
Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5805

ALGORITHMICALLY GENERATED MALICIOUS DOMAIN
DETECTION USING N-GRAMS EMBEDDING AND

ATTENTION-BASED BIDIRECTIONAL GATED
RECURRENT UNIT

ALFONSUS SUCAHYO HARIAJI1 , ABBA SUGANDA GIRSANG2
1Computer Science Department, BINUS Graduate Program - Master of Computer Science,

Bina Nusantara University, Jakarta, Indonesia 11480

2Computer Science Department, BINUS Graduate Program - Master of Computer Science,

Bina Nusantara University, Jakarta, Indonesia 11480

E-mail: 1alfonsus.hariaji@binus.ac.id, 2agirsang@binus.edu

ABSTRACT

Botnets are one of the recent main cyber security threats. In order to avoid detection, botnets use Domain
Generation Algorithm (DGA) to generate malicious domain names and maintain communication between
infected bots and command and control server (C&C). Botnet malwares use various algorithm to generate
domain names such as arithmetic, hashing, and wordlist/dictionary techniques. Recent traditional machine
learning and deep learnin based detection methods need handcrafted domain name features which require
more effort and advanced expertise and knowledge. This study aims to detect and classify DGA malicious
domain without manually define and handcraft domain name features by only using the domain name. N-
grams method was used to create sequences of domain names and then vectorize the sequences using word
embedding technique to create n-grams embedding model. After vectorization, Bidirectional Gated
Recurrent Unit (BiGRU) was used for domain name classification and attention mechanism was used to
improve classification performance by applying attention weight. The experiment results demonstrate the
N-Grams Embedding and Attention-based BiGRU model proposed in this paper can detect and classify
various type of DGA domains generated by arithmetic, hashing, and wordlist algorithm more effective
compared to older algorithm such as CNN and LSTM for both DGA malicious domain detection and
classification task. The use of attention mechanism can also improve the accuracy and performance of the
DGA malicious domain detection model compared to models that do not use attention mechanism.

Keywords: Attention Mechanism, Domain Generating Algorithm, Gated Recurrent Unit, Malicious
Domain, N-grams Embedding,

1. INTRODUCTION

Currently, the internet has become a vital

part of both personal and professional life for
individuals. With the help of the internet, anyone
can communicate with others with the intention and
purpose of seeking information, and accessing
various services such as email, e-banking, e-
learning, social media, etc. Internet access media is
also increasingly diverse. Not only computers, but
everyone can access the internet through laptops,
smartphones, and other devices that can connect to
the internet.

Since the development of software
development techniques, programs containing
malicious code have emerged, but initially only had
an impact on local devices. With the development
of the internet, these programs can easily spread by
taking advantage of the internet network. A hacker
can spread malware through the internet to gain
control and access to the infected computer. The
infected computer can spread the same malware to
other computers without the user's knowledge,
forming a network of infected computers called a
"Robot Network" / Botnet [1].

This network which contains bots (devices

that have infected with botnet) is controlled by

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5806

attacker/hacker which called botmaster to control
and take advantages of the network to do malicious
act such as exploit, fraud, data stealing, spam
spreading, etc. The characteristic of this botnet
network is the existence of a dedicated server
prepared by the botmaster as a Command and
Control (C&C/C2) to distribute commands from the
botmaster to the bots on the botnet network[2].

As shown on Figure 1, based on the Q1 2023
Botnet Threat Update report released by Spamhaus
Project[3], a total of 8,358 Botnet C&Cs (Command
and Control) were discovered in Q1 2023, compared
to 6,775 in Q4 2022. This indicates a significant
increase of 25% in the number of botnet servers that
have been created. On a quarterly scale, the number
of Botnets C&Cs found increased from 4,331 in Q3
2022 to 6,775 in Q4 2022, and to 8,358 in Q1 2023.
With this significant increase in botnet C&C servers,
researches is needed to detect domain names
generated by DGAs to reduce the risk of botnet
infection on computer devices.

Initially, remote access from the botmaster to

the botnet network depended on pre-established IP
addresses or domains. This method is easy for
security applications to block or disrupt
communication between the bots and the C&C
server[4]. To overcome such blockades, hackers
developed the Domain Generating Algorithm (DGA)
method, which periodically generates pseudo
domain names that can be used to maintain
connectivity between the botnet, botmaster, and
C&C server. By using the DGA method, botnets,
and C&C server locations become difficult to detect
and eliminate.

Research on DGA domain detection has been

conducted, mainly using traditional machine

learning techniques such as Random Forest[5],
Decision Tree, and Naïve Bayes[6], as well as
feature-based approaches such as the FANCI
method[7]. However, traditional machine learning
models like these require manual handcrafted
features which need advanced expertise and
knowledge[8]. If the method or algorithm used by
the malware botnet changes, the string composition
of the domain name will also change, so models that
use handcrafted features will no longer have high
accuracy.

To overcome the problem of the need for

manual features engineering, research related to
DGA malicious domain detection was conducted
using deep learning methods such as using CNN [9]
and LSTM [10], but these existing research only
used one character in the domain name as a
sequence, it was not yet known whether using two
or more characters can improve accuracy of the
model or not. In addition, newer deep learning
algorithms such as Gated Recurrent Unit (GRU) had
not been widely implemented in the case of DGA
malicious domain detection. In this paper, N-grams
embeddings was used to extract sequences from
domain names not only one but two or more
characters and Bidirectional Gated Recurrent Unit
(BiGRU) with attention mechanism was proposed to
detect and classify malicious domain which
generated by DGA. Using n-grams embedding and
BiGRU with attention mechanism, DGA malicious
domains can be detected with no need to specify
and handcraft domain name features manually.

2. RELATED WORK

This section summarizes earlier research into

DGA-based domain detection. It also examines
various methods for detect and classify non-
malicious and malicious domain which generated by
DGA. Such a review was carried out to improve the
theoretical foundation of this research. Also, this
section offers a discussion of the used techniques
for DGA detection.

2.1 Domain Generating Algorithm

Domain names make it possible for browsers,
applications, and servers to use internet resources by
identifying domain names with IP addresses.
Internet users experience the benefits of using a
domain by simply entering the domain name into a
browser or other online application without having
to remember a complicated IP address.

The botmasters or attackers use Domain
Generating Algorithm (DGA) techniques with

Figure 1: Number Of Botnet C&C

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5807

certain algorithms which are inserted in the malware
spread on the botnet to dynamically generate
domains that can avoid detection by the botnet
detector system and choose one of these domains to
be used as the address of the C&C server used.

Based on the DGA domain name that has

been detected, the types of algorithms commonly
used to generate domains [11] are as follows :

(1) Arithmetic-based DGA
Domain names are generated by calculating

values with defined formula then converted into
letters, numbers, or characters based on ASCII or
random encoding. This algorithm is the most widely
used for DGA. Example : “fgavropgu.com”
(generated by conficker DGA)

(2) Hash-based DGA
Domain-generating algorithm that use

hashing methods to generate domains. The hashing
techniques used in this type of DGA are such as
MD5 and SHA256. Example :
“47faeb4f1b75a48499ba14e9b1cd895a.org”
(generated by bamital DGA)

(3) Wordlist/Dictionary-based DGA
Domain names that are resulted from

combining two or more words taken from English
or other language word lists or dictionary to form a
domain name. DGA malicious domains generated
from this algorithm are difficult to detect because at
first glance they resemble ordinary, legitimate
domains that do not point to a C&C server.
Example : “catpeakfearinterview.com” (generated
by matsnu DGA)

Previous works related to DGA domain

detection have been conducted using various
methods and approaches. One of them used the
DNS rule-based method[12]. In this study,
researchers used DNS traffic to detect botnet. DNS
queries extracted from DNS traffic and then
compared with a predetermined database that
consists of several legitimate domains. The domain
shall be considered legitimate if there is a match. If
not, it will be regarded as suspicious domain.

Traditional machine learning such as

Random Forest is used in DGA detection research
[5]. This study used Random Forest to detect DGA
domains. The dataset used in this study were from
Alexa for legitimate domain names as much as
100,000 domains and from NetLab360 as much as
153,200 for DGA domain. The Random Forest

model used in this study obtained an accuracy of
83,82% but failed to detect “banjori”, “matsu”,
“bigviktor” DGA families.

Big data technology is used in study related

to DGA malicious domain detection [6].
Technology which used in this study is Apache
Spark. The main purpose of using Spark is to
effectively manage massive amounts of data [13].
This study used two types of datasets, one of which
consists of public data from Alexa and OpenDNS
for normal domain names and OSINT Feed for
malicious domain names. The other dataset comes
from realtime DNS traffic captured using big data.
For detection and classification, this study used
traditional machine learning and deep learning
model. Random Forest, Decision Tree, and Naive
Bayes for traditional machine learning and RNN
and LSTM for deep learning. The LSTM method in
this study was able to obtain an F1-score of 0.932,
the highest score compared to RNN (0.909),
Random Forest (0.828), Decision Tree (0.648), and
Naive Bayes (0.693). LSTM was also used to detect
DGA domain.

Study [14] used RNN and WHOIS Lookup

as side information to domain name. Main purpose
of this study is to detect DGA domains which have
similarities with english words. This study used
Alexa and OpenDNS dataset as normal domain
names and DGArchive, Andrey Abakumov’s DGA,
and J. Bader’s DGA as DGA domains.

Deep learning model such as CNN and

LSTM was used to detect dictionary DGA [9].
Dictionary DGA is harder to detect because they use
common english words and have similarities with
normal domains. The dataset used in this study
comes from Alexa for normal domain names and
DGArchive for DGA domains. This study used
model named Bilbo which contained CNN and
LSTM but only obtain an F1-score of 0.5660.

2.2 N-Grams Embedding
N-grams are sequences of n units, these

sequences can be characters, words, or parts of
words consisting of n units. N-grams are one of the
most widely used processes in text mining and
natural language processing. N-gram counting is
usually done by moving one word forward. For
example, in the sentence "This is a sentence", if the
n-gram extraction is done with n=1, it would
become the following sequences: ["this", "is", "a",
"sentence"], with n=2 it would become the

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5808

following sequences: [this is, is a, a sentence], and
with n=3 it would become the following sequences :
[this is a, is a sentence]. The number n=1 is often
refered to as "unigram", n=2 as "bigram", n=3 as
"trigram". There is no limit to the number of n used
for n-gram extraction. In addition 1, 2, or 3, 4, 5, etc.
can also be used.

In the field of text classification, text

classification tasks can not only be performed at the
word level, but also at the character level . A
domain name as short text consists of a set of
characters. Therefore, domain names can be
processed into n-gram sequences [12]. For example,
the domain name "rgjvjced.com" (generated by
Torpig DGA) would be transformed into the
following sequences of 2-grams:
[rg,gj,jv,vj,jc,ce,ed,d.,.c,co,om] and sequences of 3-
grams: [rgj, gjv, jvj, vjc, jce, ced, ed., d.c, .co, com].

Deep learning models cannot accept data in

the form of strings or text. Therefore, the input data
must be vectorized. The extraction results in the
form of n-gram sequences from the domain can be
vectorized into word vectors using word
embedding[15]. Word embedding methods have
been developed to assist in word embedding tasks
with libraries such as Word2Vec [15], FastText [16],
or GloVe[17].

2.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU) was introduced
to overcome the vanishing gradient descent problem
in Recurrent Neural Network (RNN)[18]. Vanishing
gradient descent is a condition where the gradient
update from the initial time sequence to the final
time sequence is getting smaller, so the RNN
architecture or model does not perform well [19].
GRU is a variation of the RNN architecture. As in
LSTM, GRU also uses a gates system but unlike
LSTM which uses 3 (three) gates units (forget gate,
input gate, output gate), GRU uses 2 (two) gates,
namely reset gate and update gate 𝑧௧ so that the
computational process in GRU is simpler than
LSTM [20] as shown on Figure 2.

For learning the current input vector 𝑋௧ , a

GRU unit update its hidden state by calculating
reset gate 𝑟௧ by summing the input vector 𝑋௧ and

hidden state from the previous time step ℎ(௧ିଵ)with
bias 𝑏௥ followed by sigmoid activation (𝜎) funcion.
When 𝑟௧ close to 0, the reset gate makes the unit act
as if it is reading the first character of an input
sequence, allowing it to forget the previously
computed state [20]. In the form of equation, reset
gate is computed using Eq. (1) where 𝑊௥ and 𝑈௥ are

weight matrices for input vector 𝑋௧ and hidden state
ℎ(௧ିଵ).

𝑟௧ = 𝜎(𝑊௥ . 𝑋௧ + 𝑈௥ . ℎ(௧ିଵ) + 𝑏௥) (1)

Similar to reset gate 𝑟௧ , update gate 𝑧௧

decides how much a GRU unit updates its content.
Update gate is computed using Eq. (2) where 𝑊௭
and 𝑈௭ are weight matrices for input vector 𝑋௧ and
hidden state ℎ(௧ିଵ).

𝑧௧ = 𝜎(𝑊௭ . 𝑋௧ + 𝑈௭ . ℎ(௧ିଵ) + 𝑏௭) (2)

The candidate hidden state ℎ෨௧ is computed
using Eq. (3) where 𝑊௛ and 𝑈௛ are weight matrices
for input vector 𝑋௧ and hidden state ℎ(௧ିଵ).

ℎ෨௧ = 𝑡𝑎𝑛ℎ(𝑊௛ . 𝑋௧ + 𝑟௧ ⊙ 𝑈௛. ℎ(௧ିଵ) + 𝑏௭) (3)

𝑟௧ in Eq. (3) is reset gate and ⊙ is an

element-wise multiplication.

After computing reset gate 𝑟௧, update gate 𝑧௧,

and candidate hidden state ℎ෨௧, a GRU unit computes
its hidden state ℎ௧ for time step 𝑡 by using Eq. (4).

ℎ௧ = (1 − 𝑧௧) ⊙ ℎ(௧ିଵ) + 𝑧௧ ⊙ ℎ௧
෩ (4)

Figure 2: GRU Architecture

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5809

The hidden state calculation in GRU unit is
carried forward to the next time step until the entire
input sequence is calculated.

2.4 Attention Mechanism

The attention mechanism simulates the
human brain’s attention characteristics, which can
be understood as always paying attention to more
important information. In the field of NLP, the
attention mechanism is introduced in the neural
translation model using the encoder-decoder
approach [21]. A novel types of attention-based
model for machine translation is also proposed [22].

One of the most popular task in NLP,

sentiment analysis, is also get advantages from
attention mechanism[23]. Since then, more research
has conducted to implement attention mechanism to
many tasks such as text classification, abstract
extraction, and text summarization. The most
popular research on attention mechanism is the
implementation of the transformer model[24] that
started popular language models development such
as GPT. The effective use of attention mechanism in
natural language ignites interest in DGA domain
name detection.

3. PROPOSED METHOD

3.1 System Architecture

An overview of system architecture proposed
in this study to detect DGA-based malicious domain
names using n-gram embedding and attention-based
BiGRU is shown in Figure 3.

The model architecture in this paper consists

of four components: N-grams embedding, BiGRU
layer, attention layer, and output layer. Before
entering the output layer, the domain name
sequence is trained and uses dropout to prevent
overfitting[25].

3.2 Preprocessing
Domain names are preprocessed before

embedding. The preprocessing process in this paper
includes :

(1) Case folding

The characters in domain names are case
insensitive which means there is no difference
between lowercase and uppercase letters. The
characters in the domain name was folded to
lowercase.

(2) Subdomain extraction

Subdomain parts of the domain name were
removed by using the TLDExtract library in Python.
For domain names that use free dynamic dns
services such as "ghqdorqluleja21.ddns.net"
(generated by DGA Corebot) or
"pmfgfctidcffeago.mynumber.org" (generated by
DGA Sutra), the subdomain is not removed because
the generated part is already in the subdomain part
of the domain name.

3.3 N-Grams Embedding

Pretrained n-grams embedding was
developed using legitimate and DGA domain
names from datasets. For more detail, pretrained n-
grams embedding model build process is shown in
Figure 4.

Figure 3: Proposed System Architecture

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5810

In this research, domain names can be
considered as sentences consisting of words. The
term “words” in this case are streams of character
level n-grams. FastText Continuous-Bag-of-Words
(CBOW) is was implemented as word embedding
technique which has good performance for text
classification [16][26]. This study used 1-gram, 2-
grams, 3-grams, and 4-grams to determine the best
number of n for DGA domain detection. The length
of domain names input sequences was set to 70 and
embedding size to 100. The output of n-grams
embedding will be input to the BiGRU layer.

3.4 BiGRU Layer

BiGRU is used to capture temporal features
from every n-grams sequences in domain names. On
the bidirectional architecture, there are two hidden
layers from two separate GRUs. The two GRUs
capture the dependencies in different direction. The
first hidden layer of GRU captures dependencies of
input vector sequences from x1 to xt , and the next
layer captures dependencies of input vector
sequences from xt to x1. The hidden layer state of
BiGRU at time t is computed by weighted
summation of forward hidden layer state ht-1 and
reverse hidden layer state as shown as Eq. Eq. (7)

ℎ௧

ሱሮ
 = 𝐺𝑅𝑈 ቀ𝑥௧ , ℎ௧

ሱሮ
ቁ (5)

ℎ௧

←

 = 𝐺𝑅𝑈 ቀ𝑥௧ , ℎ௧

←

ቁ (6)

ℎ௧ = 𝑤௧ ℎ௧

ሱሮ
+ 𝑣௧ℎ௧

←

+ 𝑏௧ (7)

where 𝑤௧ and 𝑣௧ respectively represent the

weights corresponding to the forward hidden state

ℎ௧

ሱሮ
 and the reverse hidden state ℎ௧

←

 of the BiGRU at
time t, and 𝑏௧ represents the bias of the hidden layer
state. The GRU function in Eq. (5) and Eq. (6) to
both forward and backward hidden state refers to
the computation explained on the Section 2.3.

3.5 Attention Layer

The purpose of attention layer is to neglect
unimportant information from sequences of domain
names, selectively screening out of a small part of
important information and focusing on it. For DGA

domain detection, focusing on some certain parts of
sequences will be effective to filter out the DGA
irrelevant noise. Each domain names consist of
several sequences which have the same weight and
carry noise or useless information.

Attention layer is applied after BiGRU layer

to capture relevant features from the output of the
BiGRU layer and the relationships between current
hidden state and all the previous hidden states. This
layer used encoder-decoder approach[21] which
BiGRU layer acts as the encoder. First, attention
layer receives hidden states [h1, h2, … hT] as the
input which is computed by the BiGRU layer, then
the attention hidden state 𝑠௜ for each target sequence
𝑦 for time 𝑖 can be computed using Eq. (8).

𝑠௜ = 𝑓(𝑠௜ିଵ, 𝑦௜ିଵ, 𝑐௜) (8)

The context vector 𝑐௜ can be calculated based

on attention weight vector and the hidden state as
shown in Eq. (9).

𝑐௜ = ෍ 𝛼௜௝ ℎ௝

்ೣ

௝ୀଵ

 (9)

Attention weights for each sequence can be

calculated to focus on the relevant features.
Attention weight vector 𝛼௜௝ can be calculated using
Eq. (10)

𝛼௜௝ =
exp (𝑒௜௝)

∑ exp (𝑒௜௞)
்ೣ
௞ୀଵ

(10)

In Eq. (9), 𝑇௫ is the length of the input

sequences. The attention score 𝑒௜௝ can be computed
using Eq. (10)

𝑒௜௝ = 𝑣௔
்tanh (W௔ൣ𝑠௜ିଵ, ℎ௝൧) (11)

Eq. (11) calculates the similarity between the

previous hidden state 𝑠௜ିଵ and vector ℎ௝ where 𝑣௔
and 𝑊௔ are the learning parameters for applying the
attention.

3.6 Output Layer

Output layer consists two dense layer, which
the first dense layer is fed into second dense layer
with 𝑛 hidden neurons, where 𝑛 is the class number
of domain names. Based on which task, sigmoid
activation function is applied to detection task
(binary classification) and softmax activation is

Figure 4: Pretrained N-Grams Embedding

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5811

applied to DGA families classification task
(multiclass classification).

3.7 Hyperparameters Tuning

In our experiments, GPU-enabled
TensorFlow is used with one NVIDIA Geforce
RTX 3060Ti and Keras as software framework. By
adjusting and optimizing the model parameters, the
most effective hyperparameters are as follows:

 The length of input vector was set to 70.
 The dimension of the embedding vector

was set to 100.
 The deep learning models were trained

using a batch size of 100 on the training
set.

 The number of hidden nodes in BiGRU
layer was set to 128.

 Adam[27] was implemented as an
optimization algorithm.

 Training epochs was set to 20.
 Learning rate was set to 0.0001.
 The dropout rate was set to 0.2 to prevent

overfitting.

3.8 Evaluation Metrics
Standard accuracy, precision, recall, and F1-

score formula is used as the classification evaluation
metrics to evaluate performance of DGA malicious
domain detection. The evaluation metrics can be
defined as Equation (12)-(15).

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(12)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(13)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(14)

𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(15)

where TP is true positives, TN is True

Negatives, FP is False Positives, and FN is False
Negatives respectively. In this study, DGA
malicious domain names are defined as positive and
the benign ones as negatives.

4. ANALYSIS RESULTS

The benign domain names are from the top 1

million domain names dataset collected by
Tranco[28]. From Tranco, 950,000 domain names

were selected to make the benign domain dataset.
The DGA domain name samples were from the
dataset collected by DGArchive[29]. Total of 30
types of DGAs were selected and 30,000 samples
were chosen for each DGA types.

Table 1: Dataset Description Of Benign And DGA
Domain Names

Classes Description Quantity
Benign Benign names from Tranco 950,000

DGA

Domain names generated by 30
DGA families including :
Bamital, Banjori, Chinad,
Conficker, Corebot,
Cryptolocker, DNSChanger,
Dyre, Emotet, Gameover, Gozi,
Locky, Matsnu, Monerominer,
Murofet, Mydoom, Padcrypt,
Pandabanker, Pushdo,
Ranbyus, Rovnix, Sisron,
Sphinx, Suppobox, Sutra,
Symmi, Tinynuke, Torpig,
Urlzone, and Virut .

900,000

Table 2: Dataset Distribution Of DGA Domain Names

DGA Example Quantity

bamital

47faeb4f1b75a48499ba1
4e9b1cd895a.org
9b86bb2ef4bad69cca011
0076215e1f4.info

30,000

banjori
andersensinaix.com
hlrfrsensinaix.com

30,000

chinad
qjsqfqluegtztu73.com
aqywbjjjapgvivkaa2.com

30,000

conficker vvyaxelso.info 30,000
corebot ghqdorqluleja21.ddns.net 30,000

cryptolocker
dqefltweoykcxox.biz
vuoykihcnuipoae.co.uk

30,000

dnschanger
pnftvoksjj.com
jxtvxvfxao.com

30,000

dyre

b1ca5eebd8e0eb8ea6b61
eaccbde527c26.ws
ecca14cc3f5be1d665cbe
8992beddc6c2d.hk

30,000

emotet
dcywmiroutolkvwu.eu
djrsxvegsidbqoru.eu

30,000

gameover

gyinvzrpleiprwgdekjrgll.
ru
tlbjzsglldxwtlpgifikfpjij.
biz

30,000

gozi

recordsdestlawsappealed
.ru
forbandabuseslostation.r
u

30,000

locky tugokclkeknypjb.in 30,000

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5812

tbiilacldakrv.be

matsnu
fatlistingsguarantee.com
changingmaiden.com

30,000

monerominer
31b4bd31fg1x2.hosting
623bf20d36fd8.tickets

30,000

murofet

mzbtfza57bygzbrl28d60
a57o41d20drowc19h14.
net
m59a67huhta27cziskybu
ixlsb38h64iuaql28.ru

30,000

mydoom
spsmhwwrrn.biz
whqeehhenr.in

30,000

padcrypt
bacfdfadbfolaffk.website
lcbbblmcbflbdmdn.ga

30,000

pandabanker
a24c1dd7ea98.net
628baccb2a98.net

30,000

pushdo
qatweduqr.kz
ruvuryzojezx.kz

30,000

ranbyus
sftbgrhotucscmgdr.cc
yfwpmuivpmmfykven.su

30,000

rovnix
yn1cx4abl8yfp8xakt.biz
r2xy266i6tas7pclt3.com

30,000

sisron
mzexmjiwmtka.net
mjkxmjiwmtka.org

30,000

sphinx
bbbkmlhdjkchrxlw.com
qpchwabyoylfrmha.com

30,000

suppobox
milkhello.net
alexandreamadelina.ru

30,000

sutra
qmedwjlwfareaitw.mynu
mber.org

30,000

symmi
pueqtepiosg.ddns.net
mowaeminipedwio.ddns.
net

30,000

tinynuke

cca658631a0ae5c2592c7
a694f9d120a.top
9a53d55a6d12104aa900
8947f77f3b3d.top

30,000

torpig
xccmedc.biz
xckscmced.com

30,000

urlzone
lupwzhfj1a.net
co1dlggj4te1su.com

30,000

virut
ipcfcl.com
pbrxdw.com

30,000

In total, 1,850,000 domain names are

collected from the data sources. The dataset
description and distribution are as shown as Table 1
and Table 2. From the dataset distribution as shown
in Table 2, some domain names such as
“fatlistingsguarantee.com”, “changingmaiden.com”
(generated by DGA Matsnu), “milkhello.net”,
“alexandreamadelina.ru” (generated by DGA
suppobox) consist of common and readable English
words (wordlist-based DGA) so they are more
difficult to detect as DGA domains because of the
similarity with benign domains. Dataset is split into
80% for training set and 20% for testing.

Table 3 Type of DGA Distribution

Algorithm DGA Malware Count

Arithmetic-
based

Banjori, Chinad, Conficker,
Corebot, Cryptolocker,
DNSChanger, Emotet,
Gameover, Locky,
Monerominer, Mydoom,
Padcrypt, Pandabanker,
Pushdo, Ranbyus, Rovnix,
Sisron, Sphinx, Sutra,
Symmi, Torpig, Urlzone,
Virut

23

Hash-based
Bamital, Dyre, Murofet,
Tinynuke

4

Wordlist-
based

Gozi, Matsnu, Suppobox 3

Out of all the DGA classes in the dataset as

shown in Table 3, there are 23 classes that use
Arithmetic-based algorithms, 4 classes use Hash-
based algorithms, and 3 classes use Wordlist-based
algorithms. This shows that arithmetic-based DGA
is the more widely used method in botnet malware
that uses domain generating techniques.

In this study, number of n-grams (1-gram, 2-

gram, 3-gram, and 4-gram) is experimented to get
the best performance and then tested with BiGRU-
Attention model. Table 4 shows the performance of
each n-grams embedding.

Table 4: N-Grams Embedding Evaluation Results

N-gram Precision Recall F1-score

1-gram 0.9858 0.9859 0.9859
2-grams 0.9851 0.9853 0.9852
3-grams 0.9865 0.9866 0.9865
4-grams 0.9845 0.9846 0.9846

From Table 4, it can be seen that the results

from either 1-gram, 2-grams, 3-grams, or 4-grams
don’t have much difference on precision, recall, and
F1-score. The embedding model with 3-grams
(trigram) has the best performance between them
with F1-score of 98.65%.

Three deep learning models are set to be

compared with proposed BiGRU-Attention model.
The models in the experiment were CNN scheme,
LSTM scheme, and unidirectional GRU. Table 5
shows the evaluation results of the proposed and
compared models on the DGA detection task
(binary classification).

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5813

Table 5. Evaluation Results On DGA Domain Names
Detection

Model Precision Recall F1-score

CNN 0.9774 0.9774 0.9774
LSTM 0.9740 0.9740 0.9740
GRU 0.9781 0.9779 0.9780

BiGRU-Att 0.9865 0.9866 0.9865

The proposed BiGRU-Attention model could
achieve a high performance with F1-score of 98.65%
as shown on Table 5, higher than the three
compared models. From this evaluation result, the

implementation of attention mechanism could
improve F1-score compared to other deep learning
models which didn’t use attention mechanism.

Compared and proposed models are also
experimented for DGA domain classification task
(multiclass classification). Table 6 shows the
evaluation results of the models using precision,
recall and F1-score values for benign domains and
30 types of DGA malicious domains.

Table 6. Evaluation Results On DGA Domain Names Classification

DGA
CNN LSTM GRU BiGRU-ATT(Proposed)

Support
P R F1 P R F1 P R F1 P R F1

benign 0.9587 0.9832 0.9708 0.9776 0.9739 0.9758 0.9863 0.9751 0.9807 0.9890 0.9813 0.9851 190000
bamital 0.9972 0.9985 0.9978 0.9998 1.0 0.9999 0.9997 1.0 0.9998 1.0 1.0 1.0 6000
banjori 0.9947 0.9980 0.9963 0.9953 0.9975 0.9964 0.9929 1.0 0.9964 0.9972 1.0 0.9986 6000
chinad 0.8626 0.6332 0.7303 0.9853 0.9852 0.9852 0.9676 0.9768 0.9722 0.9976 0.99 0.9938 6000

conficker 0.8035 0.6290 0.7056 0.7768 0.7400 0.7579 0.7692 0.7683 0.7688 0.7448 0.855 0.7961 6000
corebot 0.8942 0.9448 0.9188 0.9724 0.9855 0.9789 0.9772 0.9938 0.9855 0.9967 0.9943 0.9955 6000

cryptolocker 0.6558 0.6402 0.6479 0.7895 0.8150 0.8020 0.7806 0.7398 0.7596 0.7911 0.9158 0.8489 6000
dnschanger 0.8154 0.8753 0.8443 0.9271 0.9305 0.9288 0.9186 0.9575 0.9377 0.9510 0.9767 0.9637 6000

dyre 0.9997 0.9810 0.9902 0.9997 1.0 0.9998 0.9998 1.0 0.9999 1.0 1.0 1.0 6000
emotet 0.9987 0.9958 0.9972 0.9992 0.9970 0.9981 0.9975 0.9987 0.9981 0.9997 1.0 0.9998 6000

gameover 0.9356 0.9083 0.9218 0.9944 0.9988 0.9966 0.9965 0.9997 0.9981 0.9992 0.9998 0.9995 6000
gozi 0.9716 0.8937 0.9310 0.9512 0.9158 0.9332 0.9517 0.9682 0.9598 0.9686 0.9875 0.9780 6000

locky 0.7800 0.6235 0.6930 0.9244 0.6355 0.7532 0.852 0.6697 0.7499 0.9321 0.6888 0.7922 6000
matsnu 0.8332 0.5878 0.6893 0.6991 0.8427 0.7642 0.855 0.917 0.8849 0.8675 0.96 0.9114 6000

monerominer 0.9974 0.9587 0.9776 0.9992 1.0 0.9996 0.9993 1.0 0.9997 0.9998 1.0 0.9999 6000
murofet 0.7775 0.7687 0.7730 0.7979 0.8627 0.8290 0.7852 0.8573 0.8197 0.8634 0.869 0.8662 6000
mydoom 0.9937 0.9938 0.9938 0.9927 1.0 0.9963 0.9947 0.9997 0.9972 0.9959 1.0 0.9979 6000
padcrypt 0.9930 0.9892 0.9911 0.9978 0.9963 0.9971 0.9965 0.9895 0.993 0.9995 0.9998 0.9997 6000

pandabanker 0.997 0.9967 0.9968 0.9985 1.0 0.9993 0.998 0.9995 0.9988 0.9985 1.0 0.9993 6000
pushdo 0.9876 0.9982 0.9929 0.9881 0.9992 0.9936 0.9943 0.9972 0.9958 0.9942 0.9998 0.9970 6000
ranbyus 0.7150 0.8303 0.7684 0.9963 0.9835 0.9899 0.978 0.9832 0.9806 0.9983 0.9948 0.9966 6000
rovnix 0.9997 1.0 0.9998 0.9998 1.0 0.9999 1.0 1.0 1.0 1.0 1.0 1.0 6000
sisron 0.7338 0.9298 0.8203 0.9149 0.9627 0.9382 0.8695 0.7398 0.7995 0.9526 0.9805 0.9663 6000
sphinx 0.9836 0.9892 0.9864 0.9668 0.9995 0.9829 0.9825 0.9995 0.9909 0.9883 0.9998 0.9940 6000

suppobox 0.9814 0.9942 0.9877 0.9789 0.9998 0.9893 0.995 0.9988 0.9969 0.9983 1.0 0.9992 6000
sutra 0.9977 0.9998 0.9988 0.9977 0.9998 0.9988 0.9997 0.9997 0.9997 0.9983 1.0 0.9992 6000

symmi 0.8908 0.7997 0.8428 0.9242 0.9830 0.9527 0.7672 0.9893 0.8642 0.9737 0.9923 0.9829 6000
tinynuke 0.9983 0.9978 0.9981 0.9990 0.9997 0.9993 0.9987 1.0 0.9993 0.9998 1.0 0.9999 6000

torpig 0.9904 0.9843 0.9874 0.9657 0.9937 0.9795 0.9893 0.9977 0.9934 0.9922 0.999 0.9956 6000
urlzone 0.8836 0.8682 0.8758 0.9307 0.9082 0.9193 0.9496 0.8973 0.9227 0.9597 0.9255 0.9423 6000

virut 0.7483 0.6808 0.7130 0.7999 0.7920 0.7959 0.7099 0.8783 0.7852 0.8374 0.8423 0.8399 6000
Accuracy 0.9344 0.9594 0.9599 0.9737 370000

Macro-Avg 0.9087 0.8862 0.8948 0.9432 0.9451 0.9429 0.9372 0.9449 0.9396 0.9608 0.9662 0.9625 370000

*P:Precision, R:Recall, F1:F1-score

For the DGA domain classification task
(multiclass classification), BiGRU-Attention has a
higher F1-score than other models in almost all
DGA types. BiGRU-Attention also has better results
for detecting wordlist-DGA types such as gozi,
matsnu, and suppobox. From the whole evaluation
results, BiGRU-Attention managed to get the

highest macro-average F1-score compared to other
models, which is 96.25%.

5. CONCLUSION

In this paper, n-grams embedding and

attention-based BiGRU model is proposed to detect

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5814

DGA malicious domain names, not only to detect a
domain is legitimate domain or DGA domain, but
also to classify which DGA type of the domain. The
3-grams embedding achieved the highest F1-score
result among 1-gram, 2-grams, 3-grams, and 4-
grams. It can be concluded that extracting three
characters sequences from domain names is the best
method to prepare word vectors before classifying
DGA domains using BiGRU-Attention layer.
BiGRU-Attention could improve the accuracy of
DGA domain detection task without manually
define and handcraft domain features and achieved
better performance not only on pseudo-random
string DGA types generated by arithmetic-based
DGA and hash-based DGA but also the wordlist-
based DGA such as gozi, matsnu, and suppobox.
Results from experiments demonstrate the model
effectiveness that obtained an average F1-score of
98.65% for the detection and an macro average F1-
score of 96.25% for the classification of DGA
domain names.

The focus of future research will be on

integrating this deep learning model into a larger
detection system for the identification of cyber-
threats in actual and real traffic data. We also intend
to study newer DGA types to improve accuracy and
performance of the proposed model to detect new
types of DGA malicious domains.

REFERENCES:

[1] A. Karim, R. Bin Salleh, M. Shiraz, S. A. A.
Shah, I. Awan, and N. B. Anuar, “Botnet
detection techniques: review, future trends,
and issues,” Journal of Zhejiang University:
Science C, vol. 15, no. 11, pp. 943–983,
2014, doi: 10.1631/jzus.C1300242.

[2] I. Ullah, N. Khan, and H. A. Aboalsamh,
“Survey on Botnet: Its Architecture,
Detection, Prevention and Mitigation,”
IEEE Electrical Insulation Society Staff, pp.
660–665, 2013.

[3] Spamhaus, “Spamhaus Botnet Threat
Update Q1 2023,” 2023. Accessed: Apr. 17,
2023. [Online]. Available:
https://info.spamhaus.com/hubfs/Botnet%20
Reports/2023%20Q1%20Botnet%20Threat
%20Update.pdf

[4] M. Antonakakis et al., “From Throw-Away
Traffic to Bots: Detecting the Rise of DGA-
Based Malware,” in Proceedingsof the 21st
USENIX conference on security symposium
(Security’12), 2012.

[5] X. D. Hoang and X. H. Vu, “An improved
model for detecting DGA botnets using
random forest algorithm,” Information
Security Journal, vol. 31, no. 4, pp. 441–
450, 2022, doi:
10.1080/19393555.2021.1934198.

[6] R. Vinayakumar, K. P. Soman, and P.
Poornachandran, “Detecting malicious
domain names using deep learning
approaches at scale,” Journal of Intelligent
and Fuzzy Systems, vol. 34, no. 3, pp. 1355–
1367, 2018, doi: 10.3233/JIFS-169431.

[7] S. Schüppen, P. Herrmann, U. Meyer, and D.
Teubert, “FANCI : Feature-based
Automated NXDomain Classification and
Intelligence,” Proceedings of the 27th
USENIX Security Symposium, 2018,
[Online]. Available:
www.usenix.org/conference/usenixsecurity1
8/presentation/schuppen

[8] X. Pei, S. Tian, L. Yu, H. Wang, and Y.
Peng, “A Two-Stream Network Based on
Capsule Networks and Sliced Recurrent
Neural Networks for DGA Botnet
Detection,” Journal of Network and Systems
Management, vol. 28, no. 4, pp. 1694–1721,
Oct. 2020, doi: 10.1007/s10922-020-09554-
9.

[9] K. Highnam, D. Puzio, S. Luo, and N. R.
Jennings, “Real-Time Detection of
Dictionary DGA Network Traffic Using
Deep Learning,” SN Comput Sci, vol. 2, no.
2, pp. 1–17, 2021, doi: 10.1007/s42979-
021-00507-w.

[10] J. Woodbridge, H. S. Anderson, A. Ahuja,
and D. Grant, “Predicting Domain
Generation Algorithms with Long Short-
Term Memory Networks,” ArXiv, Nov.
2016, [Online]. Available:
http://arxiv.org/abs/1611.00791

[11] D. Plohmann, K. Yakdan, M. Klatt, J. Bader,
and E. Gelmar-Padilla, “A Comprehensive
Measurement Study of Domain Generating
Malware,” in Proceedings of the 25th
USENIX Security Simposium, USENIX
Association, 2016, pp. 263–278.

[12] K. Alieyan, A. Almomani, M. Anbar, M.
Alauthman, R. Abdullah, and B. B. Gupta,
“DNS rule-based schema to botnet
detection,” Enterp Inf Syst, vol. 15, no. 4, pp.
545–564, 2021, doi:
10.1080/17517575.2019.1644673.

[13] A. Gupta, H. Thakur, R. Shrivastava, P.
Kumar, and S. Nag, “A Big Data Analysis
Framework Using Apache Spark and Deep

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5815

Learning,” ArXiv, Nov. 2017, [Online].
Available: http://arxiv.org/abs/1711.09279

[14] R. R. Curtin, A. B. Gardner, S.
Grzonkowski, A. Kleymenov, and A.
Mosquera, “Detecting DGA domains with
recurrent neural networks and side
information,” ACM International
Conference Proceeding Series, 2019, doi:
10.1145/3339252.3339258.

[15] T. Mikolov, K. Chen, G. Corrado, and J.
Dean, “Efficient Estimation of Word
Representations in Vector Space,” arXiv
Prepr. arXiv, Jan. 2013, [Online]. Available:
http://arxiv.org/abs/1301.3781

[16] P. Bojanowski, E. Grave, A. Joulin, and T.
Mikolov, “Enriching Word Vectors with
Subword Information,” Trans Assoc
Comput Linguist, vol. 5, pp. 135–146, 2017,
doi:
10.1162/tacl_a_00051/1567442/tacl_a_0005
1.pdf.

[17] J. Pennington, R. Socher, and C. D.
Manning, “GloVe: Global Vectors for Word
Representation,” in Proceedings of the 2014
Conference on Empirical Methods in
Natural Language Processing (EMNLP),
2014, pp. 1532–1543.

[18] K. Cho et al., “Learning Phrase
Representations using RNN Encoder-
Decoder for Statistical Machine Translation,”
ArXiv, Jun. 2014, [Online]. Available:
http://arxiv.org/abs/1406.1078

[19] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao,
“Independently Recurrent Neural Network
(IndRNN): Building A Longer and Deeper
RNN,” Proceedings of the IEEE Conference
on Computer Vision and Pattern
Recognition (CVPR), Jun. 2018.

[20] K. Cho, C. Gulcehre, J. Chung, and Y.
Bengio, “Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence
Modeling,” ArXiv, Dec. 2014, [Online].
Available: http://arxiv.org/abs/1412.3555

[21] D. Bahdanau, K. Cho, and Y. Bengio,
“Neural Machine Translation by Jointly
Learning to Align and Translate,”
International Conference on Learning
Representations, Sep. 2015.

[22] M.-T. Luong, H. Pham, and C. D. Manning,
“Effective Approaches to Attention-based
Neural Machine Translation,” Aug. 2015,
[Online]. Available:
http://arxiv.org/abs/1508.04025

[23] L. Zhou and X. Bian, “Improved text
sentiment classification method based on

BiGRU-Attention,” in Journal of Physics:
Conference Series, Institute of Physics
Publishing, Nov. 2019. doi: 10.1088/1742-
6596/1345/3/032097.

[24] A. Vaswani et al., “Attention Is All You
Need,” 31st Conference on Neural
Information Processing Systems, no. NIPS,
pp. 47–82, 2017.

[25] N. Srivastava, G. Hinton, A. Krizhevsky,
and R. Salakhutdinov, “Dropout: A Simple
Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[26] A. Joulin, E. Grave, P. Bojanowski, and T.
Mikolov, “Bag of Tricks for Efficient Text
Classification,” ArXiv, Jul. 2016, [Online].
Available: http://arxiv.org/abs/1607.01759

[27] D. P. Kingma and J. Ba, “Adam: A Method
for Stochastic Optimization,” in 3rd
International Conference for Learning
Representations, Dec. 2015.

[28] V. Le Pochat, T. Van Goethem,
Tajalizadehkhoob. Samaneh, M. Korczyński,
and W. Joosen, “Tranco: A Research-
Oriented Top Sites Ranking Hardened
Against Manipulation,” Proceedings of the
26th Annual Network and Distributed
System Security Symposium (NDSS 2019),
2019, doi: 10.14722/ndss.2019.23386.

[29] D. Plohmann, “DGArchive Dataset,”
Fraunhofer FKIE.[Online]. Available:
https://dgarchive.caad.fkie.fraunhofer.de/.[
Accessed: 12-Dec-2022], 2018.

