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ABSTRACT 
 

Botnets are one of the recent main cyber security threats. In order to avoid detection, botnets use Domain 
Generation Algorithm (DGA) to generate malicious domain names and maintain communication between 
infected bots and command and control server (C&C). Botnet malwares use various algorithm to generate 
domain names such as arithmetic, hashing, and wordlist/dictionary techniques. Recent traditional machine 
learning and deep learnin based detection methods need handcrafted domain name features which require 
more effort and advanced expertise and knowledge. This study aims to detect and classify DGA malicious 
domain without manually define and handcraft domain name features by only using the domain name. N-
grams method was used to create sequences of  domain names and then vectorize the sequences using word 
embedding technique to create n-grams embedding model.  After vectorization, Bidirectional Gated 
Recurrent Unit (BiGRU) was used for domain name classification and attention mechanism was used to 
improve classification performance by applying attention weight.  The experiment results demonstrate the 
N-Grams Embedding and Attention-based BiGRU model proposed in this paper can detect and classify 
various type of DGA domains generated by arithmetic, hashing, and wordlist algorithm more effective 
compared to older algorithm such as CNN and LSTM for both DGA malicious domain detection and 
classification task. The use of attention mechanism can also improve the accuracy and performance of the 
DGA malicious domain detection model compared to models that do not use attention mechanism. 

Keywords: Attention Mechanism, Domain Generating Algorithm, Gated Recurrent Unit, Malicious 
Domain, N-grams Embedding,  

 
1. INTRODUCTION 

 
Currently, the internet has become a vital 

part of both personal and professional life for 
individuals. With the help of the internet, anyone 
can communicate with others with the intention and 
purpose of seeking information, and accessing 
various services such as email, e-banking, e-
learning, social media, etc. Internet access media is 
also increasingly diverse. Not only computers, but 
everyone can access the internet through laptops, 
smartphones, and other devices that can connect to 
the internet. 

 

Since the development of software 
development techniques, programs containing 
malicious code have emerged, but initially only had 
an impact on local devices. With the development 
of the internet, these programs can easily spread by 
taking advantage of the internet network. A hacker 
can spread malware through the internet to gain 
control and access to the infected computer. The 
infected computer can spread the same malware to 
other computers without the user's knowledge, 
forming a network of infected computers called a 
"Robot Network" / Botnet [1]. 

 
This network which contains bots (devices 

that have infected with botnet) is controlled by 
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attacker/hacker which called botmaster to control 
and take advantages of the network to do malicious 
act such as exploit, fraud, data stealing, spam 
spreading, etc. The characteristic of this botnet 
network is the existence of a dedicated server 
prepared by the botmaster as a Command and 
Control (C&C/C2) to distribute commands from the 
botmaster to the bots on the botnet network[2]. 

 

As shown on Figure 1, based on the Q1 2023 
Botnet Threat Update report released by Spamhaus 
Project[3], a total of 8,358 Botnet C&Cs (Command 
and Control) were discovered in Q1 2023, compared 
to 6,775 in Q4 2022. This indicates a significant 
increase of 25% in the number of botnet servers that 
have been created. On a quarterly scale, the number 
of Botnets C&Cs found increased from 4,331 in Q3 
2022 to 6,775 in Q4 2022, and to 8,358 in Q1 2023. 
With this significant increase in botnet C&C servers, 
researches is needed to detect domain names 
generated by DGAs to reduce the risk of botnet 
infection on computer devices. 

 
Initially, remote access from the botmaster to 

the botnet network depended on pre-established IP 
addresses or domains. This method is easy for 
security applications to block or disrupt 
communication between the bots and the C&C 
server[4]. To overcome such blockades, hackers 
developed the Domain Generating Algorithm (DGA) 
method, which periodically generates pseudo 
domain names that can be used to maintain 
connectivity between the botnet, botmaster, and 
C&C server. By using the DGA method, botnets, 
and C&C server locations become difficult to detect 
and eliminate. 

 
Research on DGA domain detection has been 

conducted, mainly using traditional machine 

learning techniques such as Random Forest[5], 
Decision Tree, and Naïve Bayes[6], as well as 
feature-based approaches such as the FANCI 
method[7]. However, traditional machine learning 
models like these require manual handcrafted 
features which need advanced expertise and 
knowledge[8]. If the method or algorithm used by 
the malware botnet changes, the string composition 
of the domain name will also change, so models that 
use handcrafted features will no longer have high 
accuracy. 

 
To overcome the problem of the need for 

manual features engineering, research related to 
DGA malicious domain detection was conducted 
using deep learning methods such as using CNN [9] 
and LSTM [10], but these existing research only 
used one character in the domain name as a 
sequence, it was not yet known whether using two 
or more characters can improve accuracy of the 
model or not. In addition, newer deep learning 
algorithms such as Gated Recurrent Unit (GRU) had 
not been widely implemented in the case of DGA 
malicious domain detection. In this paper, N-grams 
embeddings was used to extract sequences from 
domain names not only one but two or more 
characters and Bidirectional Gated Recurrent Unit 
(BiGRU) with attention mechanism was proposed to 
detect and classify malicious domain which 
generated by DGA. Using n-grams embedding and 
BiGRU with attention mechanism, DGA malicious 
domains can be detected with no need to specify 
and handcraft domain name features manually.  

 
2. RELATED WORK 

 
This section summarizes earlier research into 

DGA-based domain detection. It also examines 
various methods for detect and classify non-
malicious and malicious domain which generated by 
DGA. Such a review was carried out to improve the 
theoretical foundation of this research. Also, this 
section offers a discussion of the used techniques 
for DGA detection. 

 
2.1 Domain Generating Algorithm 

Domain names make it possible for browsers, 
applications, and servers to use internet resources by 
identifying domain names with IP addresses. 
Internet users experience the benefits of using a 
domain by simply entering the domain name into a 
browser or other online application without having 
to remember a complicated IP address. 

The botmasters or attackers use Domain 
Generating Algorithm (DGA) techniques with 

Figure 1: Number Of Botnet C&C 
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certain algorithms which are inserted in the malware 
spread on the botnet to dynamically generate 
domains that can avoid detection by the botnet 
detector system and choose one of these domains to 
be used as the address of the C&C server used. 

 
Based on the DGA domain name that has 

been detected, the types of algorithms commonly 
used to generate domains [11] are as follows : 

 
(1) Arithmetic-based DGA 
Domain names are generated by calculating 

values with defined formula then converted into 
letters, numbers, or characters based on ASCII or 
random encoding. This algorithm is the most widely 
used for DGA. Example : “fgavropgu.com” 
(generated by conficker DGA) 

 
(2) Hash-based DGA 
Domain-generating algorithm that use 

hashing methods to generate domains. The hashing 
techniques used in this type of DGA are such as 
MD5 and SHA256. Example : 
“47faeb4f1b75a48499ba14e9b1cd895a.org” 
(generated by bamital DGA) 

 
(3) Wordlist/Dictionary-based DGA  
Domain names that are resulted from 

combining two or more words taken from English 
or other language word lists or dictionary to form a 
domain name. DGA malicious domains generated 
from this algorithm are difficult to detect because at 
first glance they resemble ordinary, legitimate 
domains that do not point to a C&C server. 
Example : “catpeakfearinterview.com” (generated 
by matsnu DGA) 

 
Previous works related to DGA domain 

detection have been conducted using various 
methods and approaches. One of them used the 
DNS rule-based method[12]. In this study, 
researchers used DNS traffic to detect botnet. DNS 
queries extracted from DNS traffic and then 
compared with a predetermined database that 
consists of several legitimate domains. The domain 
shall be considered legitimate if there is a match. If 
not, it will be regarded as suspicious domain. 

 
Traditional machine learning such as 

Random Forest is used in DGA detection research 
[5]. This study used Random Forest to detect DGA 
domains. The dataset used in this study were from 
Alexa for legitimate domain names as much as 
100,000 domains and from NetLab360 as much as 
153,200 for DGA domain. The Random Forest 

model used in this study obtained an accuracy of 
83,82% but failed to detect “banjori”, “matsu”, 
“bigviktor” DGA families. 

 
Big data technology is used in study related 

to DGA malicious domain detection [6]. 
Technology which used in this study is Apache 
Spark. The main purpose of using Spark is to 
effectively manage massive amounts of data [13]. 
This study used two types of datasets, one of which 
consists of public data from Alexa and OpenDNS 
for normal domain names and OSINT Feed for 
malicious domain names. The other dataset comes 
from realtime DNS traffic captured using big data. 
For detection and classification, this study used 
traditional machine learning and deep learning 
model. Random Forest, Decision Tree, and Naive 
Bayes for traditional machine learning and RNN 
and LSTM for deep learning. The LSTM method in 
this study was able to obtain an F1-score of 0.932, 
the highest score compared to RNN (0.909), 
Random Forest (0.828), Decision Tree (0.648), and 
Naive Bayes (0.693). LSTM was also used to detect 
DGA domain. 

 
Study [14] used RNN and WHOIS Lookup 

as side information to domain name. Main purpose 
of this study is to detect DGA domains which have 
similarities with english words. This study used 
Alexa and OpenDNS dataset as normal domain 
names and DGArchive, Andrey Abakumov’s DGA, 
and J. Bader’s DGA as DGA domains. 

 
Deep learning model such as CNN and 

LSTM was used to detect dictionary DGA [9]. 
Dictionary DGA is harder to detect because they use 
common english words and have similarities with 
normal domains. The dataset used in this study 
comes from Alexa for normal domain names and 
DGArchive for DGA domains. This study used 
model named Bilbo which contained CNN and 
LSTM but only obtain an F1-score of 0.5660. 

 
 

2.2 N-Grams Embedding 
N-grams are sequences of n units, these 

sequences can be characters, words, or parts of 
words consisting of n units. N-grams are one of the 
most widely used processes in text mining and 
natural language processing. N-gram counting is 
usually done by moving one word forward. For 
example, in the sentence "This is a sentence", if the 
n-gram extraction is done with n=1, it would 
become the following sequences: ["this", "is", "a", 
"sentence"], with n=2 it would become the 



Journal of Theoretical and Applied Information Technology 

30th September 2023. Vol.101. No 18 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5808 

 

following sequences: [this is, is a, a sentence], and 
with n=3 it would become the following sequences : 
[this is a, is a sentence]. The number n=1 is often 
refered to as "unigram", n=2 as "bigram", n=3 as 
"trigram". There is no limit to the number of n used 
for n-gram extraction. In addition 1, 2, or 3, 4, 5, etc. 
can also be used. 

 
In the field of text classification, text 

classification tasks can not only be performed at the 
word level, but also at the character level . A 
domain name as short text consists of a set of 
characters. Therefore, domain names can be 
processed into n-gram sequences [12]. For example, 
the domain name "rgjvjced.com" (generated by 
Torpig DGA) would be transformed into the 
following sequences of 2-grams: 
[rg,gj,jv,vj,jc,ce,ed,d.,.c,co,om] and sequences of 3-
grams: [rgj, gjv, jvj, vjc, jce, ced, ed., d.c, .co, com]. 

 
Deep learning models cannot accept data in 

the form of strings or text. Therefore, the input data 
must be vectorized. The extraction results in the 
form of n-gram sequences from the domain can be 
vectorized into word vectors using word 
embedding[15]. Word embedding methods have 
been developed to assist in word embedding tasks 
with libraries such as Word2Vec [15], FastText [16], 
or GloVe[17]. 

 
2.3 Gated Recurrent Unit 

Gated Recurrent Unit (GRU) was introduced 
to overcome the vanishing gradient descent problem 
in Recurrent Neural Network (RNN)[18]. Vanishing 
gradient descent is a condition where the gradient 
update from the initial time sequence to the final 
time sequence is getting smaller, so the RNN 
architecture or model does not perform well [19]. 
GRU is a variation of the RNN architecture. As in 
LSTM, GRU also uses a gates system but unlike 
LSTM which uses 3 (three) gates units (forget gate, 
input gate, output gate), GRU uses 2 (two) gates, 
namely reset gate  and update gate 𝑧௧  so that the 
computational process in GRU is simpler than 
LSTM [20] as shown on Figure 2. 

 
For learning the current input vector 𝑋௧ , a 

GRU unit update its hidden state by calculating 
reset gate 𝑟௧  by summing the input vector 𝑋௧  and 

hidden state from the previous time step ℎ(௧ିଵ)with 
bias 𝑏௥ followed by sigmoid activation (𝜎) funcion. 
When 𝑟௧ close to 0, the reset gate makes the unit act 
as if it is reading the first character of an input 
sequence, allowing it to forget the previously 
computed state [20]. In the form of equation, reset 
gate is computed using Eq. (1) where 𝑊௥ and 𝑈௥  are 

weight matrices for input vector 𝑋௧ and hidden state 
ℎ(௧ିଵ). 

 
𝑟௧ =  𝜎(𝑊௥  .  𝑋௧ + 𝑈௥  . ℎ(௧ିଵ) + 𝑏௥) (1) 

 
Similar to reset gate 𝑟௧ , update gate 𝑧௧ 

decides how much a GRU unit updates its content. 
Update gate is computed using Eq. (2) where 𝑊௭ 
and 𝑈௭  are weight matrices for input vector 𝑋௧  and 
hidden state ℎ(௧ିଵ). 

 
𝑧௧ =  𝜎(𝑊௭ . 𝑋௧ + 𝑈௭ . ℎ(௧ିଵ) + 𝑏௭) (2) 

 

The candidate hidden state ℎ෨௧  is computed 
using Eq. (3) where 𝑊௛ and 𝑈௛ are weight matrices 
for input vector 𝑋௧ and hidden state ℎ(௧ିଵ). 

 
ℎ෨௧ =  𝑡𝑎𝑛ℎ(𝑊௛ . 𝑋௧ + 𝑟௧ ⊙ 𝑈௛. ℎ(௧ିଵ) + 𝑏௭) (3) 

 
𝑟௧  in Eq. (3) is reset gate and ⊙  is an 

element-wise multiplication. 
 
After computing reset gate 𝑟௧, update gate 𝑧௧, 

and candidate hidden state ℎ෨௧, a GRU unit computes 
its hidden state ℎ௧ for time step 𝑡 by using Eq. (4). 

 

ℎ௧  = (1 − 𝑧௧)  ⊙  ℎ(௧ିଵ) + 𝑧௧ ⊙ ℎ௧
෩  (4) 

Figure 2: GRU Architecture 
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The hidden state calculation in GRU unit is 
carried forward to the next time step until the entire 
input sequence is calculated. 

 
2.4 Attention Mechanism 

The attention mechanism simulates the 
human brain’s attention characteristics, which can 
be understood as always paying attention to more 
important information. In the field of NLP, the 
attention mechanism is introduced in the neural 
translation model using the encoder-decoder 
approach [21]. A novel types of attention-based 
model for machine translation is also proposed [22]. 

  
One of the most popular task in NLP, 

sentiment analysis, is also get advantages from 
attention mechanism[23]. Since then, more research 
has conducted to implement attention mechanism to 
many tasks such as text classification, abstract 
extraction, and text summarization. The most 
popular research on attention mechanism is the 
implementation of the transformer model[24] that 
started popular language models development such 
as GPT. The effective use of attention mechanism in 
natural language ignites interest in DGA domain 
name detection. 

 
3.  PROPOSED METHOD 

 
3.1 System Architecture 

An overview of system architecture proposed 
in this study to detect DGA-based malicious domain 
names using n-gram embedding and attention-based 
BiGRU is shown in Figure 3. 

 
The model architecture in this paper consists 

of four components: N-grams embedding, BiGRU 
layer, attention layer, and output layer. Before 
entering the output layer, the domain name 
sequence is trained and uses dropout to prevent 
overfitting[25]. 

 
 
 
 
 
 
 
 
 

 

3.2 Preprocessing 
Domain names are preprocessed before 

embedding. The preprocessing process in this paper 
includes : 

 
(1) Case folding 

The characters in domain names are case 
insensitive which means there is no difference 
between lowercase and uppercase letters. The 
characters in the domain name was folded to 
lowercase. 

 
(2) Subdomain extraction 

Subdomain parts of the domain name were 
removed by using the TLDExtract library in Python. 
For domain names that use free dynamic dns 
services such as "ghqdorqluleja21.ddns.net" 
(generated by DGA Corebot) or 
"pmfgfctidcffeago.mynumber.org" (generated by 
DGA Sutra), the subdomain is not removed because 
the generated part is already in the subdomain part 
of the domain name. 

 
3.3 N-Grams Embedding 

Pretrained n-grams embedding was 
developed using  legitimate and DGA domain 
names from datasets. For more detail, pretrained n-
grams embedding model build process is shown in 
Figure 4. 

  

Figure 3: Proposed System Architecture 
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In this research, domain names can be 
considered as sentences consisting of words. The 
term “words” in this case are streams of character 
level n-grams. FastText Continuous-Bag-of-Words 
(CBOW) is was implemented as word embedding 
technique which has good performance for text 
classification [16][26]. This study used 1-gram, 2-
grams, 3-grams, and 4-grams to determine the best 
number of n for DGA domain detection. The length 
of domain names input sequences was set to 70 and 
embedding size to 100. The output of n-grams 
embedding will be input to the BiGRU layer.  

 
3.4 BiGRU Layer 

BiGRU is used to capture temporal features 
from every n-grams sequences in domain names. On 
the bidirectional architecture, there are two hidden 
layers from two separate GRUs. The two GRUs 
capture the dependencies in different direction. The 
first hidden layer of GRU captures dependencies of 
input vector sequences from x1 to xt , and the next 
layer captures dependencies of input vector 
sequences from xt to x1. The hidden layer state of 
BiGRU at time t is computed by weighted 
summation of forward hidden layer state ht-1 and 
reverse hidden layer state as shown as Eq. Eq. (7) 

ℎ௧

ሱሮ
 = 𝐺𝑅𝑈 ቀ𝑥௧ , ℎ௧

ሱሮ
ቁ (5) 

ℎ௧

←

 = 𝐺𝑅𝑈 ቀ𝑥௧ , ℎ௧

←

ቁ (6) 

ℎ௧  = 𝑤௧ ℎ௧

ሱሮ
+ 𝑣௧ℎ௧

←

+ 𝑏௧ (7) 

 
where 𝑤௧  and 𝑣௧  respectively represent the 

weights corresponding to the forward hidden state 

ℎ௧

ሱሮ
 and the reverse hidden state ℎ௧

←

 of the BiGRU at 
time t, and 𝑏௧ represents the bias of the hidden layer 
state. The GRU function in Eq. (5) and Eq. (6) to 
both forward and backward hidden state refers to 
the computation explained on the Section 2.3. 

 
3.5 Attention Layer 

The purpose of attention layer is to neglect 
unimportant information from sequences of domain 
names, selectively screening out of a small part of 
important information and focusing on it. For DGA 

domain detection, focusing on some certain parts of 
sequences will be effective to filter out the DGA 
irrelevant noise. Each domain names consist of 
several sequences which have the same weight and 
carry noise or useless information. 

 
Attention layer is applied after BiGRU layer 

to capture relevant features from the output of the 
BiGRU layer and the relationships between current 
hidden state and all the previous hidden states. This 
layer used encoder-decoder approach[21] which 
BiGRU layer acts as the encoder. First, attention 
layer receives hidden states [h1, h2, … hT] as the 
input which is computed by the BiGRU layer, then 
the attention hidden state 𝑠௜  for each target sequence 
𝑦 for time 𝑖 can be computed using Eq. (8).  

 
𝑠௜ = 𝑓(𝑠௜ିଵ, 𝑦௜ିଵ, 𝑐௜) (8) 

 
The context vector 𝑐௜ can be calculated based 

on attention weight vector and the hidden state as 
shown in Eq. (9). 

 

𝑐௜ = ෍ 𝛼௜௝  ℎ௝

்ೣ

௝ୀଵ

 (9) 

 
Attention weights for each sequence can be 

calculated to focus on the relevant features. 
Attention weight vector 𝛼௜௝ can be calculated using 
Eq. (10) 

𝛼௜௝ =  
exp (𝑒௜௝)

∑ exp (𝑒௜௞)
்ೣ
௞ୀଵ

 
(10) 

 
In Eq. (9), 𝑇௫  is the length of the input 

sequences. The attention score 𝑒௜௝ can be computed 
using Eq. (10)  

𝑒௜௝ = 𝑣௔
்tanh ( W௔ൣ𝑠௜ିଵ, ℎ௝൧ ) (11) 

 
Eq. (11) calculates the similarity between the 

previous hidden state 𝑠௜ିଵ  and vector ℎ௝  where 𝑣௔ 
and 𝑊௔ are the learning parameters for applying the 
attention.   

 
3.6 Output Layer 

Output layer consists two dense layer, which 
the first dense layer is fed into second dense layer 
with 𝑛 hidden neurons, where 𝑛 is the class number 
of domain names. Based on which task, sigmoid 
activation function is applied to detection task 
(binary classification) and softmax activation is 

Figure 4: Pretrained N-Grams Embedding 
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applied to DGA families classification task 
(multiclass classification). 

 
3.7 Hyperparameters Tuning 

In our experiments, GPU-enabled 
TensorFlow is used with one NVIDIA Geforce 
RTX 3060Ti and Keras as software framework. By 
adjusting and optimizing the model parameters, the 
most effective hyperparameters are as follows: 

 The length of input vector was set to 70. 
 The dimension of the embedding vector 

was set to 100. 
 The deep learning models were trained 

using a batch size of 100 on the training 
set. 

 The number of hidden nodes in BiGRU 
layer was set to 128. 

 Adam[27] was implemented as an 
optimization algorithm. 

 Training epochs was set to 20. 
 Learning rate was set to 0.0001. 
 The dropout rate was set to 0.2 to prevent 

overfitting. 
 

3.8 Evaluation Metrics 
Standard accuracy, precision, recall, and F1-

score formula is used as the classification evaluation 
metrics to evaluate performance of DGA malicious 
domain detection. The evaluation metrics can be 
defined as Equation (12)-(15). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(12) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(13) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(14) 

𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(15) 

 
where TP is true positives, TN is True 

Negatives, FP is False Positives, and FN is False 
Negatives respectively. In this study, DGA 
malicious domain names are defined as positive and 
the benign ones as negatives. 

 
4.   ANALYSIS RESULTS 

 
The benign domain names are from the top 1 

million domain names dataset collected by 
Tranco[28]. From Tranco, 950,000 domain names 

were selected to make the benign domain dataset. 
The DGA domain name samples were from the 
dataset collected by DGArchive[29]. Total of 30 
types of DGAs were selected and 30,000 samples 
were chosen for each DGA types.  

 
 

Table 1: Dataset Description Of Benign And DGA 
Domain Names 

Classes Description Quantity 
Benign Benign names from Tranco 950,000 

DGA 

Domain names generated by 30 
DGA families including : 
Bamital, Banjori, Chinad, 
Conficker, Corebot, 
Cryptolocker, DNSChanger, 
Dyre, Emotet, Gameover, Gozi, 
Locky, Matsnu, Monerominer, 
Murofet, Mydoom, Padcrypt, 
Pandabanker, Pushdo, 
Ranbyus, Rovnix, Sisron, 
Sphinx, Suppobox, Sutra, 
Symmi, Tinynuke, Torpig, 
Urlzone, and Virut . 

900,000 

 

Table 2: Dataset Distribution Of DGA Domain Names 

DGA Example Quantity 

bamital 

47faeb4f1b75a48499ba1
4e9b1cd895a.org 
9b86bb2ef4bad69cca011
0076215e1f4.info 

30,000 

banjori 
andersensinaix.com 
hlrfrsensinaix.com 

30,000 

chinad 
qjsqfqluegtztu73.com 
aqywbjjjapgvivkaa2.com 

30,000 

conficker vvyaxelso.info 30,000 
corebot ghqdorqluleja21.ddns.net 30,000 

cryptolocker 
dqefltweoykcxox.biz 
vuoykihcnuipoae.co.uk 

30,000 

dnschanger 
pnftvoksjj.com 
jxtvxvfxao.com 

30,000 

dyre 

b1ca5eebd8e0eb8ea6b61
eaccbde527c26.ws 
ecca14cc3f5be1d665cbe
8992beddc6c2d.hk 

30,000 

emotet 
dcywmiroutolkvwu.eu 
djrsxvegsidbqoru.eu 

30,000 

gameover 

gyinvzrpleiprwgdekjrgll.
ru 
tlbjzsglldxwtlpgifikfpjij.
biz 

30,000 

gozi 

recordsdestlawsappealed
.ru 
forbandabuseslostation.r
u 

30,000 

locky tugokclkeknypjb.in 30,000 



Journal of Theoretical and Applied Information Technology 

30th September 2023. Vol.101. No 18 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5812 

 

tbiilacldakrv.be 

matsnu 
fatlistingsguarantee.com 
changingmaiden.com 

30,000 

monerominer 
31b4bd31fg1x2.hosting 
623bf20d36fd8.tickets 

30,000 

murofet 

mzbtfza57bygzbrl28d60
a57o41d20drowc19h14.
net 
m59a67huhta27cziskybu
ixlsb38h64iuaql28.ru 

30,000 

mydoom 
spsmhwwrrn.biz 
whqeehhenr.in 

30,000 

padcrypt 
bacfdfadbfolaffk.website 
lcbbblmcbflbdmdn.ga 

30,000 

pandabanker 
a24c1dd7ea98.net 
628baccb2a98.net 

30,000 

pushdo  
qatweduqr.kz 
ruvuryzojezx.kz 

30,000 

ranbyus 
sftbgrhotucscmgdr.cc 
yfwpmuivpmmfykven.su 

30,000 

rovnix 
yn1cx4abl8yfp8xakt.biz 
r2xy266i6tas7pclt3.com 

30,000 

sisron 
mzexmjiwmtka.net 
mjkxmjiwmtka.org 

30,000 

sphinx 
bbbkmlhdjkchrxlw.com 
qpchwabyoylfrmha.com 

30,000 

suppobox 
milkhello.net 
alexandreamadelina.ru 

30,000 

sutra 
qmedwjlwfareaitw.mynu
mber.org 

30,000 

symmi 
pueqtepiosg.ddns.net 
mowaeminipedwio.ddns.
net 

30,000 

tinynuke 

cca658631a0ae5c2592c7
a694f9d120a.top 
9a53d55a6d12104aa900
8947f77f3b3d.top 

30,000 

torpig 
xccmedc.biz 
xckscmced.com 

30,000 

urlzone 
lupwzhfj1a.net 
co1dlggj4te1su.com 

30,000 

virut 
ipcfcl.com 
pbrxdw.com 

30,000 

 
In total, 1,850,000 domain names are 

collected from the data sources. The dataset 
description and distribution are as shown as Table 1 
and Table 2. From the dataset distribution as shown 
in Table 2, some domain names such as 
“fatlistingsguarantee.com”, “changingmaiden.com” 
(generated by DGA Matsnu), “milkhello.net”, 
“alexandreamadelina.ru” (generated by DGA 
suppobox) consist of common and readable English 
words (wordlist-based DGA) so they are more 
difficult to detect as DGA domains because of the 
similarity with benign domains. Dataset is split into 
80% for training set and 20% for testing. 

 

Table 3 Type of DGA Distribution 

Algorithm DGA Malware Count 

Arithmetic-
based 

Banjori, Chinad, Conficker, 
Corebot, Cryptolocker, 
DNSChanger, Emotet, 
Gameover, Locky, 
Monerominer, Mydoom, 
Padcrypt, Pandabanker, 
Pushdo, Ranbyus, Rovnix, 
Sisron, Sphinx, Sutra, 
Symmi, Torpig, Urlzone, 
Virut 

23 

Hash-based 
Bamital, Dyre, Murofet,  
Tinynuke 

4 

Wordlist-
based 

Gozi, Matsnu, Suppobox 3 

 
Out of all the DGA classes in the dataset as 

shown in Table 3, there are 23 classes that use 
Arithmetic-based algorithms, 4 classes use Hash-
based algorithms, and 3 classes use Wordlist-based 
algorithms. This shows that arithmetic-based DGA 
is the more widely used method in botnet malware 
that uses domain generating techniques. 

 
In this study, number of n-grams (1-gram, 2-

gram, 3-gram, and 4-gram) is experimented to get 
the best performance and then tested with BiGRU-
Attention model. Table 4 shows the performance of 
each n-grams embedding. 

 

Table 4: N-Grams Embedding Evaluation Results 

N-gram Precision Recall F1-score 

1-gram 0.9858 0.9859 0.9859 
2-grams 0.9851 0.9853 0.9852 
3-grams 0.9865 0.9866 0.9865 
4-grams 0.9845 0.9846 0.9846 

 
From Table 4, it can be seen that the results 

from either 1-gram, 2-grams, 3-grams, or 4-grams 
don’t have much difference on precision, recall, and 
F1-score. The embedding model with 3-grams 
(trigram) has the best performance between them 
with F1-score of 98.65%. 

 
Three deep learning models are set to be 

compared with proposed BiGRU-Attention model. 
The models in the experiment were CNN scheme, 
LSTM scheme, and unidirectional GRU. Table 5 
shows the evaluation results of the proposed and 
compared models on the DGA detection task 
(binary classification). 
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Table 5. Evaluation Results On DGA Domain Names 
Detection 

Model Precision Recall F1-score 

CNN 0.9774 0.9774 0.9774 
LSTM 0.9740 0.9740 0.9740 
GRU 0.9781 0.9779 0.9780 

BiGRU-Att 0.9865 0.9866 0.9865 

The proposed BiGRU-Attention model could 
achieve a high performance with F1-score of 98.65% 
as shown on Table 5, higher than the three 
compared models. From this evaluation result, the 

implementation of attention mechanism could 
improve F1-score compared to other deep learning 
models which didn’t use attention mechanism. 

Compared and proposed models are also 
experimented for DGA domain classification task 
(multiclass classification). Table 6 shows the 
evaluation results of the models using precision, 
recall and F1-score values for benign domains and 
30 types of DGA malicious domains. 

 
 

Table 6. Evaluation Results On DGA Domain Names Classification 

DGA 
CNN LSTM GRU BiGRU-ATT(Proposed) 

Support 
P R F1 P R F1 P R F1 P R F1 

benign 0.9587 0.9832 0.9708 0.9776 0.9739 0.9758 0.9863 0.9751 0.9807 0.9890 0.9813 0.9851 190000 
bamital 0.9972 0.9985 0.9978 0.9998 1.0 0.9999 0.9997 1.0 0.9998 1.0 1.0 1.0 6000 
banjori 0.9947 0.9980 0.9963 0.9953 0.9975 0.9964 0.9929 1.0 0.9964 0.9972 1.0 0.9986 6000 
chinad 0.8626 0.6332 0.7303 0.9853 0.9852 0.9852 0.9676 0.9768 0.9722 0.9976 0.99 0.9938 6000 

conficker 0.8035 0.6290 0.7056 0.7768 0.7400 0.7579 0.7692 0.7683 0.7688 0.7448 0.855 0.7961 6000 
corebot 0.8942 0.9448 0.9188 0.9724 0.9855 0.9789 0.9772 0.9938 0.9855 0.9967 0.9943 0.9955 6000 

cryptolocker 0.6558 0.6402 0.6479 0.7895 0.8150 0.8020 0.7806 0.7398 0.7596 0.7911 0.9158 0.8489 6000 
dnschanger 0.8154 0.8753 0.8443 0.9271 0.9305 0.9288 0.9186 0.9575 0.9377 0.9510 0.9767 0.9637 6000 

dyre 0.9997 0.9810 0.9902 0.9997 1.0 0.9998 0.9998 1.0 0.9999 1.0 1.0 1.0 6000 
emotet 0.9987 0.9958 0.9972 0.9992 0.9970 0.9981 0.9975 0.9987 0.9981 0.9997 1.0 0.9998 6000 

gameover 0.9356 0.9083 0.9218 0.9944 0.9988 0.9966 0.9965 0.9997 0.9981 0.9992 0.9998 0.9995 6000 
gozi 0.9716 0.8937 0.9310 0.9512 0.9158 0.9332 0.9517 0.9682 0.9598 0.9686 0.9875 0.9780 6000 

locky 0.7800 0.6235 0.6930 0.9244 0.6355 0.7532 0.852 0.6697 0.7499 0.9321 0.6888 0.7922 6000 
matsnu 0.8332 0.5878 0.6893 0.6991 0.8427 0.7642 0.855 0.917 0.8849 0.8675 0.96 0.9114 6000 

monerominer 0.9974 0.9587 0.9776 0.9992 1.0 0.9996 0.9993 1.0 0.9997 0.9998 1.0 0.9999 6000 
murofet 0.7775 0.7687 0.7730 0.7979 0.8627 0.8290 0.7852 0.8573 0.8197 0.8634 0.869 0.8662 6000 
mydoom 0.9937 0.9938 0.9938 0.9927 1.0 0.9963 0.9947 0.9997 0.9972 0.9959 1.0 0.9979 6000 
padcrypt 0.9930 0.9892 0.9911 0.9978 0.9963 0.9971 0.9965 0.9895 0.993 0.9995 0.9998 0.9997 6000 

pandabanker 0.997 0.9967 0.9968 0.9985 1.0 0.9993 0.998 0.9995 0.9988 0.9985 1.0 0.9993 6000 
pushdo  0.9876 0.9982 0.9929 0.9881 0.9992 0.9936 0.9943 0.9972 0.9958 0.9942 0.9998 0.9970 6000 
ranbyus 0.7150 0.8303 0.7684 0.9963 0.9835 0.9899 0.978 0.9832 0.9806 0.9983 0.9948 0.9966 6000 
rovnix 0.9997 1.0 0.9998 0.9998 1.0 0.9999 1.0 1.0 1.0 1.0 1.0 1.0 6000 
sisron 0.7338 0.9298 0.8203 0.9149 0.9627 0.9382 0.8695 0.7398 0.7995 0.9526 0.9805 0.9663 6000 
sphinx 0.9836 0.9892 0.9864 0.9668 0.9995 0.9829 0.9825 0.9995 0.9909 0.9883 0.9998 0.9940 6000 

suppobox 0.9814 0.9942 0.9877 0.9789 0.9998 0.9893 0.995 0.9988 0.9969 0.9983 1.0 0.9992 6000 
sutra 0.9977 0.9998 0.9988 0.9977 0.9998 0.9988 0.9997 0.9997 0.9997 0.9983 1.0 0.9992 6000 

symmi 0.8908 0.7997 0.8428 0.9242 0.9830 0.9527 0.7672 0.9893 0.8642 0.9737 0.9923 0.9829 6000 
tinynuke 0.9983 0.9978 0.9981 0.9990 0.9997 0.9993 0.9987 1.0 0.9993 0.9998 1.0 0.9999 6000 

torpig 0.9904 0.9843 0.9874 0.9657 0.9937 0.9795 0.9893 0.9977 0.9934 0.9922 0.999 0.9956 6000 
urlzone 0.8836 0.8682 0.8758 0.9307 0.9082 0.9193 0.9496 0.8973 0.9227 0.9597 0.9255 0.9423 6000 

virut 0.7483 0.6808 0.7130 0.7999 0.7920 0.7959 0.7099 0.8783 0.7852 0.8374 0.8423 0.8399 6000 
Accuracy   0.9344   0.9594   0.9599   0.9737 370000 

Macro-Avg 0.9087 0.8862 0.8948 0.9432 0.9451 0.9429 0.9372 0.9449 0.9396 0.9608 0.9662 0.9625 370000 

*P:Precision, R:Recall, F1:F1-score

For the DGA domain classification task 
(multiclass classification), BiGRU-Attention has a 
higher F1-score than other models in almost all 
DGA types. BiGRU-Attention also has better results 
for detecting wordlist-DGA types such as gozi, 
matsnu, and suppobox. From the whole evaluation 
results, BiGRU-Attention managed to get the 

highest macro-average F1-score compared to other 
models, which is 96.25%. 

 
5. CONCLUSION 

 
In this paper, n-grams embedding and 

attention-based BiGRU model is proposed to detect 
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DGA malicious domain names, not only to detect a 
domain is legitimate domain or DGA domain, but 
also to classify which DGA type of the domain. The 
3-grams embedding achieved the highest F1-score 
result among 1-gram, 2-grams, 3-grams, and 4-
grams. It can be concluded that extracting three 
characters sequences from domain names is the best 
method to prepare word vectors before classifying 
DGA domains using BiGRU-Attention layer. 
BiGRU-Attention could improve the accuracy of 
DGA domain detection task without manually 
define and handcraft domain features and achieved 
better performance not only on pseudo-random 
string DGA types generated by arithmetic-based 
DGA and hash-based DGA but also the wordlist-
based DGA such as gozi, matsnu, and suppobox. 
Results from experiments demonstrate the model 
effectiveness that obtained an average F1-score of 
98.65% for the detection and an macro average F1-
score of 96.25% for the classification of DGA 
domain names. 

 
The focus of future research will be on 

integrating this deep learning model into a larger 
detection system for the identification of cyber-
threats in actual and real traffic data. We also intend 
to study newer DGA types to improve accuracy and 
performance of the proposed model to detect new 
types of DGA malicious domains. 
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