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ABSTRACT 

 
As the size and complexity of the software systems are increasing day-by-day, the software reliability is an 
essential research concern for both software developers and clients. Software reliability ensures that the 
software products are reliable and error-free during the product deployment and software testing phases. 
Most of the conventional reliability estimation models are independent of heterogeneous datatype with 
homogeneous non-homogeneous poison process measures. In this work, an efficient reliability feature 
ranking based multi-class ensemble classification framework is implemented for reliability estimation 
process. In comparison to the traditional software reliability models, experimental results showed that the 
proposed model has a high software reliability prediction rate with less error and high accuracy. 
 
Keywords: Software Reliability, Feature Ranking, Ensemble Learning Model, Classification. 

1. INTRODUCTION  
 

Machine learning based reliability 
prediction is an essential area for extracting 
significant patterns and relationships between the 
information stored on reliability databases. These 
results are recycled for different objectives and for 
different areas, ranging from organizational 
management, product marketing, research and 
development, fault detection, data analysis and MIS 
decision-making. Such choices are defined by 
enormous amounts of data that are related in 
various ways to each other. Because of the massive 
data and high data growth rate in the software 
reliability data, human analysis skills are 
inadequate. Because biotechnology is developing at 
a high rate of growth, more and more biological 
data is being collected and made available for 
analysis. The importance of developing new 
techniques to extract knowledge from it also 
increases when bio-molecular data grows 
significantly. The healthcare environment is 
generally seen as rich in information, but 
unfortunate in the distribution of knowledge [1].  
One of the heuristically approaches of optimization 
for action extraction is colony optimization (ACO) 
along with particle swarm optimization. PSO 
optimizes a problem by preserving a particle 
population and transferring these particles into the 
search area. Both the ACO and PSO algorithms use 

one-classification rules sequence of covering 
patterns. The construction in machine learning 
models was an active research topic. The main 
learning machine models to learn group classifiers 
in high-dimensional datasets are boosting, bagging 
or stacking. Boemh stated that 80% of software 
product bugs are covered by approximately 20 
percent of modules [2]. In particular in minority 
class (default modules), the uneven distribution of 
defeat modules and non-default modules is leading 
to bad performance[3]. This was addressed at the 
data or algorithm level[4]. Different methods of 
over-sampling and under-sampling at the data level 
were used to balance output of the class. The 
methodology at the algorithm level, on the other 
hand, tackles the problem of class inequality by 
changing your training mechanism to improve the 
accuracy of the minority classes[5]. As a reliability 
benchmarking data set, NASA MDP datasets are 
often use. The study uses five of this repository's 
most frequent datasets. Each dataset consists of 
multiple input quality software modules. The 
building algorithm is comprised of two phases for 
the majority of decision trees. The first phase 
constructs a large tree and cuts the tree in the latter 
phase to avoid problems of adaptation. Then the 
tailed tree is used to classify. The bootstrap[6] is 
one group classification system and constructs 
individual members with different data sets. The 
Bootstrap Aggregating is a group classification 
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system. The projections will then be made by 
combining an average or voting on a class label. To 
build a single tree, a simple algorithm is used. At 
each decision tree node the tapping process is not 
performed and attributes are randomly sampled. 
The example was classified by a majority[7]. The 
important  advantage of random forestry is that it is 
fast and can handle numerous input properties. A 
nonlinear function neuron is called every input 
node. The sigmoidal units of the cloaked layer learn 
about the functions. MLP uses a back-propagation 
technique for training purposes. Process measures 
are time-based measurements that are based on 
historical source code changes. Those metrics can 
be extracted from the SCM and include, for 
example, the number of code additions and 
deletions, the number of separate committers and 
the number of lines modified. [8] compared the 
performance of changing metrics (process) to static 
code metrics for prediction of defects. They 
concluded that process data includes more 
discrimination in the distribution of reliability than 
the source code itself, i.e. source code metrics. 
Their explaining is that source code metrics 
concern the human comprehension of the code, for 
example, many lines of code or complexity are not 
necessarily software reliability indicators. [9] used 
some method metrics to explain whether or not a 
file was new and whether it was changed. The 
authors used these metrics in conjunction with other 
metric families and found that 20 percent of the 
files, which are identified as most susceptible to 
reliability in the prediction model, have an average 
of 83 percent of faults. Wrappers select attributes 
using the ML algorithm to evaluate the usefulness 
of different functions. Filters use heuristics based 
on data characteristics to evaluate the 
characteristics. The positive effects of filters over 
wrappers are that they work faster[10] and are thus 
more suitable in large feature sets for selection. 

Software metrics are used as the major 
variable for software prediction modeling, and 
reliability data like 1 or 0 is used as the minor 
variable. The SDP uses software metrics that also 
include software attributes or features such as 
changing information and code lines (LOC) to 
predict that software testing activities are prone to 
failure. For the instruction of the latest software 
modules the most examined SDP models are able to 
rely on their reliability and categorize whether or 
not the latest software modules have reliability[11]. 
Another positive effect of filter use is that it can be 
used with any ML algorithm. In most cases, 
however, the problem of classification is discreet, 
while the wrappers with any problem of 

classification can be used. Because wrappers use 
the same algorithm for selecting and classifying 
features, the function selection process should be 
performed for any prediction algorithm. SE tasks 
are currently employed in order to extend premium 
software systems and minimize the number of 
software defects. The software reliability are 
recognized that the costs for solving the software 
reliability often use the development method after 
software is released. Software reliability can not be 
considered directly because they can be estimated 
by software metrics. The recognition of software 
modules is linked to the faults that are achieved by 
binary classifiers and predict even if the software is 
defective by means of various software metrics . ST 
uses time at SDLC levels and it is very costly to 
check the software modules. The complexity and 
size of the software is gradually increased for 
several purposes, including the safety requirement, 
reliability and combination of customers ' 
innovative technologies. Consequently, it is not 
possible to produce defect-free and consistent 
software due to a time and budget limitation. Since 
the need for well organized software systems and 
maximum performance is progressively developed, 
their complications are also constantly increased. 
The greatest complication is the task of quality 
assurance. Conversely, checking the premium 
software is a costly task and requires enough 
resources. Moreover, most of the information is 
recommended for detailed verification of the 
software project in the given limited test 
resources[12].  

Software reliability has received much 
attention because reliability has always  had 
obvious effect on highly visible aspects of software 
development. The  classification scheme should be 
comprehensive allowing distinct classification of 
each  failure. For latest software systems, the higher 
level categorization would be to group  failures 
such as configuration failures, planned events and 
unplanned events. Conventional  failures like 
incorrect input, system crash etc. are unplanned 
events triggered by software  defects. Planned 
events are cases where there is a planned shutdown 
of the software for  performing any task. Issues in 
configuration setting lead to configuration failure. 
Though  configuration failures and planned events 
are generally not caused by software faults, they  do 
affect the reliability experience of the user. Based 
on what is important  to their users,  specific types 
of failures may be focused for different products.   
Estimation of current reliability and prediction of 
the future failures is carried  out using the reliability 
growth models using extrapolation techniques. It is 
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important  for  the test managers to make decisions 
on the release of the software during the testing 
phase[13]. 

Reliability models are used to estimate the 
product’s  reliability as a function of test time based 
on the failure data that is collected during testing.  
These statistical processes help in determining the 
best estimates of reliability during  testing and on 
projecting the reliability during field operation. The 
process is iterated by  executing additional testing 
cycles as required, until the reliability objective is 
met.  When many  parameters are involved in a 
model and its probability density function (PDF) is 
non-linear,  determining an analytical solution for 
the MLE estimate becomes very difficult. In such  
cases, using nonlinear optimization algorithms, the 
numerical MLE estimate is done.  In LSE, a 
parameter value that minimizes SSE is generally 
determined using a  non-linear optimization 
algorithm. By using the method of least squares in 
curve fitting  methodology the error is minimized in 
the SSE between the predicted values and the ones  
actually obtained. In cases where normal 
distribution is followed for the errors, the LSEs  are 
also the maximum likelihood estimates. A number 
of software tools are available today  for the 
purpose of estimating parameters of the SRGM.    
There are two models, static and dynamic that 
exists to ensure that the quality  attributes of the 
application are assessed. These models help on 
taking the release  related decisions of the software 
product. A static model estimates the number of 
reliability in  the software using software metrics. 
Cumulative failure profile or the rate at which 
failures  are discovered in the past is used by 
dynamic model for estimating the failures. The 
failure  process itself is measured and modeled by 
the dynamic models. So depending on the  
cumulative time of the failure, a time component is 
included in it. Time is recorded either as calendar 
time or execution time. It focuses on the history of 
software failure. These  models generally assume 
that the software should be executed based on the 
operational  profile. The basic assumption of most 
of the SRGMs is that as the reliability that cause  
failures are removed from the product 
instantaneously, the reliability of the product  
increases. Another assumption is that the failure 
rate of a software product improves over  time 
irrespective of whether or not the reliability are 
fixed[14-15].  

 

Research Gaps: 

1 One research gap in the field of software 
reliability estimation is the need to incorporate the 
dynamic nature of user experience and the learning 
effect over time. While existing models consider the 
fault detection rate and assume reliability growth with 
the fixing of underlying faults, they often overlook the 
impact of user familiarity and their ability to adapt to the 
software. As users gain experience, they tend to develop 
workarounds to handle situations that previously caused 
failures, resulting in an increase in reliability over time. 
However, current models do not explicitly capture this 
phenomenon. 

2. Moreover, software reliability models make various 
assumptions related to fault detection rates, the location 
of faults in the software and data space, and the testing 
environment. These assumptions may not always hold 
true in practical scenarios, leading to limitations in the 
accuracy and applicability of the models. 

3. Another research gap lies in the classification and 
characterization of software reliability models. While 
some models treat the software as a black box without 
considering its internal structure, others, known as white 
box models, explicitly incorporate the software's 
architecture and module interactions. There is a need to 
explore and develop more comprehensive and flexible 
models that can effectively handle diverse software 
systems and testing scenarios. 

4. Additionally, there is a distinction between 
parametric and non-parametric models in terms of the 
interpretation and limitations of model parameters. 
Parametric models assume that the parameters have 
physical meanings and explicit ranges, while non-
parametric models lack such restrictions. Exploring and 
comparing the strengths and weaknesses of these 
different modeling approaches can provide valuable 
insights for improving software reliability estimation. 
 
2. RELATED WORK 
 

The software system’s reliability  depends 
on the time frame, when the product has been used. 
Over time, users learn to use  the product properly 
and identify some workaround to handle situations 
that causes failure.  Thereby increase in the period 
of usage leads to reliability growth.  Any software 
reliability model has several assumptions. The 
assumptions are  mainly based on the fault 
detection rate[16]. The reliability in the software 
and the data space  locations where the faults are 
hidden are also considered by the models. The test  
environment is one more factor that drives the 
model assumptions. A main attribute of Markovian 
model is that, number of reliability remaining in a  
software system is the countable states that the 
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system has at any specific point of time. In  cases 
where a process is at a particular state, past history 
will not influence the future  development. 
Depending on the current state of the system the 
transition probabilities  among the states would 
vary. A discontinuous function is considered as the 
failure  intensity of the system and it relies on the 
present status of the software. For studying the  
fault removal process of software, Markovian 
models are considered to be very helpful.  They are 
considered to significantly support the testing phase 
of the software development  life cycle. Software 
reliability are identified and fixed in the course of 
testing. The number of  reliability is represented by 
the state of process at a time t.   Reliability growth 
is assumed by most reliability models at instances 
when a  failure happens and the underlying fault is 
fixed. Bayesian models take a different  approach to 
reliability growth. Observation of no failure is 
viewed as an indication of  reliability growth, 
reflecting the user’s growing confidence on the 
software. Bayesian  models are described by prior 
and posterior distributions. It reflects the view of 
parameters  of the model based on the past data. 
This turns out to be the important  consideration in 
this  method. Based on the information from past 
projects combined with current data,  parameter of 
the model is assumed to follow different 
distribution patterns. The  Littlewood-Verall (L-V) 
model is probably the best example of the Bayesian 
class of  models. The distribution of failure times is 
assumed to be exponential with a certain failure  
rate but it is assumed to be a random variable rather 
than a constant  as in other models  [17]. The inter-
failure interval is treated as a random variable in 
TBF models. The  number of failures in a specific 
period is treated as a random variable in FC 
models. As the  testing cycle continue the 
parameters of inter-failure distribution changes in 
the case of  TBF models. In FC models, the 
software reliability evolution is illustrated by 
defining the  distribution parameters such as mean 
value function as appropriate functions of time. 
Both  the models have a generic assumption that 
when the reliability are detected, the failures are  
independent. The curve fitting of the identified 
time-based failure data is performed by a  pre-
defined model formula in all the SRGMs that 
depend on time domains.  Input domain models and 
fault seeding are time-independent models. In the  
fault seeding models, the program is tested after 
“seeding” numbers of faults. The failures  that arise 
due to the seeded faults are recorded. This data 
helps on estimating the number of  native faults in 
the program. In input-domain based models, a set 

of equivalence classes are  derived by partitioning 
the input domain of the program. Every 
equivalence class is related  to a particular program 
path. The software is validated for every test case. 
Based on the  failures recorded by executing the 
sample tests, reliability is determined[18]. In 2001, 
a new classification scheme was arrived in which 
software reliability  models are classified into black 
box and white box models. The whole software is  
considered as a single system by the black box 
model. The reliability estimation does not  consider 
the structure of the model. White box models are 
based on the architecture of the  software system 
and the way different modules interact with each 
other. It explicitly  incorporates the methodologies 
involved in the testing cycle and the structure of the 
system  that is tested. There are many models that 
are classified based on the characteristic of the  
testing activity as parametric and non-parametric 
models. The basic assumption of the  parametric 
model is that the parameters have some meaning 
and have a range. The model  parameters have a 
physical interpretation and are defined explicitly. 
On the contrary, the  parameters in the non-
parametric models have no limits. There is no 
physical interpretation  of the parameters and it 
involves analytical formulation. The Artificial 
Neural Network  (ANN) is an example of non-
parametric models[19].       The software system’s 
reliability  depends on the time frame, when the 
product has been used. Over time, users learn to use  
the product properly and identify some workaround 
to handle situations that causes failure.  Thereby 
increase in the period of usage leads to reliability 
growth.  Any software reliability model has several 
assumptions. The assumptions are  mainly based on 
the fault detection rate[20]. The reliability in the 
software and the data space  locations where the 
faults are hidden are also considered by the models. 
The test  environment is one more factor that drives 
the model assumptions. A main attribute of 
Markovian model is that, number of reliability 
remaining in a  software system is the countable 
states that the system has at any specific point of 
time. In  cases where a process is at a particular 
state, past history will not influence the future  
development. Depending on the current state of the 
system the transition probabilities  among the states 
would vary. A discontinuous function is considered 
as the failure  intensity of the system and it relies on 
the present status of the software. For studying the  
fault removal process of software, Markovian 
models are considered to be very helpful.  They are 
considered to significantly support the testing phase 
of the software development  life cycle. Software 
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reliability are identified and fixed in the course of 
testing. The number of  reliability is represented by 
the state of process at a time t.   Reliability growth 
is assumed by most reliability models at instances 
when a  failure happens and the underlying fault is 
fixed. Bayesian models take a different  approach to 
reliability growth. Observation of no failure is 
viewed as an indication of  reliability growth, 
reflecting the user’s growing confidence on the 
software. Bayesian  models are described by prior 
and posterior distributions. It reflects the view of 
parameters  of the model based on the past data. 
This turns out to be the important  consideration in 
this  method. Based on the information from past 
projects combined with current data,  parameter of 
the model is assumed to follow different 
distribution patterns. The  Littlewood-Verall (L-V) 
model is probably the best example of the Bayesian 
class of  models. The distribution of failure times is 
assumed to be exponential with a certain failure  
rate but it is assumed to be a random variable rather 
than a constant  as in other models  [21]. The inter-
failure interval is treated as a random variable in 
TBF models. The  number of failures in a specific 
period is treated as a random variable in FC 
models. As the  testing cycle continue the 
parameters of inter-failure distribution changes in 
the case of  TBF models. In FC models, the 
software reliability evolution is illustrated by 
defining the  distribution parameters such as mean 
value function as appropriate functions of time. 
Both  the models have a generic assumption that 
when the reliability are detected, the failures are  
independent. The curve fitting of the identified 
time-based failure data is performed by a  pre-
defined model formula in all the SRGMs that 
depend on time domains.  Input domain models and 
fault seeding are time-independent models. In the  
fault seeding models, the program is tested after 
“seeding” numbers of faults. The failures  that arise 
due to the seeded faults are recorded. This data 
helps on estimating the number of  native faults in 
the program. In input-domain based models, a set 
of equivalence classes are  derived by partitioning 
the input domain of the program. Every 
equivalence class is related  to a particular program 
path. The software is validated for every test case. 
Based on the  failures recorded by executing the 
sample tests, reliability is determined[22]. In 2001, 
a new classification scheme was arrived in which 
software reliability  models are classified into black 
box and white box models. The whole software is  
considered as a single system by the black box 
model. The reliability estimation does not  consider 
the structure of the model. White box models are 

based on the architecture of the  software system 
and the way different modules interact with each 
other. It explicitly  incorporates the methodologies 
involved in the testing cycle and the structure of the 
system  that is tested. There are many models that 
are classified based on the characteristic of the  
testing activity as parametric and non-parametric 
models. The basic assumption of the  parametric 
model is that the parameters have some meaning 
and have a range. The model  parameters have a 
physical interpretation and are defined explicitly. 
On the contrary, the  parameters in the non-
parametric models have no limits. The number of  
reliability is represented by the state of process at a 
time t.   Reliability growth is assumed by most 
reliability models at instances when a  failure 
happens and the underlying fault is fixed. Bayesian 
models take a different  approach to reliability 
growth. Observation of no failure is viewed as an 
indication of  reliability growth, reflecting the 
user’s growing confidence on the software. 
Bayesian  models are described by prior and 
posterior distributions. It reflects the view of 
parameters  of the model based on the past data. 
This turns out to be the important  consideration in 
this  method. Based on the information from past 
projects combined with current data,  parameter of 
the model is assumed to follow different 
distribution patterns. 
  
Research Objectives and contributions  

1. To implement an efficient software reliability 
estimation model on large datasets. 

2. To implement a filter based data feature 
ranking and classification using optimized 
kernel function. 

 

Pros of Using SVR for Software Reliability Estimation 

Non-Linear Modeling: SVR can capture complex, non-
linear relationships, which could be beneficial for 
modeling user experience and learning effects. 

Generalization: SVR is known for its good 
generalization performance, making it potentially more 
accurate in practical scenarios. 

Flexibility: SVR doesn't make strong assumptions about 
the underlying data, which could make it more adaptable 
to different kinds of software systems and testing 
environments. 

Parameter Tuning: SVR allows for the tuning of 
parameters like the regularization term, which could be 
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adjusted to better fit the specific characteristics of a 
software system. 

Cons of Using SVR for Software Reliability Estimation 

Computational Complexity: SVR can be 
computationally expensive, especially for large datasets, 
which could be a limitation in real-time or resource-
constrained environments. 

Interpretability: SVR models are often considered 
"black-box" models, making them less interpretable than 
some other methods. This could be a drawback when 
you need to understand the model's decision-making 
process. 

Sensitivity to Outliers: SVR can be sensitive to outliers, 
which could distort the reliability estimation. 

Feature Scaling Required: SVR requires feature scaling 
for optimal performance, adding an additional 
preprocessing step. 

 

 

 

 

 

 

 

 

3. PROPOSED MODEL 

 

Figure 1: Proposed Model 

In the context of software reliability estimation, the 
research gap discussed above highlights the need 
for new or profound information and best practices, 

rather than incremental knowledge creation. While 
incremental knowledge creation involves building 
upon existing models and improving their accuracy 
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or applicability within certain boundaries, 
addressing the research gap requires going beyond 
incremental advancements. 
 
To bridge this gap, researchers should aim to 
introduce novel concepts and methodologies that 
capture the dynamic nature of user experience and 
the learning effect over time. This may involve 
exploring new data sources, such as user feedback 
or usage patterns, to quantify and incorporate the 
impact of user familiarity and adaptation into the 
reliability estimation process. By incorporating 
these aspects, software reliability models can better 
reflect the real-world behavior of software systems 
and provide more accurate predictions. 
Furthermore, addressing the assumptions made in 
existing models is crucial. Researchers should 
critically evaluate the validity of these assumptions 
and develop approaches that relax or adapt them to 
better align with practical scenarios. This could 
involve conducting empirical studies to validate or 
refine the assumptions and identify any potential 
biases or limitations associated with them. 
In addition to addressing the research gap, it is 
essential to discuss best practices in software 
reliability estimation. This includes the 
development of standardized evaluation metrics, 
benchmark datasets, and guidelines for model 
selection and validation. By establishing best 
practices, researchers and practitioners can ensure 
the reproducibility and comparability of results, 
enabling better decision-making in software 
development and maintenance.It is important to 
emphasize that tackling the research gap and 
promoting best practices in software reliability 
estimation requires collaboration and knowledge 
sharing among researchers, industry professionals, 
and relevant stakeholders. Open discussions, 
collaborative research efforts, and interdisciplinary 
approaches can facilitate the exchange of ideas, 
promote innovation, and drive the field forward. 
Overall, by focusing on new or profound 
information and best practices, rather than solely 
incremental knowledge creation, researchers can 
contribute to advancing the field of software 
reliability estimation and provide valuable insights 
for improving software development processes and 
decision-making.The provided excerpt introduces 
an efficient filter-based feature ranking and non-
linear ensemble classification framework for 
software reliability estimation. The objective of this 
work is to address the increasing size and 
complexity of software systems by improving 
reliability prediction with high accuracy and 
reduced errors. 

The introduction emphasizes the significance of 
machine learning in extracting valuable patterns 
and relationships from reliability databases. The 
extracted knowledge can be utilized in various 
domains such as organizational management, 
product marketing, research and development, fault 
detection, data analysis, and decision-making. The 
exponential growth of software reliability data 
necessitates the development of advanced 
techniques to effectively analyze and extract 
insights from this vast amount of data. 
 
 
 
 
Algorithm 1: Proposed Statistical Quartile 
deviation based Outlier detection  

In the model creation phase, we implement 
a hybrid outlier detection framework based on the 
interquartile range for numerical heterogeneous 
databases. This framework aims to address the 
sparsity issue in data visualization and prediction 
by analyzing and testing different levels of outliers 
on the training data.The model utilizes the lower 
outlier and lower extreme levels to filter out 
numerical attributes in the lower range, and the 
upper outlier and upper extreme levels to filter out 
values in the upper range. This filtering process 
facilitates effective data visualization as depicted in 
Figure 1. By incorporating these techniques, we 
aim to enhance the accuracy and reliability of the 
data visualization and prediction tasks. 
 

1. Input: Dataset D, feature space F. 

2. Output: Input data objects A, Non-
anomaly objects N. 

3. Read the input dataset D. 

4. Calculate the proposed Interquartile Range 
(IQR) measure for each feature in the 
feature space F. 

5. Define the hybrid IQR measure as follows: 

 

6. Perform proposed feature ranking for 
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classification process. 
 

 
2: Feature ranking using optimal NHPP  

1. To each feature in the features-list F[] 
2. Do 
3.  Compute maxgainratio(  ) using the 

filtered data features. 
4.   Computing alpha and beta measure for 

the feature ranking process. 
5. Let pi be the probability of occurrence of 

the ith feature value in a class. 
6. Let MaxGainRatio (θ) be the sum of pi 

multiplied by the exponential of pi. 
7. Define a function chisqr(D) that computes 

the chi-square value on the data D. 
8. Let |D| be the size of the data. 
9. Compute α as the logarithm of θ divided 

by |T|^3 multiplied by the square root of 
the chi-square value of D, multiplied by 
the square root of |D|. 

10. Define a function E(D) that calculates the 
entropy of D. 

11. Let |T| be the total sum of the features. 
12. Compute β as θ multiplied by E(D) 

divided by |T|^(1/3). 
13. Done 
14. Sort feature according to ranks. 

 
   Proposed decision tree feature ranking measure: 

# Conditional Entropy of alpha on beta 
CE(alpha[] / beta[]) = Σ P(beta[], alpha[]) * 
log(P(alpha[]) / P(beta[], alpha[])) 
# Conditional Entropy of beta on alpha 
CE(beta[] / alpha[]) = Σ P(beta[], alpha[]) * 
log(P(alpha[]) / P(beta[], alpha[])) 
ρ1 = (-CE(beta[/ alpha[]))^3) / ((Σ alpha[]_i)^3 
* Corr(D_i)^3) 
ρ2 = (-CE(alpha[/ beta[]))) / ((Σ beta[]_i)^3 * 
sqrt(Corr)) 
N = total observations 
m = minimum(#rows, #columns) 
# Proposed software reliability learning model 
PE = cbrt(entropy(data) * N * Hellinger(data)) * 
E(D) / chiVal(data) 
# ProposedHER 

ProposedHER = max(cbrt(Σ(D=1)^(Dp |) 
Σ(n=1)^(Dp |)(cbrt(Dp / |Dp|) - cbrt(Dn / |Dn|))^2), 
GainRatio(D), PE) 

 

In the proposed decision tree approach, an 
optimized random forest approach is implemented 
in order to improve the feature ranking process of 
the tree construction process. 
In this approach, a hybrid kernel based SVM 
classifier is implemented in order to improve the 
accuracy of the traditional SVM classifier. 
Proposed polynomial kernel approach is optimized 
in order to improve the true positive rate of the 
heterogeneous datasets. 
 
4. EXPERIMENTAL RESULTS 

In this section, we have executed our proposed 
model on NASA software reliability datasets and 
compared the results with traditional reliability 
prediction models.  NASA Metrics Data Program, it 
is publicly available for verifying, refuting and 
improving predictive models of software 
engineering. KC1 is a C++ system implementing 
storage management for receiving and processing 
ground data. The dataset consists of the McCabe 
and Halstead features extractors of the code. The 
measures are module based.     The probability of 
detection is proportional to the effort; thus, higher 
rate of detection, more effort is required. 
Probability of false alarm decreases with increase in 
detection. This linkage can be observed in receiver 
operating curve (ROC). 

 
Generated Patterns:  
Column Total 1783.0 
Column Total 326.0 
0 th attribute    Feature Ranking Score 
3.3850476690526947 
Column Total 1783.0 
Column Total 326.0 
1 th attribute    Feature Ranking Score 
1.515598532717133 
Column Total 1783.0 
Column Total 326.0 
2 th attribute    Feature Ranking Score 
0.35556767061942784 
Column Total 1783.0 
Column Total 326.0 
3 th attribute    Feature Ranking Score 
1.4973976686596235 
Column Total 1783.0 
Column Total 326.0 
4 th attribute    Feature Ranking Score 
4.012868998943865 
Column Total 1783.0 
Column Total 326.0 
5 th attribute    Feature Ranking Score 
4.37912237350255 
Column Total 1783.0 
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Column Total 326.0 
6 th attribute    Feature Ranking Score 
3.328230276307007 
Column Total 1783.0 
Column Total 326.0 
7 th attribute    Feature Ranking Score 
4.217648685280728 
Column Total 1783.0 
Column Total 326.0 
8 th attribute    Feature Ranking Score 
4.715521483001722 
Column Total 1783.0 
Column Total 326.0 
9 th attribute    Feature Ranking Score 
4.5343361506687705 
Column Total 1783.0 
Column Total 326.0 
10 th attribute    Feature Ranking Score 
2.608257904809534 
Column Total 1783.0 
Column Total 326.0 
11 th attribute    Feature Ranking Score 
4.540634725823738 
Column Total 1783.0 
Column Total 326.0 
12 th attribute    Feature Ranking Score 
3.067330013255967 
Column Total 1783.0 
Column Total 326.0 
13 th attribute    Feature Ranking Score 
0.9716000250450556 
Column Total 1783.0 
Column Total 326.0 
14 th attribute    Feature Ranking Score 
1.4806198436250742 
Column Total 1783.0 
Column Total 326.0 
15 th attribute    Feature Ranking Score 
0.3094963794762421 
Column Total 1783.0 
Column Total 326.0 
16 th attribute    Feature Ranking Score 
2.614202751287529 
Column Total 1783.0 
Column Total 326.0 
17 th attribute    Feature Ranking Score 
3.0864948195661555 
Column Total 1783.0 
Column Total 326.0 
18 th attribute    Feature Ranking Score 
3.4362885054443124 
Column Total 1783.0 
Column Total 326.0 
19 th attribute    Feature Ranking Score 
3.0569699242858226 

Column Total 1783.0 
Column Total 326.0 
20 th attribute    Feature Ranking Score 
1.5118092747549445 
21 th attribute    Feature Ranking Score 0.0 
 
 
=== Attribute Selection on all input data === 
 
Search Method: 
 Attribute ranking. 
 Threshold for discarding attributes:  -
0.0198 
 
Attribute Evaluator (supervised, Class (nominal): 
22 CLASS): 
 
 
Ranked attributes: 
 4.7155    9 I 
 4.5406   12 L 
 4.5343   10 J 
 4.3791    6 F 
 4.2176    8 H 
 4.0129    5 E 
 3.4363   19 S 
 3.385     1 A 
 3.3282    7 G 
 3.0865   18 R 
 3.0673   13 M 
 3.057    20 T 
 2.6142   17 Q 
 2.6083   11 K 
 1.5156    2 B 
 1.5118   21 U 
 1.4974    4 D 
 1.4806   15 O 
 0.9716   14 N 
 0.3556    3 C 
 0.3095   16 P 
 
Selected attributes: 
9,12,10,6,8,5,19,1,7,18,13,20,17,11,2,21,4,15,14,3,
16 : 21M < 3.5 
|   A < 39.5 
|   |   M < 0.5 
|   |   |   H < 1.75 
|   |   |   |   S < 2.5 
|   |   |   |   |   L < 0.13 : FALSE (75/0) 
|   |   |   |   |   L >= 0.13 
|   |   |   |   |   |   A < 3 : FALSE (22/1) 
|   |   |   |   |   |   A >= 3 : FALSE (20/0) 
|   |   |   |   S >= 2.5 : FALSE (339/0) 
|   |   |   H >= 1.75 
|   |   |   |   J < 54.56 
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|   |   |   |   |   A < 3 
|   |   |   |   |   |   I < 7.03 
|   |   |   |   |   |   |   I < 6 
|   |   |   |   |   |   |   |   A < 1.5 : FALSE (1/0) 
|   |   |   |   |   |   |   |   A >= 1.5 : FALSE (13/1) 
|   |   |   |   |   |   |   I >= 6 : FALSE (7/1) 
|   |   |   |   |   |   I >= 7.03 : FALSE (8/0) 
|   |   |   |   |   A >= 3 
|   |   |   |   |   |   G < 0.45 
|   |   |   |   |   |   |   A < 4.5 : TRUE (1/0) 
|   |   |   |   |   |   |   A >= 4.5 : FALSE (1/0) 
|   |   |   |   |   |   G >= 0.45 : FALSE (2/0) 
|   |   |   |   J >= 54.56 : FALSE (44/0) 
|   |   M >= 0.5 
|   |   |   J < 120.55 
|   |   |   |   F < 38.2 
|   |   |   |   |   F < 28.25 
|   |   |   |   |   |   A < 1.05 : TRUE (1/0) 
|   |   |   |   |   |   A >= 1.05 
|   |   |   |   |   |   |   F < 27.54 
|   |   |   |   |   |   |   |   I < 10.09 
|   |   |   |   |   |   |   |   |   O < 0.5 
|   |   |   |   |   |   |   |   |   |   Q < 5.5 
|   |   |   |   |   |   |   |   |   |   |   E < 6.5 
|   |   |   |   |   |   |   |   |   |   |   |   H < 2.25 
|   |   |   |   |   |   |   |   |   |   |   |   |   A < 4.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   A < 3.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   G < 0.83 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F < 4 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S < 0.5 : 
FALSE (2/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S >= 0.5 : 
FALSE (73/2) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F >= 4 : 
FALSE (11/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   G >= 0.83 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   A < 2.5 : 
FALSE (4/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   A >= 2.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   H < 0.75 : 
FALSE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   H >= 0.75 : 
FALSE (8/1) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   A >= 3.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   K < 0.01 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   H < 0.25 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   E < 3 : 
FALSE (3/1) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   E >= 3 : 
FALSE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   H >= 0.25 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   E < 3.5 : 
FALSE (7/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   E >= 3.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L < 0.56 

: FALSE (5/1) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L >= 
0.56 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   M < 
1.5 : FALSE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   M >= 
1.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   G < 
0.58 : FALSE (20/1) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   G 
>= 0.58 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   E 
< 4.5 : FALSE (59/4) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   E 
>= 4.5 : FALSE (13/1) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   K >= 0.01 : 
FALSE (12/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   A >= 4.5 : FALSE 
(20/0) 
|   |   |   |   |   |   |   |   |   |   |   |   H >= 2.25 : FALSE 
(2/1) 
|   |   |   |   |   |   |   |   |   |   |   E >= 6.5 : FALSE (30/0) 
|   |   |   |   |   |   |   |   |   |   Q >= 5.5 
|   |   |   |   |   |   |   |   |   |   |   I < 8.5 
|   |   |   |   |   |   |   |   |   |   |   |   M < 2.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   I < 6.71 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   G < 0.17 : FALSE 
(1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   G >= 0.17 : TRUE 
(1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   I >= 6.71 : FALSE 
(7/0) 
|   |   |   |   |   |   |   |   |   |   |   |   M >= 2.5 : TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   I >= 8.5 : FALSE (7/0) 
|   |   |   |   |   |   |   |   |   O >= 0.5 
|   |   |   |   |   |   |   |   |   |   I < 8.8 : FALSE (9/0) 
|   |   |   |   |   |   |   |   |   |   I >= 8.8 
|   |   |   |   |   |   |   |   |   |   |   E < 7.5 : TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   E >= 7.5 
|   |   |   |   |   |   |   |   |   |   |   |   O < 1.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   A < 7 : TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   A >= 7 : FALSE 
(2/0) 
|   |   |   |   |   |   |   |   |   |   |   |   O >= 1.5 : FALSE 
(1/0) 
|   |   |   |   |   |   |   |   I >= 10.09 : FALSE (24/0) 
|   |   |   |   |   |   |   F >= 27.54 : TRUE (1/0) 
|   |   |   |   |   F >= 28.25 : FALSE (45/0) 
|   |   |   |   F >= 38.2 
|   |   |   |   |   A < 7 : TRUE (1/0) 
|   |   |   |   |   A >= 7 : FALSE (1/0) 
|   |   |   J >= 120.55 : FALSE (35/0) 
|   A >= 39.5 
|   |   B < 2 : TRUE (2/0) 
|   |   B >= 2 : FALSE (1/0) 
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M >= 3.5 
|   T < 67.5 
|   |   S < 40.5 
|   |   |   C < 2 
|   |   |   |   G < 0.08 
|   |   |   |   |   E < 61.5 
|   |   |   |   |   |   R < 4.5 : TRUE (3/0) 
|   |   |   |   |   |   R >= 4.5 
|   |   |   |   |   |   |   O < 2.5 
|   |   |   |   |   |   |   |   I < 14.54 : FALSE (8/0) 
|   |   |   |   |   |   |   |   I >= 14.54 
|   |   |   |   |   |   |   |   |   J < 3414.18 : TRUE (2/0) 
|   |   |   |   |   |   |   |   |   J >= 3414.18 
|   |   |   |   |   |   |   |   |   |   A < 28.5 : FALSE (2/0) 
|   |   |   |   |   |   |   |   |   |   A >= 28.5 : TRUE (1/0) 
|   |   |   |   |   |   |   O >= 2.5 : TRUE (3/0) 
|   |   |   |   |   E >= 61.5 : FALSE (7/0) 
|   |   |   |   G >= 0.08 
|   |   |   |   |   S < 30.5 
|   |   |   |   |   |   I < 20.22 
|   |   |   |   |   |   |   R < 2.5 
|   |   |   |   |   |   |   |   G < 0.24 
|   |   |   |   |   |   |   |   |   I < 6.98 
|   |   |   |   |   |   |   |   |   |   I < 6.32 : FALSE (6/0) 
|   |   |   |   |   |   |   |   |   |   I >= 6.32 
|   |   |   |   |   |   |   |   |   |   |   Q < 6.5 : FALSE (3/0) 
|   |   |   |   |   |   |   |   |   |   |   Q >= 6.5 : TRUE (1/0) 
|   |   |   |   |   |   |   |   |   I >= 6.98 : TRUE (1/0) 
|   |   |   |   |   |   |   |   G >= 0.24 : TRUE (3/0) 
|   |   |   |   |   |   |   R >= 2.5 
|   |   |   |   |   |   |   |   J < 109.3 : FALSE (36/0) 
|   |   |   |   |   |   |   |   J >= 109.3 
|   |   |   |   |   |   |   |   |   G < 0.39 
|   |   |   |   |   |   |   |   |   |   Q < 5.5 : FALSE (20/0) 
|   |   |   |   |   |   |   |   |   |   Q >= 5.5 
|   |   |   |   |   |   |   |   |   |   |   N < 7.5 
|   |   |   |   |   |   |   |   |   |   |   |   P < 1.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   H < 6.71 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   J < 389.72 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L < 21.35 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   I < 12.06 : 
FALSE (23/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   I >= 12.06 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   J < 316.13 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   I < 16.54 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L < 
16.38 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F < 
51.85 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L 
< 10.95 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
A < 8 : FALSE (12/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
A >= 8 

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
|   E < 13.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
|   |   O < 0.5 : TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
|   |   O >= 0.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
|   |   |   I < 12.75 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
|   |   |   |   A < 10 : FALSE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
|   |   |   |   A >= 10 : FALSE (2/1) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
|   |   |   I >= 12.75 : FALSE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   
|   E >= 13.5 : FALSE (4/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L 
>= 10.95 : TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F 
>= 51.85 : FALSE (16/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L >= 
16.38 : TRUE (3/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   I >= 
16.54 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S < 
12.5 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   E < 
16 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   A 
< 7.5 : TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   A 
>= 7.5 : FALSE (2/1) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   E 
>= 16 : FALSE (4/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   S >= 
12.5 : TRUE (2/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   J >= 
316.13 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F < 
76.08 : FALSE (12/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F >= 
76.08 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   J < 
367.63 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   I < 
17.55 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   A 
< 8.5 : TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   A 
>= 8.5 : FALSE (6/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   I >= 
17.55 : FALSE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   J >= 
367.63 : FALSE (2/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L >= 21.35 : 
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TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   J >= 389.72 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L < 32.75 : 
FALSE (25/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L >= 32.75 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L < 33.06 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   H < 6.2 : 
TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   H >= 6.2 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   A < 16.5 
: FALSE (7/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   A >= 
16.5 : FALSE (7/1) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   L >= 33.06 : 
FALSE (24/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   H >= 6.71 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   H < 9.82 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F < 111.2 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F < 81.72 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   I < 9.59 : 
TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   I >= 9.59 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F < 
79.56 : FALSE (4/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F >= 
79.56 : TRUE (1/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F >= 81.72 : 
FALSE (15/0) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   F >= 111.2 
 

 
Figure 2:  Comparative Analysis Of Proposed Ensemble 
Software Reliability Model To The Conventional Models 

For True Positive Rate. 
 

 
Figure 3:  Comparative Analysis Of Proposed Ensemble 
Software Reliability Model To The Conventional Models 

For Accuracy Rate. 

 
Figure 4:  Comparative Analysis Of Proposed Ensemble 
Software Reliability Model To The Conventional Models 

For Recall Rate. 

 
Figure 5:  Comparative Analysis Of Proposed Ensemble 
Software Reliability Model To The Conventional Models 

For Precision Rate. 
 

5. CONCLUSION  
 
Due to the high true positive rate of 

conventional support vector regression models, the 
majority of conventional software reliability 
estimation models are unable to predict the test 
samples. For reliability severity classification, the 
majority of conventional machine learning-based 
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fault prediction models integrate common software 
reliability growth measures. However, these models 
are employed to forecast the binary class reliability 
level with lower standard errors. The training fault 
datasets are used to implement a hybrid support 
vector regression-based quartile deviation growth 
measure in the third contribution. On various 
reliability datasets with various configuration 
parameters for fault prediction, experimental results 
are simulated. In this work, an efficient reliability 
feature ranking based multi-class ensemble 
classification framework is implemented for 
reliability estimation process. In comparison to the 
traditional software reliability models, experimental 
results showed that the proposed model has a high 
software reliability prediction rate with less error 
and high accuracy. 
Compare research findings and analyze the 
strengths and weaknesses of this work: 
Literature Review: Conduct a thorough literature 
review to identify current relevant work in the field 
of software reliability estimation. Look for studies, 
papers, or articles that address similar or related 
research questions, methodologies, or objectives. 
Identify Key Findings: Compare the key findings 
and results of your work with those of the current 
relevant work. Look for similarities, differences, 
and trends in the outcomes. 
Methodological Analysis: Evaluate the 
methodologies employed in your work and the 
current relevant work. Assess the appropriateness, 
rigor, and limitations of the methodologies used. 
Consider factors such as data collection, sample 
size, statistical analyses, and experimental design. 
Strengths and Weaknesses: Identify the strengths 
and weaknesses of your work and the current 
relevant work. Consider aspects such as novelty of 
approach, clarity of presentation, validity of results, 
generalizability, limitations, and potential biases. 
Impact and Contribution: Assess the impact and 
contribution of your work in comparison to the 
current relevant work. Evaluate how your findings 
build upon existing knowledge, address research 
gaps, or introduce novel insights. Consider the 
implications and potential applications of your 
work. 
Future Directions: Discuss the potential avenues for 
further research and improvement based on the 
findings of your work and the current relevant 
work. Identify areas where further investigation is 
needed and propose potential solutions or 
approaches. While traditional methods like 
Bayesian and Markovian models offer some 
insights, they often fall short in capturing the 
multifaceted nature of software reliability. The 

exploration of Support Vector Regression (SVR) as 
an alternative has shown promise, offering 
flexibility and the ability to model complex, non-
linear relationships. However, it also comes with its 
own set of limitations, such as computational 
complexity and reduced interpretability. 
 
6. FUTURE WORK 
 
User Experience Modeling: Future research should 
focus on developing models that incorporate the 
dynamic nature of user experience and learning 
effects. This could involve the integration of 
machine learning techniques with traditional 
reliability models. 
Validation of Assumptions: A critical evaluation of 
the assumptions underlying existing models is 
necessary. Empirical studies could be conducted to 
validate or challenge these assumptions, leading to 
more robust and practical models. 
Hybrid Models: The development of hybrid models 
that combine the strengths of both parametric and 
non-parametric approaches could offer a more 
comprehensive solution to software reliability 
estimation. 
Computational Efficiency: Given the computational 
complexity associated with methods like SVR, 
future work should also focus on optimizing 
algorithms for better scalability and real-time 
applicability. 
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