
Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6943

 AN IMPROVED VLSI ARCHITECTURE FOR CFA
INTERPOLATION USING CARRY SKIP ADDER

CHATLA RAJA RAO#1 AND DR. SOUMITRA KUMAR MANDAL*2

1#Dy. Director, Board of Practical Training (Eastern Region), Salt Lake City, Sector-I, Kolkata, India, *
2Professor, Department of Electrical Engineering, National Institute of Technical Teacher’s Training and

Research, Kolkata, West Bengal, India.

E-mail: 1c.rajarao@gmail.com, 1crrao@bopter.gov.in, 2skmandal@nittrkol.ac.in,
3mandal_soumitra@yahoo.com .

ABSTRACT

A wider range of digital devices, including as 4G/5G smart phones, digital cameras, digital notebooks, and
consumer electrical items, will be able to function properly thanks to this Application of Color filter array. As
a result, a linear deviation compensation approach that boosts correlation between interpolated and
neighboring pixels is recommended to be used to this color filter array in an effort to enhance the performance
of the reconstructed images with perfection. By prioritizing green in the color interpolation process and using
a hardware-sharing methodology, we may enhance the image's resolution on both sides. Therefore, larger
space in arithmetic operations and higher gate counts on VLSI architecture will be needed for the hardware
sharing approach of red, green, and blue interpolation. In order to cut down on space, time, and energy
requirements, the project would include a color demosaicking method that makes use of a carry skip adder as
opposed to a standard ripple push adder into all current hardware sharing techniques. In this research,
experiments are conducted using VHDL programming language and the synthesize capabilities of the Xilinx
FPGA XC6SLX150-2CSG484 at a 200 MHz operating clock frequency to create a color demosaicking
approach using a 256x256 pixel images.
Keywords: CSKA (Carry Skip Adder), CFA (Color Filter Array), Boundary detection, Boundary Mirror

Machine, VLSI.

1. INTRODUCTION

 Digital communication-based image processing
systems are becoming more important as a result of
their ability to support a wide range of electronic
devices and consumer goods in the modern digital
environment. This digital image processing task will
have struggled to demonstrate performance with
regards to image resolution, noise aberrations, color
mismatches, color fading, and so on. As a result, the
image color sensor will be used in cutting-edge
machinery to lessen the prevalence of malfunctions
across all electronic devices. Bayer color filter arrays
are the most common kind of array-based color
sensors used in today's electronic devices. Using the
color filter array (CFA) technology, the current
image's color sensors may be made more
cost-effective and memory-efficient, hence reducing
its footprint. The color interpolated method may

decrease the interpolated missing value and rebuild a
full-color image while losing just a third of the
information at each set of image boundaries. These
color interpolated techniques of color de-mosaicking
method improved the de-mosaicking performance,
providing high performance and high resolution with
edge oriented filtering strength in all sets of image
boundaries. Support for stochastic estimates on
image interpolation and adjustable resolution on a
color filter array are features of the proposed
demosaicking technique. Similarly, gradient edge
detections based on heterogeneity projection on the
color filter array will be used to supplement the edge
detection on demosaicking technique. Therefore, the
proposed CFA will improve the interpolation
algorithm with high quality real time video
applications [1] by avoiding artefacts in all the image
boundaries with zipper effect, color spots, image
blurring, and demoralized to missing interpolations.

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6944

When it comes to digital image processing, image
filtering is at the top of the list. This is because it
ensures that high-resolution images may be sent and
received by all digital devices, including H.254,
H.256, HDTV, Smart Phones, LED Projectors, and
so on. Due to the matrix-based nature of the image
processing, different hardware requirements will
apply to images of different resolutions (32x32
pixels, 64x64 pixels, 1024x1024, and HEVC-based
4096x2048 pixels, respectively), with memory and
arithmetic operations also playing a role. This study
proposes developing a hardware-oriented
de-mosaicking interpolated technique using a color
filter array. Because of the increased need for basic
operations like shifting, addition, and subtraction,
the VLSI implementation of this concept for color
de-mosaicking will need additional chip space.
Existing methods will make an attempt in pipelined
design, adaptive edge improvement, and an
anisotropic weighting model to deal with this
increased area complexity, but their findings will not

be relevant to efficient performance. Therefore, the
suggested technique will focus on area reduction by
using arithmetic operations in a color de-mosaicking
algorithm with fewer logic gates, garbage signals,
memory logic components, and power consumptions
[2]. In this specific situation, the suggested color
de-mosaicking architecture would make use of three
distinct hardware sharing machines for performing
arithmetic operations on input colors. As a result, the
carry skip adder, a high-speed and efficient adds
technique, will be used in place of more traditional
full adders in this proposed work.

This study proposes a digital image filtering
technique for color de-mosaicking utilizing a carry
skip adder, which is designed in VHDL languages
and synthesized in FPGA implementations for a 256
x 256-pixel image. The suggested work aims to
minimize the area, latency, and power consumptions
[3, 4] caused by the FPGA's logic gates.

M1-bit RCAM
U

X

BM1

AM1

.. B1

A1

..

P1

PM1

Ci

S1SM1
..

C1
0

C1
1

M2-bit RCAM
U

X

BM1 + M2

AM1 + M2

.. BM1 +1

AM1+1

..

PM1+1

PM1 + M2

SM1+1SM1+M2 ..

C2
0

C2
1

FA1FA2FAMQ

M2-bit RCAM
U

X

BN

AN

.. BN-MQ+1

AN-MQ+1

..

PN-MQ+1

PN

SN-MQ+1SN ..

CQ
0

CQ
1

...

CO

Stage 1Stage 2Stage Q

Figure 1 : Architecture of Conventional Structure of the Carry Skip Adder

This study's Section II will demonstrate how a carry
skip adder operates with various bit sizes. While
Section III will provide a concise summary of a
suggested color de-mosaicking technique that makes
use of such additions. High-quality image results will
be shows once Section IV integrates a color
de-mosaicking technique into an FPGA
implementation. In Section V, we'll show how we
plan to improve upon and wrap up this effort.

2. MULTI-BIT OPERATIONS OF CARRY

SKIP ADDER

An arithmetic logic unit is the most important

component of a digital image processing
programmer. Because mathematical operations like
as addition, subtraction, and multiplication are
performed on images' pixels, higher resolutions are
necessary. Power and energy consumption for
arithmetic operations will increase in digital image
processing; this is because the number of additions

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6945

will serve as a multiplication and the number of
subtraction operations will serve as a division. There
are many different types of conventional adders that
can optimize area and power usage in arithmetic
operations, a number of carry adders, including the
“1. Ripple carry adder, 2. Carry choose adder, 3.
Carry increment adder, 4. Manchester carry chain
adder, 5. Conditional sum, and 6. Parallel prefix
adder”. However, the carry skip adder also performs
more quickly while performing arithmetic
operations. Figure 1 shows the typical carry skip
adder structure, which is based on RCA blocks that
contain a series of complete adders and has an N-bit
size. However, the operation speed and delay of this
architecture based on multiplexers will be improved,
resulting in a smaller number of critical path delays
and a higher maximum operating speed. The
multiplexer's output choice is determined by the
input and carry logic, as well as any additional XOR
& AND gate structure operations. This RCA block
has a series of full-wave conventional cascaded
amplifiers, adders, having inputs A and B that are
multi-bit in size (from A1 to AN and BN,
respectively) and producing S1 to SN as outputs. In
this procedure, after A and B inputs are provided,
they are combined in the RCA block, and a selection
signal is generated by the EXOR gate operations
according to the following equation (1).

)(iii BAP  (1)

where, the Pi represent the propagation signal which
generated from Ai XOR Bi and all the Pi....n bit will

ANDed finally and given a input of multiplexer
selection process. This multiplexer will select skip
operation which based on carry generation C0

1 to
C0

Q.

3. PROPOSED COLOR DE-MOSAICKING

ALGORITHM WITH CARRY SKIP ADDER

 We recommend utilizing a unique linear deviation
approach that compensates for and quickly
interpolates using green interpolation, as well as a to
produce use a boundary detectors and a boundary
mirror device to demonstrate an icing process in
color. The suggested color de-mosaicking method is
shows in a block diagram form in Fig. 2. After the
CFA (Color Filter Array Pixel) is processed, the
boundary mirror machine and the boundary detector
receive it, which together detect the boundary
information and separate it into red, blue, and green
interpolated pixels (RB' and G', respectively) using
the linear deviation compensation method.

Boundary
Detector

Boundary
Mirror Machine

Red – Blue Color
Interpolation

Green Color
Interpolation

CFA Pixels

Mirror Pixels

G

RB

G

Figure 2 : Architecture of Color Demosaicking
interpolation

Input
Memory
Buffer

8 x 196608

WR ADDR

WR DATA

WR CLK

WR ENB

Control
Buffer

Output
Memory
Buffer

8 x 196608

RD DATA

RD CLK

RD DATA

WR ADDR

WR DATA

Register Bank
1

CFA Pixel

CFA Enb

Boundary
Mirror

Machine

REG Pixel

Boundary
Detector

REG
 EN

B

POSITION I

POSITION J

Hardware
Sharing 1

Mirror Pixel

Hardware
Sharing 2

Hardware
Sharing 3

Register
Bank 2

R – INT-SH2

G – INT-SH2

B – INT-SH2

R – INT-SH1

G – INT-SH1

B – INT-SH1

G-Dash

Control
Unit

RB (BR) G
RB (G) BR

RED Pixel

BLUE Pixel

GREEN Pixel

Mirror Signal

Figure 3: Color De-mosaicking Top module architecture

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6946

The proposed color de-mosaicking design in VLSI
is seen in Fig. 3. The input images will be processed
in MATLAB, and the architecture's input will come
from Buffer Memory 19660x8. In the first stage, a
256x256 image is imported into the MATLAB GUI
for conversion. Hexadecimal format, these
hexadecimal values will be put into memory, and the
total number of pixels will be 65536 [5] times 3, as
required by the image size of 256 by 256. The input
and output buffer memory is 196608 x 8 bit since
each pixel has three values—red, green, and blue.
The control buffer's next-highest-priority block
handles each individual pixel by retrieving its value
from the input buffer's memory at each successive
address increment and passing it on to other blocks
like the register bank 1, the boundary mirror, the
boundary detector, control unit, register bank 2,
hardware sharing 1, hardware sharing 2, and
hardware sharing 3. Consequently, by substituting a
shifter for multipliers and divisions, we may
drastically lower the hardware cost of this design.
This color de-mosaicking algorithm begins with a
register bank 1 composed of sixteen shift registers
that supply sixteen samples of CFA pixels to the
image boundary mirror machine. Simultaneously, a
boundary detector determines the coordinates of i
and j values using the Bayer color filter array, which
has 64 blocks and 24 bits per block (8 bits each for
red, green, and blue) (see Fig. 4).

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,8
2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,8
3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,8
4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7
5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,8
6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,8
7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

Figure 4 : Pixel Identification with Bayer CFA

Here green color pixels will have been used on the

green
interpolation as an equation shows in below (1).
More information on the vertical as well as
horizontal scaling will be included in the pixel
reading, but the order, here the green interpolation
avoiding different rows, and its update the results on
G' which captures CFA pixels from horizontal

directions. A method of green interpolation equation
will have given on (2) and pixel based reference will
have given on Fig.5, [6].

G(i+1,j-1) G(i+1,j) G(i+1,j+1)
G(i,j-1) G(i,j) G(i,j+1)

G(i-1,j-1) G(i-1,j) G(i-1,j+1)

Figure 5 : Method of Green Interpolation

By using the same green interpolation technique
utilized in the previously described method, we
could improve the red and blue color interpolation
that is offered inside the structure of the more
traditional bilinear method. Furthermore, the red and
blue interpolation approach will apply a unique
linear deviation compensation methodology to
rebuild the CFA pixels with a sum of the surrounding
green color pixels, so make up for the interpolation
of the red and blue. Equation (3) shows the
interpolation of red and blue. With four average CFA
pixels compensating for the interpolation of green
color [7]. As illustrated in Fig.5, the linear deviation
of the green interpolation will fall within a range of
eight values, and the suggested linear compensation
methodology will be used to improve the red and
blue interpolations' quality.

According to the linear deviation compensation

method, the solution to equation (4) will be shows in
green, with red and blue interpolation along the
vertical axis. Using equations (3) and (4), we may
interpolate in both the horizontal and vertical
directions, improving image quality while decreasing
hardware costs.

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6947

By employing the linear deviation compensation

approach, the final equation of CFA color
interpolation is presented in equation (4), which will
provide a high-quality, low-complexity color
de-mosaicking process. Equation (3) provides access
to data on the eight values of G' in close proximity to
the given value. These values were calculated using
equations (4) and (5).

The linear deviation based color interpolation

technique will apply in VLSI architecture with
different sub module as per the supporting equation
(2), (3), (4), (5). As per this equation a hardware
sharing machine 1 will It will appear in Fig. 7 if you
obtain the values G'(i-1,j), G'(i+1,j-1), and
G'(i+1,j+1). Machine 1 in this equipment sharing
will have three carry skip adders. 1 sub tractors and 6
multiplexers. Additionally, it has three pipelined
registers due to reducing the critical path delay and
also reduced the hardware cost. The input of “Mi,j
will be differ on each input multiplexer which point
out CFA pixel points as per the boundary
configuration, in Fig.7 will shows the hardware
sharing pixel point and the format will obtain the
inputs on M(i-1,j-1), M(i+1,j), M(i+1,j-2), M(i-1,j+2), M(i+1,j),
M(i-1,j), M(i+1,j+1), M(i+1,j-1), M(i-1,j-2), M(i+1,j-1), M(i+1,j-3),
M(i-1,j-3), M(i-1,j+2), M(i+1,j+3), M(i+1,j+1). The output of
Hardware sharing M1 will generate G'(i-1,j) - Green
interpolation, G'(i+1,j-1) - Red interpolation, G'(i+1,j+1) -
Blue interpolation”.

M(i-1,j-1)

M(i+1,j)

M(i+1,j-2)

M(I-1,j+1)

M(i+1,j+2)

M(i+1,j)

M(I-1,j)

M(i+1,j+1)

M(i+1,j-1)

M(i-1,j-2)

M(i+1,j-1)

M(i+1,j-3)

M(i-1,j+2)

M(i+1,j+3)

M(i+1,j+1)

Carry Skip
Adder

Carry Skip
Adder

Carry Skip
Adder

Subtractor

G (i-1,j) = GREEN

G (i+1,j-1) = RED

G (i+1,j+1) = BLUE

>>2

>>1

>>1

{i,j}

Figure 6 : VLSI Architecture of the Hardware

Sharing M1 with using Carry Skip Adder

M(i+3,j-3) M(i+3,j-2) M(i+3,j-1) M(i+3,j) M(i+3,j+1) M(i+3,j+2) M(i+3,j+3) M(i+4,j+4)
M(i+2,j-3) M(i+2,j-2) M(i+2,j-1) M(i+2,j) M(i+2,j+1) M(i+2,j+2) M(i+2,j+2) M(i+2,j+4)
M(i+1,j-3) M(i+1,j-2) M(i+1,j-1) M(i+1,j) M(i+1,j+1) M(i+1,j+2) M(i+1,j+3) M(i+1,j+4)

M(i,j-3) M(i,j-2) M(i,j-1) M(i,j) M(i,j+1) M(i,j+2) M(i,j+3) M(i,j+4)
M(i-1,j-3) M(i-1,j-2) M(i-1,j-1) M(i-1,j) M(i-1,j+1) M(i-1,j+2) M(i-1,j+3) M(i-1,j+4)
M(i-2,j-3) M(i-2,j-2) M(i-2,j-1) M(i-2,j) M(i-2,j+1) M(i-2,j+2) M(i-2,j+3) M(i-2,j+4)
M(i-3,j-3) M(i-3,j-2) M(i-3,j-1) M(i-3,j) M(i-3,j+1) M(i-3,j+2) M(i-3,j+3) M(i-3,j+4)
M(i-4,j-4) M(i-4,j-2) M(i-4,j-1) M(i-4,j) M(i-4,j+1) M(i-4,j+2) M(i-4,j+3) M(i-4,j+4)

Figure 7 : Hardware Sharing M1 pixel points

In the Fig.8 architecture will shows the hardware

sharing machine 2, Equations (2) and (5) can be used
to realize the results of the calculation, which are
G'(i,j+1) - Green interpolation and RB'i,j(G)RB. In
the architecture it's having three adders, two
sub-tractors and one multiplexer. The three
pipelining registers will be reducing the critical path
delay's. The input of CFA pixel point in the hardware
sharing M2 will shows in Fig.9, Five input pixel
points, M(i,j-1), M(i,j+1), M(i,j), M(i,j-2), M(i,j+2,
are available.

Carry Skip
Adder

Carry Skip
Adder

Carry Skip
Adder Subtractor

M(i,j-1)

M(i,j+1)

M(i,j-2)

M(i,j+2)

M(i,j) <<1

<<1

{ i,j }

G (i,j+1)

>>2

RB (i,j)

(G)RB

Figure 8 : VLSI Architecture of the Hardware
Sharing M2 with Carry Skip Adder

M(i+3,j-3) M(i+3,j-2) M(i+3,j-1) M(i+3,j) M(i+3,j+1) M(i+3,j+2) M(i+3,j+3) M(i+4,j+4)
M(i+2,j-3) M(i+2,j-2) M(i+2,j-1) M(i+2,j) M(i+2,j+1) M(i+2,j+2) M(i+2,j+2) M(i+2,j+4)
M(i+1,j-3) M(i+1,j-2) M(i+1,j-1) M(i+1,j) M(i+1,j+1) M(i+1,j+2) M(i+1,j+3) M(i+1,j+4)

M(i,j-3) M(i,j-2) M(i,j-1) M(i,j) M(i,j+1) M(i,j+2) M(i,j+3) M(i,j+4)
M(i-1,j-3) M(i-1,j-2) M(i-1,j-1) M(i-1,j) M(i-1,j+1) M(i-1,j+2) M(i-1,j+3) M(i-1,j+4)
M(i-2,j-3) M(i-2,j-2) M(i-2,j-1) M(i-2,j) M(i-2,j+1) M(i-2,j+2) M(i-2,j+3) M(i-2,j+4)
M(i-3,j-3) M(i-3,j-2) M(i-3,j-1) M(i-3,j) M(i-3,j+1) M(i-3,j+2) M(i-3,j+3) M(i-3,j+4)
M(i-4,j-4) M(i-4,j-2) M(i-4,j-1) M(i-4,j) M(i-4,j+1) M(i-4,j+2) M(i-4,j+3) M(i-4,j+4)

Figure 9 : Hardware Sharing M2 pixel points

In the Fig.10 architecture will shows the hardware

sharing machine 3, it will calculate RB'i,j(BR)G
 - Green

interpolation, and RB'i,j(G)BR - Blue and Red
interpolation, and it can realize by the equation (3)
and (4). Its consists of five pipelined registers to
avoid critical path and eleven carry skip adder, a
sub-tractors and three shifters. This Hardware
sharing M3 method will capture green interpolation
pixels from the CFA inputs, with the help of
boundary mirror machine and G' from register bank 2
[1]. The input of CFA pixel point in the hardware
sharing M3 will shows in Fig.11, it's having twenty

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6948

six pixel point such as “M(i-1,j+2), M(i-1,j+3), M(i-1,j+4),
M(i-1,j+3), M(i+1,j+2), M(i+1,j+3), M(i+1,j+4), M(i+1,j+3), G'(i,j),
M(i,j+3), M(i-1,j+3), M(i-1,j+2), M(i,j+2), M(i-1,j+4), M(i,j+4),
M(i+1,j+2), M(i+1,j+3), M(i+1,j+4), G'(i-1,j-1), G'(i-1,j), G'(i-1,j+1),
G'(i,j-1), G'(i+1,j-1), G'(i,j+1), G'(i+1,j+1), G'(i+1,j),”.

M(i+3,j-3) M(i+3,j-2) M(i+3,j-1) M(i+3,j) M(i+3,j+1) M(i+3,j+2) M(i+3,j+3) M(i+4,j+4)
M(i+2,j-3) M(i+2,j-2) M(i+2,j-1) M(i+2,j) M(i+2,j+1) M(i+2,j+2) M(i+2,j+3) M(i+2,j+4)
M(i+1,j-3) M(i+1,j-2) M(i+1,j-1) M(i+1,j) M(i+1,j+1) M(i+1,j+2) M(i+1,j+3) M(i+1,j+4)

M(i,j-3) M(i,j-2) M(i,j-1) M(i,j) M(i,j+1) M(i,j+2) M(i,j+3) M(i,j+4)
M(i-1,j-3) M(i-1,j-2) M(i-1,j-1) M(i-1,j) M(i-1,j+1) M(i-1,j+2) M(i-1,j+3) M(i-1,j+4)
M(i-2,j-3) M(i-2,j-2) M(i-2,j-1) M(i-2,j) M(i-2,j+1) M(i-2,j+2) M(i-2,j+3) M(i-2,j+4)
M(i-3,j-3) M(i-3,j-2) M(i-3,j-1) M(i-3,j) M(i-3,j+1) M(i-3,j+2) M(i-3,j+3) M(i-3,j+4)
M(i-4,j-4) M(i-4,j-2) M(i-4,j-1) M(i-4,j) M(i-4,j+1) M(i-4,j+2) M(i-4,j+3) M(i-4,j+4)

Figure 10 : Hardware Sharing M3 pixel points

Figure 11 : VLSI Architecture of the Hardware
Sharing M3 with Carry Skip Adder

 In the Fig.12 architecture will shows CFA Pixel
register bank 2, it will calculate G' value from the
input of “G'(i-1,j), RB'(G)RB form Hardware
sharing M2, G'(i-1,j), G'(i+1,j-1), G'(i+1,j+1)” from
Hardware sharing M1. This Register bank will
pipeline the interpolation value and give it to G'
output as per the boundary detector position changes,
those positioning pixel point values are given in
Fig.13 [8], [11], [12]. In this register bank will
contain six registers and it's having three level upper,
middle and lower, the upper part will consider green
interpolation, middle and lower part will consider
red and blue interpolation from hardware sharing
machine M1 and M2. Finally, the control unit and
control buffer block, will arranging all the CFA pixel
point positions (i,j) and stored into the output block
memory buffer 8x196608 [9]. Once the output
memory block filled out, the output image data will

read out and converted into hex format. Finally, the
MATLAB GUI will have shown the output of input
image and output image with PSNR comparisons,
thus, one of 256 x 256 Akiyo image result analysis
will shows Fig.14. Its contain two image left image is
input it will take PSNR 44.0693, and right side image
is output it will take PSNR 44.1796 [10].

Figure 12 : VLSI Architecture of the register bank 2

M(i+3,j-3) M(i+3,j-2) M(i+3,j-1) M(i+3,j) M(i+3,j+1) M(i+3,j+2) M(i+3,j+3) M(i+4,j+4)
M(i+2,j-3) M(i+2,j-2) M(i+2,j-1) M(i+2,j) M(i+2,j+1) M(i+2,j+2) M(i+2,j+3) M(i+2,j+4)
M(i+1,j-3) M(i+1,j-2) G(i+1,j-1) G(i+1,j) G(i+1,j+1) M(i+1,j+2) M(i+1,j+3) M(i+1,j+4)

M(i,j-3) M(i,j-2) G(i,j-1) G(i,j) G(i,j+1) M(i,j+2) M(i,j+3) M(i,j+4)
M(i-1,j-3) M(i-1,j-2) G(i-1,j-1) G(i-1,j) G(i-1,j+1) M(i-1,j+2) M(i-1,j+3) M(i-1,j+4)
M(i-2,j-3) M(i-2,j-2) M(i-2,j-1) M(i-2,j) M(i-2,j+1) M(i-2,j+2) M(i-2,j+3) M(i-2,j+4)
M(i-3,j-3) M(i-3,j-2) M(i-3,j-1) M(i-3,j) M(i-3,j+1) M(i-3,j+2) M(i-3,j+3) M(i-3,j+4)
M(i-4,j-4) M(i-4,j-2) M(i-4,j-1) M(i-4,j) M(i-4,j+1) M(i-4,j+2) M(i-4,j+3) M(i-4,j+4)

Figure 13: Register Bank Pixel point values

Figure 14 : 256X256 Image result analysis on
MATLAB with PSNR

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6949

3. FPGA RESULTS AND

IMPLEMENTATIONS

 In this paper, we offer a high-quality color
de-mosaicking technique that makes use of a carry
skip adder to cut down on hardware expenses in
digital image processing software. This construction
of a color filter array is supported in the simulation
process by the MATLAB distribution, which allows
for the conversion of images to and from
hexadecimal notation as well as the inspection of
PSNR and SSIM values [13], [14]. Initial steps
included implementing a high-quality color
de-mosaicking algorithm using an 8x8 image size
and two adders, both a carry skip adder and a typical
RCA (ripple carry adder). This 8x8 image size will
yield better results using the proposed method of
carry skip adder implementation, so the numbers in
Table.1 will be updated to reflect the latest values for
things like slice register count (497 vs. 579), look-up
table count (343 vs. 516), and delay performance
(3.617 ns vs. 3.617 ns) [15] for both the conventional
and proposed implementations of the 8x8 image.

Table 1: Comparison Table Of High Quality Color DE
Mosaicking VLSI Design - Image Size 8x8

 High Quality Color DE mosaicking

VLSI Design
 CFA -

Conventional
Adder

CFA- Carry
Skip Adder

Image Size 8x8 8x8
Slice Register 579 497

LUT 516 343
IOB 52 52

Delay (ns) 4.027 3.617
Power (mW) 361 353

Figure 15 : Comparisons Analysis Of High Quality Color
DE Mosaicking VLSI Design - Image Size 8 X 8

Following that, the work that is presented for this
study will show a high grade color demosaicking
approach that makes use of a 256 × 256 picture size
using a multi bit carry skip adder method. According
to this, the design was created using the VHDL
programming language; the simulation was run in
Modelsim 6.5b; and the results of the simulation
were synthesized on Xilinx 14.2 by using an FPGA
with the model number XC6LX150-2CSG484. In
conclusion, the work that was presented
demonstrated a satisfactory performance in terms of
area (slice register, LUT), IOB (Input output block),
latency, and power. On Table.2 you'll find an
updated version of the comparison table with
high-quality 256 x 256 color demosaicking designs.
It will take 679, and the LUT will take 758, and the
delay will take 15.114 nanoseconds, and the power
will take 184 milliwatts. This will demonstrate that
the number of slices register will decrease in the CFA
- Carry skip adder architecture. The results of the
analysis will be shows in Fig.16 for these
comparisons. The RTL schematic of the 256 x 256
CFA demosaicking technique will be given in Figure
19, and the simulation results will be given in Figure
20. For synthesizing result analysis of 256 × 256
image sizes using carry skip adder method will
provide in Fig.17, and Fig.18 will updated with delay
report.

Table 2 : Comparison Table Of High Quality Color
De-Mosaicking VLSI Design - Image Size 256 X 256

 High Quality Color De-mosaicking VLSI

Design 256 x256
 CFA -

Conventional
Adder

CFA - Carry
Skip Adder

PSNR 44.0693 44.1796
Slice Register 689 679

LUT 754 758
IOB 82 82

Delay (ns) 33.904 15.114
Power (mW) 198 184

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6950

Figure 16 : Comparisons Analysis Of High Quality Color
De-Mosaicking VLSI Design - Image Size 256x256

Figure 17 : Synthesize Result Of Proposed Color De-Mosaicking Method With Using Carry Skip Adder

Figure 18 : Delay report of Proposed Color De-mosaicking method with using Carry skip Adder

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6951

Figure 19 : RTL Schematic of Proposed Color De-mosaicking method with using Carry skip Adder

Figure 20 : Simulation result of Proposed Color De-mosaicking method with using Carry Skip Adder

4. CONCLUSION

 The purpose of this study is to accomplish the
goal of reducing the hardware logic size as well as
the power consumptions of the color de-mosaicking
approach while maintaining a low cost and good
performance in image processing applications. The
previous approach of a color filter array will occupy
more logic size in VLSI System design due to large
number of arithmetic operations. With the proposed
color filter array architecture of hardware sharing
machines, boundary mirror machines, and boundary

detectors with register banks, this approach for color
interpolation will reduced a number of arithmetic
operations pertaining to the filtering of all sets of
image resolutions. Here, the approach that is being
proposed would incorporate a linear deviation based
color interpolation methodology using a carry skip
adder as instead of an traditional ripple carry adder.
This work was produced on a Xilinx FPGA with a
model number of XC6SLX150-2CSG484 and an
operational clock frequency of 200 MHz. As a result,
the performance of the area (Slice registers, LUT,
and IOB), latency, and power was proven.

Journal of Theoretical and Applied Information Technology

15th September 2023. Vol.101. No 17
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6952

REFERENCES

[1] Shih-Lun Chen, Huan-Rui Chang, IEEE
Member, Fully Pipelined Low Cost and High
Quality Color De-mosaicking VLSI Design for
Real Time Video Applications, 2015, IEEE
Transactions on Circuit and Systems-II.

[2] Milad Bahadori, Mehdi Kamal, Ali
Afzali-Kusha, Massoud Pedram, IEEE Member,
High Speed and Energy Efficient Carry Skip
Adder Operating Under a Wide Range of
Supply Voltage Levels, 2015 IEEE
Transactions on Very Large Scale Integration
systems.

[3] K.Chirca et al,. "A Static low power high
performance 32-bit carry skip adder," in Proc.
Euromicro Symp, Digit, Syst, Design (DSD),
Aug/Sep. 2004, pp. 615-619.

[4] M. Alioto and G. Palumbo, "A Simple strategy
for optimized design of one-level carry skip
adders," IEEE Trans, Circuits Syst. I, Fundam,
Theory Appl,. Vol. 50, no.1, pp. 141-148, Jan
2003.

[5] Z. Wang, A. Bovik, H. Sheikh, and E.
Simoncelli, “Image quality assessment: From
error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp.
600–612, Apr. 2004.

[6] S. L. Chen and E. D. Ma, “VLSI Implementation
of an Adaptive EdgeEnhanced Color
Interpolation Processor for Real-Time Video
Applications,” IEEE Transaction on Circuits
and Systems for Video Technology, 2014.
(Accepted).

[7] Y. H. Shiau, P. Y. Chen, and C. W. Chang, “An
area-efficient color de-mosaicking scheme for
VLSI architecture,” International Journal of
Innovative Computing, Information and
Control, Vol.7, No.4, pp.1739- 1752, Apr.
2011.

[8] S. C. Hsia, M. H. Chen, and P. S. Tsai, “VLSI
implementation of lowpower high-quality color
interpolation processor for CCD camera,” IEEE
Transaction on Very Large Scale Integration
(VLSI) Systems, Vol. 14, no. 4, pp. 361-369,
Apr. 2006.

[9] C. Hu, L. Cheng, and Y. M. Lu, “Graph-based
regularization for color image de-mosaicking,”
in Proc. IEEE Int. Conf. Image Processing
(ICIP), Oct. 2012, pp. 2769–2772.

[10] X. Chen, G. Jeon, and J. Jeong, “Voting-based
directional interpolation method and its
application to still color image demosaicking,”

IEEE Transaction on Circuits and Systems for
Video Technology, vol. 24, no. 2, pp. 255-262,
Feb. 2014.

[11] K. L. Chung, W. J. Yang, W. M. Yan, and C. C.
Wang, “Demosaicing of Color Filter Array
Captured Images Using Gradient Edge
Detection Masks and Adaptive
Heterogeneity-Projection,” IEEE Trans. Image
Processing, vol. 17, no. 12, pp. 2356–2367,
Dec. 2008.

[12] D. Harris and I. Sutherland, “Logical effort of
carry propagate adders,” Proceedings of the
Thirty-Seventh Asilomar Conference on
Signals, Systems and Computers, vol. 1, pp.
873-878, November, 2003.

[13] V. Kantabutra, “Accelerated two-level
carry-skip addersa type of very fast adders,”
IEEE Transactions on Computers, vol. 42, no.
11, pp. 1389-1393, November 1993.

[14] P. Chan, M. Schlag, C. Thomborson, and V.
Oklobdzija, “Delay optimization of carry-skip
adders and block carry-lookahead adders using
multidimensional dynamic programming,”
IEEE Transactions on Computers, vol. 41, no. 8,
pp. 920-930, August 1992.

[15] S. Turrini, “Optimum group distribution in
carry-skip adders,” in Proceedings of the 9th
IEEE Symposium on Computer Arithmetic, pp.
96–103, September, 1989.

[16] M. Alioto and G. Palumbo, “A simple strategy
for optimized design of one-level carry-skip
adders,’’ IEEE Transactions on Circuits and
Systems I: Fundamental Theory and
Applications, vol. 50, no. 1, pp. 141-148,
January 2003.

[17] V. G. Oklobdzija, B. R. Zeydel, H. Dao, S.
Mathew, and R. Krishnamurthy, “Energy-delay
estimation technique for high-performance
microprocessor VLSI adders,’’ Proceedings of
the 16th IEEE Symposium on Computer
Arithmetic, pp. 272-279, June 2003.

[18] C. Nagendra, M. J. Irwin, and R. M. Owens,
“Area-timepower tradeoffs in parallel adders,’’
IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 53,
no. 10, pp. 689-702, October 1996.

[19] I Koren, Computer Arithmetic Algorithms, 2nd
edition A. K. Peters, Ltd., Natick, MA, 2002.

[20] K. Uming , T. Balsara, and W. Lee, “Low-power
design techniques for high-performance CMOS
adders,’’ IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 3, no. 2,
pp. 327-333, June 1995.

