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ABSTRACT 
 

Forests are one of the most important ecosystems on Earth. They play a vital role in regulating the climate 
and act as a renewable source of air for human beings. However, forests are really threatened by fires. When 
wildfires occur outside of their natural range or size, they can become a real danger to life and property. In 
this paper, we propose an original novel approach for detecting forest wildfires, based on collected data of 
fire sounds. This method employs a deep learning (DL) model to analyze and classify environment sounds 
into two classes: “Fire” or “No fire” (usual forest sounds). The model must first be trained on a set of 
environmental sounds in order to learn and identify fire sound patterns from other sounds. With this model, 
we achieve an impressive accuracy of 94.24% on the testing sub-dataset. Notably, the model consists of only 
1789 parameters, rendering it exceptionally lightweight. This quality makes it highly conducive for 
deployment across various platforms such as IoT devices, embedded systems, or mobile devices. Integrating 
this model into forest environments and fortifying it with complementary tools for comprehensive validation 
could enable us to promptly notify decision-makers or relevant authorities, facilitating timely and decisive 
actions. 
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1. INTRODUCTION  

Forests cover almost one-third of the 
world's land surface, making them one of the most 
important ecosystems. They are home to more than 
two-thirds of the terrestrial biodiversity, including 
many endangered species. Forests provide critical 
ecosystem services, including climate change 
mitigation, carbon sequestration, soil erosion 
control, and water purification [1]. They are also key 
elements to the livelihoods of millions of people 
around the world, providing wood for fuel and 
construction, food, and traditional medicine. But 
forests are vulnerable to catastrophes such as 
wildfires. 

Wildfires are a natural part of the forest life 
cycle. However, when they occur in areas with a 
high level of human activities, they can cause great 
damage to both the natural environment and human 
infrastructure. In addition, wildfires can spread 
quickly and be difficult to control, making them a 
serious threat to life and property. 

Many factors can contribute to a wildfire, 
such as a drought, lightning, and careless human 
activities. In recent years, the number of wildfires 
has been increasing, due in part to climate change. 
As the world gets warmer, dry conditions become 
more common and augment the readiness of forests 
to be fired. 

Wildfires can have a devastating impact on 
forests. They can destroy trees, wildlife habitats, and 
watersheds. They can also release pollutants into the 
air and cause respiratory problems for people. In 
some cases, wildfires can even lead to the loss of 
human life [2]. While wildfires can make great harm, 
they also provide some benefits to the forests; they 
can help to control insect populations and promote 
the growth of new plants. When wildfires occur in a 
natural setting, they can improve the overall health 
of the forest. However, the negative impacts of 
wildfires far outweigh the positive ones. That is why 
it is so important to take steps to prevent them.  
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Early detection of wildfires is critical to 
containing these disasters. Most countries use 
traditional methods for detecting fires including 
lookouts, ground patrols, and aircraft, others are 
implementing the latest technologies, which enable 
us to develop novel methods for detecting and 
monitoring forest fires in their earliest stages and 
spread. One common method is using aerial 
detection, with satellites, aircraft, or drones [3]. 
Another method is using ground-based IoT sensors, 
installed accurately in a network inside a forest. 
These sensors can detect heat, smoke, and other 
indicators of a fire [4]. 

Our contribution in this paper lies in a novel 
approach to detect forest wildfires. This method 
involves utilizing initial sound data and potentially 
integrating additional sensors, such as temperature, 
humidity, carbon monoxide detectors, and cameras. 
Employing deep learning models, we conduct 
automated analysis of fire-related acoustic signals, 
enabling the identification of distinctive patterns 
associated with fires. This information could be of 
great usefulness to alert the appropriate authorities to 
take suitable steps. 

The remainder of the paper is organized as 
follows. The second section gives a background on 
the utilized techniques. The third section reports and 
discusses related studies. We present in the fourth 
section our proposed method. Before concluding, the 
fifth section reviews and discusses our findings. 

2. BACKGROUNDS 

2.1 Sensors for Forest Fire 
  Sensors are devices that measure or detect a 
physical or chemical property and then convert it into 
a signal that can be read by an observer or a recording 
device. There are all sorts of different sensors out 
there that measure all sorts of different things [1]. 
Temperatures, pressure, light, sound, electricity, and 
magnetism are just a few of the many things that 
sensors can measure. They are also used in scientific 
research, industrial processes, and manufacturing [5]. 

One of the most common types of sensors 
that play an important role in detecting and fighting 
wildfires are: 

 The temperature sensor, come in all shapes and 
sizes but they all serve the same purpose: to 
measure the temperature of something. 
Temperature sensors are one of the most 
important types of sensors for detecting 
wildfires. By measuring the temperature of the 
air, these sensors can give an early warning of a 
potential fire. 

 Humidity sensors are another important type of 
sensor for detecting wildfires. By measuring the 
humidity of the air, these sensors can help to 
identify areas at risk of wildfires. 

 Gaz sensors are another type of sensor that can 
be used for detecting wildfires. By measuring 
the level of gas in the air, these sensors can give 
an early warning of a potential fire. 

 Infrared sensors are also another type of sensor 
that can be used for detecting wildfires. These 
sensors can detect the heat signature of a fire, 
even if it is not yet visible to the naked eye. 

 Another sensor is the Microphone; which is a 
transducer that converts sound into an electrical 
signal. The converted electrical signal can be 
used to perform various operations. 

2.2 Sound 
  Sound is a type of energy that travels 
through the air, or any other medium, as a vibration 
of pressure waves. Sound waves spread, when 
something vibrates; the frequency of the wave 
determines the pitch of the sound. It is the number of 
times per second a wave oscillates. Hertz (Hz) is the 
unit used for quantifying the frequency. The human 
ear can detect sound waves with frequencies ranging 
from 20Hz to 20 kHz [6]. 

  The loudness of a sound wave is determined 
by its amplitude; the more pressure waves present, 
the louder is the sound. The human ear can detect 
sounds with amplitudes as low as one trillionth of an 
atmospheric pressure change. The sound’s speed is 
dependent on the medium in which it travels. Sound 
waves travel the fastest through solids, then liquids, 
and finally gases; the speed of sound in air is 
approximately 343 m/s [7],[8]. 

  Fire sounds are one of the most recognizable 
and distinctive signals in the world. When it comes to 
fire, the sound of fire is unmistakable [8], whether it 
is a small campfire or a raging forest fire; the sound 
of the crackling flames, the hiss of embers, and the 
snapping of flames, as well as wood popping and 
exploding, is both soothing yet exhilarating. Burning 
wood and other bushes produce a crackling sound as 
the fire consumes them. We also hear a whooshing 
sound as the air is dragged into the fire. The 
combination of these two sounds (crackling and 
whooshing) creates a distinctive sound often 
associated with fires. When combined with steam 
produced by the evaporation of moisture out from 
firewood, the waste gases from combustion enlarge 
due to the heat and must flee. 

  The level of noise generated by fire depends 
on the moisture content of the burning wood, and the 
type of tree or bushes. Dried wood with a high 
moisture content will crackle and pop more. When 
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heat expansion forces water vapor to get out from the 
wood by forming steam. Because of this, the fire 
erupts with popping and crackling sounds. As a 
result, when the firewood has a high moisture 
content, the sound of popping and crackling can be 
heard more clearly [9]. 

2.3 Deep Learning (DL) 
  Deep Learning is a Machine Learning 
technique that uses a deep neural network to learn 
from data. Deep Learning is used to solve complex 
problems that are difficult to solve using traditional 
machine learning methods [10], [11]. Deep learning 
is well suited for problems that are difficult to solve 
using traditional methods, such as image recognition 
and classification, natural language processing, and 
machine translation. Deep learning is used in many 
applications such as computer vision, natural 
language processing, and predictive analytics [12]. 

Convolutional neural networks (CNNs) are 
one of the subclasses of deep learning neural 
networks that are commonly used to analyze visual 
data [13]. CNN, like standard neural networks, 
consists of an input layer, an output layer, and 
several hidden layers in between, but on the other 
hand, are distinguished from normal neural networks 
by their ability to extract features from input images 
and utilize the spatial relationship between pixels in 
order to improve pattern recognition [14]. 

  CNN's have been applied to a number of 
applications, such as picture classification, object 
identification, and face recognition. CNN has 
attained state-of-the-art performance on a number of 
these tasks in recent years [15]. 

Typically, CNNs are constructed using a 
succession of convolutional layers followed by fully 
linked layers, convolutional layers extract 
information from the input images and forward them 
to the subsequent layer, and fully connected layers 
combine the convolutional layers' collected features 
and utilize them to produce predictions (see Fig. 1) 
[16]. 

 
Fig. 1. The architecture of the CNN model 

3. RELATED WORKS  

  Based on IoT, Zhang et al. [8] put forth an 
original approach to wildfire detection. This method 

employs sound spectrum analysis to differentiate 
between crown fires and surface fires. The 
researchers innovatively designed a tree-energy 
device, utilizing the inherent biological energy of 
living trees for generating electricity. The integration 
of classification algorithms followed the analysis of 
sound sensor data through this process. According to 
their findings, the sound frequency of 0–400 Hz 
signifies crown fires, whereas frequencies of 0–
15,000 Hz indicate surface fires. However, the 
precision of the classification technique is subject to 
influences like sensor distribution, sound 
transmission loss, and data transmission delay. In 
simulated experiments, the method achieved a 
recognition rate of approximately 70%. 
 Correia et al. [17] employed energy 
measurements to track a mobile acoustic source for 
wildfire detection using drone-based acoustic 
sensors. This scenario is challenging due to drone 
motion. They used an extended Kalman filter (EKF) 
to handle nonlinearities in the observation model, 
demonstrating its effectiveness in noisy 
environments and superiority over techniques 
neglecting prior process state knowledge. 

  Bai et al. [18] used deep learning to improve 
audio quality with reverberation captured via 
multiple microphones. They proposed a method 
addressing acoustic signal processing: reducing 
reverberation and categorizing sound events (SEC). 
The study compared neural networks to traditional 
techniques like beamforming, multi-channel inverse 
filtering, multi-channel Wiener filtering, and 
variance-normalized delayed linear prediction 
(NDLP) for dereverberation. Their approach showed 
up to 85% performance improvement in F1-score. 

4. PROPOSED METHOD  

  Our novel approach relies on using IoT 
sensors for detecting forest wildfires. The focus is 
oriented to sounds rather than observable flames. 
These new sound sensors will reinforce other used 
classical sensors and will be deployed attached to 
trees in safe positions from both animals and humans 
while gathering the most data in the air with the 
maximum coverage. It transmits this information 
over Lora protocol to the fog gateway, once these 
sensors have collected data on temperature, humidity, 
and CO. Ideally, the gateway at the fog node should 
be positioned in a high location so that it can receive 
and transmit data from and to IoT devices without 
interference. It processes the collected data. When it 
comes to sound data, deep learning will be applied to 
automatically recognize patterns that may indicate 
the presence of an active fire in the forest. Using this 
information, authorities may be alerted and take 
necessary actions to put out the wildfire. Data 
afterward is delivered to cloud servers for additional 
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analysis, storage, and dashboarding utilizing 
lightweight MQTT protocol via 2/3/4/5G, satellite 
internet, or any possible communication technique 
available at the forest location (see Fig. 2). 

 

 

Fig. 2. Proposed method deployment of sound sonsors 

We conduct our research experiment in 
three phases: dataset collecting, spectrogram 
production, and finally, the construction of a sound 
deep learning model (see Fig. 3). 

 

Fig. 3.  Research experiment phases  

4.1 Sound Dataset collection 
  Datasets of sounds can be collected in 
various ways, depending on the desired application 
[11]. For example, a speech recognition system might 
be trained on a dataset of recorded speech samples, 
while a system for identifying environmental sounds 
might be trained on a dataset of natural sounds like 
raindrops or birdcalls. In general, collecting a good 
dataset of sounds usually involves recording a variety 
of sounds in different environments and at various 
times [19]. We make this task with special-purpose 
sound recording equipment, or with a pair of regular 
microphones and a digital audio recorder.  

  In our experiments, the dataset used to train 
our models is derived from three sources: Google 
AudioSet (a vast collection of human-labeled ten 
seconds environmental sound snippets obtained from 
YouTube), A Kaggle Forest WildFire Sound Dataset, 
and a set of sounds recorded with our smartphone 
microphone over a supervised self-made fire with 
local tree wood (see Fig. 4). The collected sounds are 
divided into two categories: the first one is named 
“Forest_environment”, it contains the major sounds 
that may be heard in a forest, coming from Animals, 
Birds, Insect, Rain, Waterfall, Wind, Speech, 
Silence, Vehicles, and Aircraft; the second category 
includes only Fire sounds. What results, after 
cleaning mixed and corrupted sounds, into 1044 
samples in total; 684 with the label “Forest 
environment” which correspond to the "No Fire" 
output of our DL model, and 360 with the label 
“Fire”. Afterward, we divided the dataset into 
training (60%), validation (20%), and testing (20%) 
sets, before any further preprocessing or training. 

 

Fig. 4. Supervised autonomous fire sound recording 

The amplitude of the waveform is shown on 
the y-axis of a time series of these audio samples (see 
Fig. 5). It is standard practice to quantify amplitude 
in terms of the change in pressure around the 
microphone or receiving device that first detected the 
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sound. In order to train our model, we used these 
time series signals as inputs. A visual analysis of the 
samples below (see Fig. 5) taken from each of the 
two classes in our dataset (Fire and Environment 
sounds) reveals that the waveform does not give 
obvious class identification information. 

 

Fig. 5. Sound waveforms of the two categories “Fire” 
and “Forest environment”  

4.2 Spectrograms generation 
  To perform the generation of spectrograms 
from temporal waveforms, we apply the short-time 
Fourier transform (STFT) [20]. STFT allows 
obtaining time-localized frequency information, 
while frequency components of a signal fluctuate 
over time and it may be so complex to make 
conclusions. The typical Fourier transform provides 
frequency information averaged across the full signal 
time period. STFTs are given by formula 1 [21]. As 
shown in Fig. 5, STFT turns the waveforms into 
spectrograms. These latter are a kind of two-
dimensional imagery representations of a signal 
frequency spectrum. Our dataset will be a collection 
of sound spectrograms. We need these spectrogram 
images to train our DL model [22]. 

ቐ
Xୗ[𝑚, 𝑛]  =  ∑ 𝑥[𝑘]𝑔[𝑘 − 𝑚]e

షౠమഏ

ైିଵ
୩ୀ

x[k]  = ∑ ∑ Xୗ[𝑚, 𝑛] 𝑔[𝑘 − 𝑚]e
ౠమഏౡ

ై

 

where 𝑥[𝑘] represents a signal and 𝑔[𝑘] characterizes 
an L-point window, the STFT of 𝑥[𝑘] can be viewed 
as the Fourier transform of the product 𝑥[𝑘]𝑔[𝑘 −
𝑚].  

  Each frequency's amplitude or intensity is 
illustrated by a distinct color, (The more vibrant the 
hue, the more powerful the message). The 
Spectrogram's vertical 'slices' represent the signal's 
Spectrum at that point in time, and they display the 
intensity of the signal at each frequency in that 
spectrum. 

 For example, in the samples below (see Fig. 
6), the first top images show amplitude versus time. 
However, it does not provide us with any 

information on which frequencies are present in a 
particular piece of sound at any given moment. The 
bottom images are spectrograms, which represent the 
signal in its frequency domain. 

 

Fig. 6. Examples of generated sound spectrograms from 
waveforms using STFT 

 
4.3 Our Sound Deep Learning Model 

Our proposed deep learning model is a neuronal 
network composed of a sequence of multiple layers 
(see Error! Reference source not found.) [23]: 
 
 The input layer that resizes the input images to 

64x64; 
 The second layer normalizes the images. It is 

typically used to ensure that the activations of 
the neurons in the network stay within a certain 
range, which makes training more stable and 
improves the generalization performance of the 
model [24]; 

 The convolution 2d layer convolves the images 
with 32 filters. A convolution is an operation 
that takes two inputs, a filter, and an input 
image, and produces an output image. The 
output image is produced by the convolution 
operation, which is a matrix multiplication 
between the input image and the filter [16]; 
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Fig. 7. Our proposed model architecture 

 
 The batch normalization layer batch-normalizes 

the convolved images. Batch normalization is 
typically used after the convolutional or fully 
connected layers, while layer normalization can 
be used anywhere in the network. Both batch 
normalization and normalization layers have 
been shown to be very effective at improving 
the training and generalization performance of 
deep neural networks. In many cases, they can 
even allow the use of much higher learning 
rates, which can further speed up training [25], 
[26]. The global max pooling 2d layer pools the 
maximum value from each of the 32 filters [3]. 
It is similar to the max pooling2d layer, but it 
computes the maximum overall channels for 
each spatial position, instead of computing the 
maximum over a window for each channel. This 
layer is useful for tasks such as image 
classification, where the input is an image with 
multiple channels (e.g., a 3-channel RGB 
image). By computing the maximum overall 
channels, this layer can create a summary of the 

image that is invariant to the input channel 
order. 

 The dropout layer drops out a random 20% of 
the neurons. This layer is a regularization 
technique for neural networks that helps prevent 
overfitting. The dropout layer randomly drops 
out (sets to zero) a number of output units from 
the previous layer during training. The dropped-
out values are chosen randomly [27]. 

 The flatten layer that flattens the 32 filters into 
a vector. A flattened layer takes an input with a 
potentially high-dimensionality (such as a 2D 
tensor with the shape: samples, channels, rows, 
cols) and flattens it into a 1D tensor with shape 
(samples, flattened dimension). This is useful 
for feeding dense layers since a dense layer 
expects its input to be 1D [28]. 

 The three dense layers (fully connected layers) 
that have respectively 1056, 264, 18 neurons. 

 The output layer has 2 neurons (for the Fire or 
environmental sounds classes). 

The total number of parameters is 1789, 
which means that our proposed model is a 
lightweight one (because it is relatively small and 
does not require a lot of computational resources 
compared to other deep learning models), and would 
be perfect for use in a resource-constrained 
environment such as IoT devices, mobile devices, or 
embedded systems. This model would be able to run 
quickly and efficiently while still providing good 
accuracy. 

5. RESULTS AND DISCUSSIONS 

5.1 Hardware and software characteristics 
For our implementation, we have used 

TensorFlow v2.8.0, an open-source data analysis and 
machine learning software library, on a high-
performance computing system (HPC) equipped 
with the following hardware specifications: 

 Two Intel Gold 6148 (2.4 GHz/20 cores) 
processors; 

 Two NVIDIA Tesla V100 graphics cards, each 
with 32GB of RAM. 

5.2 Evaluation Metrics 
We evaluated our deep learning models 

using two metrics namely, Sparse Categorical Cross-
Entropy Loss, and Accuracy. 
 
5.2.1 Sparse Categorical Cross-Entropy Loss 

(SCCEL) 
Sparse categorical cross-entropy loss is a 

loss function used in machine and deep learning. 
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This function is used when the labels are not one-hot 
encoded. SCCEL allows using integers as labels 
instead of one-hot encoding them. It is more efficient 
than categorical cross-entropy loss and is typically 
used when the number of classes is large [29]. 
SCCEL is defined by formula 2: 

SCCEL =  − ∑ 𝑡log (𝑠)
  

where 𝑡 and 𝑠 denote the ground truth and CNN 
score for each class 𝑖 in C. 

There are several advantages that SCCEL 
has over the Categorical Cross-Entropy Loss [30]. 
One advantage is that SCCEL is less 
computationally expensive. This is because SCCEL 
can take advantage of sparsity in the data, which 
means that it does not need to compute the gradient 
for every data point. This can be a significant 
advantage when working with large datasets. 
Another advantage of SCCEL is that it is more 
stable, this is because it does not suffer from the 
issues of numerical instability that can occur with 
Categorical Cross-Entropy Loss.  

5.2.2 Accuracy 
In predictive modeling, machine, and deep 

learning, the accuracy metric is used to assess the 
quality of predictions. The accuracy metric is a 
measure of how accurate a model is in its predictions. 
It is the proportion of accurate forecasts to total 
predictions. This metric could be used to compare 
various models and identify the most accurate one 
[31]. 

5.3 Evaluating the results 
We train our proposed model over 300 

epochs to monitor its behavior and obtain the best 
results. The model was inspired by Google's 
YAMNet, but with several tweaks due to overfitting 
on our dataset, particularly at batch normalization 
and global max pooling 2d layers. 

Table 1 summarizes the obtained results 
regarding the accuracy and loss of our proposed 
model during training, validation, and testing. These 
results show that the training dataset (respectively 
validation and test datasets) had an accuracy of 
92.17% (respectively 93.69% and 94.24%) and a 
loss of 23.49% (respectively 23.49% and 18.14%). 

Table 1: The obtained results of our model 

Dataset Metric Results (%) 

Training set 
Accuracy 92.17 
Loss 23.49 

Validation set 
Accuracy 93.69 
Loss 19.62 

Testing set 
Accuracy 94.24 
Loss 18.14 

  The model seems to be performing quite 
well, with increasing accuracy and decreasing loss as 
the model is trained on much more data (see Fig. 8 
and Fig. 9). However, it is important to note that the 
validation and testing results are very close to each 
other. This means that the model is not overfitting, 
and is instead generalizing well to new data. This is 
a very important property for a deep learning model 
and is a good indication that this model is performing 
well.  

Fig. 10 displays an example of a sound 
prediction for fire noises compared to other 
environmental sounds. We can see that it predicts the 
fire sounds rather well with certain environmental 
sounds, which is expected since the microphone 
sensor detects both sounds. 

 
Fig. 8. Accuracy and Validation accuracy curves 

 

 
Fig. 9. Loss and Validation loss curves 
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Fig. 10. Sound prediction example 

Forest fire detection using sound sensors 
and deep learning is still in its early stages of 
development and thus has limitations (the use of 
sensors in general for forest fire detection has several 
limitations); sensors are not able to detect all types 
of fires, including small, contained fires, or 
smoldering fires (which produce little to no smoke). 
Meanwhile, our system may be reinforced with other 
commonly used sensors, such as temperature, 
humidity, and smoke sensors, which can give 
supplementary data to increase the precision of forest 
fire detection. We may further reduce the rate of false 
positives by dispatching drones to the area around 
the suspected fire (the location can be acquired from 
the glocalization of the deployed sensors, such as 
GPS or Galileo) to determine if a fire is started or 
not. 

6. CONCLUSION 

In this study, we introduce a pioneering 
approach that capitalizes on sound-to-image 
transformation and leverages the advancements in 
deep learning within computer vision. Our 
innovative method focuses on early forest fire 
detection, eschewing traditional reliance on visible 
flames in favor of interpreting sound data. By 
harnessing deep learning, we automatically analyze 
fire-related acoustic signals, identifying distinctive 
patterns indicative of a fire's presence, and promptly 
alerting authorities for necessary actions. Notably, 
our proposed model achieves a robust 94.24% 
accuracy on the test dataset while remaining highly 
efficient with a mere 1789 parameters, making it 
exceptionally suitable for resource-constrained 
environments such as IoT and mobile devices. 

There are some limitations to this study that 
will be addressed in our future works, the most 
notable one is the small size of our used dataset. This 
dataset contains only 1044 sounds, which is 
relatively smaller than our goal. Despite its 
limitations, the results of this study show that the 
proposed model is a promising approach for the 

early detection of forest fires. As a perspective, we 
plan to deploy our proposal inside a forest located in 
the neighborhood of our university. 
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