
Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7443

WEBSHELL DETECTION BASED ON BYTECODE FEATURE
WITH CONVOLUTIONAL NEURAL NETWORK

DIAN ANGGRAINI1, ABBA SUGANDA GIRSANG2
1,2Computer Science Department, BINUS Graduate Program – Master of Computer Science, Bina

Nusantara University, Jakarta 11480, Indonesia
Email: 1dian.anggraini@binus.ac.id, 2agirsang@binus.edu

ABSTRACT

Web shell is a malicious program used to remotely access web servers during cyberattacks. Malicious web
shells closely resemble benign web shells, making them difficult to distinguish. The challenge in detecting
pre-existing web shells is that this type of malware is hard to detect using an intrusion detection system (IDS)
or antivirus techniques. This is because web shells are usually hidden within web applications, making them
challenging to differentiate from regular web application source code. Therefore, traditional detection models
that analyze the dynamic features of web shell script execution are more effective in detecting existing
malware attacks. In this study, A method of web shell detection based on dynamic bytecode features using a
convolutional neural network (CNN) has been proposed in this research. Word2vec is employed to obtain
vectorized features from the bytecode or opcode. Experimental results using a training dataset of 2577
samples and a validation dataset of 645 samples yield the best model with an accuracy of 99.86% at epoch
100. The experiments demonstrate that this model effectively detects web shells, with a significant increase
in accuracy levels.

Keywords— Web Shell, Machine Learning, CNN, Cyber Security, Opcode.

1. INTRODUCTION

Technological advances in the modern world
are developing rapidly, especially in the field of
web-based applications. Almost all organizations
and companies have adopted web-based
applications to support their business processes.
Web-based applications are very useful for
organizations because they have the advantages of
not needing installation, compatible across various
platforms, less load on the system, and good
adaptability, especially in today's cloud computing
era. Currently, many web-based application
developments are less aware of website security, so
vulnerability assessment and penetration testing are
not carried out before the application is launched.
Along with the increase in cybercrime activities,
there are security risks that can occur in web-based
applications if they do not follow the guidelines
issued by the government and related authorities.

The highest security risks found in web-based

applications according to OWASP are broken
access control, cryptographic failures, injection,
insecure design, security misconfiguration,
vulnerable and outdated components, identification
and authentication failures, software and data

integrity failures, security logging and monitoring
failures, and server-side request forgery [1]. The types
of attacks that include injection are SQLI, XSS, and
backdoor shells.

A backdoor shell, commonly known as web shell,

is a code that is compiled into a secret script used to
control a website or server [2]. A web shell allows
unauthorized access to a web server by bypassing the
firewall through port 80 and other required
authentication mechanisms. Web shell are easy to
encode but difficult to detect [3]. Web shells, or
malware, have the ability to behave differently
depending on the program that is programmed to be
executed. Therefore, it is important to understand its
function well. There are two methods to understand the
behavior of malware: static analysis and dynamic
analysis. Static and dynamic analysis are two different
approaches used in the field of computer security to
examine and analyze the behavior of malware. Static
analysis refers to the process of analyzing the source
code or binary files without executing the software. Its
purpose is to identify potential hazards and malware
features before they spread. On the other hand,
dynamic analysis involves testing and monitoring the
system directly when it is running, with the aim of
understanding the behavior of malware and preventing

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7444

its spread. Dynamic feature detection depends on
observing the behavior of web shell files [4], [5],
analyzing the communication traffic [6]–[8]
associated with the web shell, and identifying other
characteristics. This technique can be performed
using methods such as an intrusion detection
system (IDS) and antivirus software running in the
background to detect suspicious activities.
Detection methods based on dynamic traffic
information have the potential to achieve high
levels of accuracy in detecting security threats but
are difficult to implement in practical applications.
This is due to the difficulty in obtaining the
necessary traffic information and also the difficulty
in preventing web shell attacks that may occur first.

The first challenge in detecting web shells is

that this type of malware is difficult to detect using
an intrusion detection system (IDS) or antivirus
techniques. This is because web shells are usually
hidden inside web applications, making them
difficult to distinguish from regular web
application source code. Therefore, traditional
detection models that analyze dynamic features of
the web shell script execution process, such as eval
execution context, file read and write operations,
and other dynamic behaviors, are more effective in
detecting malware attacks that have already
occurred.

Previous research has been conducted on web

shell detection based on the statistical features of
source code analysis using the deep learning
method by Tao et al. [9]. The statistical features
capture specific file aspects, condensing web shell
characteristics from a broader perspective.
However, evolving web services have introduced
code obfuscation, blurring the distinction between
normal files and web shells, diminishing the
effectiveness of statistical-based detection. This
highlights the need for more comprehensive
detection methods as web shells exhibit both file
attributes and scripting language structure.

Meanwhile, prior studies on web shell

detection based on dynamic features have utilized
varying datasets and classification methods. Zhang
et al [10] research employed TF-IDF and
Word2vec with an ensemble algorithm approach.
The best model obtained using Word2vec with an
accuracy of 98.60%. Tianmin et al. [11] and Ai et
al [12] utilized Ngram-TF-IDF with ensemble
algorithm methods. In Tianmin et al [11] study,
the classification method achieved an accuracy of
97.71% using XGBoost.

Considering the points mentioned earlier, it is
evident that there are still shortcomings arising from
the utilization of Ngram and TF-IDF and recognizing
the mounting limitations of statistical features. Hence,
we adopt dynamic feature detection by vectorizing
PHP opcodes using word2vec to address the concern
of improved word representation in detecting web
shell scripts for effective web shell detection. A major
contribution to our research is to improve the ability of
detection models by analyzing the executable data
characteristics of PHP code using the Convolutional
Neural Network (CNN) algorithm. This can be more
effective than relying on traditional statistical
characteristics.

2. RELATED WORK

There are two main categories of methods used to
detect traditional web shells: static feature detection,
which relies on identifying characteristics of web shell
files, and dynamic feature detection, which focuses on
analyzing the behavior of web shell file processes. The
features extracted from web shell scripts can be
categorized into five distinct classes based on their
properties: lexical features, syntax, semantic,
statistical, and abstract[13]. Abstract features are used
to refer to vectorized data such as source code,
opcodes, and web traffic.

2.1 Static Feature Detection

Static feature detection is usually done using
reverse engineering and static analysis techniques,
where the code is broken down into individual
instructions and inspected manually or automatically to
find patterns or features associated with malware. To
perform simple pattern matching, static detection can
be done on a few feature strings using regular
expressions. These feature strings generally contain
high-risk code, such as the eval() and system()
functions from the system functions, as well as specific
markers of classic web shells. Some security products
have built specific static feature rule libraries by
collecting existing web shell samples. If the tested file
meets certain detection rules, the security product will
issue a warning.

Li et al. [14] proposed a detection method using an

optimal malicious signature, a sample malicious
function, and the longest character at the beginning and
end of the file. The method used to detect it uses RNN-
GRU. The specialty of this model lies in its focus on
capturing word associations that are on a single line in
the source script. Therefore, each line in the web shell
source is assigned a vector of words. The level of
accuracy in this RNN-GRU model is 98.94%.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7445

However, the performance of this model is slightly
lower in detecting PHP web shell compared to
research that proposes the FRF-WD ensemble
learner method.

Fang et al [15] suggested a detection method

using ensemble learning, i.e., a random forest
classifier, by combining it with FastText. FastText
classification training is carried out on the opcode
sequence derived from the PHP script. The
prediction values obtained from FastText are
combined with five statistical features to create
input for random forest training and prediction.
Experimental results based on 10-fold cross-
validation showed that the model performed
excellently, and accuracy reached 99.23%.

2.2 Dinamic Feature Detection

Dynamic feature detection based on the
execution of a web shell file process aims to
identify the level of abnormal opcode called by the
runtime to determine malicious web shells and
benign web shells. This is done using machine
learning algorithms that are able to learn certain
patterns associated with malware behavior, such as
unusual pattern execution instructions or access to
suspicious system files.

Ai et al. [12] proposed an ensemble model

based on binary weighted voting determined by the
accuracy of each classification to classify web
shells. The ensemble detection model is called WS-
LSMR, consisting of logistic regression (LR),
support vector machine (SVM), multi-layer
perceptron (MLP), and random forest (RF). To
determine the weight of each basic classification, a
well-defined formula is used based on accuracy at
the time of training. Furthermore, the basic
classification is trained and tested on 4-gram-based
TF-IDF opcode vectorization in a well-defined
feature selection algorithm. The accuracy resulting
from the combination of four algorithms is 94.28%.
However, the performance of the WS-LSMR
model, which is a combination of single, ensemble,
and deep learning, is slightly lower than the
research suggested with the deep learning method.

Wang et al [16] proposed a method of web shell

detection based on a multilayer neural network, or
MLP, using two hidden layers. This method uses
the extraction feature with bigram optimization of
PHP opcode, then the opcode sample is performed
with word frequency analysis using TF-IDF to

obtain the level of interest of each sample in the sample
set. The accuracy rate of the MLP model for web shell
detection is 94.4%. The accuracy level of this model is
still lower than research using ensemble learning.

Zhang et al [10] suggested a web shell detection

model based on the PHP opcode feature using TF-IDF
text processing and then compared it to Word2vec. The
study used the ensemble learning method XGBoost by
comparing accuracy levels with four different
algorithms, namely, neural networks, random forests,
and SVM. The results of the evaluation of the four
models found that XGBoost performed best, with the
highest accuracy of 98.20%.

2.3 Malicious Webshell Detection on Deep
Learning

Deep learning is a method in artificial intelligence
(AI) that teaches computers to process data in ways
that inspire the human brain. Deep learning is
considered to be the most important advancement in
the field of computer science recently, and it has had a
broad impact in almost all fields of science. These
advances have disrupted and transformed industries.
Currently, there is competition between leading
companies in the fields of economics and technology
to drive advances in deep learning[17]. Deep learning,
also known as neural networks, can be classified into
several types, one of which is the convolutional neural
network (CNN). CNN is a type of neural network
architecture that is developed specifically for
processing data that has a grid or matrix structure, such
as images, videos, and other data that are arranged in
a similar way. Yong et al. [18] proposed a web shell
detection model based on PHP opcode features using
CNN. The accuracy level of this model is 98.22%.

3. RESEARCH METODOLOGY

3.1 Design Architecture

A method of web shell detection based on dynamic
bytecode features using a convolutional neural
network (CNN) has been proposed in this research.
The research is divided into four stages:
preprocessing, feature selection, classification, and
evaluation, as illustrated in the flowchart in Figure 1.

Preprocessing: First, all datasets in the web shell
data set must be filtered to only have PHP files and
also deduplicated to prevent interference with the
detection results. The process of extracting PHP code
into bytecode or opcode. Opcode is used to process
feature selection by distinguishing between malicious

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7446

Figure 1: Flowchart Desain Architecture

and benign files. Feature selection: This process
involves selecting features from a set of PHP
opcodes. First, the extracted PHP code is tokenized
using regular expressions [19]. Then, the tokenized
opcodes undergo word embeddings using
word2vec to convert words into numbers (vectors).
The next step is to label the malicious and benign
web shells and split the data into two parts, namely
the training data and the testing data.
Classification: In this process, the CNN model is
developed using three convolutional layers. After
the CNN model is constructed, it is trained using
the training data. Once the CNN model has been
trained, the best model is then evaluated.
Evaluation: This process is the final stage in

detecting PHP web shells. This process uses testing
data to generate predictions of malicious web shells so
that the model's accuracy can be evaluated.

3.2 PHP Opcode

PHP is a programming language that is executed
directly by the PHP virtual machine at runtime. The
PHP virtual machine used is Zend Engine, which
processes PHP code and translates it into bytecode
instructions that are then executed by the virtual
machine. In addition, Zend Engine also supports Just-
In-Time (JIT) technology, which allows PHP code to
be compiled into machine code directly at runtime to
improve code execution performance. This allows the

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7447

PHP virtual machine to execute PHP code more
quickly and efficiently. The process of executing
PHP code is divided into three stages: lexical
analysis, syntax analysis, and Zend Engine
execution. The flowchart for the PHP code
execution process is illustrated in Figure 1.

Lexical analysis refers to the transformation of

the character sequence in a source code file into a
sequence of tokens. This process aids in the easier
processing of the code by a compiler or interpreter.
It is typically the initial phase of the compilation
process, followed by syntactic and semantic
analysis. In lexical analysis, the source code is
scanned character by character, and tokens are
created by grouping characters according to the
programming language's rules. These tokens
represent fundamental components of the
program's syntax, such as keywords, identifiers,
punctuation, and constants. The lexer, also known
as a tokenizer, performs the task of lexical analysis.
The outcome of this phase is a stream of tokens that
can be more efficiently processed by the syntax
analyzer, which ensures the program's syntax and
structure are correct.

Syntax analysis, or parsing, refers to the

examination of a sequence of symbols in either a
natural language or a computer language based on
predefined grammar rules. Its primary objective is
to assess whether the provided input conforms to
the syntax rules of the language. In the context of
natural language processing, syntax analysis plays
a vital role in comprehending and interpreting the
structure of sentences. This entails identifying the
various parts of speech (nouns, verbs, adjectives,
etc.), establishing relationships between words
(such as subject-verb agreement), and constructing
a hierarchical representation of the sentence
known as a parse tree or Abstract Syntax Tree
(AST). After the syntactic analysis, the next step is
the execution stage of the Zend Engine, which
compiles bytecode by reading the Abstract Syntax
Tree (AST) and translating operator nodes into
corresponding bytecode, also known as opcode.
The next process is code execution. The Zend
Engine executes the sequence of opcodes one by
one to run the PHP program. In extracting PHP
code into bytecode or opcode, two tools can be
used, namely Vulcan Logic Disassembler (VLD)
[19] by Derick Rethans and PHP Debugger
(phpdbg) [20], which is part of the PHP project.
Vulcan logic disassembler works by reading the
PHP file and then extracting the bytecode
contained in it. After successfully retrieving the

bytecode, it will read the instructions in the bytecode
and display the output in a more human-readable
format. Meanwhile, PHP debugger works by
executing PHP code in debug mode. When debug
mode is activated, it will display information about the
opcode instructions executed by the PHP code, as well
as variable values and other debugging information.
Generally, vulcan logic disassembler is more suitable
for analyzing PHP code, while PHP debugger is more
suitable for finding errors or bugs in PHP code. In this
paper, the usage of vulcan logic disassembler is
employed to extract PHP code into bytecode for the
analysis of malicious PHP files as follows:

<?php if ($_POST['cmd']){ $cmd =
$_POST['cmd']; passthru($cmd);}?>

After the Zend Engine execution process on the

above PHP file, the following opcode sequence is
generated: [FETCH_R], [FETCH_DIM_R], [JMPZ],
[FETCH_R], [FETCH_DIM_R], [ASSIGN],
[INIT_FCALL], [SEND_VAR], [DO_ICALL],
[ECHO], [RETURN] as seen in Table 1. After
collecting the sequence of opcode instructions, our
subsequent step involves analyzing the malicious PHP
files.

Table 1: The Sequence of Opcode Instructions

No. Opcode
0 FETCH_R
1 FETCH_DIM_R
2 JMPZ
3 FETCH_R
4 FETCH_DIM_R
5 ASSIGN
6 INIT_FCALL
7 SEND_VAR
8 DO_ICALL
9 ECHO
10 RETURN

3.3 Feature Selection

Feature selection is a method of selecting the most
effective features from the available ones. In this
study, these features function to distinguish between
malicious and non-malicious files. Additionally, it
plays a role in improving algorithm efficiency by
ensuring appropriate index evaluation. Since most
opcode features only use limited words in the
vocabulary, this will result in sparse word vectors. To
maintain computational efficiency, it is imperative to
eliminate unnecessary features that could potentially
result in a decline in performance.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7448

Word2vec is a method in natural language
processing used to represent words as numeric
vectors that was introduced by Google in
2013.[21]. It has become one of the most popular
Natural Language Processing (NLP) techniques
for word vectorization [22]–[24]. The purpose of
word2vec is to estimate the distribution
representation of the words, so that the words that
often appear in the same context will have similar
representations in the vector space. Word2vec
utilizes machine learning techniques based on
neural networks, consisting of two model
architectures: Continuous Bag-of-Words (CBOW)
and Skip-Gram. In the CBOW architecture, the
model predicts the target word based on the given
context words, while in the Skip-Gram
architecture, the model predicts the context words
based on the given target word. In this study, the
Continuous Bag-of-Words (CBOW) architecture
was employed for constructing the word2vec
model. The word2vec learning process is
conducted by calculating the likelihood or
probability of words appearing in a given context
using the softmax function. Subsequently, the
model parameters are updated based on the loss
value generated in each iteration of the learning
process. Once the learning process is complete,
each word is represented as a numeric vector with
a specific dimension, where the vector represents
the word in a semantic vector space. For example,
words with similar meanings will have vector
representations that are close to each other in the
vector space. The model parameters used in this
study can be seen in Algorithm 1. The next step is
to vectorize PHP opcodes using the pre-trained
Word2Vec model, as outlined in Algorithm 2.

Algorithm 1 Training Model Word2Vec
Input : opcode_php_list
Output : model Word2Vec
1: Creating a word2vec model using the

CBOW architecture with parameters:
vector size=200, window=5,
min_count=5 and epoch=10

2: Build vocabulary from opcode_php_list
3: Training models with corpus_count and

epoch models
4: Saving the word2vec model.

Algorithm 2 PHP Opcode Vectorization
Input : model, opcode_php_list
Output : opcode vector
1: Determine the dimensions of embedding =

model vector_size
2: For text opcode_php_list do

3: Cut the words according to the maximum
length of the document = 500

4: Use of word embedding
5: End for
6: Return opcode_vector

3.4 Classification

After feature selection from the set of opcode and
bytecode samples is completed, the feature matrix
resulting from opcode vectorization is used as the
input, and the labeling of web shell or normal files is
used as the output. Then, classification is employed for
training. Before that, the data is divided into three sets:
training dataset, validation dataset, and testing dataset.
In this study, the data will be divided into training and
testing sets with an 80:20 ratio.

After separating the dataset, the next step is testing

the algorithm model, Convolutional Neural Network
(CNN). Convolutional neural networks (CNN) are a
type of neural network used specifically for computer
vision tasks such as image recognition or
classification. CNN consists of five layers: the input
layer, the convolutional layer, and the fully connected
layer. In the formation of a CNN classification model
using the TensorFlow and TFLearn libraries, three
convolutional layers will be used, as seen in Figure 2.

Figure 2: CNN Model Process

The step-by-step process performed in the
Convolutional Neural Network (CNN) is as follows:
1. Input layer: The input data consists of documents

with dimensions ['none', 500, 200]. 'None'
indicates that the batch size can vary; 500 is the
maximum document length allowed in the
dataset, and 200 represents the dimension of each
word in the document.

2. Convolutional layer: Next, create three branches
of convolutional layers. Each branch has 200
filters, kernel sizes of 3, 4, and 5, respectively, a
ReLU activation function, and L2 regularization.
Each branch processes the input data in parallel.

3. Flatten layer: The output results from the three
branches of the convolutional layer are merged
into one using the merge function with 'concat'
mode and axis = 1.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7449

4. Pooling layer: Global max pooling is used to
generate the best feature value from the
previous feature extraction.

5. Dropout layer: A dropout layer with a
probability value of 0.8 is used to prevent
overfitting.

6. Fully connected layer: A fully connected layer
with two output units and a softmax activation
function is used to generate the classification
output probabilities.

7. Regression function: The regression function
is used to determine the loss function. In this
implementation, the 'adam' optimizer is used
with a learning rate of 0.001 and the
categorical_crossentropy loss function

8. DNN model: The CNN model is initialized
using tflearn. DNN function with the network
as the input and tensorboard_verbose set to 0
to avoid verbose display during model
training.

3.5 Evaluation

At this stage, evaluation and analysis are
performed by comparing the accuracy of the
model. Several metrics such as accuracy (ACC),
precision (P), recall (R), and F1-score (F1) are used
to evaluate the performance of the model in
classifying malicious or benign web shells along
with the confusion matrix to measure the model's
performance in terms of correctly and incorrectly
classified data from the tested dataset. The
evaluation confusion matrix of the model is shown
in Table 2.

Table 2: Confusion Matrix

Prediction
Actual

True False
True True Positive

(TP)
False Positive

(FP)
False False Negative

(FN)
True Negative

(TN)

True positive is the result where the model
correctly predicts the positive class (True Positive
= TP). For example, if an instance is a benign
(normal) sample and it is predicted as a benign
(normal) sample, it is considered a true positive
(TP). False negative is the result where the model
incorrectly predicts the negative class (False
Negative = FN). For example, if an instance is a
malicious (web shell) sample but it is predicted as
a benign (normal) sample, it is considered a false
negative (FN). True negative is the result where the

model correctly predicts the negative class (True
Negative = TN). For example, if an instance is a
malicious (web shell) sample and it is predicted as a
malicious (web shell) sample, it is considered a true
negative (TN). False positive is the result where the
model incorrectly predicts the positive class (False
Positive = FP). For example, if an instance is a benign
sample but it is predicted as a malicious (web shell)
sample, it is considered a false positive (FP). From the
performance metrics of this study, the following are
the formulas for each matrix related to the actual
versus predicted values in formulas 1 to 4.

Accuracy =

(1)

Eq. (1) shows the number of proportions of samples
correctly classified by the model prediction.

Precision =

(2)

Eq. (2) shows the sum of the proportion of the true-
positive prediction to the total positive prediction.

Recall =

(3)

Eq. (3) shows the exact number of predictions of the
correct actual number.

F1 score =

(4)

Eq. (4) shows the merger of information about
precision and recall. F1 scores provide a more holistic
measurement of model performance, as it considers
both the number of false negative and false positive in
model predictions. The evaluation results of the model
built using the CNN algorithm will be compared with
the Random Forest (RF) and XGBoost models.

4. EXPERIMENT ANALYSIS

4.1 Data Source

The data used for this research consists of a
collection of PHP backdoor web shell datasets
available for download from the internet. The dataset
consists of several open-source web shell projects as
malicious samples, while some CMS projects, the Yii
framework, and OA are used as normal samples, as
shown in Table 3. We found that there is no readily
available collection of PHP web shell data that has
been cleaned and processed on the internet. Therefore,
samples of PHP web shell samples from seven open-
source projects that have been collected were then
analyzed manually.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7450

Table 3: Data Source of PHP Samples

Sample Source
Malicious
Sample

https://github.com/JohnTroony/php-
webshells
https://github.com/BlackArch/webshe
lls
https://github.com/LuciferoO/webshe
ll-collector
https://github.com/xl7dev/WebShell
https://github.com/tennc/webshell
https://github.com/webshellpub/awso
me-webshell
https://github.com/mattiasgeniar/php-
exploit-scripts

Normal
Sample

https://github.com/yiisoft/yii2
https://github.com/rainrocka/xinhu
https://github.com/johnshen/phpcms

After collecting the data, the next step is to

perform data cleaning on the PHP web shell
samples used from seven open-source projects.
The data cleaning steps included removing
duplicate data so that there was no unnecessary
repetition of data. In addition, web shell data that
could not be run due to syntax errors in the
program code was also removed. This data
cleaning is done so that the data used in the
research becomes more valid and reliable. Clean
and structured data will make it easier to conduct
analysis and minimize the possibility of errors in
drawing conclusions. The results of data cleaning
on the web shell have a total of 1461 samples, and
data on normal samples have a total of 2528
samples. The data is divided into 3 categories:
training data with a total of 2577, validation data
with a total of 645, and testing data with a total of
767.

4.2 Experiment Environmental

The experiments conducted in this research
were based on the Python 3.10 programming
language and executed in an experimental
environment using the 64-bit Windows 11
operating system. For more detailed information,
please refer to Table 4.

Table 4: Experiment Environmental

Hardware and
Software

Specification

Memory 12 Gb
Processor (CPU) Intel Core i7-8750H

CPU @ 2.20 Ghz (12
CPUs)

Graphics (GPU) GeForce GTX 1050 4 Gb
Operating System (OS) Win11 64bit

CUDA NVIDIA CUDA 12.0
Language Programming Python 3.10.6
PHP PHP 8.1.16
Machine Learning
Library

Tensorflow 2.11.0 and
Tflearn 0.5.0

4.3 Preprocessing Data

In this stage, cleaning is performed on the collected
PHP web shell files. The purpose of this process is to
extract the PHP web shell files into opcodes to obtain
a set of features that can detect malicious PHP web
shell files in token form. The following processes are
carried out:

4.3.1 Opcode PHP Extraction

The process conducted in this stage involves
extracting PHP web shell files into PHP
opcodes using the VLD (Vulcan Logic
Dumper) extension, as explained in Chapter III.
The extracted PHP opcode results are shown in
Figure 3.

Figure 3: PHP Web Shell Opcode Results

4.3.2 Tokenizing

In this process, numbers, punctuation
marks, and other characters that are considered
to have no influence on PHP opcode processing
are also removed. In this study, the "re"
module's findall() function is used to find "all"
occurrences that match the given pattern. The
results of tokenization using the findall module
can be seen in Figure 4.

Figure 4: PHP Opcode Tokenization Result

4.4 Feature Selection

After the tokenizing stage, the next step is to create
a word2vec model using the CBOW architecture with
a window size of 5. Then, the opcode PHP is

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7451

vectorized using the trained model. This process
will generate numerical vector representations for
each opcode word in the PHP corpus. The
vectorization results can be seen in Figure 5.

Figure 5: PHP Opcode Vectorization Results

4.5 Classification

The classification process is performed by
applying the CNN algorithm, which consists of
three convolutional layers. The classification
process is divided into two parts: training and
validation results, as well as testing results.

4.5.1 Training Result

The CNN model training results were
performed with epoch 10 to 100. The results
of the experiment using training data 2577
with validation data 645 obtained the
comparison of accuracy and validation
precision that can be seen in Figure 6.
Comparison of data loss and validation in
Figure 7.

Figure 6: The Effects of Different Epochs on

Accuracy and Validation Accuracy

Figure 7: The Effects of Different Epochs on Loss

and Validation Loss

4.5.2 Testing Result

In the testing phase, PHP opcodes are tested
by inputting them into the pre-existing CNN
model. If the prediction result for the test data
shows a prediction value of less than 50%, the
opcode will be classified as black, indicating
that it is a web shell. However, if the prediction
value is greater than 50%, the opcode will be
classified as white or a normal file. Pada Table
5 shows examples of the prediction results from
the model testing.

Table 5: CNN Model Testing Prediction Results

Opcode PHP Testing Predicti
on

Result

Classificatio
n

ECHO BEGIN_SILENCE
INIT_FCALL FETCH_R
FETCH_DIM_R SEND_VAL
DO_ICALL ASSIGN
END_SILENCE ECHO
ISSET_ISEMPTY_CV
BOOL_NOT JMPZ L …

0.25% Black
(Web Shell)

RETURN FETCH_R
ASSIGN_OBJ OP_DATA
FETCH_R ASSIGN_OBJ
OP_DATA FETCH_OBJ_R
FETCH_OBJ_R ASSIGN_OBJ
OP_DATA FETCH_OBJ_R
FETCH_OBJ_R ASSIGN_OBJ
OP_DATA …

99.9% White
(Normal)

4.6 Evaluation Result

After testing the PHP opcodes on the CNN model
using Word2Vec, the resulting confusion matrix can
be seen in Table 6. he confusion matrix obtained from
the testing shows that there are 503 samples predicted
as non-malicious or normal (True Positive), 262
samples predicted as malicious or web shell (True
Negative), 2 samples predicted as malicious but
actually non-malicious (False Positive), and 0 samples
predicted as non-malicious but actually malicious
(False Negative). Based on the confusion matrix data,
the accuracy, precision, and F1-score results from
epochs 10 to 100 are shown in Table 7. In Figure 8 , it
can be observed that the influence of each epoch can
determine different metric results, leading to
fluctuations in accuracy for each epoch. However, at
epoch 100, the best accuracy is achieved.

Table 6: Confusion Matrix Result

Prediction
Actual

True False
True 504

(TP)
1

(FP)

0.95

0.97

0.99

1.01

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Acc Val Acc

0

0.1

0.2

0.3

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Loss Val Loss

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7452

False 0
(FN)

262
(TN)

Table 7: Model Performance Results

Epoch Accuracy Precision Recall F1-
Score

10 0.993481 0.981273 1.0 0.990548
20 0.994784 0.988636 0.996183 0.992395
30 0.989569 0.970370 1.0 0.984962
40 0.992177 0.981203 0.996183 0.988636
50 0.993481 0.984905 0.996183 0.990512
60 0.997392 0.992424 1.0 0.996197
70 0.992177 0.977611 1.0 0.988679
80 0.989569 0.970370 1.0 0.984962
90 0.992177 0.977611 1.0 0.988679
100 0.998696 0.996197 1.0 0.998095

Figure 8: Effect of Different Epoch on Model
Performance

To compare the performance of the CNN
model, testing is conducted using ensemble
learning algorithms, namely Random Forest and
XGBoost. The Random Forest classification
utilizes a base classifier with 100 estimators as its
parameter. The Random Forest classification
model is then tested, and the testing results yield
an accuracy of 98.56% with a corresponding
confusion matrix, which can be seen in the
following Table 8.

Table 8: Random Forest Confusion Matrix Result

Prediction
Actual

True False
True 495

(TP)
10

(FP)
False 1

(FN)
261
(TN)

The XGBoost classification utilizes a base

classifier with the parameter objective =
"reg:squarederror", which performs regression
with the objective of minimizing the squared error
between predicted values and actual values. The
XGBoost classification model is then tested, and
the testing results yield an accuracy of 98.56%

with a corresponding confusion matrix, which can be
seen in the following Table 9.

Table 9: XGBoost Confusion Matrix Result

Prediction
Actual

True False
True 495

(TP)
10

(FP)
False 1

(FN)
261
(TN)

From the testing results using the two ensemble

methods, a comparison of accuracy with the CNN
model is obtained, as can be seen in Table 10. The
Random Forest and XGBoost classification models
have the same accuracy, which is 98.56%, while the
CNN model has a higher accuracy of 99.86%. This
indicates that the CNN model performs better
compared to Random Forest and XGBoost.

Table 10: Comparison Results with Other Machine
Learning Methods

Model Accuracy Precision Recall F1-
Score

CNN 0.998696 0.996197 1.0 0.998095
RF 0.985658 0.963099 0.996183 0.992395
Xgboost 0.985658 0.963099 0.996183 0.992395

4.7 CNN Model's Comparison with Related
Works

 To establish the superiority of our model
compared to previous research, a comprehensive
comparison with other existing methods, namely WS-
LSMR’s method[12], Zang’s method[10] dan Wang’s
method[16]. Through this comparison, the aim is to
demonstrate that these methods are outperformed by
our model in terms of various performance metrics,
showcasing its enhanced effectiveness and efficiency.
The experimental results can be seen in Table 11.

Table 11: Comparison of the model's performance with
related work

Model Precision Accuracy Recall
Word2Vec-CNN 0.996197 0.998696 1.0
WS-LSMR N/A 0.9428 0.9914
Zhang’s Method 0.9403 0.9860 0.9562
Wang’s Method 0.932 0.944 0.968

5. CONCLUSION

This research proposes the utilization of deep
learning methods employing the Convolutional Neural
Network (CNN) algorithm to classify malicious PHP
web shells. The testing results demonstrate that the
implementation of the CNN algorithm with
Word2Vec achieves an accuracy of 99.8%. We present
a comparison between the CNN method and ensemble

0.97

0.98

0.99

1

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

Accuracy Precision

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7453

learning methods, namely Random Forest and
XGBoost. The tests conducted reveal that CNN
outperforms Random Forest and XGBoost in terms
of accuracy. Furthermore, our model exhibits
superior performance compared to previous
research findings.

REFERENCES:

[1] OWASP, “OWASP Top 10 Web
Application Security Risks,” 2021.
https://owasp.org/www-project-top-ten/
(accessed Aug. 26, 2022).

[2] M. Siddik Hasibuan and L. Mashur
Gultom, “Analisis Serangan Deface
Menggunakan Backdoor Shell Pada
Website Analysis of Deface Attacks Using
Backdoor Shell On Websites,” 2018.

[3] L. Qi, R. Kong, Y. Lu, and H. Zhuang, “An
End-to-End Detection Method for
WebShell with Deep Learning,” in 2018
Eighth International Conference on
Instrumentation & Measurement,
Computer, Communication and Control
(IMCCC), 2018, pp. 660–665. doi:
10.1109/IMCCC.2018.00143.

[4] Z. Pan, Y. Chen, Y. Chen, Y. Shen, and X.
Guo, “Webshell detection based on
executable data characteristics of PHP
code,” Wirel Commun Mob Comput, vol.
2021, 2021, doi: 10.1155/2021/5533963.

[5] W. Kang, S. Zhong, K. Chen, J. Lai, and
G. Xu, “RF-AdaCost: WebShell Detection
Method that Combines Statistical Features
and Opcode,” 2020, pp. 667–682. doi:
10.1007/978-981-15-9739-8_49.

[6] Y. Tian, J. Wang, Z. Zhou, and S. Zhou,
“CNN-Webshell: Malicious Web Shell
Detection with Convolutional Neural
Network,” Mar. 2017, pp. 75–79. doi:
10.1145/3171592.3171593.

[7] H. Zhang et al., “Webshell Traffic
Detection With Character-Level Features
Based on Deep Learning,” IEEE Access,
vol. 6, pp. 75268–75277, 2018, doi:
10.1109/ACCESS.2018.2882517.

[8] W. Yang, B. Sun, and B. Cui, “A Webshell
Detection Technology Based on HTTP
Traffic Analysis,” in Innovative Mobile
and Internet Services in Ubiquitous
Computing, F. and J. N. and E. T. Barolli
Leonard and Xhafa, Ed., Cham: Springer
International Publishing, 2019, pp. 336–
342.

[9] Tao Fangjian, C. Cao, and Liu Zhihui,
“Webshell Detection Model Based on Deep
Learning,” in Artificial Intelligence and
Security, Z. and B. E. Sun Xingming and Pan,
Ed., Cham: Springer International Publishing,
2019, pp. 408–420.

[10] H. Zhang, M. Liu, Z. Yue, Z. Xue, Y. Shi, and
X. He, “A PHP and JSP Web Shell Detection
System with Text Processing Based on
Machine Learning,” in 2020 IEEE 19th
International Conference on Trust, Security
and Privacy in Computing and
Communications (TrustCom), 2020, pp.
1584–1591. doi:
10.1109/TrustCom50675.2020.00219.

[11] G. Tianmin, Z. Jiemin, and M. Jian, “Research
on Webshell Detection Method Based on
Machine Learning,” in 2019 3rd International
Conference on Electronic Information
Technology and Computer Engineering
(EITCE), 2019, pp. 1391–1394. doi:
10.1109/EITCE47263.2019.9094767.

[12] Z. Ai, N. Luktarhan, Y. Zhao, and C. Tang,
“WS-LSMR: Malicious WebShell Detection
Algorithm Based on Ensemble Learning,”
IEEE Access, vol. 8, pp. 75785–75797, 2020,
doi: 10.1109/ACCESS.2020.2989304.

[13] A. Hannousse and S. Yahiouche, “Handling
webshell attacks: A systematic mapping and
survey,” Comput Secur, vol. 108, p. 102366,
Mar. 2021, doi: 10.1016/j.cose.2021.102366.

[14] T. Li, C. Ren, Y. Fu, J. Xu, J. Guo, and X.
Chen, “Webshell Detection Based on the
Word Attention Mechanism,” IEEE Access,
vol. 7, pp. 185140–185147, 2019, doi:
10.1109/ACCESS.2019.2959950.

[15] Y. Fang, Y. Qiu, L. Liu, and C. Huang,
“Detecting Webshell Based on Random Forest
with FastText,” in Proceedings of the 2018
International Conference on Computing and
Artificial Intelligence, in ICCAI 2018. New
York, NY, USA: Association for Computing
Machinery, 2018, pp. 52–56. doi:
10.1145/3194452.3194470.

[16] Z. Wang, J. Yang, M. Dai, R. Xu, X. Liang,
and others, “A Method of Detecting Webshell
Based on Multi-layer Perception,” Academic
Journal of Computing & Information Science,
vol. 2, no. 1, 2019.

[17] A. Shrestha and A. Mahmood, “Review of
Deep Learning Algorithms and
Architectures,” IEEE Access, vol. 7, pp.
53040–53065, 2019, doi:
10.1109/ACCESS.2019.2912200.

Journal of Theoretical and Applied Information Technology

30th September 2023. Vol.101. No 18
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7454

[18] B. Yong, X. Liu, Y. Liu, H. Yin, L. Huang,
and Q. Zhou, “Web Behavior Detection
Based on Deep Neural Network,” in 2018
IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced &
Trusted Computing, Scalable Computing
& Communications, Cloud & Big Data
Computing, Internet of People and Smart
City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBD
Com/IOP/SCI), 2018, pp. 1911–1916. doi:
10.1109/SmartWorld.2018.00320.

[19] Derick Rethans, “VLD,” pecl.php.net,
2003. https://pecl.php.net/package/vld
(accessed Apr. 04, 2023).

[20] “Interactive PHP Debugger,” php.net,
2001. https://www.php.net/PHPdbg
(accessed Apr. 04, 2023).

[21] T. Mikolov, K. Chen, G. s Corrado, and J.
Dean, “Efficient Estimation of Word
Representations in Vector Space,”
Proceedings of Workshop at ICLR, vol.
2013, Aug. 2013.

[22] S. Al-Saqqa and A. Awajan, “The Use of
Word2vec Model in Sentiment Analysis:
A Survey,” in Proceedings of the 2019
International Conference on Artificial
Intelligence, Robotics and Control, in
AIRC ’19. New York, NY, USA:
Association for Computing Machinery,
2020, pp. 39–43. doi:
10.1145/3388218.3388229.

[23] W. Tian, J. Li, and H. Li, “A Method of
Feature Selection Based on Word2Vec in
Text Categorization,” in 2018 37th
Chinese Control Conference (CCC), 2018,
pp. 9452–9455. doi:
10.23919/ChiCC.2018.8483345.

[24] V. Vargas-Calderón and J. E. Camargo,
“Characterization of citizens using
word2vec and latent topic analysis in a
large set of tweets,” Cities, vol. 92, pp.
187–196, 2019, doi:
https://doi.org/10.1016/j.cities.2019.03.01
9.

