
Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6034

A HYBRID GENETIC BASED GREY WOLF OPTIMIZED
SOPHISTICATED SUPPORT VECTOR MACHINE (SSVM)

MODEL FOR SOFTWARE DEFECT PREDICTION

DR MEDHUNHASHINI1, Dr. KS JEEN MARSELINE2

Research Scholar, Sri Krishna Arts and Science College,

 Dean & Head, Sri Krishna Arts and Science College,

E-Mail : 1medhun.hashini@gmail.com, 2jeenmarselineks@skasc.ac.in

ABSTRACT

Software Defect Prediction is one of the promising fields in software engineering, focusing on identifying
and predicting the defective module in software before the testing phase begins. It helps to allocate resources
in the testing phase cost-effectively. Developing a machine learning model that classifies the faulty module
from non-faulty seems challenging. This paper focuses on developing an ensemble machine learning model,
a Sophisticated Support Vector Machine (SSVM), for effective defect prediction. SSVM is built with the
hybrid power of GA and GWO over the SVM. An enhanced Genetic Algorithm (GA) is used to select
appropriate features from the defect dataset by Crossover of selected features. Grey Wolf Optimization
(GWO) has been adopted to tune the hyperparameter of SVM's Radial Basis Function Kernel. The defect
dataset JDT and MyLyn from the AEEEM repository is taken for experimentation. The model is investigated
with 10-fold cross-validation, and performance is evaluated with a confusion matrix and F1 score. The results
show the SSVM model classifies the defective from the non-defective module with an accuracy of 75.30 %
and 77.30 %.

Keywords: Quality, Software Defect, Genetic Algorithm, Grey Wolf Optimization, Support Vector Machine

1. INTRODUCTION

Software Defect Prediction (SDP) plays a
crucial role in software development by enabling
development teams to make informed decisions and
take proactive measures to improve software quality.
By identifying potential problem areas early in
development, teams can allocate resources
effectively and prioritize testing efforts. This helps
them focus on compulsory modules or components
more likely to contain defects, reducing the risk of
releasing software with significant issues[1]. One of
the critical advantages of SDP is the ability to
allocate resources effectively. Development teams
often have limited resources, including time, budget,
and human resources. By leveraging defect
prediction models, teams can identify high-risk areas
and allocate their limited resources accordingly. This
ensures that the most critical modules or components
receive greater attention regarding code reviews,
testing, and debugging. By doing so, teams can
address potential issues before they escalate and
cause more significant problems[2].

SDP allows teams to prioritize their testing
efforts. Testing is critical to software development
but can be resource-intensive and time-consuming.

By predicting potential defects, teams can prioritize
testing efforts on modules or components more
likely to contain issues. This targeted approach helps
ensure that critical functionality is thoroughly tested,
reducing the risk of defects slipping through the
testing phase and being discovered later by the end-
user [3]. SDP helps improve software quality by
identifying potential problems before they manifest
as defects. By analyzing historical data and applying
machine learning algorithms, these models can
uncover patterns and relationships between various
factors and the occurrence of defects. This insight
enables development teams to identify familiar
sources of defects and implement preventive
measures, such as code refactoring, process
improvements, or additional quality assurance
activities [4].

By addressing potential issues early on,
teams can significantly reduce the likelihood of
defects and improve the overall quality of the
software. It is important to note that SDP models are
not foolproof. They rely on historical data,
assumptions, and correlations, which may not
capture all potential sources of defects. As software
systems and development practices evolve, these
models require regular updates and refinements to

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6035

remain effective. New defects may emerge, and the
models must adapt to these changes to provide
accurate predictions. The success of defect
prediction also depends on the quality and relevance
of the historical data used for training the models.
Therefore, the models' ongoing monitoring,
evaluation, and improvement are necessary to ensure
their effectiveness over time[5].

SDP empowers development teams to
allocate resources effectively, prioritize testing
efforts, and improve software quality. By identifying
potential problem areas early in the development
process, teams can take proactive measures to
mitigate risks and address issues before they impact
end users [6]. While not infallible, defect prediction
models provide valuable insights that help teams
make informed decisions and continuously enhance
software quality.

1.1. Machine Learning
Machine Learning (ML) plays a significant

role in SDP, revolutionizing how software systems
identify and address defects. By leveraging
advanced algorithms and statistical models, ML
techniques can analyze large volumes of data, detect
patterns, and make accurate predictions. In the
context of SDP, ML enables the development of
sophisticated models that can effectively forecast
potential defects and guide developers in taking
proactive measures. One key aspect where ML
excels is analyzing historical data. By feeding large
sets of historical defect data into ML algorithms,
models can be trained to learn from past experiences
and uncover hidden patterns and relationships. These
patterns can reveal valuable insights into the factors
contributing to defects, such as code complexity,
code churn, coding standards violations, and
historical bug fixes[7]. By recognizing these
patterns, ML models can identify areas of the
codebase that are more likely to contain defects,
enabling developers to allocate their resources
effectively and focus their efforts on those specific
areas. ML algorithms also handle complex and non-
linear relationships between software metrics and
defects. Traditional statistical methods may struggle
to capture the intricate interactions between
variables, but ML techniques can effectively capture
these complex relationships. For example, decision
trees, random forests, support vector machines, and
neural networks are commonly used ML algorithms
in defect prediction[8]. These algorithms can
simultaneously consider multiple software metrics
and identify non-obvious combinations of factors
contributing to defects, leading to more accurate
predictions.

ML models can adapt and improve over
time. As new data becomes available, models can be
retrained to incorporate the latest information,
allowing them to evolve and enhance their predictive
capabilities continuously. This adaptability is crucial
in the dynamic field of software development, where
new types of defects may emerge, and software
systems may change. ML models can be updated to
reflect these changes and maintain their
effectiveness in predicting defects. ML techniques
also enable the integration of various data sources
for defect prediction. In addition to code-related
metrics, ML models can incorporate data from other
sources, such as bug-tracking systems, version
control systems, and developer collaboration
platforms [9]. By incorporating multiple data
streams, models can comprehensively understand
the software development process and capture a
broader range of factors contributing to defects. It is
important to note that ML models for defect
prediction require careful consideration and
validation. The quality and relevance of the training
data, feature selection, and appropriate model
evaluation techniques are crucial to ensure the
accuracy and effectiveness of the models.
Additionally, the interpretability of ML models is an
ongoing research challenge [10]. While models may
achieve high predictive accuracy, understanding the
underlying reasons for their predictions can be
challenging. Interpretable ML methods are actively
being explored to address this issue.

1.2. Problem Statement
The challenge of dataset representativeness

in SDP arises when the dataset used for training and
testing fails to accurately capture the diverse
characteristics and variations of the target software
system. This can lead to unreliable predictions, false
positives or negatives, and hinder the overall quality
and reliability of the software. Inadequate sampling,
biases in data collection, and overlooking variations
in defect patterns across different software
components or development stages contribute to the
lack of dataset representativeness. Addressing this
challenge requires careful selection and collection of
data that accurately reflects the system's diversity,
ensuring the development of reliable defect
prediction models that support adequate software
quality assurance.

1.3. Motivation
The motivation behind addressing the

challenge of dataset representativeness in SDP lies
in the quest for accurate defect predictions,
improved software quality, and enhanced software
engineering practices. By ensuring that the dataset

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6036

used for training and testing prediction models
accurately represents the target software system, we
can develop robust models that capture variations in
defect occurrence, enabling proactive defect
identification and mitigation. This, in turn, leads to
enhanced software reliability, reduced maintenance
costs, and increased end-user satisfaction.
Additionally, addressing dataset representativeness
fosters advancements in research and practice,
enabling the development of more reliable
prediction algorithms and supporting informed
decision-making for resource allocation and risk
management. Ultimately, the goal is to elevate
software quality and reinforce the development
process to deliver reliable and robust software
systems.

1.4. Objective
The objective of this research is to propose

an ML algorithm for SDP that addresses the
challenge of dataset representativeness. Developing
an algorithm that can effectively leverage
representative datasets aims to improve the accuracy
and reliability of defect predictions in software
systems. The specific objectives include:
 identifying and implementing strategies to

ensure dataset representativeness, including
appropriate sampling techniques and bias
mitigation approaches;

 designing and implementing an ML algorithm
that effectively utilizes the representative
dataset for defect prediction;

 evaluating the performance of the proposed
algorithm against existing approaches using
comprehensive metrics and real-world software
datasets;

 analyzing the impact of dataset
representativeness on the algorithm's predictive
capabilities; and

 demonstrating the practical utility of the
proposed algorithm by highlighting its potential
for proactive defect identification, enhanced
software quality assurance, and improved
decision-making in software development and
maintenance processes.

The significant objective is to contribute to

advancing SDP techniques by addressing the critical
challenge of dataset representativeness.

1.5 Organization of the Work
This research paper is organized as in

Section 2, a description involving the various
literature on software defect prediction, their adapted
algorithms and the performance measures that are
prominently used in this domain. Section 3

elaborates on the proposed SSVM defect prediction
model in which the SVM is used as a classifier,
including an enhanced genetic algorithm for feature
selection and GWO for hyperparameter tuning the
radial basis function kernel of SVM. Section 4 gives
an insight into the dataset’s origin, its features and
its representativeness. Section 5 discusses the results
of the experiments conducted using SVM, SVM-
GA, and SSVM models.

2. LITERATURE REVIEW

The "Effort-Aware based Defect Prediction
model”[11] is constructed by EALTR using the
linear regression model, which is then used to
develop a set of coefficient vectors for the linear
regression model using the composite differential
evolution algorithm. To build the EADP model,
EALTR chooses the coefficient vector with the
highest PofB@20% value on the training dataset.
They suggest a re-ranking technique in the
prediction phase to further minimize the Initial False
Alarms (IFA) value of EALTR. “Deep learning-
based prediction” [12]used qualitative and
quantitative analysis of the data extracted for Defect
Prediction. It concluded that most of the defect
predictions employed Supervised learning using the
software metrics as data feed amongst the CNN,
which is mostly used deep learning technique for
Defect Prediction. "Ensemble Machine Learning”
[13], a review was conducted on the hybrid defect
prediction models and concluded that an ensembled
machine learning technique can be used to develop a
robust hyperparameter optimization for better defect
prediction.

A “Transfer-learning Technique (TLT)
based defect prediction” [14]is used to find the code
clone in the cross-functional projects to reduce the
clone-consistent defects. TLT shows that the
quantity of the dataset also has a favourable impact
on prediction and that transfer-learning approaches
have a positive impact on forecasting cross-project
clones consistent-defect in the early prediction of
defects in the software development life cycle. The
"Hybridized Machine Learning Algorithm”[15]
model for software failure prediction was involved
in selecting characteristics with a better fitness
function using a genetic algorithm (GA) to optimize
the data set features. A Decision Tree supervised
learning strategy is used as a classification method
to analyze the features after choosing the best ones.
The available machine learning models are
compared for the performance with GA-DT based
model to predict error proposed as RCSOLDA-RIR
and WPA-PSO models. The experimental analysis's

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6037

findings show that the proposed model performs
better in terms of accuracy than the one currently in
use.

“Issues-Driven Feature for Software Defect
Prediction” [16] was experimented on 86 open-
source projects from two organizations and then
experimentally compared the performance with
cutting-edge traditional features. The findings
demonstrate that Issues-Driven features outperform
state-of-the-art features and result in an AUC
improvement of 6 to 13%. Their study concluded
that including the needs into fault, prediction
features circumvents the drawbacks of conventional
software metrics that are indifferent to the software's
requirements. “ARRAY: Adaptive triple feature-
weighted transfer Naive Bayes for cross-project
defect prediction” [17] consisted of Feature
weighted similarity, feature-weighted instance
weight, and model adaptive adjustment as its
characteristics. They used 34 faulty datasets for their
experiments. Comparison of ARRAY with other
Cross Project Defect Prediction (CPDP) methods
was made using several statistical techniques such as
ROC curve (AUC), F1, and Matthews Correlation
Coefficient (MCC). Their results open up ARRAY
to have a significant improvement in MMC, AUC
and F1 values by 18.4%, 6.5%, and 4.5% and
perform better than any base value.

“Machine Learning-Based ensemble
methods” [18]for data pre-processing, feature
selection further algorithm implementation to
predict the software defect and improve software
quality was used. Software metrics from three
datasets were used for functioning. The end results
showed that logistic regression on the EBSPM
Dataset gave 96.67% accurate prediction, and other
methods like Soft Voting and Stacking (SVS),
Gradient Boost and bagging produced the best
results of 96.31% and 94.59% on the PROMISE
Repository Software metric data. “Data sampling
and feature selection techniques for software fault
prediction” considered eight sampling techniques
involving ten feature selection algorithms in the
open-source projects were performed, and the
accuracy was estimated. ROC and AUC metrics
were used to find the performance. According to the
empirical findings, the Synthetic Minority Over
Sampling Technique Edited (SMOTEE) and
correlation-based feature selection (FS2)
combination outperformed the highest AUC value
for the projects. The experiments showed a 24.07%
of projects that used the SMOTEE, FS2, and RF
combination were able to achieve the greatest AUC
values.

“Imbalance Class Learning using Weighted
Average Centroid” [19] WACIL for diversity
imbalance learning is used for an efficient synthetic
oversampling method to address the defect
imbalance problem. The WACIL first identifies
baseline cases, then produces false data of them
using a weighted average centroid concept and
performs a filtration process to remove unsuitable
noise data. Comparing WACIL to competing other
prediction algorithms, its performance is achieved
by finding the Fall Out Rate (FOR), F-measure, and
Area Under Curve (AUC), while achieving
equivalent results in terms of Recall and G-mean.
The "African buffalo optimized model for software
fault prediction” [20] approach aims to increase
software dependability helping to find the
fundamental reason for software failure at an early
stage. The ABOMSR-CDNL Model has four levels:
an input layer, two hidden layers, an output layer,
and software programme codes. A software’s log
files serve as an input layer for the model's first
hidden layer, which receives the software
programme codes. A project portfolio is created
using the best parameters found in the software event
log files and then sent to the hidden layer 2. This
technique examines system application failure
behaviours in a shorter length of time by the
application of multinomial softmax regression
analysis by the ABOMSR-CDNL Model.

"A fuzzy logic expert system to predict
module fault proneness using unlabeled data rule-
base and database" [21]overcame the Takagi and
Sugeno-based fuzzy logic system that was manually
created initially and later enhanced by prioritizing
the module's flaws. The second method can
determine the ideal threshold values and provide the
best recommendations for how to conduct testing
activities in order to increase the calibre of software
testing on a limited budget and schedule. “Hybrid
Training Data Selection (HTDS)”[22] method that
combines feature selection and instance selection to
create a competent and practical CPFP mode is used
to validate this method's efficacy using NEPMs and
effort-based performance measures (EPMs) to
ensure that it is applicable in real-world settings. The
ethnicity of Cross Project Defect Prediction and the
validation of the model for quality improvement
based on NEPM becomes tedious with unlimited
resources.

3.SOPHISTICATED SUPPORT VECTOR
MACHINE (SSVM)

Software defect prediction is highly
dependent on software metrics, and reliable metrics

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6038

envision great predictability. The proposed work
encompasses a hybrid Genetic based Grey Wolf
Optimized Sophisticated Support Vector Machine
(SSVM) hyperparameter selection model for
predicting defects in software.

3.1 Support Vector Machine
Support Vector Machine is a promising

machine learning algorithm for defect prediction,
preferably used for issues in binary classification. A
kernel function of the SVM separates a hyperplane
from the margin value. Three kernel functions can be
used, and each is significantly different from the
others. A linear kernel binary classification of the
data points in the search space is placed with the help
of Eq (1)

𝑓(𝑥) → 𝑥′ (1)
An alternative approach to fix the data

points is to use a polynomial kernel function, as
stated in Eq (2). It margins aptly to draw the
hyperplane in the search space. The distance
between the data points and the hyperplane is quite
lesser and thus covers most of the points into the
space where 𝑑 is the degree and 𝑟 is the coefficient.

𝑝 = (𝛾(𝑥, 𝑥ᇱ) + 𝑟)ௗ (2)
A non-linear connection between the data

points can be handled effectively using a polynomial
kernel. High-dimensional data points with lesser
samples are efficiently handled. Amongst the linear
and polynomial kernel functions that exist, RBF
maximizes tuning the hyperparameter functionality
and is effectively used in SVM for defect prediction
comparably. Instead of using the empirical method
for training data, the kernel function produces a set
of training data independently. The first step to
implement is to choose the kernel function and map
to the feature of a dataset to a high dimension space
H. It is mathematically expressed as Eq (3).

∅: 𝑥 → 𝐻
𝑥 → ∅(𝑥)

(3)

The classification of the dataset is
dependent on hyperparameter C. Overfitting the C
parameter results in unbiased and varied results.
Fitting the value of C will increase the prediction
accuracy. The RBF kernel function of SVM is
implemented as in Eq (4).

𝑘(𝑝, 𝑞) = exp (−
ห|𝑝 − 𝑞|ห2

2𝜎ଶ
) (4)

 From Eq.(2), 𝜎 is the hyperparameter and
||𝑝 – 𝑞||2 is the Euclidean distance calculated
between the input points 𝑝 and 𝑞. Setting the
hyperparameter 𝐶 and 𝛾 optimally to find the
solution is usually a problem. To solve this, tuning
the parameter is required. A genetic algorithm

combined with Grey Wolf Optimization becomes a
powerful mechanism proposed to find the optimal
parameter value for the hyperparameters of SVM.

3.2 Genetic Algorithm
An SVM classifier's gamma parameter 𝛾

can be adjusted with a genetic approach. The gamma
parameter controls how much each training sample
has an impact on the SVM's decision border. The
gamma value maximizes the SVM classifier's
performance by employing a genetic algorithm.

The genetic algorithm (GA) is an adaptive
search algorithm for the optimization issue. Here
genetic algorithm proposes a hyperparameter set
generated randomly and is used as the empirical
model. Each generated set solution is investigated
for fitness, knowing its accuracy level. Among the
generated solution set, the best population is found
by a pruning procedure that uses Grey Wolf
Optimization (𝐺𝑊𝑂).

This metaheuristic algorithm was
influenced by the ideas of genetics and natural
evolution. Problems with search and optimization
are frequently solved with it. GA identifies an ideal
or nearly ideal solution by iteratively evolving a
population of candidate solutions. The working of
GA is provided in Algorithm 1.

A random population set of solutions are
taken as and possibly fits into the search space 𝑟
specified as in Eq (5)

𝑃௦௧ = {𝑝ଵ, 𝑝ଶ, 𝑝ଷ … . 𝑝} (5)
A fitness function of each chromosome is

the quality of the chromosome that is the solution's
correctness that competes with others to prove them
best and is defined as in Eq (6) where r is the search
space

𝑓 = 𝑟 → 𝑅 (6)
Based on the fitness value of each

individual, find the selection probability. Consider
𝑆𝑃(𝑝) as the selected probability of individual 𝑝.
The 𝐺𝐴 is outlined in Algorithm 1.

Algorithm 1: GA
Step 1: Generate a random population set
Step 2: Initialize population(P)
Step 3: Evaluate the fitness of each individual in

the population
Step 4: While termination condition not met:

 Select parents from a population(P)
 Perform Crossover to create offspring

(CO)
 Perform Mutation on the offspring

(MO)
 Select individuals for the next

generation based on fitness
Step 5: Return the best solution

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6039

One-point Crossover technique is used to
randomly choose a point along the length of the
chromosome to transfer between the parents to
produce kids. The crossover equation is given in Eq
(7). A new offspring is generated from the two
randomly selected parents placing a point where the
genetic material exchanges.

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔ଵ

= 𝑃𝑎𝑟𝑒𝑛𝑡[𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑃𝑜𝑖𝑛𝑡]

ଶ

ୀ

(7)

A mutation process happens among the

individuals leveraging random change in the
population. A diverse population is then evolved to
explore new search space. The Mutation is defined
as in Eq (8).

𝑋ୀ𝑌 + ||𝑚|| ∗ 𝑅 (8)
Where 𝑋𝑖 is the new mutated individual set, 𝑌𝑖

represents the chromosomes before Mutation, ||𝑚||
is the parameter that controls the mutation change,
and 𝑅 is the randomly generated range of values for
Mutation.
 The fitness value of each population is
understood to know the next generation's evolution.
The GA adaptatively optimizes the solution set until
the termination criterion is met.

3.3 Grey Wolf Optimization
Grey Wolf Optimization (GWO) is a

nature-inspired algorithm obtained from the hunting
behaviour of Grey Wolves. Grey wolves show
community behaviour living and hunting as a pack
of 5-12 wolves together. They organize themselves
in a hierarchy. The 𝐴𝑙𝑝ℎ𝑎 𝛼 is dominant among and
is responsible for hunting the Prey and dictates the
remain. The 𝐵𝑒𝑡𝑎 𝛽 wolf is the second dominant in
the pack and is responsible for helping the alpha wolf
make decisions.

The third dominant in the pack is 𝐷𝑒𝑙𝑡𝑎 𝛿
wolf. They have to respond to the decisions taken by
the first two dominants. The remaining in the
pack, 𝑂𝑚𝑒𝑔𝑎 𝜔, plays a subordinate role and is the
least important in the pack. The GW is
mathematically modelled as the fittest solution to
any problem as an α wolf and the second-best
solution as the 𝛽 wolf, the third-best solution as 𝛿
wolf finally, the rest candidate solutions omega
wolves.

The grey wolves exhibit a social hierarchy,
and their working phase involves
 Encasing the Prey
 Surrounding and attacking the Prey to mortal

The 𝐺𝑊𝑂 is outlined in Algorithm 2.

Algorithm 2: GWO
Step 1: Initialize the Grey Wolf population

𝑿𝒊, 𝒘𝒉𝒆𝒓𝒆 𝒊 = 𝟏, 𝟐, 𝟑, … . 𝒏)
Step 2: Initialize 𝜶, 𝑨 & 𝑪
Step 3: Evaluate the fitness of individual

members of the 𝑿𝒊
Step 4: Assign

 𝑿𝜶with the first best-fit value
 𝑿𝜷with the second fit value
 𝑿𝜹with the third fit value

Step 5: To 𝒃𝒆𝒈𝒊𝒏 to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
Step 6: Update the position of 𝑿𝝎 as in Eq

13,14,15
Step 7: Calculate the fitness of all search entity
Step 8: Update the positions of 𝑿𝜶 , 𝑿𝜷 , 𝑿𝜹
Step 9: Return the 𝑿𝜶

In the GWO algorithm, hunting takes place in phases
that are evolved mathematically, as in Eq (7) and Eq
(8).
3.3.1 Encasing the Prey

The primary and foremost phase before
hunting the Prey is covering them for an attack. The
𝛼 wolf initiates the process and commands the 𝛽 and
𝛿 wolves. In the below Eq (9) and Eq (10)

𝐷ሬሬ⃗ = |𝐶. �⃗�(𝑡) − �⃗�(𝑡)| (9)

�⃗�(𝑡 + 1) = �⃗�(𝑡) − 𝐴 . 𝐷ሬሬ⃗ (10)

Here 𝐴 and 𝐶 are the vector coefficient,
𝑡 denotes the present iteration, the vector position of
the Prey is denoted as �⃗�ଵ, and �⃗� is the position of the
Grey Wolf.
The two vectors 𝐴 and 𝐶 are calculated as in Eq(11)
and Eq (12)

𝐴 = 2�⃗�. 𝑟ଵ − �⃗� (11)

𝐶 = 2. 𝑟ଶ (12)
where �⃗� value decreases from 2 to 0 during the
iterations, and 𝑟ଵ and 𝑟ଶ are vectors with random
values between 0 and 1.

3.3.2 Surrounding and Hunting the Prey

The 𝛼,𝛽 and 𝛿 wolves are positioned in the
first three places for hunting the Prey, and the 𝜔
wolves are to be positioned as in Eq.(13) and
Eq.(14).

𝐷ሬሬ⃗ ఈ = | 𝐶ଵ. �⃗�ఈ − �⃗� |, 𝐷ሬሬ⃗ ఉ = | 𝐶ଶ. �⃗�ఉ − �⃗� |

, 𝐷ሬሬ⃗ ఋ = | 𝐶ଷ. �⃗�ఋ − �⃗� |
(13)

�⃗�ଵ = �⃗�ఈ − 𝐴ଵ . (𝐷ሬሬ⃗ ఈ), �⃗�ଶ = �⃗�ఉ − 𝐴ଶ . (𝐷ሬሬ⃗ ఉ),

�⃗�ଷ = �⃗�ఋ − 𝐴ଷ . (𝐷ሬሬ⃗ ఋ)
(14)

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6040

�⃗�(𝑡 + 1) = ሡ ቆ
�⃗� + �⃗�ାଵ + �⃗�ାଶ

3
ቇ

ଷ

ୀ

 (15)

In the Eq (11). 𝐴 is a random value between the
interval value −2𝑎 and 2𝑎. When |𝐴| < 1 results in
the exploitation allowing the wolves to attack the
Prey, and |𝐴| > 1 tends to move from the current
Prey to a new fittest prey.

𝐺𝑊𝑂 is a metaheuristics algorithm that
efficiently optimizes the result for software defect
prediction. The candidate solutions can still be
prioritized so that when the 𝛼, 𝛽, and 𝛿 go unfit, the
next one can take up the 𝛼 position can be decided.
The grey wolf optimization mimics the
characteristics of the group and thus is highly
dependent on each other. The candidate solutions
can be further sequenced and prioritized by another
wolf 𝜑.

3.4 Hyperparameter tuning using Hybrid Genetic
Algorithm based Grey Wolf optimization for
SSVM

The main prerequisite for using SVM is that
the kernel hyperparameters must be set properly in
order for SVM to function. The C and 𝛾 kernel
parameters are present. The functioning capacity of
SVM is struck by a tradeoff parameter C to increase
the forecast accuracy and stability. Classification
accuracy using SVM significantly depends on the
Radial Basis Function Kernel Gamma parameter 𝛾.

The architectural flow of the SSVM model
is shown in Figure 1. This model collaborates the
power of 𝐺𝐴 and 𝐺𝑊𝑂 for the feature selection and
hyperparameter tuning of the RBF Kernel in SVM.
The model starts working with the software defect
data as the input. The SVM classifier prominently
classifies the faulty and non-faulty modules from the
data. Before the classification begins, the raw data is
cleaned. Data preprocessing involves removing the
null values and handling the missing values, as they
may produce inappropriate results when employed.
Outliers detected are removed.

Data is transformed into a form that is
suitable for building an SSVM Model. Any
categorical data seems to be unfit for the prediction
model; hence conversion is employed. It is important
to find the feature from the given data that are highly
beneficial. The efficiency of the defect prediction
model enhances with the finest features. SSVM
model needs the 𝛾 and C parameters to be
experimented with for the finest fit. The c parameter
is the control regularization entity that fits the points
in the search space at a marginal level. A higher
value of C misclassification is lesser and helps
obtain less margin. Lowering the value of C leads to

the misclassifications of the data points with a higher
margin. SSVM model has experimented with a range
of values for C.

Figure 1 : Architectural Flow of SSVM Model for
Defect Prediction

The 𝛾 specifies the decision boundary for
the classification, and the value can be set between
0.1 to 1. The highest value represents the data points
closer to the decision boundary, which makes a
smooth curve; conversely, for the lowest value, the
data points are away from the decision boundary.
The selection of the 𝛾 parameter is optimized using
GA. The GA algorithm involves Crossover and
Mutation for placing the optimized points in the
search space.

The GWO tunes the generated population
set from the vector space. The fitness function of
GWO is tuned for several iterations over the wolf
population. Sort the fitness function of the wolves in
ASC or DSC order. Fix the optimal population from
GA for the best three wolves' alpha, beta and delta
after sorting. The GWO optimizes the best
population set achieved through GA, and further, the

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6041

hyperparameters of Support Vector Machine C and
𝛾 are fined tuned to obtain the best solution for
Software Defect Prediction (SDP).

The SSVM model leverages the potential
data points placing them in the search space. A
hyperplane is placed with the boundary that provides
the best results in the software defect prediction.

The 𝑆𝑆𝑉𝑀 is outlined in Algorithm 3.

Algorithm 3: SSVM
Step 1: Load Dataset
Step 2: Implement enhanced GA for feature

selection
Step 3: Select feature population set
Step 4: Perform Crossover and mutate
Step 5: Point the data in high dimensional search

space
Step 6: Initialize the hyperplane value
Step 7: Set 𝛾 and 𝐶 as in Eq (2)
Step 8: Optimize the 𝛾 with fitness function as

in Eq (15)
 Implement the 𝛼 value to 𝛾
 Update 𝛽,𝛿,𝜔

Step 9: Prioritize the candidate solution and set
𝜑

Step 10: Repeat Step 9 when 𝛼 goes unfit
Step 11: Train the SSVM Model and Predict the

result

4. ABOUT DATASET

The "MyLyn” and “JDT” dataset about
software defect prediction is taken from the AEEEM
(Appraisal-Based Estimation of Effort) repository. A
dataset created especially for testing evolutionary
algorithms used in software defect prediction. The
datasets in the AEEEM repository were gathered
from several open-source Java software projects.
AEEEM is a benchmark dataset frequently used in
software engineering research. The dataset contains
software artefacts and their defect associated with
each module.

A manual inspection is made, and also data
collected from bug-tracking systems is investigated.
The dataset is labelled to show whether each artefact
contains a fault or not. The artefacts are converted

into software metrics. Researchers use these datasets
to evaluate the forecasting model created for defect
prediction. Table 1 describes the datasets from
AEEEM used for this study. Each of the datasets
consists of 61 features associated with process
metrics.

Table 1 Dataset Description
AEEEM
Dataset

Total
Features

Total
Samples

Defect
Artifact

Non-Defect
Artifact

JDT 61 997 206 791

MyLyn 61 1862 245 1617

5. RESULTS AND DISCUSSION

5.1. Classification Accuracy Analysis
Line of Code, Cyclomatic complexity,

Halstead Complexity and McCabe complexity
metrics for each module is evaluated from the defect
dataset. Enhanced GA is used for feature selection;
out of 61 features, the reliable ones from the dataset
are filtered. The Support Vector Machine without
ensemble GA gives an accuracy of 50.83%, and
48.83% seems to be a lesser accuracy. The enhanced
GA filters the optimistic feature, and GWO tunes the
hyperparameter . The SSVM model integrates the
power of GA and GWO to come out with better
accuracy. The hyperparameter gets the best-fit value
by adapting the inspirational hunting phenomena of
Grey Wolf α. Ten-fold cross-validation is performed
on the dataset and classified using SVM with gamma
 = 0.1 and 𝐶 =100. The gamma parameter is set to a
different range from 0.1 to 1. Better accuracy is
obtained as 75.30 % in the case of JDT and 77.30 %
for MyLyn dataset setting 𝛼 parameter. A confusion
matrix is presented in Table 2 that assesses the
SSVM model’s performance. The matrix compares
the SVM, SVM-GA and SSVM models. Henceforth,
the findings are displayed below. The significant
improvement attained by the SSVM model
highlights the efficiency in predicting software
defects.

Table 2 Classification Accuracy Analysis for SSVM

Metrics
JDT MyLyn

SVM
SVM-

GA
SSVM SVM

SVM-
GA

SSVM

TPR 51.74 65.14 77.20 47.75 61.08 81.17

TNR 49.92 64.87 73.39 49.92 64.87 73.39

Classification
Accuracy

50.83 65.00 75.30 48.83 63.00 77.30

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6042

The TRP, TNR and Classification Accuracy for the
SSVM model is shown in Figure 2, with 75.30 % in
the case of JDT and 77.30 % for MyLyn dataset.

Figure 2 Classification Accuracy Analysis on JDT

and MyLyn Data

5.2. F1 Score Analysis
The F1 score gives a balanced measurement of both
precision and recall measures. It is the harmonic
mean of precision and recall. Beforehand the
precision for any defect module that is projected to
be positive, precision is the percentage of correctly
predicted positive instances. Precision is calculated
below as in Eq. (16)

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(16)

Recall counts how many positive instances were
properly predicted out of all the positive instances.
The metric is calculated as in Eq (17)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (17)

F1 metric significantly doubles the product of the
correctly predicted positive value and the count of
actual positive instances from the positive instances.
The value is calculated from Eq (18)

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (18)

It is observed from the below Figure 3 that the
convergence of the F1 Score for the model SSVM
over the SVM, SVM-GA has significantly
improved. A tabulated view of the F1 Score
comparison is presented in Table 3, which exhibits a
75.88 % increase in accuracy for JDT data and 78.26
% for the MyLyn data. Enhancement of the SVM

model by hybridizing GA and GWO has proved to
be imminent.

Table 3 F1 Score Analysis for SSVM
Classifiers F1 Score

JDT MyLyn
SVM 51.32 48.31
SVM-GA 64.73 61.95

SSVM 75.88 78.26

Figure 3a F1 Score Analysis of SSVM Model on
JDT Data

Figure 3b : F1 Score Analysis of SSVM Model on
MyLyn Data

6. CONCLUSION

Software defect prediction is necessary for
any software’s quality improvement. This paper
proposes a Sophisticated Support Vector Machine
(SSVM) model that combines the powerful features
of Genetic Algorithm and Grey Wolf Optimization.
An investigation is done on the dataset to address the
representativeness issue, and appropriate defect data
is selected. The proposed SSVM model is inspected
on the defect data from JDT and MyLyn Java
Projects from AEEEM repository. A genetic

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6043

algorithm is involved in the feature selection
process. A support Vector Machine is used to train
the model with the defect data. The prediction of
faulty and non-faulty classification of modules is
improvised by using a GWO algorithm that finds the
optimum fitness value of 𝛾 tuning hyperparameter.
The performance of SSVM is measured using True
Positive Rate, False Positive Rate, Confusion Matrix
and F1 Score. The experimental results show a
higher accuracy rate of 75.30% and 77.30%
comparing the traditional SVM and SVM – GA. The
challenge of dataset representatives has been
achieved by proposing the SSVM model. A temporal
dynamic problem still exists, which significantly
affects the performance of prediction models that
will be discussed in future work.

REFERENCES:

[1] Ceran, A. A., Ar, Y., Tanrıöver, Ö. Ö., & Ceran,
S. S. (2023). Prediction of software quality with
Machine Learning-Based ensemble methods.
Materials Today: Proceedings, 81, 18-25.

[2] Son, T. T., Lee, C., Le-Minh, H., Aslam, N., &
Dat, V. C. (2022). An enhancement for image-
based malware classification using machine
learning with low dimension normalized input
images. Journal of Information Security and
Applications, 69, 103308.

[3] Liu, X., Miramini, S., Patel, M., Ebeling, P.,
Liao, J., & Zhang, L. (2023). Development of
numerical model-based machine learning
algorithms for different healing stages of distal
radius fracture healing. Computer Methods and
Programs in Biomedicine, 233, 107464.

[4] Cai, Y., Xiao, L., Kazman, R., Mo, R., & Feng,
Q. (2018). Design rule spaces: A new model for
representing and analyzing software
architecture. IEEE Transactions on Software
Engineering, 45(7), 657-682.

[5] Eken, B., & Tosun, A. (2021). Investigating the
performance of personalized models for
software defect prediction. Journal of Systems
and Software, 181, 111038.

[6] Yu, T., Wen, W., Han, X., & Hayes, J. H.
(2018). Conpredictor: Concurrency defect
prediction in real-world applications. IEEE
Transactions on Software Engineering, 45(6),
558-575.

[7] Rathaur, S., Kamath, N., & Ghanekar, U. (2020,
July). Software defect density prediction based
on multiple linear regression. In 2020 Second
International Conference on Inventive Research

in Computing Applications (ICIRCA) (pp. 434-
439). IEEE.

[8] Ashtari, A., & Alizadeh, B. (2022). A
comparative study of machine learning
classifiers for secure RF-PUF-based
authentication in internet of things.
Microprocessors and Microsystems, 93,
104600.

[9] Gomes, L., da Silva Torres, R., & Côrtes, M. L.
(2023). BERT-and TF-IDF-based feature
extraction for long-lived bug prediction in
FLOSS: a comparative study. Information and
Software Technology, 160, 107217.

[10] Pushphavathi, T. P. (2017, August). An
approach for software defect prediction by
combined soft computing. In 2017 International
Conference on Energy, Communication, Data
Analytics and Soft Computing (ICECDS) (pp.
3003-3006). IEEE.

[11] Yu, X., Rao, J., Hu, W., Keung, J., Zhou, J., &
Xiang, J. (2023). Improving effort-aware defect
prediction by directly learning to rank software
modules. Information and Software
Technology, 107250.

[12] Ma, Y., Mockus, A., Zaretzki, R., Bradley, R.,
& Bichescu, B. (2020). A methodology for
analyzing uptake of software technologies
among developers. IEEE Transactions on
Software Engineering, 48(2), 485-501.

[13] Sharma, U., & Sadam, R. (2023). How far does
the predictive decision impact the software
project? The cost, service time, and failure
analysis from a cross-project defect prediction
model. Journal of Systems and Software, 195,
111522.

[14] Bai, J., Jia, J., & Capretz, L. F. (2022). A three-
stage transfer learning framework for multi-
source cross-project software defect prediction.
Information and Software Technology, 150,
106985.

[15] Chennappan, R. (2023). An automated software
failure prediction technique using hybrid
machine learning algorithms. Journal of
Engineering Research, 11(1), 100002.

[16] Qu, Y., Li, Z., Zhao, J., & Li, H. (2022,
October). Unbalanced data processing for
software defect prediction. In 2022 4th
International Conference on Data-driven
Optimization of Complex Systems (DOCS) (pp.
1-6). IEEE.

Journal of Theoretical and Applied Information Technology

15th October 2023. Vol.101. No 19
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6044

[17] Tong, H., Lu, W., Xing, W., & Wang, S. (2023).
ARRAY: Adaptive triple feature-weighted
transfer Naive Bayes for cross-project defect
prediction. Journal of Systems and Software,
202, 111721.

[18] Anyanwu, G. O., Nwakanma, C. I., Lee, J. M.,
& Kim, D. S. (2023). RBF-SVM kernel-based
model for detecting DDoS attacks in SDN
integrated vehicular network. Ad Hoc
Networks, 140, 103026.

[19] Manchala, P., & Bisi, M. (2022). Diversity
based imbalance learning approach for software
fault prediction using machine learning models.
Applied Soft Computing, 124, 109069.

[20] Saravanan, P., & Sangeetha, V. (2022). African
buffalo optimized multinomial softmax
regression based convolutional deep neural
network for software fault prediction. Materials
Today: Proceedings, 61, 619-626.

[21] Jagtap, M., Katragadda, P., & Satelkar, P.
(2022, January). Software Reliability:
Development of Software Defect Prediction
Models Using Advanced Techniques. In 2022
Annual Reliability and Maintainability
Symposium (RAMS) (pp. 1-7). IEEE.

[22] Khatri, Y., & Singh, S. K. (2023). An effective
software cross-project fault prediction model
for quality improvement. Science of Computer
Programming, 226, 102918.

