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ABSTRACT 
 

Fog-cloud computing is a promising approach to enhance distributed systems’ efficiency and performance. 
Though, managing resources and balancing workloads in such environments remains challenging due to their 
inherent complexity and dynamic nature. The need for effective load-balancing techniques in fog-cloud 
computing systems is crucial to optimize resource allocation, minimize delays, and maximize throughput. 
This article presents a reinforcement learning (RL)-based load balancing system for fog-cloud computing, 
employing two RL agents: one for allocating new tasks to fog or cloud nodes and another for migrating tasks 
between fog nodes to ensure fair distribution and increased throughput. This study derived up with novel 
state, action, and reward models for both agents, facilitating collaboration during the load-balancing process. 
Three types of rewards for the RL agents are explored: single objective, multi-objective under non-dominated 
sorting, and multi-objective under lexicographical sorting. The performance of these methods is assessed 
using metrics such as average utilization, number of tasks completed, serve rate, and delay. The experimental 
results showed that RL-based scheduling methods, particularly the Reinforce Learning Multiple Objective 
(RLRLM) with RL-based migration method outperforms greedy on CPU (GR_c) and greedy on reliability 
(GR_r) methods across all performance metrics. The choice of migration method and reward type also 
influences performance. These finding highlight RL’s potential in optimizing fog-cloud computing and offer 
valuable insights for future research and practical applications in this field. 

Keywords: Fog-Cloud Computing, Load Balancing, Reinforcement Learning, Resource Allocation, Multi-
Objective Optimization. 

 
1. INTRODUCTION  
 

Fog computing is a modern method that 
expands cloud computing by placing computing 
resources closer to the network's edge [1]. It has 
become crucial with the growth of the Internet of 
Things (IoT) and the need for rapid data processing. 
Moreover, the fog computing efficiently manages 
the massive data generated by IoT devices [2]. By 
processing, storing, and analyzing data closer to the 
source, it reduces delays and bandwidth 
requirements on cloud computing. Furthermore, it 
improves reliability and security by utilizing 
resources from edge devices like routers and 
gateways. Fog computing is used in various 
application, such as healthcare, transportation, and 
smart cities. For example, in healthcare, it allows 
real-time patient monitoring, leading to early 

diagnosis and treatment [3 - 5]. In transportation, fog 
computing plays a vital role in advancing 
autonomous vehicles by enabling rapid data 
processing and analysis. In smart cities, it helps 
manage traffic, conserve energy, and improve public 
safety. 

 
Managing fog networks and distributing 

tasks between fog and cloud is crucial for achieving 
optimal performance in fog computing [6]. This 
involves deploying resources and assigning tasks 
based on factors like workload, network latency, and 
resource availability [7]. A major challenge in 
managing the fog is load balancing, ensuring an even 
distribution of computational work across the 
network to prevent nodes from becoming overloaded 
[8]. To address this challenge, fog computing 
management systems use techniques like task 
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migration, resource allocation, and workload 
balancing algorithms [9]. These techniques enable 
fog nodes to collaborate, distributing tasks based on 
their availability, processing power, and network 
connectivity. The dynamic nature of fog networks, 
their ability to adapt to changes in workload and 
network conditions, makes them appealing for 
various applications [10]. However, managing fog 
computing becomes challenging due to this dynamic 
nature, which demands a dynamic-aware approach 
for effective network operation. Factors such as 
device mobility and changing network conditions 
influence the fog network's dynamic nature. For 
instance, in a smart city, the number and location of 
connected devices may change over time, leading to 
fluctuations in workload and available resources.  

 
This article specifically concentrates on the 

dynamic nature of fog computing, particularly 
concerning fog network management and load 
balancing. The main objective is to explore and 
assess how reinforcement learning (RL) can be 
utilized as a possible solution to tackle these 
challenges. To enhance network performance in fog 
computing, it's essential to have dynamic-aware 
management systems that can adapt to changing 
network conditions like latency and bandwidth, 
influenced by the number and location of connected 
devices. These systems utilize techniques such as 
adaptive resource allocation, dynamic workload 
balancing, and network-aware task migration. 
Adaptive resource allocation adjusts the resources 
assigned to different fog nodes based on their 
workload and availability while dynamic workload 
balancing redistributes tasks among fog nodes, 
considering their current workload and network 
conditions. 

 
Reinforcement Learning (RL) is an 

artificial intelligence approach that holds promise for 
fog computing management. It can optimize task and 
resource allocation, as well as load balancing, by 
learning from interactions with the environment 
[11]. RL's strength lies in its ability to adapt to the 
dynamic and unpredictable fog computing 
environment, where network conditions and 
workload change over time. This enables fog nodes 
to learn from experiences and enhance network 
performance and resource usage accordingly. This 
article focuses on using RL to address the dynamic 
challenges of fog computing, particularly in fog 
cloud management and load balancing. 

 
The rest of the article is organized as 

follows. Section 2 presents the contributions of the 

study. Next, the study background is provided in 
Section 3. Then, Section 4 explains the used 
methodology. The experimental work and results are 
covered in Section 5. Section 6 discusses the finding 
and Section 7 concludes the study and outlines the 
future work.  
 
2. CONTRIBUTIONS  

 
This article makes significant contributions 

to the field of fog-cloud computing and load 
balancing. 

 
i. Introducing a novel load-balancing system that 

utilizes RL agents (allocation and migration) to 
optimize resource allocation in fog-cloud 
computing environments. 
 

ii. Proposing innovative state, action, and reward 
models for both RL agents, facilitating 
collaboration and coordination during the load-
balancing process. 
 

iii. Exploring three different reward models for the 
RL agents: single objective, multi-objective 
under non-dominated sorting, and multi-
objective under lexicographical sorting. 
 

iv. Comparing the proposed load balancing system 
with state-of-the-art approaches and validating 
the results using standard evaluation metrics and 
statistical analysis. 
 

3. BACKGROUND  
 
In recent years, RL approaches have gained 

popularity in scheduling and resource allocation for 
distributed systems. Researchers have introduced 
several RL-based algorithms to optimize resource 
usage, enhance system performance, and reduce 
energy consumption in fog computing and other 
distributed systems. These algorithms are often 
combined with other meta-heuristic searching 
methods. 
 

For example, in [12], a combination of 
Mayfly Taylor Optimization and Deep-Q-Network 
(DQN) was employed to optimize a fitness function 
that considers energy consumption, service level 
agreement verification, and cost. However, a notable 
issue with such approaches is that the meta-heuristic 
algorithms often demand a significant amount of 
search time to discover the best solution. The study 
conducted by [13] used a RL approach with random 
choice to manage tasks within deadlines. However, 
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a limitation of their approach is the use of random 
selection, which may not produce optimal results. 
Additionally, achieving optimal performance in 
various environments with their approach requires 
fine-tuning of hyperparameters and reward 
functions, which can be time-consuming and 
challenging. 

 
In [14], a fog layer was incorporated to 

achieve task execution balance. This layer consists 
of two distinct modules: the RL Allocation algorithm 
(RLA) and RL Migration algorithm (RMA). These 
modules employ the Q-learning approach and 
determine rewards based on specific metrics, 
including process size, RAM, CPU usage, and 
completion rate, collectively referred to as "process 
weights." However, using these discrete key 
modules may result in a loss of information when 
selecting the optimal task for execution and 
migration. 

 
In [15], the authors used Q-learning with a 

discrete state representation, considering factors like 
the task's load level, sibling tasks, and parent tasks. 
However, this approach faced criticism for using an 
incomplete state representation, violating the 
Markov Decision Process (MDP) assumption. 
Additionally, [16] suggested a deep RL-based 
approach for resource provisioning in fog 
computing, while [17] proposed an energy-efficient 
task scheduling method using deep RL. Both 
approaches have limitations related to quantization 
of node index, leading to information loss, and 
longer waiting times for task scheduling, due to task 
prioritization. Additionally, [18] suggested an RL-
based approach for scheduling live migration from 
underutilized hosts, but it lacked the decentralization 
of wait and migrate states, impacting task scalability. 

 
In [19], a task scheduling method for load-

balanced fog computing using Q-learning was 
introduced. However, the formulation had 
limitations as it oversimplified available resources, 
security level, and power processing for each node, 
which could lead to security and latency concerns. 
Another work, [20], proposed an RL-based load-
balancing algorithm for fog networks. Its goal was to 
maximize utility while minimizing processing delay 
and overload probability. However, it had a bias 
issue because it depended on the exploration policy, 
affecting the number of tasks offloaded to adjacent 
fog nodes. The authors of [21] presented a deep RL 
approach for scheduling IoT applications in a fog 
computing environment. The approach aims to 
optimize task scheduling and resource allocation to 

improve overall fog computing performance while 
reducing time and cost. 

 
Overall, RL-based scheduling and resource 

allocation algorithms have demonstrated 
encouraging outcomes in enhancing the performance 
and efficiency of distributed systems, especially in 
fog computing environments. Nevertheless, certain 
challenges persist, including the requirement for 
ample training data, fine-tuning of hyperparameters 
and reward functions, and ensuring scalability and 
adaptability of the proposed methods across diverse 
scenarios and applications. 
 
4. METHODOLOGY 
 

In this study, the research design focuses on 
developing the following algorithms concerning 
scheduling and migration. By providing suitable and 
precise inputs for each algorithm, the study aims to 
generate reliable outputs that can be utilized in 
subsequent algorithms, thereby ensuring the validity 
and reliability of the results. 
 
4.1. Scheduling    
 

The primary scheduling task as outlined in 
Algorithm 1. The algorithm takes various inputs and 
generates essential scheduling outputs. The schedule 
begins by retrieving the number of tasks from the 
scheduler's task queue. Depending on the scheduling 
method, it either uses the RandomScheduler() 
method or the RLScheduler() method with specific 
parameters (e.g., reward type, scheduling tasks, 
sorting method, time counter, and servers). Next, the 
algorithm invokes the schedule() function of the 
scheduler's algorithm, using the scheduling tasks and 
time counter as inputs and produce a list containing 
selected servers along with the tasks assigned to 
them as output. 
 

Algorithm 1 Scheduling task 

Input: 
(1) schedulingMethod 
(2) migrationMethod  
(3) rewardType  
(4) nTask: tasks number to be scheduled  
(5) sortingMethod: in the case of multi-objective-reward 
 
Output: 
(1) selectedServers: the selected servers and their newly  
      assigned tasks. 
(2) serversToMigrateFrom: the selected servers to migrate  
     from. 
 
Start Algorithm 
1:  schedulingTasks = get nTask task from self.tasksQueue 
2:  if schedulingMethod == 'Random' then 
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3:     self.algorithm = RandomScheduler() 
4:  else 
5:     self.algorithm = RLScheduler(rewardType,  
        sortingMethod, timeCounter, servers) 
6:  end if 
7:  selectedServers =  
     self.algorithm.schedule(schedulingTasks) 
8:  serversToMigrateFrom =  
     self.Migration(migrationMethod)  
End Algorithm 

 
Next, the algorithm calls the Migration() 

method of the scheduler, using the migration 
method, time counter, and servers as inputs. This 
method generates a list of servers to migrate from. 
Finally, the algorithm produces the output, which 
includes the list of selected servers with their newly 
assigned tasks and the list of servers to be migrated 
from. 
 
4.2. Migrator   

 
Algorithm 2 describes the migration task, 

which takes several inputs and produces information 
related to server migration. It begins by sorting the 
task queue to give priority to delayed tasks. 
Depending on the migration method specified, the 
algorithm uses either the RandomMigrator() 
method or the RLMigrator() method as the migrator 
method of the scheduler. 
 

Algorithm 2 Migration task 

Input: 
(1) migrationMethod 
(2) timeCounter 
(3) servers 
 
Output: 
(1) serversToMigrateFrom: the selected servers and their 

newly assigned tasks 
 
Start Algorithm 
1:  self.tasksBuffeer.sort('momentGeneration') 
2:  if migrationMethod == 'Random' then 
3:     self.migrator = RandomMigrator() 
4:  else if migrationMethod == 'RL' then 
5:     self.migrator = RLMigrator() 
6:  end if 
7:  serversToMigrateFrom = 

self.migrator.migrate(timeCounter, servers, 
delayPeriod=0, self.bandwidth) 

End Algorithm 

 
Next, the algorithm invokes the migrate() 

function of the migrator, passing the time counter, 
servers, delay period (set to 0 for no delay), and 
scheduler bandwidth as inputs. The function 
produces a list that includes selected servers to 
migrate from and their newly assigned tasks. Finally, 
the algorithm produces the output, consisting of the 

list containing selected servers to migrate from along 
with their newly assigned tasks. 
 
4.3. RL Scheduler  
 

Algorithm 3 presents the RL scheduler 
algorithm, which aims to optimize the scheduling 
process. The scheduler takes multiple inputs and 
generates servers for assigning new tasks, as oulined 
in the algorithm. The algorithm begins by obtaining 
the current state of the RL environment using the 
RLScheduler's getState() function. If the current 
time counter exists in the list of Q-table updates, the 
algorithm updates the Q-table using the 
RLScheduler's updateQtable() function, 
incorporating inputs such as the current server status, 
time counter, reward type, and sorting method. The 
resulting reward is then added to the overall rewards 
of the RLScheduler. 
 

Algorithm 3 RL Scheduler task 

Input: 
(1) rewardType 
(2) schedulingTasks : tasks to be scheduled 
(3) timeCounter 
(4) servers: snapshot of the servers’ status. 
 
Output: 
(1) selectedServers: the selected servers and their newly 
assigned tasks 
 
Start Algorithm 
1:  currentState = self.getState() 
2:  if timeCounter in self.QtableUpdates then 
3:     reward = self.updateQtable(servers, timeCounter,  
             rewardType) 
4:     self.overAllRewards.add(reward) 
5:  end if 
6:  for task in schedulingTasks do 
7:     capableServers = any server that can still receive  
               tasks 
8:     if randomNumber < self.epsilon then 
9:        action = Random(capableServers) 
10:    else 
11:       action =  
            
argmax(self.Qtable[currentState][capableServers]) 
12:    end if 
13:    update servers’ status after the action 
14:    self.QtableUpdates[timeCounter +  
              self.delayPeriod].add(currentState, action) 
15:    selectedServers.add(task, action) 
17: end for 
18: self.epsilon = max(self.epsilon * self.decay,  
         self.minEpsilon) 
End Algorithm  

 
For each task in the scheduling tasks, the 

algorithm determines the servers capable of handling 
the task. If a randomly generated number is less than 
the RLScheduler's epsilon value, the algorithm 
chooses a server randomly from the eligible ones. 
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Otherwise, it selects the server with the highest Q-
value for the current state and eligible servers. The 
algorithm updates the server status by executing the 
chosen action and includes the current state and 
action in the list of Q-table updates for the next time 
step. 

After that, the algorithm adds the chosen 
server and task to the list of selected servers with 
their newly assigned tasks. Then, the algorithm 
updates the RLScheduler's epsilon value by picking 
the larger value between the product of the current 
epsilon value and the decay factor and the minimum 
epsilon value. This updated epsilon value is then 
used in the server selection process for the next 
scheduling iteration. 
 

Algorithm 4 UpdateQtable task 

Input: 
(1) servers 
(2) timeCounter 
(3) rewardType 
 
Start Algorithm 
1:  nextState = self.getState() 
2:  reward = self.Reward(rewardType, servers) 
3:  for state,action in self.QtableUpdates[timeCounter] do 
4:     if rewardType == ‘Multi-Objective’ then 
5:        for objective in self.numberObjectives) do 
6:           TD = reward[objective] + self.gamma * 

max(self.QtableMO[nextState][objective]) – 
self.QtableMO[state, action][objective] 

7:            self.QtableMO[state, action][objective] += 
(self.learningRate * TD) 

8:        end for 
9:     else 
10:       TD = reward + self.gamma * 

max(self.QtableMO[nextState])-
self.QtableMO[state, action] 

11:        self.Qtable[state, action] += (self.learningRate * 
TD) 
12:   end if 
13: end for 
14: if rewardType == ‘Multi-Objective’ then 
15:    self.sortQtable(state, self.sortType) 
16: end if 
End Algorithm 

 
Algorithm 4 handles the Q-table updating 

process. The algorithm modifies the Q-table based 
on the current state, selected action, reward type, and 
sorting method (if multi-objective reward is 
involved). The algorithm starts by retrieving the next 
state of the environment from the RL scheduler 
instance. It then calculates the reward for the current 
state and adds it to the Q-table, using either the 
single-objective or multi-objective approach. 

 
In the multi-objective case, it computes the 

temporal difference (TD) for each objective by 
considering the maximum Q-value for the next state 
and the learning rate. It then updates the Q-value for 

the current state-action pair for each objective. For 
the single-objective case, it also computes the TD 
using the maximum Q-value for the next state and 
the learning rate and updates the Q-value for the 
current state-action pair. After updating the Q-table, 
the algorithm checks if the reward type is multi-
objective. If it is, the Q-table is sorted using the 
specified sorting method.  
 
4.4. Reward Update  

 
Algorithm 5 describes the reward update 

process. First, the algorithm checks the rewardType 
to determine the specific reward calculation needed. 
If the type is migration-reward, it calculates the 
difference between the old-utilization and new-
utilization for servers that were overloaded and 
required migration to balance the load. On the 
contrary, if multi-objective reward, the algorithm 
computes a list of multiple reward values which 
include the sigmoid function of the server standard 
utilization deviation and queue occupation, as well 
as the server utilization median and queue 
occupation. If the rewardType is neither "migration-
reward" nor "multi-objective reward," the algorithm 
calculates the sigmoid function of the server's 
utilization standard deviation. 
 

Algorithm 5 Rewarding task 

Input: 
(1) rewardType 
(2) servers 
 
Start Algorithm 
1:  if rewardType == 'migration-reward' then 
2:     reward = old-utilization - new-utilization for all the 

servers that were overloaded and we perform 
migration to. 

3:  else if rewardType == 'Multi-objective' then 
4:     reward = [sigmoid(std(servers.Utilization)), 
sigmoid(std(servers.queueOccupation), 
5:     median(servers.Utilization),  
         median(servers.queueOccupation)] 
6:  else 
7:     reward = sigmoid(std(servers.Utilization)) 
8:  end if 
End Algorithm 

 
Algorithm 6 outlines the task of the 

sortQtable function. This algorithm is essential in 
the RLScheduler to arrange the Q-table based on the 
provided state using the specified sortingMethod 
function. If the sortingMethod is set to 'NDS' (non-
dominated sorting), the function employs the 
"nonDominatingSorting" method from the 
RLScheduler (Algorithm 3) instance. This function 
assigns ranks to each row in the Q-table using non-
dominated sorting, a technique useful for handling 
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multi-objective optimization problems. Non-
dominated sorting groups solutions into different 
levels of dominance, assisting in identifying the best 
solutions. Alternatively, if the function is set to any 
other value, it uses the "lexographicalSorting" 
method of the RLScheduler instance. This method 
assigns ranks to each row in the Q-table using 
lexicographic sorting, which is a technique for 
sorting elements based on multiple criteria in order 
of importance. 

 
After determining the ranks, the function 

updates the Q-table for the given state with the new 
ranks. This process enhances the efficiency and 
effectiveness of the RLScheduler by organizing the 
Q-table based on the chosen sorting method. 
 

Algorithm 6 SortQtable task 

Input: 
(1) state 
(2) sortType 
 
Start Algorithm 
1:  if sortType == 'NDS' then 
2:     ranks = self.nonDominatingSorting(self.QtableMO) 
3:  else 
4:     ranks = self.lexographicalSorting(self.QtableMO) 
5:  end if 
6:  update self.Qtable[state] with the new ranks 
End Algorithm 

 
4.5. Migrate Agent  

 
The Migrate RL algorithm aims to handle 

changing server workloads by moving tasks between 
servers. In Algorithm 7, the process starts by 
obtaining the current environment state and 
checking if it's time to update the Q-table. If an 
update is needed, the algorithm calculates the reward 
for the previous action and adds it to the overall 
reward. Next, the algorithm selects a set of servers 
with tasks to migrate and picks an action using the 
Q-table. If a randomly generated number is less than 
the exploration probability, a random action is 
chosen; otherwise, the action with the highest Q-
value is selected. This chosen action indicates the 
server from which a task will be moved, and the 
heaviest task is selected for migration. 

 
Afterward, the algorithm updates the Q-

table with the current state and chosen action for this 
period. The servers and devices requiring migration 
are stored in a data structure for future use. Finally, 
the exploration probability is reduced using a decay 
factor to ensure the algorithm eventually selects the 
best action. This process continues in a continuous 
background loop, where the algorithm makes 

decisions based on the current environment state, 
updates the Q-table, and selects the optimal action 
for task migration. 
 

Algorithm 7 Migrate RL task 

Input: 
(1) timeCounter  
(2) servers : snapshot of the servers status.  
(3) delayPeriod: when to get the reward.  
(4) bandwidth: to calculate the migration cost 
 
Output: 
(1) serversToMigrateFrom: the selected servers and the 
device that we will migrate its task 
 
Start Algorithm 
1:  currentState = self.getState() 
2:  if timeCounter in self.QtableUpdates then 
3:     reward = self.updateQtable(servers, timeCounter,  
        rewardType='migration-reward') 
4:     self.overAllRewards.add(reward) 
3:  end if 
4:  for i in len(servers)/3 do 
5:     capableServers = any server that has a task to  
            migrate 
6:     if randomNumber < self.epsilon then 
7:        action = Random(capableServers) 
8:     else 
9:        action =  
          argmax(self.Qtable[currentState][capableServers]) 
10:   end if 
11:   device = action.getHeaviestTask() 
12:   self.QtableUpdates[timeCounter +  
          delayPeriod].add(currentState, action) 
13:   serversToMigrateFrom.add(action, device) 
14: end for 
15: self.epsilon = max(self.epsilon * self.decay,  
         self.minEpsilon) 
End Algorithm 
 

 
5. EXPERIMENTAL WORKS AND 

RESULTS  
 

The experimental section is divided into 
two parts. In the first part (5.1), we present the 
experimental design, and in the second part (5.2), we 
present the experimental results and analysis. 
 
5.1 Experimental Design 
 

For simulation the training was executed on 
Windows 11 OS with core i7 10 gen and RAM 16 G. 
The parameters that were used are depicted in Table 
1.  The experiment discussed evaluates four different 
scheduling methods in the context of fog cloud 
computing optimization RL schedulers and RL 
migrators. These methods are GR_c (Greedy based 
on CPU), GR_r (Greedy based on Reliability), 
RLRM (Random Multi-objectives), and RLRLM 
(RL Multi-objectives). The performance of these 
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methods is assessed using metrics such as average 
utilization, number of tasks completed, serve rate, 
and delay. 
 
Table 1. Parameters for the experimental design 

Parameters Value 
𝜀 0.99 

DECAY 0.999 
𝜀௠௜௡ 0.1 
𝛾 0.5 
𝛼 0.6 

DELAY PERIOD  2 

 
Each of them is explain as below:  
 

i. GR_c prioritizes tasks by considering the 
CPU utilization of servers.  
 

ii. GR_r prioritizes tasks based on the 
reliability of servers.  
 

iii. RLRM employs RL for scheduler and 
random migration for migrator with multi-
objective reward model.  
 

iv. RLRS – employs RL for scheduler and 
random for migrator. It uses single 
objective function for reward.  
 

v. RLRLM utilizes RL to optimize multiple 
objectives scheduler and migrator. It uses 
multi-objective function for rewarding.  

 
5.2 Results and Analysis  
 

The evaluation is summarized in Table 2, 
which provides details of the performance 
assessment used in this study. To assess the 
effectiveness of the methods, the experiment 
examines the average server utilization in scenarios 
with varying CPU capacities. Additionally, the 
performance of these methods is evaluated using a 
reward-based approach, where the reward is 
determined based on either migration or multiple 
objectives. 
 

Here are the performance metrics 
observations: 
 

i. Average utilization: RLRLM achieved the 
highest average utilization at 88.63%, 
followed closely by RLRM at 83.40% and 
RLRS at 83.71%. In comparison, GR_c had 
an average utilization of 80.25%, while 

GR_r had a much lower average utilization 
of only 51.84%. 

 
ii. Tasks completed: RLRLM achieved the 

highest number of completed tasks at 9981, 
followed by RLRM with 9607, and RLRS 
with 9671. In comparison, GR_c completed 
8962 tasks, while GR_r had a much lower 
completion rate.  

 
iii. Serve rate: Higher values indicating that 

tasks were completed more quickly. 
RLRLM had the highest serve rate at 0.725, 
followed by RLRS at 0.703, and RLRM at 
0.698. In comparison, GR_c had a serve 
rate of 0.651, while GR_r had a serve rate 
of only 0.361. 

 
iv. Delay: Shows the average delay between 

when a task was submitted and when it was 
completed, with lower values indicating 
that tasks were completed more quickly. 
GR_r had the lowest delay at 100.215, 
followed by RLRLM at 58.071, and RLRS 
at 62.687. In comparison, RLRM had a 
delay of 62.700, while GR_c had a delay of 
71.777. 

 
Table 2. Performance metric for different scheduler types 

Methods 
Avg 

Utilization 
(%) 

Task 

Serve 
Rate 
(task/
ms) 

Delay 
(ms) 

RLRM_ 83.40 9607 0.70 62.70 
RLRLM 88.63 9981 0.73 58.07 
RLRS 83.71 9671 0.70 62.69 
GR_r 51.84 4961 0.36 100.22 
GR_c 80.25 8962 0.65 71.78 

 
From the numerical values, it is evident that 

the RL-based methods generally performed better 
than the greedy-based methods concerning average 
utilization, the number of completed tasks, serve 
rate, and delay. Specifically, RLRLM, utilizing RL 
for multiple objectives, outperformed RLRM, which 
used reinforcement learning for a single objective. 
The results also indicate that the choice of migration 
method and reward type can influence performance. 
As mentioned earlier, both RLRM and RLRLM use 
RL for scheduling with the difference of employing 
random migrators for RLRM. 
  

For a more detailed analysis, we provide the 
time series data for each metric, including delay, 
average energy consumption, number of failed 
devices, and throughput, for both RLRM and 
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RLRLM. The results indicate that the number of 
waiting tasks in RLRLM is lower than in RLRM. 
Additionally, the energy consumption in RLRLM is 
slightly lower by approximately 5 × 10-9 watt 
compared to RLRM, but it is still equivalent. The 
throughput remains stable for both RLRLM and 
RLRM, consistently reaching between 90% to 
100%. 
 

 
 

a) RLRM 
 

 
b) RLRLM 

 
Figure 1 Time series of evaluation metrics for developed 

RLRM and RLRLM 

 

6. DISCUSSION  
 
Both RLRM and RLRLM consistently 

outperform the greedy-based methods in terms of 
average utilization, completed tasks, serve rate, and 
delay. Notably, RLRLM, which optimizes multiple 
objectives, exhibits even better performance than 
RLRM, which focuses on a single objective. These 
findings support existing literature advocating for 
the effectiveness of reinforcement learning-based 

methods in fog cloud computing optimization. 
Moreover, this study goes further by demonstrating 
the clear advantage of multi-objective optimization. 
The significant performance improvement of 
RLRLM emphasizes the potential of RL-based 
methods in this field, filling a crucial gap in the 
literature where the advantages of such methods 
have not been thoroughly explored. 
 
7. CONCLUSION AND FUTURE WORKS  

 
This study introduces a new load-balancing 

system that optimizes fog-cloud computing using the 
RL approach. It employs two RL agents—one for 
task allocation to fog or cloud nodes and another for 
task migration between fog nodes, aiming for 
fairness and higher throughput. Unique models for 
state, action, and reward functions enable effective 
collaboration in the load-balancing process. The 
study explores three types of rewards for the RL 
agents: single-objective, multi-objective with non-
dominated sorting, and multi-objective with 
lexicographical sorting. 

 
Experimental results reveal that RL-based 

scheduling methods outperform greedy-based 
methods across various performance measures. 
However, this study has limitations. The 
experimental setup focuses primarily on fog-cloud 
computing systems and may not fully generalize to 
other distributed systems. The RL agents' specific 
state, action, and reward models might be optimal 
only for certain scenarios. There are also knowledge 
gaps in exploring reinforcement learning techniques' 
applications and limitations in fog-cloud computing 
optimization. 

 
Future work can delve into additional 

optimization metrics like security and privacy and 
investigate scalability and adaptability with different 
fog-cloud computing setups. Moreover, exploring 
more robust and adaptable state, action, and reward 
models for the RL agents can further enhance the 
system performance. This research's significance 
lies in its potential to improve efficiency in the 
rapidly growing domain of fog-cloud computing and 
provide a strong foundation for future investigations 
into RL-based load balancing solutions in this field. 
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