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ABSTRACT 

 
Software Defect Prediction is one of the promising fields in software engineering, focusing on identifying 
and predicting the defective module in software before the testing phase begins. It helps to allocate resources 
in the testing phase cost-effectively. Developing a machine learning model that classifies the faulty module 
from non-faulty seems challenging. This paper focuses on developing an ensemble machine learning model, 
a Sophisticated Support Vector Machine (SSVM), for effective defect prediction. SSVM is built with the 
hybrid power of GA and GWO over the SVM. An enhanced Genetic Algorithm (GA) is used to select 
appropriate features from the defect dataset by Crossover of selected features. Grey Wolf Optimization 
(GWO) has been adopted to tune the hyperparameter of SVM's Radial Basis Function Kernel. The defect 
dataset JDT and MyLyn from the AEEEM repository is taken for experimentation. The model is investigated 
with 10-fold cross-validation, and performance is evaluated with a confusion matrix and F1 score. The results 
show the SSVM model classifies the defective from the non-defective module with an accuracy of 75.30 % 
and 77.30 %. 
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1. INTRODUCTION 

Software Defect Prediction (SDP) plays a 
crucial role in software development by enabling 
development teams to make informed decisions and 
take proactive measures to improve software quality. 
By identifying potential problem areas early in 
development, teams can allocate resources 
effectively and prioritize testing efforts. This helps 
them focus on compulsory modules or components 
more likely to contain defects, reducing the risk of 
releasing software with significant issues[1]. One of 
the critical advantages of SDP is the ability to 
allocate resources effectively. Development teams 
often have limited resources, including time, budget, 
and human resources. By leveraging defect 
prediction models, teams can identify high-risk areas 
and allocate their limited resources accordingly. This 
ensures that the most critical modules or components 
receive greater attention regarding code reviews, 
testing, and debugging. By doing so, teams can 
address potential issues before they escalate and 
cause more significant problems[2]. 

SDP allows teams to prioritize their testing 
efforts. Testing is critical to software development 
but can be resource-intensive and time-consuming. 

By predicting potential defects, teams can prioritize 
testing efforts on modules or components more 
likely to contain issues. This targeted approach helps 
ensure that critical functionality is thoroughly tested, 
reducing the risk of defects slipping through the 
testing phase and being discovered later by the end-
user [3]. SDP helps improve software quality by 
identifying potential problems before they manifest 
as defects. By analyzing historical data and applying 
machine learning algorithms, these models can 
uncover patterns and relationships between various 
factors and the occurrence of defects. This insight 
enables development teams to identify familiar 
sources of defects and implement preventive 
measures, such as code refactoring, process 
improvements, or additional quality assurance 
activities [4].  

By addressing potential issues early on, 
teams can significantly reduce the likelihood of 
defects and improve the overall quality of the 
software. It is important to note that SDP models are 
not foolproof. They rely on historical data, 
assumptions, and correlations, which may not 
capture all potential sources of defects. As software 
systems and development practices evolve, these 
models require regular updates and refinements to 
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remain effective. New defects may emerge, and the 
models must adapt to these changes to provide 
accurate predictions. The success of defect 
prediction also depends on the quality and relevance 
of the historical data used for training the models. 
Therefore, the models' ongoing monitoring, 
evaluation, and improvement are necessary to ensure 
their effectiveness over time[5]. 

SDP empowers development teams to 
allocate resources effectively, prioritize testing 
efforts, and improve software quality. By identifying 
potential problem areas early in the development 
process, teams can take proactive measures to 
mitigate risks and address issues before they impact 
end users [6]. While not infallible, defect prediction 
models provide valuable insights that help teams 
make informed decisions and continuously enhance 
software quality. 

1.1. Machine Learning 
Machine Learning (ML) plays a significant 

role in SDP, revolutionizing how software systems 
identify and address defects. By leveraging 
advanced algorithms and statistical models, ML 
techniques can analyze large volumes of data, detect 
patterns, and make accurate predictions. In the 
context of SDP, ML enables the development of 
sophisticated models that can effectively forecast 
potential defects and guide developers in taking 
proactive measures. One key aspect where ML 
excels is analyzing historical data. By feeding large 
sets of historical defect data into ML algorithms, 
models can be trained to learn from past experiences 
and uncover hidden patterns and relationships. These 
patterns can reveal valuable insights into the factors 
contributing to defects, such as code complexity, 
code churn, coding standards violations, and 
historical bug fixes[7]. By recognizing these 
patterns, ML models can identify areas of the 
codebase that are more likely to contain defects, 
enabling developers to allocate their resources 
effectively and focus their efforts on those specific 
areas. ML algorithms also handle complex and non-
linear relationships between software metrics and 
defects. Traditional statistical methods may struggle 
to capture the intricate interactions between 
variables, but ML techniques can effectively capture 
these complex relationships. For example, decision 
trees, random forests, support vector machines, and 
neural networks are commonly used ML algorithms 
in defect prediction[8]. These algorithms can 
simultaneously consider multiple software metrics 
and identify non-obvious combinations of factors 
contributing to defects, leading to more accurate 
predictions. 

ML models can adapt and improve over 
time. As new data becomes available, models can be 
retrained to incorporate the latest information, 
allowing them to evolve and enhance their predictive 
capabilities continuously. This adaptability is crucial 
in the dynamic field of software development, where 
new types of defects may emerge, and software 
systems may change. ML models can be updated to 
reflect these changes and maintain their 
effectiveness in predicting defects. ML techniques 
also enable the integration of various data sources 
for defect prediction. In addition to code-related 
metrics, ML models can incorporate data from other 
sources, such as bug-tracking systems, version 
control systems, and developer collaboration 
platforms [9]. By incorporating multiple data 
streams, models can comprehensively understand 
the software development process and capture a 
broader range of factors contributing to defects. It is 
important to note that ML models for defect 
prediction require careful consideration and 
validation. The quality and relevance of the training 
data, feature selection, and appropriate model 
evaluation techniques are crucial to ensure the 
accuracy and effectiveness of the models. 
Additionally, the interpretability of ML models is an 
ongoing research challenge [10]. While models may 
achieve high predictive accuracy, understanding the 
underlying reasons for their predictions can be 
challenging. Interpretable ML methods are actively 
being explored to address this issue. 

1.2. Problem Statement 
The challenge of dataset representativeness 

in SDP arises when the dataset used for training and 
testing fails to accurately capture the diverse 
characteristics and variations of the target software 
system. This can lead to unreliable predictions, false 
positives or negatives, and hinder the overall quality 
and reliability of the software. Inadequate sampling, 
biases in data collection, and overlooking variations 
in defect patterns across different software 
components or development stages contribute to the 
lack of dataset representativeness. Addressing this 
challenge requires careful selection and collection of 
data that accurately reflects the system's diversity, 
ensuring the development of reliable defect 
prediction models that support adequate software 
quality assurance. 

1.3. Motivation 
The motivation behind addressing the 

challenge of dataset representativeness in SDP lies 
in the quest for accurate defect predictions, 
improved software quality, and enhanced software 
engineering practices. By ensuring that the dataset 
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used for training and testing prediction models 
accurately represents the target software system, we 
can develop robust models that capture variations in 
defect occurrence, enabling proactive defect 
identification and mitigation. This, in turn, leads to 
enhanced software reliability, reduced maintenance 
costs, and increased end-user satisfaction. 
Additionally, addressing dataset representativeness 
fosters advancements in research and practice, 
enabling the development of more reliable 
prediction algorithms and supporting informed 
decision-making for resource allocation and risk 
management. Ultimately, the goal is to elevate 
software quality and reinforce the development 
process to deliver reliable and robust software 
systems. 

1.4. Objective 
The objective of this research is to propose 

an ML algorithm for SDP that addresses the 
challenge of dataset representativeness. Developing 
an algorithm that can effectively leverage 
representative datasets aims to improve the accuracy 
and reliability of defect predictions in software 
systems. The specific objectives include:  
 identifying and implementing strategies to 

ensure dataset representativeness, including 
appropriate sampling techniques and bias 
mitigation approaches;  

 designing and implementing an ML algorithm 
that effectively utilizes the representative 
dataset for defect prediction;  

 evaluating the performance of the proposed 
algorithm against existing approaches using 
comprehensive metrics and real-world software 
datasets;  

 analyzing the impact of dataset 
representativeness on the algorithm's predictive 
capabilities; and  

 demonstrating the practical utility of the 
proposed algorithm by highlighting its potential 
for proactive defect identification, enhanced 
software quality assurance, and improved 
decision-making in software development and 
maintenance processes.  

 
The significant objective is to contribute to 

advancing SDP techniques by addressing the critical 
challenge of dataset representativeness. 

1.5 Organization of the Work 
This research paper is organized as in 

Section 2, a description involving the various 
literature on software defect prediction, their adapted 
algorithms and the performance measures that are 
prominently used in this domain. Section 3 

elaborates on the proposed SSVM defect prediction 
model in which the SVM is used as a classifier, 
including an enhanced genetic algorithm for feature 
selection and GWO for hyperparameter tuning the 
radial basis function kernel of SVM. Section 4 gives 
an insight into the dataset’s origin, its features and 
its representativeness. Section 5 discusses the results 
of the experiments conducted using SVM, SVM-
GA, and SSVM models. 
 

2. LITERATURE REVIEW 

The "Effort-Aware based Defect Prediction 
model”[11] is constructed by EALTR using the 
linear regression model, which is then used to 
develop a set of coefficient vectors for the linear 
regression model using the composite differential 
evolution algorithm. To build the EADP model, 
EALTR chooses the coefficient vector with the 
highest PofB@20% value on the training dataset. 
They suggest a re-ranking technique in the 
prediction phase to further minimize the Initial False 
Alarms (IFA) value of EALTR. “Deep learning-
based prediction” [12]used qualitative and 
quantitative analysis of the data extracted for Defect 
Prediction. It concluded that most of the defect 
predictions employed Supervised learning using the 
software metrics as data feed amongst the CNN, 
which is mostly used deep learning technique for 
Defect Prediction. "Ensemble Machine Learning” 
[13], a review was conducted on the hybrid defect 
prediction models and concluded that an ensembled 
machine learning technique can be used to develop a 
robust hyperparameter optimization for better defect 
prediction. 

A “Transfer-learning Technique (TLT) 
based defect prediction” [14]is used to find the code 
clone in the cross-functional projects to reduce the 
clone-consistent defects. TLT shows that the 
quantity of the dataset also has a favourable impact 
on prediction and that transfer-learning approaches 
have a positive impact on forecasting cross-project 
clones consistent-defect in the early prediction of 
defects in the software development life cycle. The 
"Hybridized Machine Learning Algorithm”[15] 
model for software failure prediction was involved 
in selecting characteristics with a better fitness 
function using a genetic algorithm (GA) to optimize 
the data set features. A Decision Tree supervised 
learning strategy is used as a classification method 
to analyze the features after choosing the best ones. 
The available machine learning models are 
compared for the performance with GA-DT based 
model to predict error proposed as RCSOLDA-RIR 
and WPA-PSO models. The experimental analysis's 
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findings show that the proposed model performs 
better in terms of accuracy than the one currently in 
use. 

“Issues-Driven Feature for Software Defect 
Prediction” [16] was experimented on 86 open-
source projects from two organizations and then 
experimentally compared the performance with 
cutting-edge traditional features. The findings 
demonstrate that Issues-Driven features outperform 
state-of-the-art features and result in an AUC 
improvement of 6 to 13%. Their study concluded 
that including the needs into fault, prediction 
features circumvents the drawbacks of conventional 
software metrics that are indifferent to the software's 
requirements. “ARRAY: Adaptive triple feature-
weighted transfer Naive Bayes for cross-project 
defect prediction” [17] consisted of Feature 
weighted similarity, feature-weighted instance 
weight, and model adaptive adjustment as its 
characteristics. They used 34 faulty datasets for their 
experiments. Comparison of ARRAY with other 
Cross Project Defect Prediction (CPDP) methods 
was made using several statistical techniques such as 
ROC curve (AUC), F1, and Matthews Correlation 
Coefficient (MCC). Their results open up ARRAY 
to have a significant improvement in MMC, AUC 
and F1 values by 18.4%, 6.5%, and 4.5% and 
perform better than any base value. 

“Machine Learning-Based ensemble 
methods” [18]for data pre-processing, feature 
selection further algorithm implementation to 
predict the software defect and improve software 
quality was used. Software metrics from three 
datasets were used for functioning. The end results 
showed that logistic regression on the EBSPM 
Dataset gave 96.67% accurate prediction, and other 
methods like Soft Voting and Stacking (SVS), 
Gradient Boost and bagging produced the best 
results of 96.31% and 94.59% on the PROMISE 
Repository Software metric data. “Data sampling 
and feature selection techniques for software fault 
prediction” considered eight sampling techniques 
involving ten feature selection algorithms in the 
open-source projects were performed, and the 
accuracy was estimated. ROC and AUC metrics 
were used to find the performance. According to the 
empirical findings, the Synthetic Minority Over 
Sampling Technique Edited (SMOTEE) and 
correlation-based feature selection (FS2) 
combination outperformed the highest AUC value 
for the projects. The experiments showed a 24.07% 
of projects that used the SMOTEE, FS2, and RF 
combination were able to achieve the greatest AUC 
values. 

“Imbalance Class Learning using Weighted 
Average Centroid” [19] WACIL for diversity 
imbalance learning is used for an efficient synthetic 
oversampling method to address the defect 
imbalance problem. The WACIL first identifies 
baseline cases, then produces false data of them 
using a weighted average centroid concept and 
performs a filtration process to remove unsuitable 
noise data. Comparing WACIL to competing other 
prediction algorithms, its performance is achieved 
by finding the Fall Out Rate (FOR), F-measure, and 
Area Under Curve (AUC), while achieving 
equivalent results in terms of Recall and G-mean. 
The "African buffalo optimized model for software 
fault prediction” [20] approach aims to increase 
software dependability helping to find the 
fundamental reason for software failure at an early 
stage. The ABOMSR-CDNL Model has four levels: 
an input layer, two hidden layers, an output layer, 
and software programme codes. A software’s log 
files serve as an input layer for the model's first 
hidden layer, which receives the software 
programme codes. A project portfolio is created 
using the best parameters found in the software event 
log files and then sent to the hidden layer 2. This 
technique examines system application failure 
behaviours in a shorter length of time by the 
application of multinomial softmax regression 
analysis by the ABOMSR-CDNL Model. 

"A fuzzy logic expert system to predict 
module fault proneness using unlabeled data rule-
base and database" [21]overcame the Takagi and 
Sugeno-based fuzzy logic system that was manually 
created initially and later enhanced by prioritizing 
the module's flaws. The second method can 
determine the ideal threshold values and provide the 
best recommendations for how to conduct testing 
activities in order to increase the calibre of software 
testing on a limited budget and schedule. “Hybrid 
Training Data Selection (HTDS)”[22] method that 
combines feature selection and instance selection to 
create a competent and practical CPFP mode is used 
to validate this method's efficacy using NEPMs and 
effort-based performance measures (EPMs) to 
ensure that it is applicable in real-world settings. The 
ethnicity of Cross Project Defect Prediction and the 
validation of the model for quality improvement 
based on NEPM becomes tedious with unlimited 
resources.  
 

3.SOPHISTICATED SUPPORT VECTOR 
MACHINE (SSVM) 

Software defect prediction is highly 
dependent on software metrics, and reliable metrics 
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envision great predictability. The proposed work 
encompasses a hybrid Genetic based Grey Wolf 
Optimized Sophisticated Support Vector Machine 
(SSVM) hyperparameter selection model for 
predicting defects in software. 

3.1 Support Vector Machine 
Support Vector Machine is a promising 

machine learning algorithm for defect prediction, 
preferably used for issues in binary classification. A 
kernel function of the SVM separates a hyperplane 
from the margin value. Three kernel functions can be 
used, and each is significantly different from the 
others. A linear kernel binary classification of the 
data points in the search space is placed with the help 
of Eq (1) 

𝑓(𝑥) → 𝑥′ (1) 
An alternative approach to fix the data 

points is to use a polynomial kernel function, as 
stated in Eq (2). It margins aptly to draw the 
hyperplane in the search space. The distance 
between the data points and the hyperplane is quite 
lesser and thus covers most of the points into the 
space where 𝑑 is the degree and 𝑟 is the coefficient. 

𝑝௞ = (𝛾(𝑥, 𝑥ᇱ) + 𝑟)ௗ (2) 
A non-linear connection between the data 

points can be handled effectively using a polynomial 
kernel. High-dimensional data points with lesser 
samples are efficiently handled. Amongst the linear 
and polynomial kernel functions that exist, RBF 
maximizes tuning the hyperparameter functionality 
and is effectively used in SVM for defect prediction 
comparably. Instead of using the empirical method 
for training data, the kernel function produces a set 
of training data independently. The first step to 
implement is to choose the kernel function and map 
to the feature of a dataset to a high dimension space 
H. It is mathematically expressed as Eq (3). 

∅: 𝑥 → 𝐻 
𝑥 → ∅(𝑥) 

(3) 

The classification of the dataset is 
dependent on hyperparameter C. Overfitting the C 
parameter results in unbiased and varied results. 
Fitting the value of C will increase the prediction 
accuracy. The RBF kernel function of SVM is 
implemented as in Eq (4). 

𝑘(𝑝, 𝑞) = exp (−
ห|𝑝 − 𝑞|ห2

2𝜎ଶ
) (4) 

  From Eq.(2), 𝜎 is the hyperparameter and 
||𝑝 –  𝑞||2 is the Euclidean distance calculated 
between the input points 𝑝 and 𝑞. Setting the 
hyperparameter 𝐶 and 𝛾 optimally to find the 
solution is usually a problem. To solve this, tuning 
the parameter is required. A genetic algorithm 

combined with Grey Wolf Optimization becomes a 
powerful mechanism proposed to find the optimal 
parameter value for the hyperparameters of SVM. 

3.2 Genetic Algorithm 
An SVM classifier's gamma parameter 𝛾 

can be adjusted with a genetic approach. The gamma 
parameter controls how much each training sample 
has an impact on the SVM's decision border. The 
gamma value maximizes the SVM classifier's 
performance by employing a genetic algorithm. 

The genetic algorithm (GA) is an adaptive 
search algorithm for the optimization issue. Here 
genetic algorithm proposes a hyperparameter set 
generated randomly and is used as the empirical 
model. Each generated set solution is investigated 
for fitness, knowing its accuracy level. Among the 
generated solution set, the best population is found 
by a pruning procedure that uses Grey Wolf 
Optimization (𝐺𝑊𝑂). 

This metaheuristic algorithm was 
influenced by the ideas of genetics and natural 
evolution. Problems with search and optimization 
are frequently solved with it. GA identifies an ideal 
or nearly ideal solution by iteratively evolving a 
population of candidate solutions. The working of 
GA is provided in Algorithm 1. 

A random population set of solutions are 
taken as and possibly fits into the search space 𝑟 
specified as in Eq (5) 

𝑃௦௘௧ = {𝑝ଵ, 𝑝ଶ, 𝑝ଷ … . 𝑝௡}  (5) 
A fitness function of each chromosome is 

the quality of the chromosome that is the solution's 
correctness that competes with others to prove them 
best and is defined as in Eq (6) where r is the search 
space 

𝑓 = 𝑟 → 𝑅  (6) 
Based on the fitness value of each 

individual, find the selection probability. Consider 
𝑆𝑃(𝑝) as the selected probability of individual 𝑝. 
The 𝐺𝐴 is outlined in Algorithm 1. 

Algorithm 1: GA 
Step 1: Generate a random population set 
Step 2: Initialize population(P) 
Step 3: Evaluate the fitness of each individual in 

the population 
Step 4: While termination condition not met: 

 Select parents from a population(P) 
 Perform Crossover to create offspring 

(CO) 
 Perform Mutation on the offspring 

(MO) 
 Select individuals for the next 

generation based on fitness 
Step 5: Return the best solution 
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One-point Crossover technique is used to 
randomly choose a point along the length of the 
chromosome to transfer between the parents to 
produce kids. The crossover equation is given in Eq 
(7). A new offspring is generated from the two 
randomly selected parents placing a point where the 
genetic material exchanges. 

 
𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔ଵ

= ෍ 𝑃𝑎𝑟𝑒𝑛𝑡௜[𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑃𝑜𝑖𝑛𝑡]

ଶ

௜ୀ଴

 
    

(7) 

 
A mutation process happens among the 

individuals leveraging random change in the 
population. A diverse population is then evolved to 
explore new search space. The Mutation is defined 
as in Eq (8). 

𝑋௜ୀ𝑌௜ + ||𝑚|| ∗ 𝑅 (8) 
Where 𝑋𝑖 is the new mutated individual set, 𝑌𝑖 

represents the chromosomes before Mutation, ||𝑚|| 
is the parameter that controls the mutation change, 
and 𝑅 is the randomly generated range of values for 
Mutation. 
 The fitness value of each population is 
understood to know the next generation's evolution. 
The GA adaptatively optimizes the solution set until 
the termination criterion is met. 

3.3 Grey Wolf Optimization  
Grey Wolf Optimization (GWO) is a 

nature-inspired algorithm obtained from the hunting 
behaviour of Grey Wolves. Grey wolves show 
community behaviour living and hunting as a pack 
of 5-12 wolves together. They organize themselves 
in a hierarchy. The 𝐴𝑙𝑝ℎ𝑎 𝛼 is dominant among and 
is responsible for hunting the Prey and dictates the 
remain. The 𝐵𝑒𝑡𝑎 𝛽 wolf is the second dominant in 
the pack and is responsible for helping the alpha wolf 
make decisions.  

The third dominant in the pack is 𝐷𝑒𝑙𝑡𝑎 𝛿 
wolf. They have to respond to the decisions taken by 
the first two dominants. The remaining        in the 
pack, 𝑂𝑚𝑒𝑔𝑎 𝜔, plays a subordinate role and is the 
least important in the pack. The GW is 
mathematically modelled as the fittest solution to 
any problem as an α wolf and the second-best 
solution as the 𝛽 wolf, the third-best solution as 𝛿 
wolf finally, the rest candidate solutions omega 
wolves. 

The grey wolves exhibit a social hierarchy, 
and their working phase involves 
 Encasing the Prey 
 Surrounding and attacking the Prey to mortal 

 
The 𝐺𝑊𝑂 is outlined in Algorithm 2. 

Algorithm 2: GWO 
Step 1: Initialize the Grey Wolf population 

𝑿𝒊, 𝒘𝒉𝒆𝒓𝒆 𝒊 = 𝟏, 𝟐, 𝟑, … . 𝒏) 
Step 2: Initialize 𝜶, 𝑨 & 𝑪 
Step 3: Evaluate the fitness of individual 

members of the 𝑿𝒊 
Step 4: Assign   

 𝑿𝜶with the first best-fit value 
 𝑿𝜷with the second fit value 
 𝑿𝜹with the third fit value 

Step 5: To 𝒃𝒆𝒈𝒊𝒏 to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 
Step 6: Update the position of 𝑿𝝎 as in Eq 

13,14,15 
Step 7: Calculate the fitness of all search entity 
Step 8: Update the positions of 𝑿𝜶 , 𝑿𝜷 , 𝑿𝜹 
Step 9: Return the 𝑿𝜶 

In the GWO algorithm, hunting takes place in phases 
that are evolved mathematically, as in Eq (7) and Eq 
(8). 
3.3.1 Encasing the Prey 

The primary and foremost phase before 
hunting the Prey is covering them for an attack. The 
𝛼 wolf initiates the process and commands the 𝛽 and 
𝛿 wolves. In the below Eq (9) and Eq (10)  
 

𝐷ሬሬ⃗ = |𝐶. 𝑋⃗௜(𝑡) − 𝑋⃗௜(𝑡)| (9) 
 

𝑋⃗(𝑡 + 1) = 𝑋⃗௜(𝑡) − 𝐴 . 𝐷ሬሬ⃗  (10) 
 

Here 𝐴 and 𝐶 are the vector coefficient, 
𝑡 denotes the present iteration, the vector position of 
the Prey is denoted as 𝑋⃗ଵ, and 𝑋⃗ is the position of the 
Grey Wolf. 
The two vectors 𝐴 and 𝐶 are calculated as in Eq(11) 
and Eq (12) 

𝐴 = 2𝑎⃗. 𝑟ଵ − 𝑎⃗ (11) 

𝐶 = 2. 𝑟ଶ (12) 
where 𝑎⃗ value decreases from 2 to 0 during the 
iterations, and 𝑟ଵ  and 𝑟ଶ are vectors with random 
values between 0 and 1.     
             
3.3.2 Surrounding and Hunting the Prey 

The 𝛼,𝛽 and 𝛿 wolves are positioned in the 
first three places for hunting the Prey, and the 𝜔 
wolves are to be positioned as in Eq.(13) and 
Eq.(14). 
 

𝐷ሬሬ⃗ ఈ = | 𝐶ଵ. 𝑋⃗ఈ − 𝑋⃗ |,  𝐷ሬሬ⃗ ఉ = | 𝐶ଶ. 𝑋⃗ఉ − 𝑋⃗ | 

, 𝐷ሬሬ⃗ ఋ = | 𝐶ଷ. 𝑋⃗ఋ − 𝑋⃗ | 
(13) 

 
𝑋⃗ଵ = 𝑋⃗ఈ − 𝐴ଵ . (𝐷ሬሬ⃗ ఈ), 𝑋⃗ଶ = 𝑋⃗ఉ − 𝐴ଶ . (𝐷ሬሬ⃗ ఉ), 

𝑋⃗ଷ = 𝑋⃗ఋ − 𝐴ଷ . (𝐷ሬሬ⃗ ఋ) 
(14) 
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𝑋⃗(𝑡 + 1) = ሡ ቆ
𝑋⃗௡ + 𝑋⃗௡ାଵ + 𝑋⃗௡ାଶ

3
ቇ

ଷ

௡ୀ଴

 (15) 

In the Eq (11). 𝐴 is a random value between the 
interval value −2𝑎 and 2𝑎. When |𝐴|  <  1 results in 
the exploitation allowing the wolves to attack the 
Prey, and |𝐴| >  1 tends to move from the current 
Prey to a new fittest prey. 

𝐺𝑊𝑂 is a metaheuristics algorithm that 
efficiently optimizes the result for software defect 
prediction. The candidate solutions can still be 
prioritized so that when the 𝛼, 𝛽, and 𝛿 go unfit, the 
next one can take up the 𝛼 position can be decided. 
The grey wolf optimization mimics the 
characteristics of the group and thus is highly 
dependent on each other. The candidate solutions 
can be further sequenced and prioritized by another 
wolf 𝜑. 

3.4 Hyperparameter tuning using Hybrid Genetic 
Algorithm based Grey Wolf optimization for 
SSVM 

The main prerequisite for using SVM is that 
the kernel hyperparameters must be set properly in 
order for SVM to function. The C and 𝛾 kernel 
parameters are present. The functioning capacity of 
SVM is struck by a tradeoff parameter C to increase 
the forecast accuracy and stability. Classification 
accuracy using SVM significantly depends on the 
Radial Basis Function Kernel Gamma parameter 𝛾. 

The architectural flow of the SSVM model 
is shown in Figure 1. This model collaborates the 
power of 𝐺𝐴 and 𝐺𝑊𝑂 for the feature selection and 
hyperparameter tuning of the RBF Kernel in SVM. 
The model starts working with the software defect 
data as the input. The SVM classifier prominently 
classifies the faulty and non-faulty modules from the 
data. Before the classification begins, the raw data is 
cleaned. Data preprocessing involves removing the 
null values and handling the missing values, as they 
may produce inappropriate results when employed. 
Outliers detected are removed. 

Data is transformed into a form that is 
suitable for building an SSVM Model. Any 
categorical data seems to be unfit for the prediction 
model; hence conversion is employed. It is important 
to find the feature from the given data that are highly 
beneficial. The efficiency of the defect prediction 
model enhances with the finest features. SSVM 
model needs the 𝛾 and C parameters to be 
experimented with for the finest fit. The c parameter 
is the control regularization entity that fits the points 
in the search space at a marginal level. A higher 
value of C misclassification is lesser and helps 
obtain less margin. Lowering the value of C leads to 

the misclassifications of the data points with a higher 
margin. SSVM model has experimented with a range 
of values for C. 

 

 
 

Figure 1 : Architectural Flow of SSVM Model for 
Defect Prediction 

The 𝛾 specifies the decision boundary for 
the classification, and the value can be set between 
0.1 to 1. The highest value represents the data points 
closer to the decision boundary, which makes a 
smooth curve; conversely, for the lowest value, the 
data points are away from the decision boundary. 
The selection of the 𝛾 parameter is optimized using 
GA. The GA algorithm involves Crossover and 
Mutation for placing the optimized points in the 
search space. 

The GWO tunes the generated population 
set from the vector space. The fitness function of 
GWO is tuned for several iterations over the wolf 
population. Sort the fitness function of the wolves in 
ASC or DSC order. Fix the optimal population from 
GA for the best three wolves' alpha, beta and delta 
after sorting. The GWO optimizes the best 
population set achieved through GA, and further, the 
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hyperparameters of Support Vector Machine C and 
𝛾 are fined tuned to obtain the best solution for 
Software Defect Prediction (SDP). 

The SSVM model leverages the potential 
data points placing them in the search space. A 
hyperplane is placed with the boundary that provides 
the best results in the software defect prediction.  
 
The 𝑆𝑆𝑉𝑀 is outlined in Algorithm 3. 

Algorithm 3: SSVM 
Step 1: Load Dataset 
Step 2: Implement enhanced GA for feature 

selection 
Step 3: Select feature population set 
Step 4: Perform Crossover and mutate 
Step 5: Point the data in high dimensional search 

space 
Step 6: Initialize the hyperplane value 
Step 7: Set 𝛾 and 𝐶 as in Eq (2) 
Step 8: Optimize the 𝛾 with fitness function as 

in Eq (15) 
 Implement the 𝛼 value to 𝛾 
 Update 𝛽,𝛿,𝜔 

Step 9: Prioritize the candidate solution and set 
𝜑 

Step 10: Repeat Step 9 when 𝛼 goes unfit  
Step 11: Train the SSVM Model and Predict the 

result 
 

4. ABOUT DATASET 

The "MyLyn” and “JDT” dataset about 
software defect prediction is taken from the AEEEM 
(Appraisal-Based Estimation of Effort) repository. A 
dataset created especially for testing evolutionary 
algorithms used in software defect prediction. The 
datasets in the AEEEM repository were gathered 
from several open-source Java software projects. 
AEEEM is a benchmark dataset frequently used in 
software engineering research. The dataset contains 
software artefacts and their defect associated with 
each module.  

A manual inspection is made, and also data 
collected from bug-tracking systems is investigated. 
The dataset is labelled to show whether each artefact 
contains a fault or not. The artefacts are converted 

into software metrics. Researchers use these datasets 
to evaluate the forecasting model created for defect 
prediction. Table 1 describes the datasets from 
AEEEM used for this study. Each of the datasets 
consists of 61 features associated with process 
metrics. 

Table 1 Dataset Description 
AEEEM 
Dataset 

Total  
Features 

Total  
Samples 

Defect  
Artifact 

Non-Defect 
Artifact 

JDT 61 997 206 791 

MyLyn 61 1862 245 1617 

 

5. RESULTS AND DISCUSSION 

5.1. Classification Accuracy Analysis 
Line of Code, Cyclomatic complexity, 

Halstead Complexity and McCabe complexity 
metrics for each module is evaluated from the defect 
dataset. Enhanced GA is used for feature selection; 
out of 61 features, the reliable ones from the dataset 
are filtered. The Support Vector Machine without 
ensemble GA gives an accuracy of 50.83%, and 
48.83% seems to be a lesser accuracy. The enhanced 
GA filters the optimistic feature, and GWO tunes the 
hyperparameter . The SSVM model integrates the 
power of GA and GWO to come out with better 
accuracy. The hyperparameter gets the best-fit value 
by adapting the inspirational hunting phenomena of 
Grey Wolf α. Ten-fold cross-validation is performed 
on the dataset and classified using SVM with gamma 
 = 0.1 and 𝐶 =100. The gamma parameter is set to a 
different range from 0.1 to 1. Better accuracy is 
obtained as 75.30 % in the case of JDT and 77.30 % 
for MyLyn dataset setting 𝛼 parameter. A confusion 
matrix is presented in Table 2 that assesses the 
SSVM model’s performance. The matrix compares 
the SVM, SVM-GA and SSVM models. Henceforth, 
the findings are displayed below. The significant 
improvement attained by the SSVM model 
highlights the efficiency in predicting software 
defects.  

 
 
 
 

Table 2 Classification Accuracy Analysis for SSVM 

Metrics 
JDT MyLyn 

SVM 
SVM-

GA 
SSVM SVM 

SVM-
GA 

SSVM 

TPR  51.74 65.14 77.20 47.75 61.08 81.17 

TNR  49.92 64.87 73.39 49.92 64.87 73.39 

Classification 
Accuracy 

50.83 65.00 75.30 48.83 63.00 77.30 
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The TRP, TNR and Classification Accuracy for the 
SSVM model is shown in Figure 2, with 75.30 % in 
the case of JDT and 77.30 % for MyLyn dataset.  
 

 
 
Figure 2 Classification Accuracy Analysis on JDT 

and MyLyn Data 
 

5.2. F1 Score Analysis 
The F1 score gives a balanced measurement of both 
precision and recall measures. It is the harmonic 
mean of precision and recall. Beforehand the 
precision for any defect module that is projected to 
be positive, precision is the percentage of correctly 
predicted positive instances. Precision is calculated 
below as in Eq. (16) 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(16) 

 
Recall counts how many positive instances were 
properly predicted out of all the positive instances. 
The metric is calculated as in Eq (17) 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (17) 

 
F1 metric significantly doubles the product of the 
correctly predicted positive value and the count of 
actual positive instances from the positive instances. 
The value is calculated from Eq (18)  
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (18) 

 
It is observed from the below Figure 3 that the 
convergence of the F1 Score for the model SSVM 
over the SVM, SVM-GA has significantly 
improved. A tabulated view of the F1 Score 
comparison is presented in Table 3, which exhibits a 
75.88 % increase in accuracy for JDT data and 78.26 
% for the MyLyn data. Enhancement of the SVM 

model by hybridizing GA and GWO has proved to 
be imminent. 

 
 

Table 3 F1 Score Analysis for SSVM 
Classifiers F1 Score 

JDT MyLyn 
SVM 51.32 48.31 
SVM-GA 64.73 61.95 

SSVM 75.88 78.26 
 

 
 

Figure 3a F1 Score Analysis of SSVM Model on 
JDT Data 

 

 
 

Figure 3b : F1 Score Analysis of SSVM Model on 
MyLyn Data 

6. CONCLUSION 

Software defect prediction is necessary for 
any software’s quality improvement. This paper 
proposes a Sophisticated Support Vector Machine 
(SSVM) model that combines the powerful features 
of Genetic Algorithm and Grey Wolf Optimization. 
An investigation is done on the dataset to address the 
representativeness issue, and appropriate defect data 
is selected. The proposed SSVM model is inspected 
on the defect data from JDT and MyLyn Java 
Projects from AEEEM repository. A genetic 
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algorithm is involved in the feature selection 
process. A support Vector Machine is used to train 
the model with the defect data. The prediction of 
faulty and non-faulty classification of modules is 
improvised by using a GWO algorithm that finds the 
optimum fitness value of 𝛾 tuning hyperparameter. 
The performance of SSVM is measured using True 
Positive Rate, False Positive Rate, Confusion Matrix 
and F1 Score. The experimental results show a 
higher accuracy rate of 75.30% and 77.30% 
comparing the traditional SVM and SVM – GA. The 
challenge of dataset representatives has been 
achieved by proposing the SSVM model. A temporal 
dynamic problem still exists, which significantly 
affects the performance of prediction models that 
will be discussed in future work. 
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