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ABSTRACT 

 

Web shell is a malicious program used to remotely access web servers during cyberattacks. Malicious web 
shells closely resemble benign web shells, making them difficult to distinguish. The challenge in detecting 
pre-existing web shells is that this type of malware is hard to detect using an intrusion detection system (IDS) 
or antivirus techniques. This is because web shells are usually hidden within web applications, making them 
challenging to differentiate from regular web application source code. Therefore, traditional detection models 
that analyze the dynamic features of web shell script execution are more effective in detecting existing 
malware attacks. In this study, A method of web shell detection based on dynamic bytecode features using a 
convolutional neural network (CNN) has been proposed in this research. Word2vec is employed to obtain 
vectorized features from the bytecode or opcode. Experimental results using a training dataset of 2577 
samples and a validation dataset of 645 samples yield the best model with an accuracy of 99.86% at epoch 
100. The experiments demonstrate that this model effectively detects web shells, with a significant increase 
in accuracy levels. 
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1. INTRODUCTION 

Technological advances in the modern world 
are developing rapidly, especially in the field of 
web-based applications. Almost all organizations 
and companies have adopted web-based 
applications to support their business processes. 
Web-based applications are very useful for 
organizations because they have the advantages of 
not needing installation, compatible across various 
platforms, less load on the system, and good 
adaptability, especially in today's cloud computing 
era. Currently, many web-based application 
developments are less aware of website security, so 
vulnerability assessment and penetration testing are 
not carried out before the application is launched. 
Along with the increase in cybercrime activities, 
there are security risks that can occur in web-based 
applications if they do not follow the guidelines 
issued by the government and related authorities. 

 
The highest security risks found in web-based 

applications according to OWASP are broken 
access control, cryptographic failures, injection, 
insecure design, security misconfiguration, 
vulnerable and outdated components, identification 
and authentication failures, software and data 

integrity failures, security logging and monitoring 
failures, and server-side request forgery [1]. The types 
of attacks that include injection are SQLI, XSS, and 
backdoor shells. 

 
A backdoor shell, commonly known as web shell, 

is a code that is compiled into a secret script used to 
control a website or server [2]. A web shell allows 
unauthorized access to a web server by bypassing the 
firewall through port 80 and other required 
authentication mechanisms. Web shell are easy to 
encode but difficult to detect [3]. Web shells, or 
malware, have the ability to behave differently 
depending on the program that is programmed to be 
executed. Therefore, it is important to understand its 
function well. There are two methods to understand the 
behavior of malware: static analysis and dynamic 
analysis. Static and dynamic analysis are two different 
approaches used in the field of computer security to 
examine and analyze the behavior of malware. Static 
analysis refers to the process of analyzing the source 
code or binary files without executing the software. Its 
purpose is to identify potential hazards and malware 
features before they spread. On the other hand, 
dynamic analysis involves testing and monitoring the 
system directly when it is running, with the aim of 
understanding the behavior of malware and preventing 
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its spread. Dynamic feature detection depends on 
observing the behavior of web shell files [4], [5], 
analyzing the communication traffic [6]–[8] 
associated with the web shell, and identifying other 
characteristics. This technique can be performed 
using methods such as an intrusion detection 
system (IDS) and antivirus software running in the 
background to detect suspicious activities. 
Detection methods based on dynamic traffic 
information have the potential to achieve high 
levels of accuracy in detecting security threats but 
are difficult to implement in practical applications. 
This is due to the difficulty in obtaining the 
necessary traffic information and also the difficulty 
in preventing web shell attacks that may occur first. 

 
The first challenge in detecting web shells is 

that this type of malware is difficult to detect using 
an intrusion detection system (IDS) or antivirus 
techniques. This is because web shells are usually 
hidden inside web applications, making them 
difficult to distinguish from regular web 
application source code. Therefore, traditional 
detection models that analyze dynamic features of 
the web shell script execution process, such as eval 
execution context, file read and write operations, 
and other dynamic behaviors, are more effective in 
detecting malware attacks that have already 
occurred. 

 
Previous research has been conducted on web 

shell detection based on the statistical features of 
source code analysis using the deep learning 
method by Tao et al. [9]. The statistical features 
capture specific file aspects, condensing web shell 
characteristics from a broader perspective. 
However, evolving web services have introduced 
code obfuscation, blurring the distinction between 
normal files and web shells, diminishing the 
effectiveness of statistical-based detection. This 
highlights the need for more comprehensive 
detection methods as web shells exhibit both file 
attributes and scripting language structure. 

 
Meanwhile, prior studies on web shell 

detection based on dynamic features have utilized 
varying datasets and classification methods. Zhang 
et al [10] research employed TF-IDF and 
Word2vec with an ensemble algorithm approach. 
The best model obtained using Word2vec with an 
accuracy of 98.60%. Tianmin et al. [11] and Ai et 
al [12] utilized Ngram-TF-IDF with ensemble 
algorithm methods. In Tianmin et al [11]  study, 
the classification method achieved an accuracy of 
97.71% using XGBoost.  

Considering the points mentioned earlier, it is 
evident that there are still shortcomings arising from 
the utilization of Ngram and TF-IDF and recognizing 
the mounting limitations of statistical features. Hence, 
we adopt dynamic feature detection by vectorizing 
PHP opcodes using word2vec to address the concern 
of improved word representation in detecting web 
shell scripts for effective web shell detection. A major 
contribution to our research is to improve the ability of 
detection models by analyzing the executable data 
characteristics of PHP code using the Convolutional 
Neural Network (CNN) algorithm. This can be more 
effective than relying on traditional statistical 
characteristics. 

2. RELATED WORK 

There are two main categories of methods used to 
detect traditional web shells: static feature detection, 
which relies on identifying characteristics of web shell 
files, and dynamic feature detection, which focuses on 
analyzing the behavior of web shell file processes. The 
features extracted from web shell scripts can be 
categorized into five distinct classes based on their 
properties: lexical features, syntax, semantic, 
statistical, and abstract[13]. Abstract features are used 
to refer to vectorized data such as source code, 
opcodes, and web traffic. 

2.1 Static Feature Detection 

Static feature detection is usually done using 
reverse engineering and static analysis techniques, 
where the code is broken down into individual 
instructions and inspected manually or automatically to 
find patterns or features associated with malware. To 
perform simple pattern matching, static detection can 
be done on a few feature strings using regular 
expressions. These feature strings generally contain 
high-risk code, such as the eval() and system() 
functions from the system functions, as well as specific 
markers of classic web shells. Some security products 
have built specific static feature rule libraries by 
collecting existing web shell samples. If the tested file 
meets certain detection rules, the security product will 
issue a warning.  

 
Li et al. [14] proposed a detection method using an 

optimal malicious signature, a sample malicious 
function, and the longest character at the beginning and 
end of the file. The method used to detect it uses RNN-
GRU. The specialty of this model lies in its focus on 
capturing word associations that are on a single line in 
the source script. Therefore, each line in the web shell 
source is assigned a vector of words. The level of 
accuracy in this RNN-GRU model is 98.94%. 
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However, the performance of this model is slightly 
lower in detecting PHP web shell compared to 
research that proposes the FRF-WD ensemble 
learner method. 

 
Fang et al [15] suggested a detection method 

using ensemble learning, i.e., a random forest 
classifier, by combining it with FastText. FastText 
classification training is carried out on the opcode 
sequence derived from the PHP script. The 
prediction values obtained from FastText are 
combined with five statistical features to create 
input for random forest training and prediction. 
Experimental results based on 10-fold cross-
validation showed that the model performed 
excellently, and accuracy reached 99.23%. 

2.2 Dinamic Feature Detection 

Dynamic feature detection based on the 
execution of a web shell file process aims to 
identify the level of abnormal opcode called by the 
runtime to determine malicious web shells and 
benign web shells. This is done using machine 
learning algorithms that are able to learn certain 
patterns associated with malware behavior, such as 
unusual pattern execution instructions or access to 
suspicious system files.  

 
Ai et al. [12] proposed an ensemble model 

based on binary weighted voting determined by the 
accuracy of each classification to classify web 
shells. The ensemble detection model is called WS-
LSMR, consisting of logistic regression (LR), 
support vector machine (SVM), multi-layer 
perceptron (MLP), and random forest (RF). To 
determine the weight of each basic classification, a 
well-defined formula is used based on accuracy at 
the time of training. Furthermore, the basic 
classification is trained and tested on 4-gram-based 
TF-IDF opcode vectorization in a well-defined 
feature selection algorithm. The accuracy resulting 
from the combination of four algorithms is 94.28%. 
However, the performance of the WS-LSMR 
model, which is a combination of single, ensemble, 
and deep learning, is slightly lower than the 
research suggested with the deep learning method. 

 
Wang et al [16] proposed a method of web shell 

detection based on a multilayer neural network, or 
MLP, using two hidden layers. This method uses 
the extraction feature with bigram optimization of 
PHP opcode, then the opcode sample is performed 
with word frequency analysis using TF-IDF to 

obtain the level of interest of each sample in the sample 
set. The accuracy rate of the MLP model for web shell 
detection is 94.4%. The accuracy level of this model is 
still lower than research using ensemble learning. 

 
Zhang et al [10] suggested a web shell detection 

model based on the PHP opcode feature using TF-IDF 
text processing and then compared it to Word2vec. The 
study used the ensemble learning method XGBoost by 
comparing accuracy levels with four different 
algorithms, namely, neural networks, random forests, 
and SVM. The results of the evaluation of the four 
models found that XGBoost performed best, with the 
highest accuracy of 98.20%. 

2.3 Malicious Webshell Detection on Deep 
Learning 

Deep learning is a method in artificial intelligence 
(AI) that teaches computers to process data in ways 
that inspire the human brain. Deep learning is 
considered to be the most important advancement in 
the field of computer science recently, and it has had a 
broad impact in almost all fields of science. These 
advances have disrupted and transformed industries. 
Currently, there is competition between leading 
companies in the fields of economics and technology 
to drive advances in deep learning[17]. Deep learning, 
also known as neural networks, can be classified into 
several types, one of which is the convolutional neural 
network (CNN). CNN is a type of neural network 
architecture that is developed specifically for 
processing data that has a grid or matrix structure, such 
as images, videos, and other data that are arranged in 
a similar way. Yong et al. [18] proposed a web shell 
detection model based on PHP opcode features using 
CNN. The accuracy level of this model is 98.22%. 

3. RESEARCH METODOLOGY 

3.1 Design Architecture 

A method of web shell detection based on dynamic 
bytecode features using a convolutional neural 
network (CNN) has been proposed in this research. 
The research is divided into four stages: 
preprocessing, feature selection, classification, and 
evaluation, as illustrated in the flowchart in  Figure 1.  

Preprocessing: First, all datasets in the web shell 
data set must be filtered to only have PHP files and 
also deduplicated to prevent interference with the 
detection results. The process of extracting PHP code 
into bytecode or opcode. Opcode is used to process 
feature selection by distinguishing between malicious 
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Figure 1: Flowchart Desain Architecture

and benign files. Feature selection: This process 
involves selecting features from a set of PHP 
opcodes. First, the extracted PHP code is tokenized 
using regular expressions [19]. Then, the tokenized 
opcodes undergo word embeddings using 
word2vec to convert words into numbers (vectors). 
The next step is to label the malicious and benign 
web shells and split the data into two parts, namely 
the training data and the testing data. 
Classification: In this process, the CNN model is 
developed using three convolutional layers. After 
the CNN model is constructed, it is trained using 
the training data. Once the CNN model has been 
trained, the best model is then evaluated. 
Evaluation: This process is the final stage in 

detecting PHP web shells. This process uses testing 
data to generate predictions of malicious web shells so 
that the model's accuracy can be evaluated. 

3.2 PHP Opcode 

PHP is a programming language that is executed 
directly by the PHP virtual machine at runtime. The 
PHP virtual machine used is Zend Engine, which 
processes PHP code and translates it into bytecode 
instructions that are then executed by the virtual 
machine. In addition, Zend Engine also supports Just-
In-Time (JIT) technology, which allows PHP code to 
be compiled into machine code directly at runtime to 
improve code execution performance. This allows the 
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PHP virtual machine to execute PHP code more 
quickly and efficiently. The process of executing 
PHP code is divided into three stages: lexical 
analysis, syntax analysis, and Zend Engine 
execution. The flowchart for the PHP code 
execution process is illustrated in Figure 1. 

 
Lexical analysis refers to the transformation of 

the character sequence in a source code file into a 
sequence of tokens. This process aids in the easier 
processing of the code by a compiler or interpreter. 
It is typically the initial phase of the compilation 
process, followed by syntactic and semantic 
analysis. In lexical analysis, the source code is 
scanned character by character, and tokens are 
created by grouping characters according to the 
programming language's rules. These tokens 
represent fundamental components of the 
program's syntax, such as keywords, identifiers, 
punctuation, and constants. The lexer, also known 
as a tokenizer, performs the task of lexical analysis. 
The outcome of this phase is a stream of tokens that 
can be more efficiently processed by the syntax 
analyzer, which ensures the program's syntax and 
structure are correct. 

 
Syntax analysis, or parsing, refers to the 

examination of a sequence of symbols in either a 
natural language or a computer language based on 
predefined grammar rules. Its primary objective is 
to assess whether the provided input conforms to 
the syntax rules of the language. In the context of 
natural language processing, syntax analysis plays 
a vital role in comprehending and interpreting the 
structure of sentences. This entails identifying the 
various parts of speech (nouns, verbs, adjectives, 
etc.), establishing relationships between words 
(such as subject-verb agreement), and constructing 
a hierarchical representation of the sentence 
known as a parse tree or Abstract Syntax Tree 
(AST). After the syntactic analysis, the next step is 
the execution stage of the Zend Engine, which 
compiles bytecode by reading the Abstract Syntax 
Tree (AST) and translating operator nodes into 
corresponding bytecode, also known as opcode. 
The next process is code execution. The Zend 
Engine executes the sequence of opcodes one by 
one to run the PHP program. In extracting PHP 
code into bytecode or opcode, two tools can be 
used, namely Vulcan Logic Disassembler (VLD) 
[19] by Derick Rethans and PHP Debugger 
(phpdbg) [20], which is part of the PHP project.  
Vulcan logic disassembler works by reading the 
PHP file and then extracting the bytecode 
contained in it. After successfully retrieving the 

bytecode, it will read the instructions in the bytecode 
and display the output in a more human-readable 
format. Meanwhile, PHP debugger works by 
executing PHP code in debug mode. When debug 
mode is activated, it will display information about the 
opcode instructions executed by the PHP code, as well 
as variable values and other debugging information. 
Generally, vulcan logic disassembler is more suitable 
for analyzing PHP code, while PHP debugger is more 
suitable for finding errors or bugs in PHP code. In this 
paper, the usage of vulcan logic disassembler is 
employed to extract PHP code into bytecode for the 
analysis of malicious PHP files as follows: 

 
<?php if ($_POST['cmd']){ $cmd = 
$_POST['cmd']; passthru($cmd);}?> 

  
After the Zend Engine execution process on the 

above PHP file, the following opcode sequence is 
generated:  [FETCH_R], [FETCH_DIM_R], [JMPZ], 
[FETCH_R], [FETCH_DIM_R], [ASSIGN], 
[INIT_FCALL], [SEND_VAR], [DO_ICALL], 
[ECHO], [RETURN] as seen in Table 1. After 
collecting the sequence of opcode instructions, our 
subsequent step involves analyzing the malicious PHP 
files.  

Table 1: The Sequence of Opcode Instructions 

No. Opcode 
0 FETCH_R 
1 FETCH_DIM_R 
2 JMPZ 
3 FETCH_R 
4 FETCH_DIM_R 
5 ASSIGN 
6 INIT_FCALL 
7 SEND_VAR 
8 DO_ICALL 
9 ECHO 
10 RETURN 

3.3 Feature Selection 

Feature selection is a method of selecting the most 
effective features from the available ones. In this 
study, these features function to distinguish between 
malicious and non-malicious files. Additionally, it 
plays a role in improving algorithm efficiency by 
ensuring appropriate index evaluation. Since most 
opcode features only use limited words in the 
vocabulary, this will result in sparse word vectors. To 
maintain computational efficiency, it is imperative to 
eliminate unnecessary features that could potentially 
result in a decline in performance. 
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Word2vec is a method in natural language 
processing used to represent words as numeric 
vectors that was introduced by Google in 
2013.[21]. It has become one of the most popular 
Natural Language Processing (NLP) techniques 
for word vectorization [22]–[24]. The purpose of 
word2vec is to estimate the distribution 
representation of the words, so that the words that 
often appear in the same context will have similar 
representations in the vector space. Word2vec 
utilizes machine learning techniques based on 
neural networks, consisting of two model 
architectures: Continuous Bag-of-Words (CBOW) 
and Skip-Gram. In the CBOW architecture, the 
model predicts the target word based on the given 
context words, while in the Skip-Gram 
architecture, the model predicts the context words 
based on the given target word. In this study, the 
Continuous Bag-of-Words (CBOW) architecture 
was employed for constructing the word2vec 
model. The word2vec learning process is 
conducted by calculating the likelihood or 
probability of words appearing in a given context 
using the softmax function. Subsequently, the 
model parameters are updated based on the loss 
value generated in each iteration of the learning 
process. Once the learning process is complete, 
each word is represented as a numeric vector with 
a specific dimension, where the vector represents 
the word in a semantic vector space. For example, 
words with similar meanings will have vector 
representations that are close to each other in the 
vector space. The model parameters used in this 
study can be seen in Algorithm 1. The next step is 
to vectorize PHP opcodes using the pre-trained 
Word2Vec model, as outlined in Algorithm 2. 

 
Algorithm 1 Training Model Word2Vec 
Input : opcode_php_list 
Output : model Word2Vec 
1: Creating a word2vec model using the 

CBOW architecture with parameters: 
vector size=200, window=5, 
min_count=5 and epoch=10 

2: Build vocabulary from opcode_php_list 
3: Training models with corpus_count and 

epoch models 
4: Saving the word2vec model. 

 

Algorithm 2 PHP Opcode Vectorization 
Input : model, opcode_php_list 
Output : opcode vector 
1: Determine the dimensions of embedding = 

model vector_size 
2: For text           opcode_php_list do 

3: Cut the words according to the maximum 
length of the document = 500 

4: Use of word embedding 
5: End for 
6: Return opcode_vector 

 

3.4 Classification 

After feature selection from the set of opcode and 
bytecode samples is completed, the feature matrix 
resulting from opcode vectorization is used as the 
input, and the labeling of web shell or normal files is 
used as the output. Then, classification is employed for 
training. Before that, the data is divided into three sets: 
training dataset, validation dataset, and testing dataset. 
In this study, the data will be divided into training and 
testing sets with an 80:20 ratio. 

 
After separating the dataset, the next step is testing 

the algorithm model, Convolutional Neural Network 
(CNN). Convolutional neural networks (CNN) are a 
type of neural network used specifically for computer 
vision tasks such as image recognition or 
classification. CNN consists of five layers: the input 
layer, the convolutional layer, and the fully connected 
layer. In the formation of a CNN classification model 
using the TensorFlow and TFLearn libraries, three 
convolutional layers will be used, as seen in Figure 2. 

 
Figure 2: CNN Model Process 

The step-by-step process performed in the 
Convolutional Neural Network (CNN) is as follows: 
1. Input layer: The input data consists of documents 

with dimensions ['none', 500, 200]. 'None' 
indicates that the batch size can vary; 500 is the 
maximum document length allowed in the 
dataset, and 200 represents the dimension of each 
word in the document. 

2. Convolutional layer: Next, create three branches 
of convolutional layers. Each branch has 200 
filters, kernel sizes of 3, 4, and 5, respectively, a 
ReLU activation function, and L2 regularization. 
Each branch processes the input data in parallel. 

3. Flatten layer: The output results from the three 
branches of the convolutional layer are merged 
into one using the merge function with 'concat' 
mode and axis = 1. 
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4. Pooling layer: Global max pooling is used to 
generate the best feature value from the 
previous feature extraction. 

5. Dropout layer: A dropout layer with a 
probability value of 0.8 is used to prevent 
overfitting. 

6. Fully connected layer: A fully connected layer 
with two output units and a softmax activation 
function is used to generate the classification 
output probabilities. 

7. Regression function: The regression function 
is used to determine the loss function. In this 
implementation, the 'adam' optimizer is used 
with a learning rate of 0.001 and the 
categorical_crossentropy loss function 

8. DNN model: The CNN model is initialized 
using tflearn. DNN function with the network 
as the input and tensorboard_verbose set to 0 
to avoid verbose display during model 
training. 

3.5 Evaluation 

At this stage, evaluation and analysis are 
performed by comparing the accuracy of the 
model. Several metrics such as accuracy (ACC), 
precision (P), recall (R), and F1-score (F1) are used 
to evaluate the performance of the model in 
classifying malicious or benign web shells along 
with the confusion matrix to measure the model's 
performance in terms of correctly and incorrectly 
classified data from the tested dataset. The 
evaluation confusion matrix of the model is shown 
in Table 2. 

Table 2: Confusion Matrix 

Prediction 
Actual 

True False 
True True Positive 

(TP) 
False Positive 

(FP) 
False False Negative 

(FN) 
True Negative 

(TN) 

True positive is the result where the model 
correctly predicts the positive class (True Positive 
= TP). For example, if an instance is a benign 
(normal) sample and it is predicted as a benign 
(normal) sample, it is considered a true positive 
(TP). False negative is the result where the model 
incorrectly predicts the negative class (False 
Negative = FN). For example, if an instance is a 
malicious (web shell) sample but it is predicted as 
a benign (normal) sample, it is considered a false 
negative (FN). True negative is the result where the 

model correctly predicts the negative class (True 
Negative = TN). For example, if an instance is a 
malicious (web shell) sample and it is predicted as a 
malicious (web shell) sample, it is considered a true 
negative (TN). False positive is the result where the 
model incorrectly predicts the positive class (False 
Positive = FP). For example, if an instance is a benign 
sample but it is predicted as a malicious (web shell) 
sample, it is considered a false positive (FP). From the 
performance metrics of this study, the following are 
the formulas for each matrix related to the actual 
versus predicted values in formulas 1 to 4. 

Accuracy = 
 

(1) 

Eq. (1) shows the number of proportions of samples 
correctly classified by the model prediction. 

Precision = 
 

(2) 

Eq. (2) shows the sum of the proportion of the true-
positive prediction to the total positive prediction. 

Recall = 
 

(3) 

Eq. (3) shows the exact number of predictions of the 
correct actual number. 

F1 score = 
 

(4) 

Eq. (4) shows the merger of information about 
precision and recall. F1 scores provide a more holistic 
measurement of model performance, as it considers 
both the number of false negative and false positive in 
model predictions. The evaluation results of the model 
built using the CNN algorithm will be compared with 
the Random Forest (RF) and XGBoost models. 

4. EXPERIMENT ANALYSIS 

4.1 Data Source 

The data used for this research consists of a 
collection of PHP backdoor web shell datasets 
available for download from the internet. The dataset 
consists of several open-source web shell projects as 
malicious samples, while some CMS projects, the Yii 
framework, and OA are used as normal samples, as 
shown in Table 3. We found that there is no readily 
available collection of PHP web shell data that has 
been cleaned and processed on the internet. Therefore, 
samples of PHP web shell samples from seven open-
source projects that have been collected were then 
analyzed manually. 
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Table 3: Data Source of PHP Samples 

Sample Source 
Malicious 
Sample 

https://github.com/JohnTroony/php-
webshells 
https://github.com/BlackArch/webshe
lls 
https://github.com/LuciferoO/webshe
ll-collector 
https://github.com/xl7dev/WebShell 
https://github.com/tennc/webshell 
https://github.com/webshellpub/awso
me-webshell 
https://github.com/mattiasgeniar/php-
exploit-scripts 

Normal 
Sample 

https://github.com/yiisoft/yii2 
https://github.com/rainrocka/xinhu 
https://github.com/johnshen/phpcms 

 
After collecting the data, the next step is to 

perform data cleaning on the PHP web shell 
samples used from seven open-source projects. 
The data cleaning steps included removing 
duplicate data so that there was no unnecessary 
repetition of data. In addition, web shell data that 
could not be run due to syntax errors in the 
program code was also removed. This data 
cleaning is done so that the data used in the 
research becomes more valid and reliable. Clean 
and structured data will make it easier to conduct 
analysis and minimize the possibility of errors in 
drawing conclusions. The results of data cleaning 
on the web shell have a total of 1461 samples, and 
data on normal samples have a total of 2528 
samples. The data is divided into 3 categories: 
training data with a total of 2577, validation data 
with a total of 645, and testing data with a total of 
767. 

4.2 Experiment Environmental 

The experiments conducted in this research 
were based on the Python 3.10 programming 
language and executed in an experimental 
environment using the 64-bit Windows 11 
operating system. For more detailed information, 
please refer to Table 4. 
 

Table 4: Experiment Environmental 

Hardware and 
Software 

Specification 

Memory 12 Gb 
Processor (CPU) Intel Core i7-8750H 

CPU @ 2.20 Ghz (12 
CPUs) 

Graphics (GPU) GeForce GTX 1050 4 Gb 
Operating System (OS) Win11 64bit 

CUDA NVIDIA CUDA 12.0 
Language Programming Python 3.10.6 
PHP PHP 8.1.16 
Machine Learning 
Library 

Tensorflow 2.11.0 and 
Tflearn 0.5.0 

4.3 Preprocessing Data 

In this stage, cleaning is performed on the collected 
PHP web shell files. The purpose of this process is to 
extract the PHP web shell files into opcodes to obtain 
a set of features that can detect malicious PHP web 
shell files in token form. The following processes are 
carried out: 

4.3.1 Opcode PHP Extraction 

The process conducted in this stage involves 
extracting PHP web shell files into PHP 
opcodes using the VLD (Vulcan Logic 
Dumper) extension, as explained in Chapter III. 
The extracted PHP opcode results are shown in 
Figure 3. 

 
Figure 3: PHP Web Shell Opcode Results 

4.3.2 Tokenizing 

In this process, numbers, punctuation 
marks, and other characters that are considered 
to have no influence on PHP opcode processing 
are also removed. In this study, the "re" 
module's findall() function is used to find "all" 
occurrences that match the given pattern. The 
results of tokenization using the findall module 
can be seen in Figure 4. 

 
Figure 4: PHP Opcode Tokenization Result 

4.4 Feature Selection 

After the tokenizing stage, the next step is to create 
a word2vec model using the CBOW architecture with 
a window size of 5. Then, the opcode PHP is 
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vectorized using the trained model. This process 
will generate numerical vector representations for 
each opcode word in the PHP corpus. The 
vectorization results can be seen in Figure 5. 

 
Figure 5: PHP Opcode Vectorization Results 

4.5 Classification 

The classification process is performed by 
applying the CNN algorithm, which consists of 
three convolutional layers. The classification 
process is divided into two parts: training and 
validation results, as well as testing results. 

4.5.1 Training Result 

The CNN model training results were 
performed with epoch 10 to 100. The results 
of the experiment using training data 2577 
with validation data 645 obtained the 
comparison of accuracy and validation 
precision that can be seen in Figure 6. 
Comparison of data loss and validation in 
Figure 7. 

 
Figure 6: The Effects of Different Epochs on 

Accuracy and Validation Accuracy 

 
Figure 7: The Effects of Different Epochs on Loss 

and Validation Loss 

4.5.2 Testing Result 

In the testing phase, PHP opcodes are tested 
by inputting them into the pre-existing CNN 
model. If the prediction result for the test data 
shows a prediction value of less than 50%, the 
opcode will be classified as black, indicating 
that it is a web shell. However, if the prediction 
value is greater than 50%, the opcode will be 
classified as white or a normal file.  Pada Table 
5 shows examples of the prediction results from 
the model testing. 

Table 5: CNN Model Testing Prediction Results 

Opcode PHP Testing Predicti
on 

Result 

Classificatio
n 

ECHO BEGIN_SILENCE 
INIT_FCALL FETCH_R 
FETCH_DIM_R SEND_VAL 
DO_ICALL ASSIGN 
END_SILENCE ECHO 
ISSET_ISEMPTY_CV 
BOOL_NOT JMPZ L … 

0.25% Black 
(Web Shell) 

RETURN FETCH_R 
ASSIGN_OBJ OP_DATA 
FETCH_R ASSIGN_OBJ 
OP_DATA FETCH_OBJ_R 
FETCH_OBJ_R ASSIGN_OBJ 
OP_DATA FETCH_OBJ_R 
FETCH_OBJ_R ASSIGN_OBJ 
OP_DATA … 

99.9% White 
(Normal) 

4.6 Evaluation Result 

After testing the PHP opcodes on the CNN model 
using Word2Vec, the resulting confusion matrix can 
be seen in Table 6. he confusion matrix obtained from 
the testing shows that there are 503 samples predicted 
as non-malicious or normal (True Positive), 262 
samples predicted as malicious or web shell (True 
Negative), 2 samples predicted as malicious but 
actually non-malicious (False Positive), and 0 samples 
predicted as non-malicious but actually malicious 
(False Negative). Based on the confusion matrix data, 
the accuracy, precision, and F1-score results from 
epochs 10 to 100 are shown in Table 7. In Figure 8 , it 
can be observed that the influence of each epoch can 
determine different metric results, leading to 
fluctuations in accuracy for each epoch. However, at 
epoch 100, the best accuracy is achieved. 

Table 6: Confusion Matrix Result 

Prediction 
Actual 

True False 
True 504 

(TP) 
1 

(FP) 

0.95

0.97

0.99

1.01

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Acc Val Acc

0

0.1

0.2

0.3

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Loss Val Loss
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False 0 
(FN) 

262 
(TN) 

Table 7: Model Performance Results 

Epoch Accuracy Precision Recall F1-
Score 

10 0.993481 0.981273 1.0 0.990548 
20 0.994784 0.988636 0.996183 0.992395 
30 0.989569 0.970370 1.0 0.984962 
40 0.992177 0.981203 0.996183 0.988636 
50 0.993481 0.984905 0.996183 0.990512 
60 0.997392 0.992424 1.0 0.996197 
70 0.992177 0.977611 1.0 0.988679 
80 0.989569 0.970370 1.0 0.984962 
90 0.992177 0.977611 1.0 0.988679 
100 0.998696 0.996197 1.0 0.998095 

 

Figure 8: Effect of Different Epoch on Model 
Performance 

To compare the performance of the CNN 
model, testing is conducted using ensemble 
learning algorithms, namely Random Forest and 
XGBoost. The Random Forest classification 
utilizes a base classifier with 100 estimators as its 
parameter. The Random Forest classification 
model is then tested, and the testing results yield 
an accuracy of 98.56% with a corresponding 
confusion matrix, which can be seen in the 
following Table 8. 

Table 8: Random Forest Confusion Matrix Result 

Prediction 
Actual 

True False 
True 495 

(TP) 
10 

(FP) 
False 1 

(FN) 
261 
(TN) 

 
The XGBoost classification utilizes a base 

classifier with the parameter objective = 
"reg:squarederror", which performs regression 
with the objective of minimizing the squared error 
between predicted values and actual values. The 
XGBoost classification model is then tested, and 
the testing results yield an accuracy of 98.56% 

with a corresponding confusion matrix, which can be 
seen in the following Table 9. 

Table 9: XGBoost Confusion Matrix Result 

Prediction 
Actual 

True False 
True 495 

(TP) 
10 

(FP) 
False 1 

(FN) 
261 
(TN) 

 
From the testing results using the two ensemble 

methods, a comparison of accuracy with the CNN 
model is obtained, as can be seen in Table 10. The 
Random Forest and XGBoost classification models 
have the same accuracy, which is 98.56%, while the 
CNN model has a higher accuracy of 99.86%. This 
indicates that the CNN model performs better 
compared to Random Forest and XGBoost. 

Table 10: Comparison Results with Other Machine 
Learning Methods 

Model Accuracy Precision Recall F1-
Score 

CNN 0.998696 0.996197 1.0 0.998095 
RF 0.985658 0.963099 0.996183 0.992395 
Xgboost 0.985658 0.963099 0.996183 0.992395 

4.7 CNN Model's Comparison with Related 
Works 

 To establish the superiority of our model 
compared to previous research, a comprehensive 
comparison with other existing methods, namely WS-
LSMR’s method[12], Zang’s method[10] dan Wang’s 
method[16]. Through this comparison, the aim is to 
demonstrate that these methods are outperformed by 
our model in terms of various performance metrics, 
showcasing its enhanced effectiveness and efficiency. 
The experimental results can be seen in Table 11. 

Table 11: Comparison of the model's performance with 
related work 

Model Precision Accuracy Recall 
Word2Vec-CNN 0.996197 0.998696 1.0 
WS-LSMR N/A 0.9428 0.9914 
Zhang’s Method 0.9403 0.9860 0.9562 
Wang’s Method 0.932 0.944 0.968 

5. CONCLUSION 

This research proposes the utilization of deep 
learning methods employing the Convolutional Neural 
Network (CNN) algorithm to classify malicious PHP 
web shells. The testing results demonstrate that the 
implementation of the CNN algorithm with 
Word2Vec achieves an accuracy of 99.8%. We present 
a comparison between the CNN method and ensemble 

0.97

0.98

0.99

1

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Accuracy Precision



Journal of Theoretical and Applied Information Technology 

30th September 2023. Vol.101. No 18 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
7453 

 

learning methods, namely Random Forest and 
XGBoost. The tests conducted reveal that CNN 
outperforms Random Forest and XGBoost in terms 
of accuracy. Furthermore, our model exhibits 
superior performance compared to previous 
research findings. 
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