
Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7228

REINFORCEMENT LEARNING BASED LOAD BALANCING
FOR FOG-CLOUD COMPUTING SYSTEMS: AN

OPTIMIZATION APPROACH

MUSTAFA AL-HASHIMI1, AMIR RIZAAN RAHIMAN2, ABDULLAH MUHAMMED3, NOR
ASILAH WATI HAMID4

1,2,3,4 Department of Communication Technology and Networks, Universiti Putra Malaysia (UPM), Serdang

43400, Malaysia

E-mail: 1gs59883@student.upm.edu.my, 2amir_r@upm.edu.my, 3abdullah@upm.edu.my,
4asila@upm.edu.my

ABSTRACT

Fog-cloud computing is a promising approach to enhance distributed systems’ efficiency and performance.
Though, managing resources and balancing workloads in such environments remains challenging due to their
inherent complexity and dynamic nature. The need for effective load-balancing techniques in fog-cloud
computing systems is crucial to optimize resource allocation, minimize delays, and maximize throughput.
This article presents a reinforcement learning (RL)-based load balancing system for fog-cloud computing,
employing two RL agents: one for allocating new tasks to fog or cloud nodes and another for migrating tasks
between fog nodes to ensure fair distribution and increased throughput. This study derived up with novel
state, action, and reward models for both agents, facilitating collaboration during the load-balancing process.
Three types of rewards for the RL agents are explored: single objective, multi-objective under non-dominated
sorting, and multi-objective under lexicographical sorting. The performance of these methods is assessed
using metrics such as average utilization, number of tasks completed, serve rate, and delay. The experimental
results showed that RL-based scheduling methods, particularly the Reinforce Learning Multiple Objective
(RLRLM) with RL-based migration method outperforms greedy on CPU (GR_c) and greedy on reliability
(GR_r) methods across all performance metrics. The choice of migration method and reward type also
influences performance. These finding highlight RL’s potential in optimizing fog-cloud computing and offer
valuable insights for future research and practical applications in this field.

Keywords: Fog-Cloud Computing, Load Balancing, Reinforcement Learning, Resource Allocation, Multi-
Objective Optimization.

1. INTRODUCTION

Fog computing is a modern method that
expands cloud computing by placing computing
resources closer to the network's edge [1]. It has
become crucial with the growth of the Internet of
Things (IoT) and the need for rapid data processing.
Moreover, the fog computing efficiently manages
the massive data generated by IoT devices [2]. By
processing, storing, and analyzing data closer to the
source, it reduces delays and bandwidth
requirements on cloud computing. Furthermore, it
improves reliability and security by utilizing
resources from edge devices like routers and
gateways. Fog computing is used in various
application, such as healthcare, transportation, and
smart cities. For example, in healthcare, it allows
real-time patient monitoring, leading to early

diagnosis and treatment [3 - 5]. In transportation, fog
computing plays a vital role in advancing
autonomous vehicles by enabling rapid data
processing and analysis. In smart cities, it helps
manage traffic, conserve energy, and improve public
safety.

Managing fog networks and distributing

tasks between fog and cloud is crucial for achieving
optimal performance in fog computing [6]. This
involves deploying resources and assigning tasks
based on factors like workload, network latency, and
resource availability [7]. A major challenge in
managing the fog is load balancing, ensuring an even
distribution of computational work across the
network to prevent nodes from becoming overloaded
[8]. To address this challenge, fog computing
management systems use techniques like task

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7229

migration, resource allocation, and workload
balancing algorithms [9]. These techniques enable
fog nodes to collaborate, distributing tasks based on
their availability, processing power, and network
connectivity. The dynamic nature of fog networks,
their ability to adapt to changes in workload and
network conditions, makes them appealing for
various applications [10]. However, managing fog
computing becomes challenging due to this dynamic
nature, which demands a dynamic-aware approach
for effective network operation. Factors such as
device mobility and changing network conditions
influence the fog network's dynamic nature. For
instance, in a smart city, the number and location of
connected devices may change over time, leading to
fluctuations in workload and available resources.

This article specifically concentrates on the

dynamic nature of fog computing, particularly
concerning fog network management and load
balancing. The main objective is to explore and
assess how reinforcement learning (RL) can be
utilized as a possible solution to tackle these
challenges. To enhance network performance in fog
computing, it's essential to have dynamic-aware
management systems that can adapt to changing
network conditions like latency and bandwidth,
influenced by the number and location of connected
devices. These systems utilize techniques such as
adaptive resource allocation, dynamic workload
balancing, and network-aware task migration.
Adaptive resource allocation adjusts the resources
assigned to different fog nodes based on their
workload and availability while dynamic workload
balancing redistributes tasks among fog nodes,
considering their current workload and network
conditions.

Reinforcement Learning (RL) is an

artificial intelligence approach that holds promise for
fog computing management. It can optimize task and
resource allocation, as well as load balancing, by
learning from interactions with the environment
[11]. RL's strength lies in its ability to adapt to the
dynamic and unpredictable fog computing
environment, where network conditions and
workload change over time. This enables fog nodes
to learn from experiences and enhance network
performance and resource usage accordingly. This
article focuses on using RL to address the dynamic
challenges of fog computing, particularly in fog
cloud management and load balancing.

The rest of the article is organized as

follows. Section 2 presents the contributions of the

study. Next, the study background is provided in
Section 3. Then, Section 4 explains the used
methodology. The experimental work and results are
covered in Section 5. Section 6 discusses the finding
and Section 7 concludes the study and outlines the
future work.

2. CONTRIBUTIONS

This article makes significant contributions

to the field of fog-cloud computing and load
balancing.

i. Introducing a novel load-balancing system that

utilizes RL agents (allocation and migration) to
optimize resource allocation in fog-cloud
computing environments.

ii. Proposing innovative state, action, and reward
models for both RL agents, facilitating
collaboration and coordination during the load-
balancing process.

iii. Exploring three different reward models for the
RL agents: single objective, multi-objective
under non-dominated sorting, and multi-
objective under lexicographical sorting.

iv. Comparing the proposed load balancing system
with state-of-the-art approaches and validating
the results using standard evaluation metrics and
statistical analysis.

3. BACKGROUND

In recent years, RL approaches have gained

popularity in scheduling and resource allocation for
distributed systems. Researchers have introduced
several RL-based algorithms to optimize resource
usage, enhance system performance, and reduce
energy consumption in fog computing and other
distributed systems. These algorithms are often
combined with other meta-heuristic searching
methods.

For example, in [12], a combination of
Mayfly Taylor Optimization and Deep-Q-Network
(DQN) was employed to optimize a fitness function
that considers energy consumption, service level
agreement verification, and cost. However, a notable
issue with such approaches is that the meta-heuristic
algorithms often demand a significant amount of
search time to discover the best solution. The study
conducted by [13] used a RL approach with random
choice to manage tasks within deadlines. However,

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7230

a limitation of their approach is the use of random
selection, which may not produce optimal results.
Additionally, achieving optimal performance in
various environments with their approach requires
fine-tuning of hyperparameters and reward
functions, which can be time-consuming and
challenging.

In [14], a fog layer was incorporated to

achieve task execution balance. This layer consists
of two distinct modules: the RL Allocation algorithm
(RLA) and RL Migration algorithm (RMA). These
modules employ the Q-learning approach and
determine rewards based on specific metrics,
including process size, RAM, CPU usage, and
completion rate, collectively referred to as "process
weights." However, using these discrete key
modules may result in a loss of information when
selecting the optimal task for execution and
migration.

In [15], the authors used Q-learning with a

discrete state representation, considering factors like
the task's load level, sibling tasks, and parent tasks.
However, this approach faced criticism for using an
incomplete state representation, violating the
Markov Decision Process (MDP) assumption.
Additionally, [16] suggested a deep RL-based
approach for resource provisioning in fog
computing, while [17] proposed an energy-efficient
task scheduling method using deep RL. Both
approaches have limitations related to quantization
of node index, leading to information loss, and
longer waiting times for task scheduling, due to task
prioritization. Additionally, [18] suggested an RL-
based approach for scheduling live migration from
underutilized hosts, but it lacked the decentralization
of wait and migrate states, impacting task scalability.

In [19], a task scheduling method for load-

balanced fog computing using Q-learning was
introduced. However, the formulation had
limitations as it oversimplified available resources,
security level, and power processing for each node,
which could lead to security and latency concerns.
Another work, [20], proposed an RL-based load-
balancing algorithm for fog networks. Its goal was to
maximize utility while minimizing processing delay
and overload probability. However, it had a bias
issue because it depended on the exploration policy,
affecting the number of tasks offloaded to adjacent
fog nodes. The authors of [21] presented a deep RL
approach for scheduling IoT applications in a fog
computing environment. The approach aims to
optimize task scheduling and resource allocation to

improve overall fog computing performance while
reducing time and cost.

Overall, RL-based scheduling and resource

allocation algorithms have demonstrated
encouraging outcomes in enhancing the performance
and efficiency of distributed systems, especially in
fog computing environments. Nevertheless, certain
challenges persist, including the requirement for
ample training data, fine-tuning of hyperparameters
and reward functions, and ensuring scalability and
adaptability of the proposed methods across diverse
scenarios and applications.

4. METHODOLOGY

In this study, the research design focuses on
developing the following algorithms concerning
scheduling and migration. By providing suitable and
precise inputs for each algorithm, the study aims to
generate reliable outputs that can be utilized in
subsequent algorithms, thereby ensuring the validity
and reliability of the results.

4.1. Scheduling

The primary scheduling task as outlined in
Algorithm 1. The algorithm takes various inputs and
generates essential scheduling outputs. The schedule
begins by retrieving the number of tasks from the
scheduler's task queue. Depending on the scheduling
method, it either uses the RandomScheduler()
method or the RLScheduler() method with specific
parameters (e.g., reward type, scheduling tasks,
sorting method, time counter, and servers). Next, the
algorithm invokes the schedule() function of the
scheduler's algorithm, using the scheduling tasks and
time counter as inputs and produce a list containing
selected servers along with the tasks assigned to
them as output.

Algorithm 1 Scheduling task

Input:
(1) schedulingMethod
(2) migrationMethod
(3) rewardType
(4) nTask: tasks number to be scheduled
(5) sortingMethod: in the case of multi-objective-reward

Output:
(1) selectedServers: the selected servers and their newly
 assigned tasks.
(2) serversToMigrateFrom: the selected servers to migrate
 from.

Start Algorithm
1: schedulingTasks = get nTask task from self.tasksQueue
2: if schedulingMethod == 'Random' then

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7231

3: self.algorithm = RandomScheduler()
4: else
5: self.algorithm = RLScheduler(rewardType,
 sortingMethod, timeCounter, servers)
6: end if
7: selectedServers =
 self.algorithm.schedule(schedulingTasks)
8: serversToMigrateFrom =
 self.Migration(migrationMethod)
End Algorithm

Next, the algorithm calls the Migration()

method of the scheduler, using the migration
method, time counter, and servers as inputs. This
method generates a list of servers to migrate from.
Finally, the algorithm produces the output, which
includes the list of selected servers with their newly
assigned tasks and the list of servers to be migrated
from.

4.2. Migrator

Algorithm 2 describes the migration task,

which takes several inputs and produces information
related to server migration. It begins by sorting the
task queue to give priority to delayed tasks.
Depending on the migration method specified, the
algorithm uses either the RandomMigrator()
method or the RLMigrator() method as the migrator
method of the scheduler.

Algorithm 2 Migration task

Input:
(1) migrationMethod
(2) timeCounter
(3) servers

Output:
(1) serversToMigrateFrom: the selected servers and their

newly assigned tasks

Start Algorithm
1: self.tasksBuffeer.sort('momentGeneration')
2: if migrationMethod == 'Random' then
3: self.migrator = RandomMigrator()
4: else if migrationMethod == 'RL' then
5: self.migrator = RLMigrator()
6: end if
7: serversToMigrateFrom =

self.migrator.migrate(timeCounter, servers,
delayPeriod=0, self.bandwidth)

End Algorithm

Next, the algorithm invokes the migrate()

function of the migrator, passing the time counter,
servers, delay period (set to 0 for no delay), and
scheduler bandwidth as inputs. The function
produces a list that includes selected servers to
migrate from and their newly assigned tasks. Finally,
the algorithm produces the output, consisting of the

list containing selected servers to migrate from along
with their newly assigned tasks.

4.3. RL Scheduler

Algorithm 3 presents the RL scheduler
algorithm, which aims to optimize the scheduling
process. The scheduler takes multiple inputs and
generates servers for assigning new tasks, as oulined
in the algorithm. The algorithm begins by obtaining
the current state of the RL environment using the
RLScheduler's getState() function. If the current
time counter exists in the list of Q-table updates, the
algorithm updates the Q-table using the
RLScheduler's updateQtable() function,
incorporating inputs such as the current server status,
time counter, reward type, and sorting method. The
resulting reward is then added to the overall rewards
of the RLScheduler.

Algorithm 3 RL Scheduler task

Input:
(1) rewardType
(2) schedulingTasks : tasks to be scheduled
(3) timeCounter
(4) servers: snapshot of the servers’ status.

Output:
(1) selectedServers: the selected servers and their newly
assigned tasks

Start Algorithm
1: currentState = self.getState()
2: if timeCounter in self.QtableUpdates then
3: reward = self.updateQtable(servers, timeCounter,
 rewardType)
4: self.overAllRewards.add(reward)
5: end if
6: for task in schedulingTasks do
7: capableServers = any server that can still receive
 tasks
8: if randomNumber < self.epsilon then
9: action = Random(capableServers)
10: else
11: action =

argmax(self.Qtable[currentState][capableServers])
12: end if
13: update servers’ status after the action
14: self.QtableUpdates[timeCounter +
 self.delayPeriod].add(currentState, action)
15: selectedServers.add(task, action)
17: end for
18: self.epsilon = max(self.epsilon * self.decay,
 self.minEpsilon)
End Algorithm

For each task in the scheduling tasks, the

algorithm determines the servers capable of handling
the task. If a randomly generated number is less than
the RLScheduler's epsilon value, the algorithm
chooses a server randomly from the eligible ones.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7232

Otherwise, it selects the server with the highest Q-
value for the current state and eligible servers. The
algorithm updates the server status by executing the
chosen action and includes the current state and
action in the list of Q-table updates for the next time
step.

After that, the algorithm adds the chosen
server and task to the list of selected servers with
their newly assigned tasks. Then, the algorithm
updates the RLScheduler's epsilon value by picking
the larger value between the product of the current
epsilon value and the decay factor and the minimum
epsilon value. This updated epsilon value is then
used in the server selection process for the next
scheduling iteration.

Algorithm 4 UpdateQtable task

Input:
(1) servers
(2) timeCounter
(3) rewardType

Start Algorithm
1: nextState = self.getState()
2: reward = self.Reward(rewardType, servers)
3: for state,action in self.QtableUpdates[timeCounter] do
4: if rewardType == ‘Multi-Objective’ then
5: for objective in self.numberObjectives) do
6: TD = reward[objective] + self.gamma *

max(self.QtableMO[nextState][objective]) –
self.QtableMO[state, action][objective]

7: self.QtableMO[state, action][objective] +=
(self.learningRate * TD)

8: end for
9: else
10: TD = reward + self.gamma *

max(self.QtableMO[nextState])-
self.QtableMO[state, action]

11: self.Qtable[state, action] += (self.learningRate *
TD)
12: end if
13: end for
14: if rewardType == ‘Multi-Objective’ then
15: self.sortQtable(state, self.sortType)
16: end if
End Algorithm

Algorithm 4 handles the Q-table updating

process. The algorithm modifies the Q-table based
on the current state, selected action, reward type, and
sorting method (if multi-objective reward is
involved). The algorithm starts by retrieving the next
state of the environment from the RL scheduler
instance. It then calculates the reward for the current
state and adds it to the Q-table, using either the
single-objective or multi-objective approach.

In the multi-objective case, it computes the

temporal difference (TD) for each objective by
considering the maximum Q-value for the next state
and the learning rate. It then updates the Q-value for

the current state-action pair for each objective. For
the single-objective case, it also computes the TD
using the maximum Q-value for the next state and
the learning rate and updates the Q-value for the
current state-action pair. After updating the Q-table,
the algorithm checks if the reward type is multi-
objective. If it is, the Q-table is sorted using the
specified sorting method.

4.4. Reward Update

Algorithm 5 describes the reward update

process. First, the algorithm checks the rewardType
to determine the specific reward calculation needed.
If the type is migration-reward, it calculates the
difference between the old-utilization and new-
utilization for servers that were overloaded and
required migration to balance the load. On the
contrary, if multi-objective reward, the algorithm
computes a list of multiple reward values which
include the sigmoid function of the server standard
utilization deviation and queue occupation, as well
as the server utilization median and queue
occupation. If the rewardType is neither "migration-
reward" nor "multi-objective reward," the algorithm
calculates the sigmoid function of the server's
utilization standard deviation.

Algorithm 5 Rewarding task

Input:
(1) rewardType
(2) servers

Start Algorithm
1: if rewardType == 'migration-reward' then
2: reward = old-utilization - new-utilization for all the

servers that were overloaded and we perform
migration to.

3: else if rewardType == 'Multi-objective' then
4: reward = [sigmoid(std(servers.Utilization)),
sigmoid(std(servers.queueOccupation),
5: median(servers.Utilization),
 median(servers.queueOccupation)]
6: else
7: reward = sigmoid(std(servers.Utilization))
8: end if
End Algorithm

Algorithm 6 outlines the task of the

sortQtable function. This algorithm is essential in
the RLScheduler to arrange the Q-table based on the
provided state using the specified sortingMethod
function. If the sortingMethod is set to 'NDS' (non-
dominated sorting), the function employs the
"nonDominatingSorting" method from the
RLScheduler (Algorithm 3) instance. This function
assigns ranks to each row in the Q-table using non-
dominated sorting, a technique useful for handling

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7233

multi-objective optimization problems. Non-
dominated sorting groups solutions into different
levels of dominance, assisting in identifying the best
solutions. Alternatively, if the function is set to any
other value, it uses the "lexographicalSorting"
method of the RLScheduler instance. This method
assigns ranks to each row in the Q-table using
lexicographic sorting, which is a technique for
sorting elements based on multiple criteria in order
of importance.

After determining the ranks, the function

updates the Q-table for the given state with the new
ranks. This process enhances the efficiency and
effectiveness of the RLScheduler by organizing the
Q-table based on the chosen sorting method.

Algorithm 6 SortQtable task

Input:
(1) state
(2) sortType

Start Algorithm
1: if sortType == 'NDS' then
2: ranks = self.nonDominatingSorting(self.QtableMO)
3: else
4: ranks = self.lexographicalSorting(self.QtableMO)
5: end if
6: update self.Qtable[state] with the new ranks
End Algorithm

4.5. Migrate Agent

The Migrate RL algorithm aims to handle

changing server workloads by moving tasks between
servers. In Algorithm 7, the process starts by
obtaining the current environment state and
checking if it's time to update the Q-table. If an
update is needed, the algorithm calculates the reward
for the previous action and adds it to the overall
reward. Next, the algorithm selects a set of servers
with tasks to migrate and picks an action using the
Q-table. If a randomly generated number is less than
the exploration probability, a random action is
chosen; otherwise, the action with the highest Q-
value is selected. This chosen action indicates the
server from which a task will be moved, and the
heaviest task is selected for migration.

Afterward, the algorithm updates the Q-

table with the current state and chosen action for this
period. The servers and devices requiring migration
are stored in a data structure for future use. Finally,
the exploration probability is reduced using a decay
factor to ensure the algorithm eventually selects the
best action. This process continues in a continuous
background loop, where the algorithm makes

decisions based on the current environment state,
updates the Q-table, and selects the optimal action
for task migration.

Algorithm 7 Migrate RL task

Input:
(1) timeCounter
(2) servers : snapshot of the servers status.
(3) delayPeriod: when to get the reward.
(4) bandwidth: to calculate the migration cost

Output:
(1) serversToMigrateFrom: the selected servers and the
device that we will migrate its task

Start Algorithm
1: currentState = self.getState()
2: if timeCounter in self.QtableUpdates then
3: reward = self.updateQtable(servers, timeCounter,
 rewardType='migration-reward')
4: self.overAllRewards.add(reward)
3: end if
4: for i in len(servers)/3 do
5: capableServers = any server that has a task to
 migrate
6: if randomNumber < self.epsilon then
7: action = Random(capableServers)
8: else
9: action =
 argmax(self.Qtable[currentState][capableServers])
10: end if
11: device = action.getHeaviestTask()
12: self.QtableUpdates[timeCounter +
 delayPeriod].add(currentState, action)
13: serversToMigrateFrom.add(action, device)
14: end for
15: self.epsilon = max(self.epsilon * self.decay,
 self.minEpsilon)
End Algorithm

5. EXPERIMENTAL WORKS AND

RESULTS

The experimental section is divided into
two parts. In the first part (5.1), we present the
experimental design, and in the second part (5.2), we
present the experimental results and analysis.

5.1 Experimental Design

For simulation the training was executed on
Windows 11 OS with core i7 10 gen and RAM 16 G.
The parameters that were used are depicted in Table
1. The experiment discussed evaluates four different
scheduling methods in the context of fog cloud
computing optimization RL schedulers and RL
migrators. These methods are GR_c (Greedy based
on CPU), GR_r (Greedy based on Reliability),
RLRM (Random Multi-objectives), and RLRLM
(RL Multi-objectives). The performance of these

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7234

methods is assessed using metrics such as average
utilization, number of tasks completed, serve rate,
and delay.

Table 1. Parameters for the experimental design

Parameters Value
𝜀 0.99

DECAY 0.999
𝜀௠௜௡ 0.1
𝛾 0.5
𝛼 0.6

DELAY PERIOD 2

Each of them is explain as below:

i. GR_c prioritizes tasks by considering the
CPU utilization of servers.

ii. GR_r prioritizes tasks based on the
reliability of servers.

iii. RLRM employs RL for scheduler and
random migration for migrator with multi-
objective reward model.

iv. RLRS – employs RL for scheduler and
random for migrator. It uses single
objective function for reward.

v. RLRLM utilizes RL to optimize multiple
objectives scheduler and migrator. It uses
multi-objective function for rewarding.

5.2 Results and Analysis

The evaluation is summarized in Table 2,
which provides details of the performance
assessment used in this study. To assess the
effectiveness of the methods, the experiment
examines the average server utilization in scenarios
with varying CPU capacities. Additionally, the
performance of these methods is evaluated using a
reward-based approach, where the reward is
determined based on either migration or multiple
objectives.

Here are the performance metrics
observations:

i. Average utilization: RLRLM achieved the
highest average utilization at 88.63%,
followed closely by RLRM at 83.40% and
RLRS at 83.71%. In comparison, GR_c had
an average utilization of 80.25%, while

GR_r had a much lower average utilization
of only 51.84%.

ii. Tasks completed: RLRLM achieved the

highest number of completed tasks at 9981,
followed by RLRM with 9607, and RLRS
with 9671. In comparison, GR_c completed
8962 tasks, while GR_r had a much lower
completion rate.

iii. Serve rate: Higher values indicating that

tasks were completed more quickly.
RLRLM had the highest serve rate at 0.725,
followed by RLRS at 0.703, and RLRM at
0.698. In comparison, GR_c had a serve
rate of 0.651, while GR_r had a serve rate
of only 0.361.

iv. Delay: Shows the average delay between

when a task was submitted and when it was
completed, with lower values indicating
that tasks were completed more quickly.
GR_r had the lowest delay at 100.215,
followed by RLRLM at 58.071, and RLRS
at 62.687. In comparison, RLRM had a
delay of 62.700, while GR_c had a delay of
71.777.

Table 2. Performance metric for different scheduler types

Methods
Avg

Utilization
(%)

Task

Serve
Rate
(task/
ms)

Delay
(ms)

RLRM_ 83.40 9607 0.70 62.70
RLRLM 88.63 9981 0.73 58.07
RLRS 83.71 9671 0.70 62.69
GR_r 51.84 4961 0.36 100.22
GR_c 80.25 8962 0.65 71.78

From the numerical values, it is evident that

the RL-based methods generally performed better
than the greedy-based methods concerning average
utilization, the number of completed tasks, serve
rate, and delay. Specifically, RLRLM, utilizing RL
for multiple objectives, outperformed RLRM, which
used reinforcement learning for a single objective.
The results also indicate that the choice of migration
method and reward type can influence performance.
As mentioned earlier, both RLRM and RLRLM use
RL for scheduling with the difference of employing
random migrators for RLRM.

For a more detailed analysis, we provide the
time series data for each metric, including delay,
average energy consumption, number of failed
devices, and throughput, for both RLRM and

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7235

RLRLM. The results indicate that the number of
waiting tasks in RLRLM is lower than in RLRM.
Additionally, the energy consumption in RLRLM is
slightly lower by approximately 5 × 10-9 watt
compared to RLRM, but it is still equivalent. The
throughput remains stable for both RLRLM and
RLRM, consistently reaching between 90% to
100%.

a) RLRM

b) RLRLM

Figure 1 Time series of evaluation metrics for developed

RLRM and RLRLM

6. DISCUSSION

Both RLRM and RLRLM consistently

outperform the greedy-based methods in terms of
average utilization, completed tasks, serve rate, and
delay. Notably, RLRLM, which optimizes multiple
objectives, exhibits even better performance than
RLRM, which focuses on a single objective. These
findings support existing literature advocating for
the effectiveness of reinforcement learning-based

methods in fog cloud computing optimization.
Moreover, this study goes further by demonstrating
the clear advantage of multi-objective optimization.
The significant performance improvement of
RLRLM emphasizes the potential of RL-based
methods in this field, filling a crucial gap in the
literature where the advantages of such methods
have not been thoroughly explored.

7. CONCLUSION AND FUTURE WORKS

This study introduces a new load-balancing

system that optimizes fog-cloud computing using the
RL approach. It employs two RL agents—one for
task allocation to fog or cloud nodes and another for
task migration between fog nodes, aiming for
fairness and higher throughput. Unique models for
state, action, and reward functions enable effective
collaboration in the load-balancing process. The
study explores three types of rewards for the RL
agents: single-objective, multi-objective with non-
dominated sorting, and multi-objective with
lexicographical sorting.

Experimental results reveal that RL-based

scheduling methods outperform greedy-based
methods across various performance measures.
However, this study has limitations. The
experimental setup focuses primarily on fog-cloud
computing systems and may not fully generalize to
other distributed systems. The RL agents' specific
state, action, and reward models might be optimal
only for certain scenarios. There are also knowledge
gaps in exploring reinforcement learning techniques'
applications and limitations in fog-cloud computing
optimization.

Future work can delve into additional

optimization metrics like security and privacy and
investigate scalability and adaptability with different
fog-cloud computing setups. Moreover, exploring
more robust and adaptable state, action, and reward
models for the RL agents can further enhance the
system performance. This research's significance
lies in its potential to improve efficiency in the
rapidly growing domain of fog-cloud computing and
provide a strong foundation for future investigations
into RL-based load balancing solutions in this field.

REFERENCES

[1] H. Abreha, C. Bernardos, … A. O.-… J. of

A. H., and undefined 2021, “Monitoring in
fog computing: state-of-the-art and research
challenges,” inderscienceonline.com, vol.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7236

36, no. 2, p. 114, 2021, doi:
10.1504/ijahuc.2021.113384.

[2] H. F. Atlam, R. J. Walters, and G. B. Wills,
“Fog computing and the internet of things: A
review,” Big Data and Cognitive
Computing, vol. 2, no. 2, pp. 1–18, Jun.
2018, doi: 10.3390/BDCC2020010.

[3] N. Mohamed, J. Al-Jaroodi, S. Lazarova-
Molnar, and I. Jawhar, “Applications of
integrated iot-fog-cloud systems to smart
cities: A survey,” Electronics (Switzerland),
vol. 10, no. 23, Dec. 2021, doi:
10.3390/ELECTRONICS10232918.

[4] M. M. Kamruzzaman, B. Yan, M. N. I.
Sarker, O. Alruwaili, M. Wu, and I.
Alrashdi, “Blockchain and Fog Computing
in IoT-Driven Healthcare Services for Smart
Cities,” J Healthc Eng, vol. 2022, 2022, doi:
10.1155/2022/9957888.

[5] P. Singh, R. K.-I. Software, and undefined
2022, “A software‐based framework for the
development of smart healthcare systems
using fog computing,” Wiley Online
Library, 2022, doi: 10.1049/sfw2.12081.

[6] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah,
K. Munir, and H. Ijaz, “A job scheduling
algorithm for delay and performance
optimization in fog computing,” Concurr
Comput, vol. 32, no. 7, Apr. 2020, doi:
10.1002/CPE.5581.

[7] M. Haghi Kashani, A. M. Rahmani, and N.
Jafari Navimipour, “Quality of service-
aware approaches in fog computing,”
International Journal of Communication
Systems, vol. 33, no. 8, May 2020, doi:
10.1002/DAC.4340.

[8] M. Al-Khafajiy, T. Baker, H. Al-Libawy, …
Z. M.-F. G., and undefined 2019,
“Improving fog computing performance via
fog-2-fog collaboration,” Elsevier,
Accessed: May 07, 2023. [Online].
Available:
https://www.sciencedirect.com/science/artic
le/pii/S0167739X18331868

[9] G. S. S. Chalapathi, V. Chamola, A. Vaish,
and R. Buyya, “Industrial internet of things
(iiot) applications of edge and fog
computing: A review and future directions,”
Advances in Information Security, vol. 83,
pp. 293–325, 2021, doi: 10.1007/978-3-030-
57328-7_12.

[10] R. K. Naha, S. Garg, and M. B. Amin,
“Fuzzy Logic-based Robust Failure
Handling Mechanism for Fuzzy Logic-
based Robust Failure Handling Mechanism

for Fog Computing,” arXiv preprint
arXiv:2103.06381., Mar. 2021, Accessed:
Apr. 20, 2021. [Online]. Available:
http://arxiv.org/abs/2103.06381

[11] D. Ha and Y. Tang, “Collective intelligence
for deep learning: A survey of recent
developments,” Collective Intelligence, vol.
1, no. 1, p. 263391372211148, Aug. 2022,
doi: 10.1177/26339137221114874.

[12] G. Shruthi, M. R. Mundada, B. J. Sowmya,
and S. Supreeth, “Mayfly Taylor
Optimisation-Based Scheduling Algorithm
with Deep Reinforcement Learning for
Dynamic Scheduling in Fog-Cloud
Computing,” Applied Computational
Intelligence and Soft Computing, vol. 2022,
2022, doi: 10.1155/2022/2131699.

[13] G. Mattia, R. B.-2022 I. I. conference on,
and undefined 2022, “On real-time
scheduling in Fog computing: A
Reinforcement Learning algorithm with
application to smart cities,”
ieeexplore.ieee.org, doi:
10.1109/PerComWorkshops53856.2022.97
67498.

[14] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A.
Ali, and S. H. Ali, “A load balancing and
optimization strategy (LBOS) using
reinforcement learning in fog computing
environment,” J Ambient Intell Humaniz
Comput, vol. 11, no. 11, pp. 4951–4966,
Nov. 2020, doi: 10.1007/S12652-020-
01768-8.

[15] A. Orhean, F. Pop, I. R.-J. of P. and D.
Computing, and undefined 2018, “New
scheduling approach using reinforcement
learning for heterogeneous distributed
systems,” Elsevier, Accessed: May 05,
2023. [Online]. Available:
https://www.sciencedirect.com/science/artic
le/pii/S0743731517301521

[16] J. Santos, T. Wauters, … B. V.-2021 I., and
undefined 2021, “Resource provisioning in
fog computing through deep reinforcement
learning,” ieeexplore.ieee.org, Accessed:
May 07, 2023. [Online]. Available:
https://ieeexplore.ieee.org/abstract/docume
nt/9464049/

[17] S. Swarup, E. M. Shakshuki, and A. Yasar,
“Energy Efficient Task Scheduling in Fog
Environment using Deep Reinforcement
Learning Approach,” Procedia Comput Sci,
vol. 191, pp. 65–75, 2021, doi:
10.1016/J.PROCS.2021.07.012.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7237

[18] M. Duggan, J. Duggan, E. Howley, E. B.-M.
Computing, and undefined 2017, “A
reinforcement learning approach for the
scheduling of live migration from under
utilised hosts,” Springer, vol. 9, no. 4, pp.
283–293, Dec. 2017, doi: 10.1007/s12293-
016-0218-x.

[19] M. M. Razaq, S. Rahim, B. Tak, and L.
Peng, “Fragmented Task Scheduling for
Load-Balanced Fog Computing Based on Q-
Learning,” Wirel Commun Mob Comput,
vol. 2022, 2022, doi:
10.1155/2022/4218696.

[20] J.-Y. Baek, G. Kaddoum, S. Garg, K. Kaur,
and V. Gravel, “Managing Fog Networks
using Reinforcement Learning Based Load
Balancing Algorithm,” pp. 15–18, 2019.

[21] P. Gazori, D. Rahbari, and M. Nickray,
“Saving time and cost on the scheduling of
fog-based IoT applications using deep
reinforcement learning approach,” Future
Generation Computer Systems, vol. 110, pp.
1098–1115, 2020, doi:
10.1016/j.future.2019.09.060.

