
Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7173

COMPARISON OF STOUT CODE AND FIBONACCI CODE
ALGORITHM FOR FILE COMPRESSION BASED ON

ANDROID

HANDRIZAL1, T. HENNY FEBRIANA HARUMY2, FADHLI IBRAHIM SIREGAR3

1,2,3Department of Computer Science, Faculty of Computer Science and Information Technology,
Universitas Sumatera Utara, Jl. Universitas No. 9-A, Medan 20155, Indonesia

E-Mail: handrizal@usu.ac.id

ABSTRACT

In the current era, human activities are closely intertwined with the utilization of computers and the internet.
Engaging in activities with computers necessitates data storage, whether through cloud-based systems or
physical storage mediums. The size of data becomes a critical factor in optimizing resource efficiency for
these activities. As a result, ongoing research focuses on data size reduction techniques to enhance overall
efficiency. Data compression is the process of converting data into smaller sizes. There are various data
compression algorithms. Stout Code algorithm and Fibonacci Code algorithm will be used in this study. We
built an Android application and performed a text file compression test using these two algorithms to
compare their performance. The comparison parameters that will be used are compression ratio, compression
time, and decompression time. The test results indicate that the Stout Code algorithm outperforms the
Fibonacci Code algorithm in terms of compression ratio for both homogeneous and heterogeneous strings.
The average compression ratios for the Stout Code are 1.949 and 1.159, while for the Fibonacci Code, they
are 1.943 and 1.064, respectively. However, concerning compression time and decompression time, the
Fibonacci Code algorithm proves to be more efficient. Its average compression times for homogeneous
strings and heterogeneous strings are 2437 ms and 2855.429 ms, whereas the Stout Code algorithm takes an
average of 2564.857 ms and 3021.571 ms. Similarly, for decompression time, the Fibonacci Code algorithm
outperforms the Stout Code algorithm with average times of 349.571 ms for homogeneous strings and
853.857 ms for heterogeneous strings, while the Stout Code algorithm shows average times of 456 ms and
1016.143 ms, respectively. The results lead to the conclusion that the Stout code algorithm outperforms in
reducing file sizes, whereas the Fibonacci code algorithm excels in terms of speed.

Keywords: Stout Code, Fibonacci, Android, Algorithm, Compression

1. INTRODUCTION

Human activities in this era generally have a
relationship with the use of computers and the
internet. When using a computer to perform an
activity, data storage is required. Whether in the
form of cloud storage or physical storage, the issue
of data size is important to the efficiency of
resources in carrying out activities. Therefore,
research in trying to reduce the size of data is
continuously conducted.

Data compression is the process of converting
input data into output data that is smaller in size [1].
The technique of compressing data plays an
important role in determining how much size is

reduced [2]. An effective compression technique
will make the data size smaller than before. Various
algorithms have been developed for this problem.
Two of them use the Stout code and Fibonacci code.

Stout code is a recursive algorithm discovered by
Quentin Stout in 1980. This algorithm consists of
two types called families. The first family is called
Rℓ and the second is called Sℓ. The defining
parameter of this algorithm is an integer number
greater than or equal to two. This parameter is called
ℓ. The Sℓ family has several advantages over the Rℓ
family for small ℓ values. In research [3] it was
found that this algorithm is suitable for compressing
text.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7174

The Fibonacci code algorithm is an algorithm
whose compression method uses the Fibonacci
sequence which is converted into binary to form the
code [4]. Research [5] found that the Fibonacci code
algorithm is better than Even-Rodeh Code in
compressing text on both homogeneous and
heterogeneous characters.

Based on previous research, it has been found
that both algorithms are suitable for text
compression. In this research, we want to examine
the performance comparison of the two algorithms
using Android-based applications. The comparison
parameters used are compression ratio, compression
time, and decompression time. The results of this
research are expected to provide an understanding
of the advantages and disadvantages of both
algorithms to make it easier to choose the
appropriate text compression algorithm.

2. LITERATURE REVIEW

2.1 Compression

Data compression is the science or art of
representing information in a compact form. Data
compression is done by identifying and using the
structure that exists in the data. Data compression is
needed because of the increasing amount of
information humans produce or store digitally [6].

Techniques in data compression can be broadly
divided into two parts, namely lossy data
compression and lossless data compression.

Lossy compression techniques are compression
techniques that involve partial loss of information.
Data that has been compressed using lossy
techniques generally cannot be recovered or
reconstructed precisely. However, data compressed
using this technique can generally obtain a much
higher compression ratio than using lossless
compression techniques [7].

Lossless compression technique as the name
suggests, does not involve any loss of information.
If data has been compressed using this compression
technique, the original data can be recovered back to
its original state without any data loss. Lossless
compression is generally used for applications that
cannot tolerate differences between the original data
and the reconstructed data [8].

2.2 Stout Code Algorithm

The Stout code algorithm is an algorithm discovered
by Quentin Stout in 1980. The codeword generated

by the Stout code algorithm depends on a parameter
ℓ that is chosen with the condition that it is greater
than or equal to two [3].

In the Rℓ family, the prefix is defined as:
Rℓ (n) = B(n, ℓ), for 0 ≤ 𝑛 ≤ 2ℓ − 1
Rℓ (n) = Rℓ(L)B(n, ℓ), for 𝑛 ≥ 2ℓ
B(n, ℓ) is a binary value n taken as ℓ bits. For

example, B(1, 3) will produce a binary value of 1
taking as many as 3 bits, namely 001. L is the
number of digits in the binary value n. For example,
if n is 4, then the binary value of n is 100. There are
three digits in the binary value of n, so the value of
L is 3.

The codeword for the Sℓ family is formed by the
same method using a different prefix. This prefix is
denoted by Sℓ(n). The Sℓ family has an advantage
over the Rℓ family for small ℓ values (Nasution,
2019).

In the Sℓ family, the prefix is defined as:
Sℓ (n) = B(n, ℓ), for 0 ≤ 𝑛 ≤ 2ℓ − 1
Sℓ (n) = Rℓ(L – 1 - ℓ)B(n, ℓ), for 𝑛 ≥ 2ℓ

2.3 Fibonacci code algorithm

The Fibonacci code algorithm is an algorithm whose
compression method uses the Fibonacci sequence
converted into binary to form the code. The
formation of Fibonacci codes is based on the fact
that a positive integer n can be expressed uniquely
as the sum of different Fibonacci numbers [9].

Table 1. Fibonacci codes table

n Fibonacci code n Fibonacci code
1 11 7 01011
2 011 8 000011
3 0011 9 100011
4 1011 10 010011
5 00011 11 001011
6 10011 12 101011

2.4 Problem analysis

In this research, the problem raised is the
comparison of the Stout code algorithm and the
Fibonacci code algorithm in compressing text files
in Android-based applications. To make it easier to
recognize the factors that cause this problem and the
relationship between these factors, the authors
describe the following Ishikawa diagram.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7175

Figure 1. Ishikawa Diagram

The figure shows that the main problem of this study
is to compare the Stout code and Fibonacci code
algorithms in compressed text files. Then four
factors cause the main problem, namely human,
material, method, and system. In these four factors,
there are details of problems related to each factor
described by arrows pointing to the arrow belonging
to the factor.

3. RESULTS AND DISCUSSIONS

There is a text file containing the string “FADHLI
SIREGAR." The size of the original string is shown
in Table 2.

Table 2. Size of string before compressed

n Character Frequency
ASCII
Binary

Bit
Frequency

x Bit
1 A 2 01000001 8 16
2 I 2 01001001 8 16
3 R 2 01010010 8 16
4 F 1 01000110 8 8
5 D 1 01000100 8 8
6 H 1 01001000 8 8
7 L 1 01001100 8 8
8 space 1 00100000 8 8
9 S 1 01010011 8 8
10 E 1 01000101 8 8
11 G 1 01000111 8 8

Total Bits 112

Based on the ASCII code, one character is worth

eight bits of a binary number. So 14 characters on
the string have a binary value of 112 bits. Before
performing the compression process, characters are
first sorted from the largest to the smallest
frequency.

The compression analysis process of text files
using the Stout Code algorithm. Below is an
example of the compression process of a text file
using the Stout Code algorithm. There is a text file
containing the string "FADHLI SIREGAR." It is
shown in Table 3. string size that has been
compressed using the Stout Code algorithm.

Table 3. String size that has been compressed by using
the Stout code algorithm

n Character Frequency
Stout
code

Bit
Frequency

x Bit
1 A 2 01 2 4
2 I 2 10 2 4
3 R 2 11 2 4
4 F 1 00100 5 5
5 D 1 00101 5 5
6 H 1 00110 5 5
7 L 1 00111 5 5
8 space 1 011000 6 6
9 S 1 011001 6 6

10 E 1 011010 6 6
11 G 1 011011 6 6

Total Bits 56

Next, exchange the ASCII binary code of each
character in the string "FADHLI SIREGAR"
according to the Stout code that has been determined
from Table 3. It is shown in Table 4. character
conversion to Stout Code.

Table 4. Character Conversion to Stout code

F A D H L I space
00100 01 00101 00110 00111 10 011000
S I R E G A R
011001 10 11 011010 011011 01 11

Then the bit string is obtained as follows:
“0010001001010011000111100110000110011

0110110100110110111”.
The next step is to add padding bits and flag bits.
In this case, the bits in the bit string are 56. Since

the number of bits in the bit string is divisible by 8,
then the number of bits in the padding is 0 or there is
no need for bit padding at all.

The flag bit is 8 bits of binary value from the
number of bits in the padding bit which is 00000000.
Then the result after compression is:

“0010001001010011000111100110000110011
011011010011011011100000000”.

The compression ratio is obtained as follows:

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =

஽௔௧௔ ௦௜௭௘ ௕௘௙௢௥௘ ௖௢௠௣௥௘௦௦௘ௗ

஽௔௧௔ ௦௜௭௘ ௔௙௧௘௥ ௖௢௠௣௥௘௦௦௘ௗ
=

ଵଵଶ ௕௜௧௦

଺ସ ௕௜௧௦
=

଻

ସ
= 1.75

Below is an example of the compression process

of a text file using the Fibonacci code algorithm.
There is a text file containing the string "FADHLI
SIREGAR." It is shown in Table 5 that string size
has been compressed using the Fibonacci code
algorithm.

Table 5. String size that has been compressed by
using the Fibonacci code algorithm

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7176

n Character Frequency

Fibonacci
code

Bit
Frequency

x Bit
1 A 2 11 2 4
2 I 2 011 3 6
3 R 2 0011 4 8
4 F 1 1011 4 4
5 D 1 00011 5 5
6 H 1 10011 5 5
7 L 1 01011 5 5
8 space 1 000011 6 6
9 S 1 100011 6 6
10 E 1 010011 6 6
11 G 1 001011 6 6

Total Bits 61

Next, exchange the ASCII binary code of each

character in the string "FADHLI SIREGAR"
according to the Fibonacci code that has been
determined from Table 5. It is shown in Table 6.
character conversion to Fibonacci Code.

Table 6. Character Conversion to Fibonacci code

F A D H L I space
1011 11 00011 10011 01011 011 000011
S I R E G A R
100011 011 0011 010011 001011 11 0011

Then the bit string is obtained as follows:

“1011110001110011010110110000111000110
110011010011001011110011”.

The next step is to add padding bits and flag bits.
In this case, the bits in the bit string are 61. Since

the number of bits in the bit string when divided by
8 leaves the remainder 5, an additional 3 bits are
needed. So, the padding bit is 000.

The flag bit is 8 bits of binary value from the
number of bits in the padding bit which is 00000011.
Then the result after compression is:

“1011110001110011010110110000111000110
11001101001100101111001100000000011”.

The compression ratio is obtained as follows:
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =

஽௔௧௔ ௦௜௭௘ ௕௘௙௢௥௘ ௖௢௠௣௥௘௦௦௘ௗ

஽௔௧௔ ௦௜௭௘ ௔௙௧௘௥ ௖௢௠௣௥௘௦௦௘ௗ
=

ଵଵଶ ௕௜௧௦

଻ଶ ௕௜௧௦
=

ଵସ

ଽ
= 1.56

3.1. Implementation and Testing

Two Fragments are used in the system, namely the
Compression Fragment and the Decompression
Fragment.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7177

Figure 2. Compression (left) and decompression (right) fragment

3.2. Compression testing

In the testing phase of the compression process, the
first thing the user does is enter a text file. Next,
users can choose which algorithm they want to
perform the compression process. After that, the user
presses the compress button to run the system. Then

the file will be saved in the root folder of the user's
internal Android storage. Furthermore, the system
will produce a calculation of the size of the
compression result, compression ratio, and
compression time.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7178

Figure 3. Compression testing

3.3. Decompression testing

In the testing stage of the decompression
process, the first thing the user does is enter a
text file that has been compressed. Next, the
user can choose which algorithm is used to
perform the decompression process

according to the compressed file extension.
After that, the user presses the decompress
button to run the decompression process.
Then the file will be saved in the root folder
of the user's internal Android storage. The
system will produce a large calculation of the
decompression results and decompression
time.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7179

Figure 4. Decompression testing

3.4. Homogenous and Heterogenous String
Testing

The result table of String Homogeneous and
heterogenous test with Stout code and Fibonacci
code can be seen in Table 7, Table 8, Table 9, and
Table 10.

Table 7. Homogenous string test results with Stout code

Stout code

Total
Characters

Size Before
Compression

(bits)

Size After
Compression

(bits)

Compression
Ratio

Compression
Time

Decompression
Time

100 100 55 1,82 50 14

200 200 106 1,89 33 13

500 500 255 1,96 55 36

1000 1000 506 1,98 155 60

2000 2000 1006 1,99 436 134

5000 5000 2506 2 3222 565

10000 10000 5006 2 14003 2370

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7180

Averages 1,949 2564,857 456

Table 8. Homogenous string test results with Fibonacci code

Fibonacci code

Total
Characters

Size Before
Compression

(bits)

Size After
Compression

(bits)

Compression
Ratio

Compression
Time

Decompression
Time

100 100 56 1,79 22 17

200 200 106 1,89 20 16

500 500 256 1,95 36 23

1000 1000 506 1,98 134 51

2000 2000 1006 1,99 425 124

5000 5000 2506 2 2700 510

10000 10000 5006 2 13722 1706

Averages 1,943 2437 349,571

Table 9. Heterogenous string test results with Stout code

Stout code

Total
Characters

Size Before
Compression (bits)

Size After
Compression (bits)

Compression
Ratio

Compression
Time

Decompression
Time

100 100 98 1,02 7 10

200 200 180 1,11 20 20

500 500 428 1,17 47 37

1000 1000 840 1,19 202 131

2000 2000 1665 1,2 606 262

5000 5000 4140 1,21 3563 1342

10000 10000 8265 1,21 16706 5311

Averages 1,159 3021,571 1016,143

Table 10. Heterogenous string test results with Fibonacci code

Fibonacci code

Total
Characters

Size Before
Compression

(bits)

Size After
Compression

(bits)

Compression
Ratio

Compression
Time

Decompression
Time

100 100 106 0,94 4 7

200 200 195 1,03 14 16

500 500 466 1,07 60 31

1000 1000 915 1,09 167 106

2000 2000 1815 1,1 544 256

5000 5000 4515 1,11 3663 1114

10000 10000 9015 1,11 15536 4447

Averages 1,064 2855,429 853,857

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7181

3.5. Difference from prior research

In previous studies, it has been found that the Stout
code and Fibonacci code algorithms are suitable for
compressing text. The Fibonacci code algorithm was
also found to be better than the Even-Rodeh code
algorithm for compressing text on both
homogeneous and heterogeneous characters. In this
study, the authors created an android application to
compare the Stout code and Fibonacci code
algorithms through parameters such as compression
ratio and compression time to determine the
effectiveness and efficiency of the two algorithms.
Some of the benefits of this research are:

 Understanding how the Stout code
algorithm and the Fibonacci code algorithm
perform compression and decompression
processes.

 Obtaining the results of a performance
comparison of the Stout code and Fibonacci
code algorithms on Android-based
applications.

Getting an application that is capable of
compressing and decompressing text files using the
Stout code and Fibonacci code algorithms.

4. CONCLUSION

The test results show that based on the compression
ratio, the Stout Code algorithm is better with an
average of 1,949 for homogeneous strings and 1,159
for heterogeneous strings while the Fibonacci Code
algorithm has an average of 1,943 for homogeneous
strings and 1,064 for heterogeneous strings.

Based on the compression time, the Fibonacci
Code algorithm is better with an average of 2437 ms
for homogeneous strings and 2855,429 ms for
heterogeneous strings while the Stout Code
algorithm has an average of 2564,857 ms for
homogeneous strings and 3021,571 ms for
heterogeneous strings.

Based on the decompression time, the Fibonacci
Code algorithm is also better with an average of
349.571 ms for homogeneous strings and 853.857
ms for heterogeneous strings while the Stout Code
algorithm has an average of 456 ms for
homogeneous strings and 1016,143 ms for
heterogeneous strings.

The results of the compression test on both
homogeneous and heterogeneous text files lead to
the conclusion that the Stout code algorithm

outperforms in reducing file sizes, whereas the
Fibonacci code algorithm excels in terms of speed.

REFERENCES

[1]. Wang, L., Zhang, X., Yang, K., Yu, L., Li, C.,

Hong, L., ... & Zhu, J. (2022). Memory replay
with data compression for continual learning.
arXiv preprint arXiv:2202.06592.

[2]. Jayasankar, U., Thirumal, V., & Ponnurangam,
D. (2021). A survey on data compression
techniques: From the perspective of data
quality, coding schemes, data type, and
applications. Journal of King Saud University-
Computer and Information Sciences, 33(2),
119-140.

[3]. Nasution, S. D. (2019). Data Compression
Using Stout Codes. The IJICS (International
Journal of Informatics and Computer Science),
3(1), 28-33.

[4]. Bhattacharyya, S. (2017). Complexity analysis
of a lossless data compression algorithm using
Fibonacci sequence. International Journal of
Information Technology (IJIT), 3(3).

[5]. Rachmawati, D., Budiman, M. A., & Subada,
M. A. (2019, October). Comparison study of
Fibonacci code algorithm and Even-Rodeh
algorithm for data compression. In Journal of
Physics: Conference Series (Vol. 1321, No. 3,
p. 032015). IOP Publishing.

[6]. Otair, M., Abualigah, L., & Qawaqzeh, M. K.
(2022). Improved near-lossless technique using
the Huffman coding for enhancing the quality of
image compression. Multimedia Tools and
Applications, 81(20), 28509-28529.

[7]. Barman, R., Badade, S., Deshpande, S.,
Agarwal, S., & Kulkarni, N. (2022). Lossless
data compression method using deep learning.
In Machine Intelligence and Smart Systems:
Proceedings of MISS 2021 (pp. 145-151).
Singapore: Springer Nature Singapore.

[8]. Hughes, J. (2023). Comparison of lossy and
lossless compression algorithms for time series
data in the Internet of Vehicles.

[9]. Hardi, S. M., Angga, B., Lydia, M. S., Jaya, I.,
& Tarigan, J. T. (2019, June). Comparative
analysis run-length encoding algorithm and
fibonacci code algorithm on image
compression. In Journal of Physics: Conference
Series (Vol. 1235, No. 1, p. 012107). IOP
Publishing.

