
Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6736

AN EFFICIENT FILTER BASED FEATURE RANKING AND
NON-LINEAR ENSEMBLE LEARNING FRAMEWORK FOR

SOFTWARE RELIABILITY ESTIMATION

ANUSHA MERUGU1, DR. M. CHANDRA MOHAN2

1Research Scholar, Department of Computer Science and Engineering, JNTUH, Hyderabad, india
2Professor , Department of Computer Science and Engineering, JNTUH, Hyderabad, india

.

ABSTRACT

As the size and complexity of the software systems are increasing day-by-day, the software reliability is an
essential research concern for both software developers and clients. Software reliability ensures that the
software products are reliable and error-free during the product deployment and software testing phases.
Most of the conventional reliability estimation models are independent of heterogeneous datatype with
homogeneous non-homogeneous poison process measures. In this work, an efficient reliability feature
ranking based multi-class ensemble classification framework is implemented for reliability estimation
process. In comparison to the traditional software reliability models, experimental results showed that the
proposed model has a high software reliability prediction rate with less error and high accuracy.

Keywords: Software Reliability, Feature Ranking, Ensemble Learning Model, Classification.

1. INTRODUCTION

Machine learning based reliability
prediction is an essential area for extracting
significant patterns and relationships between the
information stored on reliability databases. These
results are recycled for different objectives and for
different areas, ranging from organizational
management, product marketing, research and
development, fault detection, data analysis and MIS
decision-making. Such choices are defined by
enormous amounts of data that are related in
various ways to each other. Because of the massive
data and high data growth rate in the software
reliability data, human analysis skills are
inadequate. Because biotechnology is developing at
a high rate of growth, more and more biological
data is being collected and made available for
analysis. The importance of developing new
techniques to extract knowledge from it also
increases when bio-molecular data grows
significantly. The healthcare environment is
generally seen as rich in information, but
unfortunate in the distribution of knowledge [1].
One of the heuristically approaches of optimization
for action extraction is colony optimization (ACO)
along with particle swarm optimization. PSO
optimizes a problem by preserving a particle
population and transferring these particles into the
search area. Both the ACO and PSO algorithms use

one-classification rules sequence of covering
patterns. The construction in machine learning
models was an active research topic. The main
learning machine models to learn group classifiers
in high-dimensional datasets are boosting, bagging
or stacking. Boemh stated that 80% of software
product bugs are covered by approximately 20
percent of modules [2]. In particular in minority
class (default modules), the uneven distribution of
defeat modules and non-default modules is leading
to bad performance[3]. This was addressed at the
data or algorithm level[4]. Different methods of
over-sampling and under-sampling at the data level
were used to balance output of the class. The
methodology at the algorithm level, on the other
hand, tackles the problem of class inequality by
changing your training mechanism to improve the
accuracy of the minority classes[5]. As a reliability
benchmarking data set, NASA MDP datasets are
often use. The study uses five of this repository's
most frequent datasets. Each dataset consists of
multiple input quality software modules. The
building algorithm is comprised of two phases for
the majority of decision trees. The first phase
constructs a large tree and cuts the tree in the latter
phase to avoid problems of adaptation. Then the
tailed tree is used to classify. The bootstrap[6] is
one group classification system and constructs
individual members with different data sets. The
Bootstrap Aggregating is a group classification

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6737

system. The projections will then be made by
combining an average or voting on a class label. To
build a single tree, a simple algorithm is used. At
each decision tree node the tapping process is not
performed and attributes are randomly sampled.
The example was classified by a majority[7]. The
important advantage of random forestry is that it is
fast and can handle numerous input properties. A
nonlinear function neuron is called every input
node. The sigmoidal units of the cloaked layer learn
about the functions. MLP uses a back-propagation
technique for training purposes. Process measures
are time-based measurements that are based on
historical source code changes. Those metrics can
be extracted from the SCM and include, for
example, the number of code additions and
deletions, the number of separate committers and
the number of lines modified. [8] compared the
performance of changing metrics (process) to static
code metrics for prediction of defects. They
concluded that process data includes more
discrimination in the distribution of reliability than
the source code itself, i.e. source code metrics.
Their explaining is that source code metrics
concern the human comprehension of the code, for
example, many lines of code or complexity are not
necessarily software reliability indicators. [9] used
some method metrics to explain whether or not a
file was new and whether it was changed. The
authors used these metrics in conjunction with other
metric families and found that 20 percent of the
files, which are identified as most susceptible to
reliability in the prediction model, have an average
of 83 percent of faults. Wrappers select attributes
using the ML algorithm to evaluate the usefulness
of different functions. Filters use heuristics based
on data characteristics to evaluate the
characteristics. The positive effects of filters over
wrappers are that they work faster[10] and are thus
more suitable in large feature sets for selection.

Software metrics are used as the major
variable for software prediction modeling, and
reliability data like 1 or 0 is used as the minor
variable. The SDP uses software metrics that also
include software attributes or features such as
changing information and code lines (LOC) to
predict that software testing activities are prone to
failure. For the instruction of the latest software
modules the most examined SDP models are able to
rely on their reliability and categorize whether or
not the latest software modules have reliability[11].
Another positive effect of filter use is that it can be
used with any ML algorithm. In most cases,
however, the problem of classification is discreet,
while the wrappers with any problem of

classification can be used. Because wrappers use
the same algorithm for selecting and classifying
features, the function selection process should be
performed for any prediction algorithm. SE tasks
are currently employed in order to extend premium
software systems and minimize the number of
software defects. The software reliability are
recognized that the costs for solving the software
reliability often use the development method after
software is released. Software reliability can not be
considered directly because they can be estimated
by software metrics. The recognition of software
modules is linked to the faults that are achieved by
binary classifiers and predict even if the software is
defective by means of various software metrics . ST
uses time at SDLC levels and it is very costly to
check the software modules. The complexity and
size of the software is gradually increased for
several purposes, including the safety requirement,
reliability and combination of customers '
innovative technologies. Consequently, it is not
possible to produce defect-free and consistent
software due to a time and budget limitation. Since
the need for well organized software systems and
maximum performance is progressively developed,
their complications are also constantly increased.
The greatest complication is the task of quality
assurance. Conversely, checking the premium
software is a costly task and requires enough
resources. Moreover, most of the information is
recommended for detailed verification of the
software project in the given limited test
resources[12].

Software reliability has received much
attention because reliability has always had
obvious effect on highly visible aspects of software
development. The classification scheme should be
comprehensive allowing distinct classification of
each failure. For latest software systems, the higher
level categorization would be to group failures
such as configuration failures, planned events and
unplanned events. Conventional failures like
incorrect input, system crash etc. are unplanned
events triggered by software defects. Planned
events are cases where there is a planned shutdown
of the software for performing any task. Issues in
configuration setting lead to configuration failure.
Though configuration failures and planned events
are generally not caused by software faults, they do
affect the reliability experience of the user. Based
on what is important to their users, specific types
of failures may be focused for different products.
Estimation of current reliability and prediction of
the future failures is carried out using the reliability
growth models using extrapolation techniques. It is

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6738

important for the test managers to make decisions
on the release of the software during the testing
phase[13].

Reliability models are used to estimate the
product’s reliability as a function of test time based
on the failure data that is collected during testing.
These statistical processes help in determining the
best estimates of reliability during testing and on
projecting the reliability during field operation. The
process is iterated by executing additional testing
cycles as required, until the reliability objective is
met. When many parameters are involved in a
model and its probability density function (PDF) is
non-linear, determining an analytical solution for
the MLE estimate becomes very difficult. In such
cases, using nonlinear optimization algorithms, the
numerical MLE estimate is done. In LSE, a
parameter value that minimizes SSE is generally
determined using a non-linear optimization
algorithm. By using the method of least squares in
curve fitting methodology the error is minimized in
the SSE between the predicted values and the ones
actually obtained. In cases where normal
distribution is followed for the errors, the LSEs are
also the maximum likelihood estimates. A number
of software tools are available today for the
purpose of estimating parameters of the SRGM.
There are two models, static and dynamic that
exists to ensure that the quality attributes of the
application are assessed. These models help on
taking the release related decisions of the software
product. A static model estimates the number of
reliability in the software using software metrics.
Cumulative failure profile or the rate at which
failures are discovered in the past is used by
dynamic model for estimating the failures. The
failure process itself is measured and modeled by
the dynamic models. So depending on the
cumulative time of the failure, a time component is
included in it. Time is recorded either as calendar
time or execution time. It focuses on the history of
software failure. These models generally assume
that the software should be executed based on the
operational profile. The basic assumption of most
of the SRGMs is that as the reliability that cause
failures are removed from the product
instantaneously, the reliability of the product
increases. Another assumption is that the failure
rate of a software product improves over time
irrespective of whether or not the reliability are
fixed[14-15].

Research Gaps:

1 One research gap in the field of software
reliability estimation is the need to incorporate the
dynamic nature of user experience and the learning
effect over time. While existing models consider the
fault detection rate and assume reliability growth with
the fixing of underlying faults, they often overlook the
impact of user familiarity and their ability to adapt to the
software. As users gain experience, they tend to develop
workarounds to handle situations that previously caused
failures, resulting in an increase in reliability over time.
However, current models do not explicitly capture this
phenomenon.

2. Moreover, software reliability models make various
assumptions related to fault detection rates, the location
of faults in the software and data space, and the testing
environment. These assumptions may not always hold
true in practical scenarios, leading to limitations in the
accuracy and applicability of the models.

3. Another research gap lies in the classification and
characterization of software reliability models. While
some models treat the software as a black box without
considering its internal structure, others, known as white
box models, explicitly incorporate the software's
architecture and module interactions. There is a need to
explore and develop more comprehensive and flexible
models that can effectively handle diverse software
systems and testing scenarios.

4. Additionally, there is a distinction between
parametric and non-parametric models in terms of the
interpretation and limitations of model parameters.
Parametric models assume that the parameters have
physical meanings and explicit ranges, while non-
parametric models lack such restrictions. Exploring and
comparing the strengths and weaknesses of these
different modeling approaches can provide valuable
insights for improving software reliability estimation.

2. RELATED WORK

The software system’s reliability depends
on the time frame, when the product has been used.
Over time, users learn to use the product properly
and identify some workaround to handle situations
that causes failure. Thereby increase in the period
of usage leads to reliability growth. Any software
reliability model has several assumptions. The
assumptions are mainly based on the fault
detection rate[16]. The reliability in the software
and the data space locations where the faults are
hidden are also considered by the models. The test
environment is one more factor that drives the
model assumptions. A main attribute of Markovian
model is that, number of reliability remaining in a
software system is the countable states that the

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6739

system has at any specific point of time. In cases
where a process is at a particular state, past history
will not influence the future development.
Depending on the current state of the system the
transition probabilities among the states would
vary. A discontinuous function is considered as the
failure intensity of the system and it relies on the
present status of the software. For studying the
fault removal process of software, Markovian
models are considered to be very helpful. They are
considered to significantly support the testing phase
of the software development life cycle. Software
reliability are identified and fixed in the course of
testing. The number of reliability is represented by
the state of process at a time t. Reliability growth
is assumed by most reliability models at instances
when a failure happens and the underlying fault is
fixed. Bayesian models take a different approach to
reliability growth. Observation of no failure is
viewed as an indication of reliability growth,
reflecting the user’s growing confidence on the
software. Bayesian models are described by prior
and posterior distributions. It reflects the view of
parameters of the model based on the past data.
This turns out to be the important consideration in
this method. Based on the information from past
projects combined with current data, parameter of
the model is assumed to follow different
distribution patterns. The Littlewood-Verall (L-V)
model is probably the best example of the Bayesian
class of models. The distribution of failure times is
assumed to be exponential with a certain failure
rate but it is assumed to be a random variable rather
than a constant as in other models [17]. The inter-
failure interval is treated as a random variable in
TBF models. The number of failures in a specific
period is treated as a random variable in FC
models. As the testing cycle continue the
parameters of inter-failure distribution changes in
the case of TBF models. In FC models, the
software reliability evolution is illustrated by
defining the distribution parameters such as mean
value function as appropriate functions of time.
Both the models have a generic assumption that
when the reliability are detected, the failures are
independent. The curve fitting of the identified
time-based failure data is performed by a pre-
defined model formula in all the SRGMs that
depend on time domains. Input domain models and
fault seeding are time-independent models. In the
fault seeding models, the program is tested after
“seeding” numbers of faults. The failures that arise
due to the seeded faults are recorded. This data
helps on estimating the number of native faults in
the program. In input-domain based models, a set

of equivalence classes are derived by partitioning
the input domain of the program. Every
equivalence class is related to a particular program
path. The software is validated for every test case.
Based on the failures recorded by executing the
sample tests, reliability is determined[18]. In 2001,
a new classification scheme was arrived in which
software reliability models are classified into black
box and white box models. The whole software is
considered as a single system by the black box
model. The reliability estimation does not consider
the structure of the model. White box models are
based on the architecture of the software system
and the way different modules interact with each
other. It explicitly incorporates the methodologies
involved in the testing cycle and the structure of the
system that is tested. There are many models that
are classified based on the characteristic of the
testing activity as parametric and non-parametric
models. The basic assumption of the parametric
model is that the parameters have some meaning
and have a range. The model parameters have a
physical interpretation and are defined explicitly.
On the contrary, the parameters in the non-
parametric models have no limits. There is no
physical interpretation of the parameters and it
involves analytical formulation. The Artificial
Neural Network (ANN) is an example of non-
parametric models[19]. The software system’s
reliability depends on the time frame, when the
product has been used. Over time, users learn to use
the product properly and identify some workaround
to handle situations that causes failure. Thereby
increase in the period of usage leads to reliability
growth. Any software reliability model has several
assumptions. The assumptions are mainly based on
the fault detection rate[20]. The reliability in the
software and the data space locations where the
faults are hidden are also considered by the models.
The test environment is one more factor that drives
the model assumptions. A main attribute of
Markovian model is that, number of reliability
remaining in a software system is the countable
states that the system has at any specific point of
time. In cases where a process is at a particular
state, past history will not influence the future
development. Depending on the current state of the
system the transition probabilities among the states
would vary. A discontinuous function is considered
as the failure intensity of the system and it relies on
the present status of the software. For studying the
fault removal process of software, Markovian
models are considered to be very helpful. They are
considered to significantly support the testing phase
of the software development life cycle. Software

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6740

reliability are identified and fixed in the course of
testing. The number of reliability is represented by
the state of process at a time t. Reliability growth
is assumed by most reliability models at instances
when a failure happens and the underlying fault is
fixed. Bayesian models take a different approach to
reliability growth. Observation of no failure is
viewed as an indication of reliability growth,
reflecting the user’s growing confidence on the
software. Bayesian models are described by prior
and posterior distributions. It reflects the view of
parameters of the model based on the past data.
This turns out to be the important consideration in
this method. Based on the information from past
projects combined with current data, parameter of
the model is assumed to follow different
distribution patterns. The Littlewood-Verall (L-V)
model is probably the best example of the Bayesian
class of models. The distribution of failure times is
assumed to be exponential with a certain failure
rate but it is assumed to be a random variable rather
than a constant as in other models [21]. The inter-
failure interval is treated as a random variable in
TBF models. The number of failures in a specific
period is treated as a random variable in FC
models. As the testing cycle continue the
parameters of inter-failure distribution changes in
the case of TBF models. In FC models, the
software reliability evolution is illustrated by
defining the distribution parameters such as mean
value function as appropriate functions of time.
Both the models have a generic assumption that
when the reliability are detected, the failures are
independent. The curve fitting of the identified
time-based failure data is performed by a pre-
defined model formula in all the SRGMs that
depend on time domains. Input domain models and
fault seeding are time-independent models. In the
fault seeding models, the program is tested after
“seeding” numbers of faults. The failures that arise
due to the seeded faults are recorded. This data
helps on estimating the number of native faults in
the program. In input-domain based models, a set
of equivalence classes are derived by partitioning
the input domain of the program. Every
equivalence class is related to a particular program
path. The software is validated for every test case.
Based on the failures recorded by executing the
sample tests, reliability is determined[22]. In 2001,
a new classification scheme was arrived in which
software reliability models are classified into black
box and white box models. The whole software is
considered as a single system by the black box
model. The reliability estimation does not consider
the structure of the model. White box models are

based on the architecture of the software system
and the way different modules interact with each
other. It explicitly incorporates the methodologies
involved in the testing cycle and the structure of the
system that is tested. There are many models that
are classified based on the characteristic of the
testing activity as parametric and non-parametric
models. The basic assumption of the parametric
model is that the parameters have some meaning
and have a range. The model parameters have a
physical interpretation and are defined explicitly.
On the contrary, the parameters in the non-
parametric models have no limits. The number of
reliability is represented by the state of process at a
time t. Reliability growth is assumed by most
reliability models at instances when a failure
happens and the underlying fault is fixed. Bayesian
models take a different approach to reliability
growth. Observation of no failure is viewed as an
indication of reliability growth, reflecting the
user’s growing confidence on the software.
Bayesian models are described by prior and
posterior distributions. It reflects the view of
parameters of the model based on the past data.
This turns out to be the important consideration in
this method. Based on the information from past
projects combined with current data, parameter of
the model is assumed to follow different
distribution patterns.

Research Objectives and contributions

1. To implement an efficient software reliability
estimation model on large datasets.

2. To implement a filter based data feature
ranking and classification using optimized
kernel function.

Pros of Using SVR for Software Reliability Estimation

Non-Linear Modeling: SVR can capture complex, non-
linear relationships, which could be beneficial for
modeling user experience and learning effects.

Generalization: SVR is known for its good
generalization performance, making it potentially more
accurate in practical scenarios.

Flexibility: SVR doesn't make strong assumptions about
the underlying data, which could make it more adaptable
to different kinds of software systems and testing
environments.

Parameter Tuning: SVR allows for the tuning of
parameters like the regularization term, which could be

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6741

adjusted to better fit the specific characteristics of a
software system.

Cons of Using SVR for Software Reliability Estimation

Computational Complexity: SVR can be
computationally expensive, especially for large datasets,
which could be a limitation in real-time or resource-
constrained environments.

Interpretability: SVR models are often considered
"black-box" models, making them less interpretable than
some other methods. This could be a drawback when
you need to understand the model's decision-making
process.

Sensitivity to Outliers: SVR can be sensitive to outliers,
which could distort the reliability estimation.

Feature Scaling Required: SVR requires feature scaling
for optimal performance, adding an additional
preprocessing step.

3. PROPOSED MODEL

Figure 1: Proposed Model

In the context of software reliability estimation, the
research gap discussed above highlights the need
for new or profound information and best practices,

rather than incremental knowledge creation. While
incremental knowledge creation involves building
upon existing models and improving their accuracy

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6742

or applicability within certain boundaries,
addressing the research gap requires going beyond
incremental advancements.

To bridge this gap, researchers should aim to
introduce novel concepts and methodologies that
capture the dynamic nature of user experience and
the learning effect over time. This may involve
exploring new data sources, such as user feedback
or usage patterns, to quantify and incorporate the
impact of user familiarity and adaptation into the
reliability estimation process. By incorporating
these aspects, software reliability models can better
reflect the real-world behavior of software systems
and provide more accurate predictions.
Furthermore, addressing the assumptions made in
existing models is crucial. Researchers should
critically evaluate the validity of these assumptions
and develop approaches that relax or adapt them to
better align with practical scenarios. This could
involve conducting empirical studies to validate or
refine the assumptions and identify any potential
biases or limitations associated with them.
In addition to addressing the research gap, it is
essential to discuss best practices in software
reliability estimation. This includes the
development of standardized evaluation metrics,
benchmark datasets, and guidelines for model
selection and validation. By establishing best
practices, researchers and practitioners can ensure
the reproducibility and comparability of results,
enabling better decision-making in software
development and maintenance.It is important to
emphasize that tackling the research gap and
promoting best practices in software reliability
estimation requires collaboration and knowledge
sharing among researchers, industry professionals,
and relevant stakeholders. Open discussions,
collaborative research efforts, and interdisciplinary
approaches can facilitate the exchange of ideas,
promote innovation, and drive the field forward.
Overall, by focusing on new or profound
information and best practices, rather than solely
incremental knowledge creation, researchers can
contribute to advancing the field of software
reliability estimation and provide valuable insights
for improving software development processes and
decision-making.The provided excerpt introduces
an efficient filter-based feature ranking and non-
linear ensemble classification framework for
software reliability estimation. The objective of this
work is to address the increasing size and
complexity of software systems by improving
reliability prediction with high accuracy and
reduced errors.

The introduction emphasizes the significance of
machine learning in extracting valuable patterns
and relationships from reliability databases. The
extracted knowledge can be utilized in various
domains such as organizational management,
product marketing, research and development, fault
detection, data analysis, and decision-making. The
exponential growth of software reliability data
necessitates the development of advanced
techniques to effectively analyze and extract
insights from this vast amount of data.

Algorithm 1: Proposed Statistical Quartile
deviation based Outlier detection

In the model creation phase, we implement
a hybrid outlier detection framework based on the
interquartile range for numerical heterogeneous
databases. This framework aims to address the
sparsity issue in data visualization and prediction
by analyzing and testing different levels of outliers
on the training data.The model utilizes the lower
outlier and lower extreme levels to filter out
numerical attributes in the lower range, and the
upper outlier and upper extreme levels to filter out
values in the upper range. This filtering process
facilitates effective data visualization as depicted in
Figure 1. By incorporating these techniques, we
aim to enhance the accuracy and reliability of the
data visualization and prediction tasks.

1. Input: Dataset D, feature space F.

2. Output: Input data objects A, Non-
anomaly objects N.

3. Read the input dataset D.

4. Calculate the proposed Interquartile Range
(IQR) measure for each feature in the
feature space F.

5. Define the hybrid IQR measure as follows:

6. Perform proposed feature ranking for

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6743

classification process.

2: Feature ranking using optimal NHPP

1. To each feature in the features-list F[]
2. Do
3. Compute maxgainratio() using the

filtered data features.
4. Computing alpha and beta measure for

the feature ranking process.
5. Let pi be the probability of occurrence of

the ith feature value in a class.
6. Let MaxGainRatio (θ) be the sum of pi

multiplied by the exponential of pi.
7. Define a function chisqr(D) that computes

the chi-square value on the data D.
8. Let |D| be the size of the data.
9. Compute α as the logarithm of θ divided

by |T|^3 multiplied by the square root of
the chi-square value of D, multiplied by
the square root of |D|.

10. Define a function E(D) that calculates the
entropy of D.

11. Let |T| be the total sum of the features.
12. Compute β as θ multiplied by E(D)

divided by |T|^(1/3).
13. Done
14. Sort feature according to ranks.

 Proposed decision tree feature ranking measure:

Conditional Entropy of alpha on beta
CE(alpha[] / beta[]) = Σ P(beta[], alpha[]) *
log(P(alpha[]) / P(beta[], alpha[]))
Conditional Entropy of beta on alpha
CE(beta[] / alpha[]) = Σ P(beta[], alpha[]) *
log(P(alpha[]) / P(beta[], alpha[]))
ρ1 = (-CE(beta[/ alpha[]))^3) / ((Σ alpha[]_i)^3
* Corr(D_i)^3)
ρ2 = (-CE(alpha[/ beta[]))) / ((Σ beta[]_i)^3 *
sqrt(Corr))
N = total observations
m = minimum(#rows, #columns)
Proposed software reliability learning model
PE = cbrt(entropy(data) * N * Hellinger(data)) *
E(D) / chiVal(data)
ProposedHER

ProposedHER = max(cbrt(Σ(D=1)^(Dp |)
Σ(n=1)^(Dp |)(cbrt(Dp / |Dp|) - cbrt(Dn / |Dn|))^2),
GainRatio(D), PE)

In the proposed decision tree approach, an
optimized random forest approach is implemented
in order to improve the feature ranking process of
the tree construction process.
In this approach, a hybrid kernel based SVM
classifier is implemented in order to improve the
accuracy of the traditional SVM classifier.
Proposed polynomial kernel approach is optimized
in order to improve the true positive rate of the
heterogeneous datasets.

4. EXPERIMENTAL RESULTS

In this section, we have executed our proposed
model on NASA software reliability datasets and
compared the results with traditional reliability
prediction models. NASA Metrics Data Program, it
is publicly available for verifying, refuting and
improving predictive models of software
engineering. KC1 is a C++ system implementing
storage management for receiving and processing
ground data. The dataset consists of the McCabe
and Halstead features extractors of the code. The
measures are module based. The probability of
detection is proportional to the effort; thus, higher
rate of detection, more effort is required.
Probability of false alarm decreases with increase in
detection. This linkage can be observed in receiver
operating curve (ROC).

Generated Patterns:
Column Total 1783.0
Column Total 326.0
0 th attribute Feature Ranking Score
3.3850476690526947
Column Total 1783.0
Column Total 326.0
1 th attribute Feature Ranking Score
1.515598532717133
Column Total 1783.0
Column Total 326.0
2 th attribute Feature Ranking Score
0.35556767061942784
Column Total 1783.0
Column Total 326.0
3 th attribute Feature Ranking Score
1.4973976686596235
Column Total 1783.0
Column Total 326.0
4 th attribute Feature Ranking Score
4.012868998943865
Column Total 1783.0
Column Total 326.0
5 th attribute Feature Ranking Score
4.37912237350255
Column Total 1783.0

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6744

Column Total 326.0
6 th attribute Feature Ranking Score
3.328230276307007
Column Total 1783.0
Column Total 326.0
7 th attribute Feature Ranking Score
4.217648685280728
Column Total 1783.0
Column Total 326.0
8 th attribute Feature Ranking Score
4.715521483001722
Column Total 1783.0
Column Total 326.0
9 th attribute Feature Ranking Score
4.5343361506687705
Column Total 1783.0
Column Total 326.0
10 th attribute Feature Ranking Score
2.608257904809534
Column Total 1783.0
Column Total 326.0
11 th attribute Feature Ranking Score
4.540634725823738
Column Total 1783.0
Column Total 326.0
12 th attribute Feature Ranking Score
3.067330013255967
Column Total 1783.0
Column Total 326.0
13 th attribute Feature Ranking Score
0.9716000250450556
Column Total 1783.0
Column Total 326.0
14 th attribute Feature Ranking Score
1.4806198436250742
Column Total 1783.0
Column Total 326.0
15 th attribute Feature Ranking Score
0.3094963794762421
Column Total 1783.0
Column Total 326.0
16 th attribute Feature Ranking Score
2.614202751287529
Column Total 1783.0
Column Total 326.0
17 th attribute Feature Ranking Score
3.0864948195661555
Column Total 1783.0
Column Total 326.0
18 th attribute Feature Ranking Score
3.4362885054443124
Column Total 1783.0
Column Total 326.0
19 th attribute Feature Ranking Score
3.0569699242858226

Column Total 1783.0
Column Total 326.0
20 th attribute Feature Ranking Score
1.5118092747549445
21 th attribute Feature Ranking Score 0.0

=== Attribute Selection on all input data ===

Search Method:
 Attribute ranking.
 Threshold for discarding attributes: -
0.0198

Attribute Evaluator (supervised, Class (nominal):
22 CLASS):

Ranked attributes:
 4.7155 9 I
 4.5406 12 L
 4.5343 10 J
 4.3791 6 F
 4.2176 8 H
 4.0129 5 E
 3.4363 19 S
 3.385 1 A
 3.3282 7 G
 3.0865 18 R
 3.0673 13 M
 3.057 20 T
 2.6142 17 Q
 2.6083 11 K
 1.5156 2 B
 1.5118 21 U
 1.4974 4 D
 1.4806 15 O
 0.9716 14 N
 0.3556 3 C
 0.3095 16 P

Selected attributes:
9,12,10,6,8,5,19,1,7,18,13,20,17,11,2,21,4,15,14,3,
16 : 21M < 3.5
| A < 39.5
| | M < 0.5
| | | H < 1.75
| | | | S < 2.5
| | | | | L < 0.13 : FALSE (75/0)
| | | | | L >= 0.13
| | | | | | A < 3 : FALSE (22/1)
| | | | | | A >= 3 : FALSE (20/0)
| | | | S >= 2.5 : FALSE (339/0)
| | | H >= 1.75
| | | | J < 54.56

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6745

| | | | | A < 3
| | | | | | I < 7.03
| | | | | | | I < 6
| | | | | | | | A < 1.5 : FALSE (1/0)
| | | | | | | | A >= 1.5 : FALSE (13/1)
| | | | | | | I >= 6 : FALSE (7/1)
| | | | | | I >= 7.03 : FALSE (8/0)
| | | | | A >= 3
| | | | | | G < 0.45
| | | | | | | A < 4.5 : TRUE (1/0)
| | | | | | | A >= 4.5 : FALSE (1/0)
| | | | | | G >= 0.45 : FALSE (2/0)
| | | | J >= 54.56 : FALSE (44/0)
| | M >= 0.5
| | | J < 120.55
| | | | F < 38.2
| | | | | F < 28.25
| | | | | | A < 1.05 : TRUE (1/0)
| | | | | | A >= 1.05
| | | | | | | F < 27.54
| | | | | | | | I < 10.09
| | | | | | | | | O < 0.5
| | | | | | | | | | Q < 5.5
| | | | | | | | | | | E < 6.5
| | | | | | | | | | | | H < 2.25
| | | | | | | | | | | | | A < 4.5
| | | | | | | | | | | | | | A < 3.5
| | | | | | | | | | | | | | | G < 0.83
| | | | | | | | | | | | | | | | F < 4
| | | | | | | | | | | | | | | | | S < 0.5 :
FALSE (2/0)
| | | | | | | | | | | | | | | | | S >= 0.5 :
FALSE (73/2)
| | | | | | | | | | | | | | | | F >= 4 :
FALSE (11/0)
| | | | | | | | | | | | | | | G >= 0.83
| | | | | | | | | | | | | | | | A < 2.5 :
FALSE (4/0)
| | | | | | | | | | | | | | | | A >= 2.5
| | | | | | | | | | | | | | | | | H < 0.75 :
FALSE (1/0)
| | | | | | | | | | | | | | | | | H >= 0.75 :
FALSE (8/1)
| | | | | | | | | | | | | | A >= 3.5
| | | | | | | | | | | | | | | K < 0.01
| | | | | | | | | | | | | | | | H < 0.25
| | | | | | | | | | | | | | | | | E < 3 :
FALSE (3/1)
| | | | | | | | | | | | | | | | | E >= 3 :
FALSE (1/0)
| | | | | | | | | | | | | | | | H >= 0.25
| | | | | | | | | | | | | | | | | E < 3.5 :
FALSE (7/0)
| | | | | | | | | | | | | | | | | E >= 3.5
| | | | | | | | | | | | | | | | | | L < 0.56

: FALSE (5/1)
| | | | | | | | | | | | | | | | | | L >=
0.56
| | | | | | | | | | | | | | | | | | | M <
1.5 : FALSE (1/0)
| | | | | | | | | | | | | | | | | | | M >=
1.5
| G <
0.58 : FALSE (20/1)
| G
>= 0.58
| E
< 4.5 : FALSE (59/4)
| E
>= 4.5 : FALSE (13/1)
| | | | | | | | | | | | | | | K >= 0.01 :
FALSE (12/0)
| | | | | | | | | | | | | A >= 4.5 : FALSE
(20/0)
| | | | | | | | | | | | H >= 2.25 : FALSE
(2/1)
| | | | | | | | | | | E >= 6.5 : FALSE (30/0)
| | | | | | | | | | Q >= 5.5
| | | | | | | | | | | I < 8.5
| | | | | | | | | | | | M < 2.5
| | | | | | | | | | | | | I < 6.71
| | | | | | | | | | | | | | G < 0.17 : FALSE
(1/0)
| | | | | | | | | | | | | | G >= 0.17 : TRUE
(1/0)
| | | | | | | | | | | | | I >= 6.71 : FALSE
(7/0)
| | | | | | | | | | | | M >= 2.5 : TRUE (1/0)
| | | | | | | | | | | I >= 8.5 : FALSE (7/0)
| | | | | | | | | O >= 0.5
| | | | | | | | | | I < 8.8 : FALSE (9/0)
| | | | | | | | | | I >= 8.8
| | | | | | | | | | | E < 7.5 : TRUE (1/0)
| | | | | | | | | | | E >= 7.5
| | | | | | | | | | | | O < 1.5
| | | | | | | | | | | | | A < 7 : TRUE (1/0)
| | | | | | | | | | | | | A >= 7 : FALSE
(2/0)
| | | | | | | | | | | | O >= 1.5 : FALSE
(1/0)
| | | | | | | | I >= 10.09 : FALSE (24/0)
| | | | | | | F >= 27.54 : TRUE (1/0)
| | | | | F >= 28.25 : FALSE (45/0)
| | | | F >= 38.2
| | | | | A < 7 : TRUE (1/0)
| | | | | A >= 7 : FALSE (1/0)
| | | J >= 120.55 : FALSE (35/0)
| A >= 39.5
| | B < 2 : TRUE (2/0)
| | B >= 2 : FALSE (1/0)

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6746

M >= 3.5
| T < 67.5
| | S < 40.5
| | | C < 2
| | | | G < 0.08
| | | | | E < 61.5
| | | | | | R < 4.5 : TRUE (3/0)
| | | | | | R >= 4.5
| | | | | | | O < 2.5
| | | | | | | | I < 14.54 : FALSE (8/0)
| | | | | | | | I >= 14.54
| | | | | | | | | J < 3414.18 : TRUE (2/0)
| | | | | | | | | J >= 3414.18
| | | | | | | | | | A < 28.5 : FALSE (2/0)
| | | | | | | | | | A >= 28.5 : TRUE (1/0)
| | | | | | | O >= 2.5 : TRUE (3/0)
| | | | | E >= 61.5 : FALSE (7/0)
| | | | G >= 0.08
| | | | | S < 30.5
| | | | | | I < 20.22
| | | | | | | R < 2.5
| | | | | | | | G < 0.24
| | | | | | | | | I < 6.98
| | | | | | | | | | I < 6.32 : FALSE (6/0)
| | | | | | | | | | I >= 6.32
| | | | | | | | | | | Q < 6.5 : FALSE (3/0)
| | | | | | | | | | | Q >= 6.5 : TRUE (1/0)
| | | | | | | | | I >= 6.98 : TRUE (1/0)
| | | | | | | | G >= 0.24 : TRUE (3/0)
| | | | | | | R >= 2.5
| | | | | | | | J < 109.3 : FALSE (36/0)
| | | | | | | | J >= 109.3
| | | | | | | | | G < 0.39
| | | | | | | | | | Q < 5.5 : FALSE (20/0)
| | | | | | | | | | Q >= 5.5
| | | | | | | | | | | N < 7.5
| | | | | | | | | | | | P < 1.5
| | | | | | | | | | | | | H < 6.71
| | | | | | | | | | | | | | J < 389.72
| | | | | | | | | | | | | | | L < 21.35
| | | | | | | | | | | | | | | | I < 12.06 :
FALSE (23/0)
| | | | | | | | | | | | | | | | I >= 12.06
| | | | | | | | | | | | | | | | | J < 316.13
| | | | | | | | | | | | | | | | | | I < 16.54
| | | | | | | | | | | | | | | | | | | L <
16.38
| F <
51.85
| L
< 10.95
|
A < 8 : FALSE (12/0)
|
A >= 8

|
| E < 13.5
|
| | O < 0.5 : TRUE (1/0)
|
| | O >= 0.5
|
| | | I < 12.75
|
| | | | A < 10 : FALSE (1/0)
|
| | | | A >= 10 : FALSE (2/1)
|
| | | I >= 12.75 : FALSE (1/0)
|
| E >= 13.5 : FALSE (4/0)
| L
>= 10.95 : TRUE (1/0)
| F
>= 51.85 : FALSE (16/0)
| | | | | | | | | | | | | | | | | | | L >=
16.38 : TRUE (3/0)
| | | | | | | | | | | | | | | | | | I >=
16.54
| | | | | | | | | | | | | | | | | | | S <
12.5
| E <
16
| A
< 7.5 : TRUE (1/0)
| A
>= 7.5 : FALSE (2/1)
| E
>= 16 : FALSE (4/0)
| | | | | | | | | | | | | | | | | | | S >=
12.5 : TRUE (2/0)
| | | | | | | | | | | | | | | | | J >=
316.13
| | | | | | | | | | | | | | | | | | F <
76.08 : FALSE (12/0)
| | | | | | | | | | | | | | | | | | F >=
76.08
| | | | | | | | | | | | | | | | | | | J <
367.63
| I <
17.55
| A
< 8.5 : TRUE (1/0)
| A
>= 8.5 : FALSE (6/0)
| I >=
17.55 : FALSE (1/0)
| | | | | | | | | | | | | | | | | | | J >=
367.63 : FALSE (2/0)
| | | | | | | | | | | | | | | L >= 21.35 :

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6747

TRUE (1/0)
| | | | | | | | | | | | | | J >= 389.72
| | | | | | | | | | | | | | | L < 32.75 :
FALSE (25/0)
| | | | | | | | | | | | | | | L >= 32.75
| | | | | | | | | | | | | | | | L < 33.06
| | | | | | | | | | | | | | | | | H < 6.2 :
TRUE (1/0)
| | | | | | | | | | | | | | | | | H >= 6.2
| | | | | | | | | | | | | | | | | | A < 16.5
: FALSE (7/0)
| | | | | | | | | | | | | | | | | | A >=
16.5 : FALSE (7/1)
| | | | | | | | | | | | | | | | L >= 33.06 :
FALSE (24/0)
| | | | | | | | | | | | | H >= 6.71
| | | | | | | | | | | | | | H < 9.82
| | | | | | | | | | | | | | | F < 111.2
| | | | | | | | | | | | | | | | F < 81.72
| | | | | | | | | | | | | | | | | I < 9.59 :
TRUE (1/0)
| | | | | | | | | | | | | | | | | I >= 9.59
| | | | | | | | | | | | | | | | | | F <
79.56 : FALSE (4/0)
| | | | | | | | | | | | | | | | | | F >=
79.56 : TRUE (1/0)
| | | | | | | | | | | | | | | | F >= 81.72 :
FALSE (15/0)
| | | | | | | | | | | | | | | F >= 111.2

Figure 2: Comparative Analysis Of Proposed Ensemble
Software Reliability Model To The Conventional Models

For True Positive Rate.

Figure 3: Comparative Analysis Of Proposed Ensemble
Software Reliability Model To The Conventional Models

For Accuracy Rate.

Figure 4: Comparative Analysis Of Proposed Ensemble
Software Reliability Model To The Conventional Models

For Recall Rate.

Figure 5: Comparative Analysis Of Proposed Ensemble
Software Reliability Model To The Conventional Models

For Precision Rate.

5. CONCLUSION

Due to the high true positive rate of

conventional support vector regression models, the
majority of conventional software reliability
estimation models are unable to predict the test
samples. For reliability severity classification, the
majority of conventional machine learning-based

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6748

fault prediction models integrate common software
reliability growth measures. However, these models
are employed to forecast the binary class reliability
level with lower standard errors. The training fault
datasets are used to implement a hybrid support
vector regression-based quartile deviation growth
measure in the third contribution. On various
reliability datasets with various configuration
parameters for fault prediction, experimental results
are simulated. In this work, an efficient reliability
feature ranking based multi-class ensemble
classification framework is implemented for
reliability estimation process. In comparison to the
traditional software reliability models, experimental
results showed that the proposed model has a high
software reliability prediction rate with less error
and high accuracy.
Compare research findings and analyze the
strengths and weaknesses of this work:
Literature Review: Conduct a thorough literature
review to identify current relevant work in the field
of software reliability estimation. Look for studies,
papers, or articles that address similar or related
research questions, methodologies, or objectives.
Identify Key Findings: Compare the key findings
and results of your work with those of the current
relevant work. Look for similarities, differences,
and trends in the outcomes.
Methodological Analysis: Evaluate the
methodologies employed in your work and the
current relevant work. Assess the appropriateness,
rigor, and limitations of the methodologies used.
Consider factors such as data collection, sample
size, statistical analyses, and experimental design.
Strengths and Weaknesses: Identify the strengths
and weaknesses of your work and the current
relevant work. Consider aspects such as novelty of
approach, clarity of presentation, validity of results,
generalizability, limitations, and potential biases.
Impact and Contribution: Assess the impact and
contribution of your work in comparison to the
current relevant work. Evaluate how your findings
build upon existing knowledge, address research
gaps, or introduce novel insights. Consider the
implications and potential applications of your
work.
Future Directions: Discuss the potential avenues for
further research and improvement based on the
findings of your work and the current relevant
work. Identify areas where further investigation is
needed and propose potential solutions or
approaches. While traditional methods like
Bayesian and Markovian models offer some
insights, they often fall short in capturing the
multifaceted nature of software reliability. The

exploration of Support Vector Regression (SVR) as
an alternative has shown promise, offering
flexibility and the ability to model complex, non-
linear relationships. However, it also comes with its
own set of limitations, such as computational
complexity and reduced interpretability.

6. FUTURE WORK

User Experience Modeling: Future research should
focus on developing models that incorporate the
dynamic nature of user experience and learning
effects. This could involve the integration of
machine learning techniques with traditional
reliability models.
Validation of Assumptions: A critical evaluation of
the assumptions underlying existing models is
necessary. Empirical studies could be conducted to
validate or challenge these assumptions, leading to
more robust and practical models.
Hybrid Models: The development of hybrid models
that combine the strengths of both parametric and
non-parametric approaches could offer a more
comprehensive solution to software reliability
estimation.
Computational Efficiency: Given the computational
complexity associated with methods like SVR,
future work should also focus on optimizing
algorithms for better scalability and real-time
applicability.

REFERENCES

 [1] S. Chatterjee and A. Shukla, “Software

reliability modeling with different type of
faults incorporating both imperfect debugging
and change point,” in 2015 4th International
Conference on Reliability, Infocom
Technologies and Optimization (ICRITO)
(Trends and Future Directions), Sep. 2015,
pp. 1–5. doi: 10.1109/ICRITO.2015.7359361.

[2] K.-C. Chiu, “A study of software reliability
growth model for time-dependent learning
effects,” in 2012 IEEE International
Conference on Industrial Engineering and
Engineering Management, Dec. 2012, pp.
1015–1019. doi:
10.1109/IEEM.2012.6837894.

[3] J. Dhar, Anamika, S. Ingle, and Y. Sheshker,
“Software reliability growth model with
logistic-exponential TEF in imperfect
debugging environment,” in International
Conference on Recent Advances and
Innovations in Engineering (ICRAIE-2014),

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6749

May 2014, pp. 1–4. doi:
10.1109/ICRAIE.2014.6909281.

[4] Md. A. Haque and N. Ahmad, “An Imperfect
SRGM based on NHPP,” in 2021 Third
International Conference on Inventive
Research in Computing Applications
(ICIRCA), Sep. 2021, pp. 1574–1577. doi:
10.1109/ICIRCA51532.2021.9544959.

[5] Y. He, “NHPP software reliability growth
model incorporating fault detection and
debugging,” in 2013 IEEE 4th International
Conference on Software Engineering and
Service Science, May 2013, pp. 225–228. doi:
10.1109/ICSESS.2013.6615293.

[6] R.-H. Hou, S.-Y. Kuo, and Y.-P. Chang, “On a
unified theory of some nonhomogeneous
Poisson process models for software
reliability,” in Proceedings. 1998 International
Conference Software Engineering: Education
and Practice (Cat. No.98EX220), Jan. 1998,
pp. 60–67. doi: 10.1109/SEEP.1998.707634.

[7] Y.-F. Hou, C.-Y. Huang, and C.-C. Fang,
“Using the Methods of Statistical Data
Analysis to Improve the Trustworthiness of
Software Reliability Modeling,” IEEE
Access, vol. 10, pp. 25358–25375, 2022, doi:
10.1109/ACCESS.2022.3154103.

[8] C. Y. Htoon and N. L. Thein, “Model-based
Testing Considering Cost, Reliability and
Software Quality,” in 6th Asia-Pacific
Symposium on Information and
Telecommunication Technologies, Nov. 2005,
pp. 160–164. doi:
10.1109/APSITT.2005.203649.

[9] C.-Y. Huang and W.-C. Huang, “Software
Reliability Analysis and Measurement Using
Finite and Infinite Server Queueing Models,”
IEEE Transactions on Reliability, vol. 57, no.
1, pp. 192–203, Mar. 2008, doi:
10.1109/TR.2007.909777.

[10] C.-Y. Huang, J.-H. Lo, and S.-Y. Kuo,
“Pragmatic study of parametric
decomposition models for estimating software
reliability growth,” in Proceedings Ninth
International Symposium on Software
Reliability Engineering (Cat.
No.98TB100257), Nov. 1998, pp. 111–123.
doi: 10.1109/ISSRE.1998.730861.

[11] S. Hwang and H. Pham, “Quasi-Renewal
Time-Delay Fault-Removal Consideration in
Software Reliability Modeling,” IEEE
Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans,
vol. 39, no. 1, pp. 200–209, Jan. 2009, doi:
10.1109/TSMCA.2008.2007982.

[12] S. Inoue and S. Yamada, “Two-Dimensional
Software Reliability Assessment with
Testing-Coverage,” in 2008 Second
International Conference on Secure System
Integration and Reliability Improvement, Jul.
2008, pp. 150–157. doi:
10.1109/SSIRI.2008.21.

[13] T. Ishii and T. Dohi, “A New Paradigm for
Software Reliability Modeling – From NHPP
to NHGP,” in 2008 14th IEEE Pacific Rim
International Symposium on Dependable
Computing, Dec. 2008, pp. 224–231. doi:
10.1109/PRDC.2008.24.

[14] G. Kumar and R. Sharma, “Analysis of
software reliability growth model under two
types of fault and warranty cost,” in 2017 2nd
International Conference on System
Reliability and Safety (ICSRS), Dec. 2017,
pp. 465–468. doi:
10.1109/ICSRS.2017.8272866.

[15] N. Kurishima, H. Oikawa, J.-I. Nakamura, K.
Amari, and M. Fujioka, “Quantitative analysis
of errors in telecommunications software,” in
1993 Conference on Software Maintenance,
Sep. 1993, pp. 190–198. doi:
10.1109/ICSM.1993.366943.

[16] H. Li, Q. Li, and M. Lu, “Software Reliability
Modeling with Logistic Test Coverage
Function,” in 2008 19th International
Symposium on Software Reliability
Engineering (ISSRE), Nov. 2008, pp. 319–
320. doi: 10.1109/ISSRE.2008.51.

[17] Q. Li and C. Mao, “Considering Testing-
Coverage and Fault Removal Efficiency
Subject to the Random Field Environments
with Imperfect Debugging in Software
Reliability Assessment,” in 2016 IEEE
International Symposium on Software
Reliability Engineering Workshops
(ISSREW), Oct. 2016, pp. 257–263. doi:
10.1109/ISSREW.2016.13.

[18] Q. Li and H. Pham, “A Generalized Software
Reliability Growth Model With Consideration
of the Uncertainty of Operating
Environments,” IEEE Access, vol. 7, pp.
84253–84267, 2019, doi:
10.1109/ACCESS.2019.2924084.

[19] Q. Li, C. Zhang, and H. Zhang, “A New
Software Reliability Model for Open
Stochastic System Based on NHPP,” in 2017
IEEE International Conference on Software
Quality, Reliability and Security Companion
(QRS-C), Jul. 2017, pp. 624–625. doi:
10.1109/QRS-C.2017.120.

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6750

[20] S. Li, “A Useful Parametric Family to
Characterize NHPP-based Software
Reliability Models,” in 2021 51st Annual
IEEE/IFIP International Conference on
Dependable Systems and Networks -
Supplemental Volume (DSN-S), Jun. 2021,
pp. 23–24. doi: 10.1109/DSN-
S52858.2021.00022.

[21] S. Li, T. Dohi, and H. Okamura, “A
Comprehensive Evaluation for Burr-Type
NHPP-based Software Reliability Models,” in
2021 8th International Conference on
Dependable Systems and Their Applications
(DSA), Aug. 2021, pp. 1–11. doi:
10.1109/DSA52907.2021.00010.

[22] C.-T. Lin, K.-W. Tang, J.-R. Chang, and C.-Y.
Huang, “An investigation into whether the
NHPP framework is suitable for software
reliability prediction and estimation,” in 2010
IEEE International Conference on Industrial
Engineering and Engineering Management,
Dec. 2010, pp. 626–630. doi:
10.1109/IEEM.2010.5674524.

