization techniques, secure communication, 
and multi-objective decision-making mechanisms 
to enhance routing efficiency. This results in 
significantly lower average delay values, even in 
scenarios with high node density. The delay 
analysis reveals that ADSO-SGAODV performs 
best among the three protocols, exhibiting the 
lowest average delay. While CSSR and EEACR 
demonstrate acceptable delay performance, 
ADSO-SGAODV’s advanced optimization and 
security mechanisms enable it to minimize delays 
more effectively. It is a promising choice for real-
time communication in ad-hoc networks, 
especially in high node density scenarios where 
delay optimization is critical for efficient data 
transmission. 

 

Table 2. Results of Delay Analysis 

Node 
Density 

CSSR EEACR 
ADSO-

SGAODV 

50 4231 4008 2688 

100 4452 4117 2766 

150 4708 4330 2843 

200 4923 4409 2969 

250 5009 4645 3144 

Average 
4664.

6 
4301.8 2882.0 

 

5.2. Packet Delivery Ratio 

Figure 3 in this study encompasses an 
extensive analysis of the Packet Delivery Ratio 
(PDR) for three state-of-the-art ad-hoc routing 
protocols: CSSR, EEACR, and ADSO-
SGAODV. The PDR, a fundamental metric in ad-
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hoc networks, measures the percentage of 
successfully delivered packets from the source to 
the destination node. Such a metric is of 
paramount significance as it sheds light on the 
reliability and effectiveness of the routing 
protocols, shaping their overall performance. 
Delving into the findings derived from Table 3, 
which lists the average PDR values for different 
node density scenarios, this research unravels 
intriguing insights into the performance of these 
protocols: 

CSSR protocol exhibits an average PDR 
of 73.948%. Operating on a sophisticated 
mechanism that entails forming clusters of nodes 
and selecting sub-graphs for routing decisions, 
CSSR manifests acceptable PDR performance. 
However, as the node density escalates, PDR has 
a noticeable decline. This decrement can be 
attributed to the mounting contention and 
interference between clusters in dense networks, 
consequently leading to a comparatively lower 
successful packet delivery rate. EEACR protocol 
outperforms CSSR, showcasing a higher average 
PDR of 81.684%. EEACR demonstrates 
commendable prowess in handling data packets 
effectively by promoting energy efficiency while 
fostering cooperative communication among 
nodes. Its average PDR values remain relatively 
stable across node densities, indicating its 
adaptability to different network conditions. 

 

Figure 3. Packet Delivery Ratio 

ADSO-SGAODV protocol emerges as 
the frontrunner, surpassing both CSSR and 

EEACR with an exceptional average PDR of 
95.248%. ADSO-SGAODV encompasses many 
advanced optimization techniques and robust 
security mechanisms, elevating its routing 
efficiency to unparalleled heights. Even in 
scenarios characterized by high node density, 
ADSO-SGAODV exhibits significantly higher 
average PDR values, underlining its success in 
ensuring successful packet delivery. 

Table 3. Results of Packet Delivery Ratio Analysis 

Node 
Density 

CSSR EEACR 
ADSO-

SGAODV 

50 
78.74

4 
88.802 98.447 

100 
77.58

0 
85.322 97.669 

150 
74.32

6 
82.046 94.748 

200 
71.21

5 
78.891 93.176 

250 
67.87

4 
73.357 92.198 

Average 
73.94

8 
81.684 95.248 

 

The PDR analysis unequivocally 
underscores the preeminence of ADSO-
SGAODV among the three protocols, boasting 
the highest average PDR. While CSSR and 
EEACR display respectable PDR performance, 
the comprehensive optimization and security 
measures employed by ADSO-SGAODV elevate 
it to unparalleled data delivery success. This 
makes it an exceedingly promising and 
compelling choice for reliable and efficient data 
transmission in ad-hoc networks, especially in 
situations where node density is critical in shaping 
the efficacy of communication endeavours. 

 

5.3. Packet Loss Ratio 

Figure 4 presents a comprehensive 
Packet Loss Ratio (PLR) analysis for three 
innovative ad-hoc routing protocols: CSSR, 
EEACR, and ADSO-SGAODV, under diverse 
node density scenarios. The PLR is a crucial 
metric gauges the percentage of lost packets 
during transmission from the source node to the 
destination node. This metric is instrumental in 
evaluating the protocols’ efficiency in ensuring 
data integrity and minimizing packet loss during 
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communication. Upon examining the average 
PLR values obtained from Table 4, the following 
observations come to light: 

 

 

Figure 4. Packet Loss Ratio 

CSSR protocol registers an average PLR 
of 26.420%. CSSR’s working mechanism 
involves forming clusters of nodes and selecting 
sub-graphs for routing decisions. While CSSR 
exhibits acceptable performance in managing 
packet loss, its PLR escalates as the node density 
increases. This phenomenon could be attributed to 
heightened interference and contention 
experienced between clusters in densely 
populated networks. EEACR protocol boasts a 
higher average PLR of 19.002%. Employing a 
mechanism that optimizes energy efficiency and 
promotes cooperative communication among 
nodes, EEACR showcases better packet loss 
handling than CSSR. Moreover, EEACR 
maintains relatively stable average PLR values 
across node densities, underscoring its 
adaptability to network conditions. 

ADSO-SGAODVprotocol distinguishes 
itself with an impressive average PLR of 4.752%. 
Leveraging an ensemble of optimization 
techniques, secure communication, and multi-
objective decision-making mechanisms, ADSO-
SGAODV significantly reduces packet loss 
during transmission. Even in scenarios 
characterized by high node density, ADSO-
SGAODV exhibits notably lower average PLR 
values, highlighting its exceptional ability to 

ensure data integrity. The PLR analysis 
underscores ADSO-SGAODV’s supremacy 
among the three protocols, boasting the lowest 
average PLR. While CSSR and EEACR 
demonstrate acceptable packet loss management, 
the comprehensive optimization and security 
measures integrated into ADSO-SGAODV 
contribute to its remarkable success in minimizing 
packet loss. This makes it a compelling choice for 
robust and reliable data transmission in ad-hoc 
networks, especially when maintaining data 
integrity is crucial for successful communication. 

 

Table 4. Results of Packet Loss Ratio Analysis 

Node 
Density 

CSSR EEACR 
ADSO-

SGAODV 

50 
21.85

7 
11.565 1.553 

100 
22.01

3 
15.635 2.331 

150 
26.34

3 
18.776 5.252 

200 
29.00

2 
21.508 6.824 

250 
32.88

6 
27.528 7.802 

Average 
26.42

0 
19.002 4.752 

 

5.4. Throughput Analysis 

Figure 5 offers a comprehensive and in-
depth analysis of the Throughput performance of 
three state-of-the-art ad-hoc routing protocols: 
CSSR, EEACR, and ADSO-SGAODV. 
Throughput, a key metric in ad-hoc networks, is 
pivotal in measuring the rate at which data packets 
are successfully transmitted from the source node 
to the destination node. It is a fundamental 
indicator of the protocols’ efficacy in ensuring 
swift and efficient data transmission, making it a 
crucial factor for evaluating their overall 
performance. Upon examining the average 
Throughput values obtained from Table 5, 
intriguing insights into the performance of these 
protocols come to light: 
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Figure 5. Throughput 

CSSR protocol reveals an average 
Throughput of 217.313 units. CSSR’s unique 
working mechanism revolves around creating 
clusters of nodes and selecting sub-graphs for 
routing decisions. While it exhibits acceptable 
data transmission performance, its throughput 
slightly declines as the node density increases. 
This phenomenon can be attributed to the 
amplified interference and contention 
experienced between clusters in densely 
populated networks, affecting the overall data 
transmission rate. EEACR protocol outperforms 
CSSR, showcasing a higher average Throughput 
of 221.483 units. EEACR is designed to optimize 
energy efficiency while fostering cooperative 
communication among nodes. Its relatively higher 
average Throughput values remain consistent 
across varying node densities, underscoring its 
ability to handle data packets more efficiently 
than CSSR. 

ADSO-SGAODV protocol emerges as 
the frontrunner, distinguishing itself with an 
impressive average Throughput of 272.565 units. 
ADSO-SGAODV amalgamates advanced 
optimization techniques, secure communication 
protocols, and multi-objective decision-making 
mechanisms, significantly elevating its data 
transmission efficiency. Even in scenarios 
characterized by high node density, ADSO-
SGAODV sustains notably higher average 
Throughput values, underscoring its exceptional 
capacity for swift and effective data transmission. 

The throughput analysis unequivocally 
highlights the preeminence of ADSO-SGAODV 
among the three protocols, boasting the highest 
average throughput. While CSSR and EEACR 
demonstrate respectable data transmission rates, 
the comprehensive optimization and security 
measures integrated into ADSO-SGAODV 
contribute to its remarkable success in achieving 
higher data transmission rates. This makes it a 
compelling and promising choice for rapid and 
efficient data transmission in ad-hoc networks, 
especially in scenarios where node density is 
critical in shaping communication efficacy and 
ensuring seamless data exchange. 

 

Table 5. Results of Throughput Analysis 

Node 
Density 

CSSR 
EEAC

R 
ADSO-

SGAODV 

50 
225.24

4 
229.32

3 
281.142 

100 
221.96

5 
225.65

9 
276.667 

150 
215.89

2 
221.49

3 
272.236 

200 
214.18

6 
217.71

3 
269.457 

250 
209.27

9 
213.22

7 
263.323 

Average 
217.31

3 
221.48

3 
272.565 

 

5.5. Energy Consumption Analysis 

Figure 6 comprehensively analyses the 
Energy Consumption for three state-of-the-art and 
proposed ad-hoc routing protocols: CSSR, 
EEACR, and ADSO-SGAODV, under diverse 
node density scenarios. Energy Consumption is a 
critical metric that gauges the amount of energy 
consumed by the nodes during data transmission 
and routing operations. It plays a crucial role in 
evaluating the protocols’ efficiency in conserving 
energy and prolonging the network’s lifetime. 
Analyzing the average Energy Consumption 
values from Table 6 for each protocol, the 
following observations are made. 

CSSR protocol exhibits an average 
Energy Consumption of 56.910%. CSSR’s unique 
working mechanism involves forming clusters 
and selecting sub-graphs for routing decisions. 
Although CSSR demonstrates acceptable energy 
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efficiency, its Energy Consumption tends to 
increase as the node density rises. This 
phenomenon can be attributed to the higher 
energy expenditure required for maintaining 
communication and handling contention in denser 
networks. EEACR protocol showcases a lower 
average Energy Consumption of 48.871%. 
EEACR focuses on optimizing energy usage 
while encouraging cooperative communication 
among nodes. Its relatively lower average Energy 
Consumption values across varying node 
densities demonstrate its capability to conserve 
energy more effectively than CSSR. 

 

 

Figure 6. Energy Consumption 

ADSO-SGAODV protocol stands out 
with an impressively low average Energy 
Consumption of 27.151%. ADSO-SGAODV 
integrates advanced optimization techniques, 
secure communication protocols, and multi-
objective decision-making mechanisms, 
significantly reducing energy consumption during 
data transmission and routing operations. Even in 
scenarios characterized by high node density, 
ADSO-SGAODV maintains shallow average 
Energy Consumption values, highlighting its 
exceptional energy-saving capabilities. The 
Energy Consumption analysis underscores the 
superior performance of ADSO-SGAODV 
among the three protocols, boasting the lowest 
average Energy Consumption. While CSSR and 
EEACR demonstrate acceptable energy 
efficiency, the comprehensive optimization and 

security measures integrated into ADSO-
SGAODV contribute to its remarkable success in 
conserving energy and prolonging the network’s 
lifetime. This makes it an attractive and promising 
choice for energy-conscious ad-hoc networks, 
especially when conserving energy is crucial for 
maintaining sustainable network operations. 

Table 6. Results of Energy Consumption Analysis 

Node 
Density 

CSSR EEACR 
ADSO-

SGAODV 

50 
33.41

2 
27.905 15.850 

100 
41.46

3 
38.945 23.423 

150 
53.69

6 
49.244 25.884 

200 
71.90

3 
58.581 31.251 

250 
84.07

6 
69.681 39.348 

Average 
56.91

0 
48.871 27.151 

 

 
6. CONCLUSION 

Augmented Dolphin Swarm 
Optimization-Based Secured Gaussian Ad-Hoc 
On-Demand Distance Vector (ADSO-SGAODV) 
routing protocol presents a promising and 
innovative solution for enhancing QoS in ME-
WSNs. By combining Gaussian AODV, Dolphin 
Swarm Optimization, Support Vector Machine, 
Fuzzy-based Cluster Head Selection, Secure 
Communication, and Trust-Based Access Control 
with Encryption, ADSO-SGAODV demonstrates 
a sophisticated working mechanism that 
optimizes routing decisions, conserves energy, 
ensures secure communication, and improves 
overall network performance. Through extensive 
simulations, ADSO-SGAODV has proven its 
superiority in packet delivery ratio, throughput, 
energy consumption, and adaptability to node 
mobility. The protocol exhibits significantly 
reduced energy consumption compared to 
existing routing protocols, making it an energy-
efficient choice for ME-WSNs. The protocol’s 
focus on addressing the unique challenges posed 
by ME-WSNs and its robust security measures 
makes it a reliable and efficient solution for data 
transmission in dynamic environments. ADSO-
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SGAODV holds great promise in ensuring 
reliable and secure communication, contributing 
significantly to QoS enhancement in ME-WSNs 
and enabling seamless data exchange in diverse 
and dynamic scenarios. 
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