Journal of Theoretical and Applied Information Technology

8g
15 September 2023. Vol.101. No 17 AT

ATIT
© 2023 Little Lion Scientific

ISSN: 1992-8645 E-ISSN: 1817-3195

Www.jatit.org

AN IMPROVED VLSI ARCHITECTURE FOR CFA
INTERPOLATION USING CARRY SKIP ADDER

CHATLA RAJA RAO*' AND DR. SOUMITRA KUMAR MANDAL"?

Dy. Director, Board of Practical Training (Eastern Region), Salt Lake City, Sector-I, Kolkata, India, *
2Professor, Department of Electrical Engineering, National Institute of Technical Teacher’s Training and
Research, Kolkata, West Bengal, India.

E-mail: 'c.rajarao@gmail.com, 'crrao@bopter.gov.in, 2skmandal@nittrkol.ac.in,
3mandal_soumitra@yahoo.com .

ABSTRACT

A wider range of digital devices, including as 4G/5G smart phones, digital cameras, digital notebooks, and
consumer electrical items, will be able to function properly thanks to this Application of Color filter array. As
a result, a linear deviation compensation approach that boosts correlation between interpolated and
neighboring pixels is recommended to be used to this color filter array in an effort to enhance the performance
of the reconstructed images with perfection. By prioritizing green in the color interpolation process and using
a hardware-sharing methodology, we may enhance the image's resolution on both sides. Therefore, larger
space in arithmetic operations and higher gate counts on VLSI architecture will be needed for the hardware
sharing approach of red, green, and blue interpolation. In order to cut down on space, time, and energy
requirements, the project would include a color demosaicking method that makes use of a carry skip adder as
opposed to a standard ripple push adder into all current hardware sharing techniques. In this research,
experiments are conducted using VHDL programming language and the synthesize capabilities of the Xilinx
FPGA XC6SLX150-2CSG484 at a 200 MHz operating clock frequency to create a color demosaicking
approach using a 256x256 pixel images.
Keywords: CSKA (Carry Skip Adder), CFA (Color Filter Array), Boundary detection, Boundary Mirror
Machine, VLSI.
decrease the interpolated missing value and rebuild a

1. INTRODUCTION full-color image while losing just a third of the

Digital communication-based image processing
systems are becoming more important as a result of
their ability to support a wide range of electronic
devices and consumer goods in the modern digital
environment. This digital image processing task will
have struggled to demonstrate performance with
regards to image resolution, noise aberrations, color
mismatches, color fading, and so on. As a result, the
image color sensor will be used in cutting-edge
machinery to lessen the prevalence of malfunctions
across all electronic devices. Bayer color filter arrays
are the most common kind of array-based color
sensors used in today's electronic devices. Using the
color filter array (CFA) technology, the current
image's color sensors may be made more
cost-effective and memory-efficient, hence reducing
its footprint. The color interpolated method may

information at each set of image boundaries. These
color interpolated techniques of color de-mosaicking
method improved the de-mosaicking performance,
providing high performance and high resolution with
edge oriented filtering strength in all sets of image
boundaries. Support for stochastic estimates on
image interpolation and adjustable resolution on a
color filter array are features of the proposed
demosaicking technique. Similarly, gradient edge
detections based on heterogeneity projection on the
color filter array will be used to supplement the edge
detection on demosaicking technique. Therefore, the
proposed CFA will improve the interpolation
algorithm with high quality real time video
applications [1] by avoiding artefacts in all the image
boundaries with zipper effect, color spots, image
blurring, and demoralized to missing interpolations.

6943

Journal of Theoretical and Applied Information Technology

2
15t September 2023. Vol.101. No 17 A

© 2023 Little Lion Scientific

ISSN: 1992-8645

Www.jatit.org

E-ISSN: 1817-3195

When it comes to digital image processing, image
filtering is at the top of the list. This is because it
ensures that high-resolution images may be sent and
received by all digital devices, including H.254,
H.256, HDTV, Smart Phones, LED Projectors, and
so on. Due to the matrix-based nature of the image
processing, different hardware requirements will
apply to images of different resolutions (32x32
pixels, 64x64 pixels, 1024x1024, and HEVC-based
4096x2048 pixels, respectively), with memory and
arithmetic operations also playing a role. This study
proposes developing a hardware-oriented
de-mosaicking interpolated technique using a color
filter array. Because of the increased need for basic
operations like shifting, addition, and subtraction,
the VLSI implementation of this concept for color
de-mosaicking will need additional chip space.
Existing methods will make an attempt in pipelined
design, adaptive edge improvement, and an
anisotropic weighting model to deal with this
increased area complexity, but their findings will not

be relevant to efficient performance. Therefore, the
suggested technique will focus on area reduction by
using arithmetic operations in a color de-mosaicking
algorithm with fewer logic gates, garbage signals,
memory logic components, and power consumptions
[2]. In this specific situation, the suggested color
de-mosaicking architecture would make use of three
distinct hardware sharing machines for performing
arithmetic operations on input colors. As a result, the
carry skip adder, a high-speed and efficient adds
technique, will be used in place of more traditional
full adders in this proposed work.

This study proposes a digital image filtering
technique for color de-mosaicking utilizing a carry
skip adder, which is designed in VHDL languages
and synthesized in FPGA implementations for a 256
x 256-pixel image. The suggested work aims to
minimize the area, latency, and power consumptions
[3, 4] caused by the FPGA's logic gates.

By . Bymas Byiz+m2 . Bmia By By
Ay Avmai Avt+m2 Awis1 Am
Pr-mast [Puta f P1
{ \
P+
Pm
’
- - -
Y N 4 Yy "0 yYY "N
= ' Mybit RCA ‘—I = ' M,bit RCA T = [M_-bit RCA
@ o ¢!
v \j v A\ \
Co Sn Shmast NYRY) Syt S S ‘
\ [|
‘ Stage Q ‘ ‘ Stage2 ‘ Stagel ‘

Figure 1 : Architecture of Conventional Structure of the Carry Skip Adder

This study's Section II will demonstrate how a carry
skip adder operates with various bit sizes. While
Section III will provide a concise summary of a
suggested color de-mosaicking technique that makes
use of such additions. High-quality image results will
be shows once Section IV integrates a color
de-mosaicking technique into an FPGA
implementation. In Section V, we'll show how we
plan to improve upon and wrap up this effort.

2.MULTI-BIT OPERATIONS OF CARRY
SKIP ADDER

An arithmetic logic unit is the most important
component of a digital image processing
programmer. Because mathematical operations like
as addition, subtraction, and multiplication are
performed on images' pixels, higher resolutions are
necessary. Power and energy consumption for
arithmetic operations will increase in digital image
processing; this is because the number of additions

6944

Journal of Theoretical and Applied Information Technology

2
15t September 2023. Vol.101. No 17 A

© 2023 Little Lion Scientific

ISSN: 1992-8645

Www.jatit.org

E-ISSN: 1817-3195

will serve as a multiplication and the number of
subtraction operations will serve as a division. There
are many different types of conventional adders that
can optimize area and power usage in arithmetic
operations, a number of carry adders, including the
“l. Ripple carry adder, 2. Carry choose adder, 3.
Carry increment adder, 4. Manchester carry chain
adder, 5. Conditional sum, and 6. Parallel prefix
adder”. However, the carry skip adder also performs
more quickly while performing arithmetic
operations. Figure 1 shows the typical carry skip
adder structure, which is based on RCA blocks that
contain a series of complete adders and has an N-bit
size. However, the operation speed and delay of this
architecture based on multiplexers will be improved,
resulting in a smaller number of critical path delays
and a higher maximum operating speed. The
multiplexer's output choice is determined by the
input and carry logic, as well as any additional XOR
& AND gate structure operations. This RCA block
has a series of full-wave conventional cascaded
amplifiers, adders, having inputs A and B that are

AND¢q finally and given a input of multiplexer
selection process. This multiplexer will select skip
operation which based on carry generation C% to
Cl%.

3. PROPOSED COLOR DE-MOSAICKING
ALGORITHM WITH CARRY SKIP ADDER

We recommend utilizing a unique linear deviation
approach that compensates for and quickly
interpolates using green interpolation, as well as a to
produce use a boundary detectors and a boundary
mirror device to demonstrate an icing process in
color. The suggested color de-mosaicking method is
shows in a block diagram form in Fig. 2. After the
CFA (Color Filter Array Pixel) is processed, the
boundary mirror machine and the boundary detector
receive it, which together detect the boundary
information and separate it into red, blue, and green
interpolated pixels (RB' and G', respectively) using
the linear deviation compensation method.

multi-bit in size (from Al to AN and BN,
M . CFA Pixels Boundary
respectively) and producing S1 to SN as outputs. In Detector
Mirror Pixel:
this procedure, after A and B inputs are provided, Red Blue Color |5
they are combined in the RCA block, and a selection I s r
signal is generated by the EXOR gate operations | .
. . . Boundary Green Color
according to the following equation (1). Mirror Machi > interpolati
Pi:(Ai@Bi) (1) . . o
Figure 2 : Architecture of Color Demosaicking
. . . interpolation
where, the P; represent the propagation signal which p
generated from Ai xor Biand all the P;_, bit will
WR ADDR—] [—RP DATA— & -NTsH1—p]
Input ::::I_t Register Bank | "] Hardware
——wWRDATA— Mem. ory 1 — Sharing 1 ——G - INT-SH1— |
—»
rr— s::;f:;os oy |—a-nrsi—p]
[-o—wr ci—p] Mirror Signal————— | Mirror
§ Machine
{{—gr0 cL—p i Register
N — N Bank 2
—
Control Boundary Hardyvare e
Buffer Detector BhalineR2 —8-wTsHz—p|
{¢—ro DATA—| [——WR ADDR———
{—— WrDATA
Output >
Memory G-Dash
Buffer |4——RED Pixel. > <
Spa1o6608 [¢—————— BLUE Pixel————— Control Hardware
|4————— GREEN Pixek—————— Unit < Sharing 3
|¢——RB (BR) G
|«——RB (G) BR———

Figure 3: Color De-mosaicking Top module architecture

6945

Journal of Theoretical and Applied Information Technology

8g
15 September 2023. Vol.101. No 17 ATIT

© 2023 Little Lion Scientific

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

The proposed color de-mosaicking design in VLSI
is seen in Fig. 3. The input images will be processed
in MATLAB, and the architecture's input will come
from Buffer Memory 19660x8. In the first stage, a
256x256 image is imported into the MATLAB GUI
for conversion. Hexadecimal format, these
hexadecimal values will be put into memory, and the
total number of pixels will be 65536 [5] times 3, as
required by the image size of 256 by 256. The input
and output buffer memory is 196608 x 8 bit since
each pixel has three values—red, green, and blue.
The control buffer's next-highest-priority block
handles each individual pixel by retrieving its value
from the input buffer's memory at each successive
address increment and passing it on to other blocks
like the register bank 1, the boundary mirror, the
boundary detector, control unit, register bank 2,
hardware sharing 1, hardware sharing 2, and
hardware sharing 3. Consequently, by substituting a
shifter for multipliers and divisions, we may
drastically lower the hardware cost of this design.
This color de-mosaicking algorithm begins with a
register bank 1 composed of sixteen shift registers
that supply sixteen samples of CFA pixels to the
image boundary mirror machine. Simultaneously, a
boundary detector determines the coordinates of i
and j values using the Bayer color filter array, which
has 64 blocks and 24 bits per block (8 bits each for
red, green, and blue) (see Fig. 4).

Figure 4 : Pixel Identification with Bayer CFA

Here green color pixels will have been used on the
green
interpolation as an equation shows in below (1).
More information on the vertical as well as
horizontal scaling will be included in the pixel
reading, but the order, here the green interpolation
avoiding different rows, and its update the results on
G' which captures CFA pixels from horizontal

directions. A method of green interpolation equation
will have given on (2) and pixel based reference will
have given on Fig.5, [6].

. . 1 1
Gy=5(Gryr+C)+ 5 RB, — (RB 1, +RE) (2)
G(i+1,j-1) | G(i+1,j) | G(i+1,j+1)

G(i,j-1) G(i,j) G(i,j+1)
G(i-1,j-1) | G(i-1,j) | G(i-1,j+1)

Figure 5 : Method of Green Interpolation

By using the same green interpolation technique
utilized in the previously described method, we
could improve the red and blue color interpolation
that is offered inside the structure of the more
traditional bilinear method. Furthermore, the red and
blue interpolation approach will apply a unique
linear deviation compensation methodology to
rebuild the CFA pixels with a sum of the surrounding
green color pixels, so make up for the interpolation
of the red and blue. Equation (3) shows the
interpolation of red and blue. With four average CFA
pixels compensating for the interpolation of green
color [7]. As illustrated in Fig.5, the linear deviation
of the green interpolation will fall within a range of
eight values, and the suggested linear compensation
odology will be used to improve the red and
interpolations' quality.

e _ 1
RB;," = - (RB;+RB_,;,,+RB, ;, +RB, ;,)

g (B
+G ij _g [(G i-1,j-1 +G i, j+ +G';'+Lj—l +Gr‘+!,j+4)

+(G'4,;4G; j4 +G, jy + Gy ;)]

According to the linear deviation compensation
method, the solution to equation (4) will be shows in
green, with red and blue interpolation along the
vertical axis. Using equations (3) and (4), we may
interpolate in both the horizontal and vertical
directions, improving image quality while decreasing
hardware costs.

6946

3)

Journal of Theoretical and Applied Information Technology

2
15t September 2023. Vol.101. No 17 iA

© 2023 Little Lion Scientific

ISSN: 1992-8645

Www.jatit.org

E-ISSN: 1817-3195

1 | . :
RBIE_?ER = E (R-Bs—l.j + RBM_;‘) L G."__j _g G i-1.j +G, e (€))]

Gls_j+1 +Gy J)+ (G."—l_j—l A G.Ll_j+1 + G.'Lrl_j—l + Gm_;‘ﬂ)]

By employing the linear deviation compensation
approach, the final equation of CFA color
interpolation is presented in equation (4), which will
provide a high-quality, low-complexity color
de-mosaicking process. Equation (3) provides access
to data on the eight values of G' in close proximity to
the given value. These values were calculated using
equations (4) and (5).

RBO*=L(rg ., +RB 416, -1(G,,4+G 0 O
W 2 W 2/ 2 £y 4 o W

The linear deviation based color interpolation
technique will apply in VLSI architecture with
different sub module as per the supporting equation
(2), (3), (4), (5). As per this equation a hardware
sharing machine 1 will It will appear in Fig. 7 if you
obtain the values G'(i-1,j), G'(i+1,j-1), and
G'(i+1,j+1). Machine 1 in this equipment sharing
will have three carry skip adders. 1 sub tractors and 6
multiplexers. Additionally, it has three pipelined
registers due to reducing the critical path delay and
also reduced the hardware cost. The input of “M;;
will be differ on each input multiplexer which point
out CFA pixel points as per the boundary
configuration, in Fig.7 will shows the hardware
sharing pixel point and the format will obtain the
inputs on Mi.1j-1), M+, M+1j2), M-1j+2), M),
Mi-1j), M1y, Mg, Ma1j2), M1y, Mg s),
M(i.1,j.3), M(i.1,j+2), M(i+1,j+3), M(i+1,j+1). The output of
Hardware sharing M1 will generate G'¢.1j - Green
interpolation, G'G+1,.1) - Red interpolation, G'g+1j+1) -
Blue interpolation”.

Figure 6 : VLSI Architecture of the Hardware
Sharing M1 with using Carry Skip Adder

M(i+3,j-3) | M(i+3,j-2) | M(i+3,j-1)| M(i+3,j) | M(i+3,j+1)] M(i+3,j+2)] M(i+3,j+3)

M(i+4,j+4)

M(i+2,j-3) | M(i+2,j-2) | M(i+2,j-1)| M(i+2,j) | M(i+2,j+1)] M(i+2,j+2)] M(i+2,j+2)

M(i+2,j+4)

M(i+1,j-3) | M(i+1,j-2) | M(i+1,j-1) | M(i+1,j) |M(i+1,j+1)] M(i+1,j+2)| M(i+1,j+3)

M(i+1,j+4)

M(i,j-3) | M(i,j-2) | M(ij-1) M(i,j) M(i,j+1) | M(i,j+2) | M(i,j+3)

M(i,j+4)

M(i-1,j-3) | M(i-1,j-2) | M(i-1,j-1) | M(i-1,j) [M(i-1,j+1) | M(i-1,j+2) | M(i-1,j+3)

M(i-1,j+4)

M(i-2,j-3) | M(i-2,j-2) | M(i-2,j-1) | M(i-2,j) | M(i-2,j+1) | M(i-2,j+2) | M(i-2,j+3)

M(i-2,j+4)

M(i-3,j-3) | M(i-3,j-2) | M(i-3,-1) | M(i-3,i) | M(i-3,j+1) | M(i-3,j+2) | M(i-3,j+3)

M(i-3,j+4)

M(i-4,j-4) | M(i-4,j-2) | M(i-4,j-1) | M(i-4,j) | M(i-4,j+1) | M(i-4,j+2) | M(i-4,j+3)

M(i-4,j+4)

Figure 7 : Hardware Sharing M1 pixel points

In the Fig.8 architecture will shows the hardware
sharing machine 2, Equations (2) and (5) can be used
to realize the results of the calculation, which are
G'(ij+1) - Green interpolation and RB',j(G)RB. In
the architecture it's having three adders, two
sub-tractors and one multiplexer. The three
pipelining registers will be reducing the critical path
delay's. The input of CFA pixel point in the hardware
sharing M2 will shows in Fig.9, Five input pixel
points, M(i,j-1), M(i,j+1), M(i,j), M(i,j-2), M(i,j+2,
are available.

{i} I /l/

] { Carry Ski o=t Carry Ski >>2 Gﬂié)’“
Mg ‘adder ‘ F,‘ Adder Subtractor RB Gy
My <1
MU,I-?J "
P i
Figure 8 : VLSI Architecture of the Hardware
Sharing M2 with Carry Skip Adder
M(i+3,j-3) | M(i+3,j-2) | M(i+3,j-1) [M(i+3,j)) |M(i+3,j+1)| M(i+3,j+2)] M(i+3,j+3)| M(i+4,j+4)
M(i+2,j-3) | M(i+2,j-2) | M(i+2,j-1) [M(i+2,j) |M(i+2,j+1)| M(i+2,j+2)[M(i+2,j+2)| M(i+2 j+4)
M(i+1,j-3) | M(i+1,j-2) | M(i+1,j-1) [M(i+1,j) |M(i+1,j+1)| M(i+1,j+2)[M(i+1,j+3)| M(i+1,j+4)
M(i3) | M(ij2) | MG,i-1) | M) | MG,i+1) | MG,i+2) | Miii#3) | Miij+4)
M(i-1,j-3) | M(i-1,j-2) | M(i-1,j-1) | M(i-1,j) | M(i-1,j+1) [M(i-1,j+2) | M(i-1,j+3) | M(i-1,j+4)
M(i-2,-3) | M(i-2,i-2) | M(i-2,-1) | M(2,i) | Mli-2,i+1) [M(i-2,i+2) | M(i-2,+3) | M(i-2,i+4)
M(i-3,j-3) | M(i-3,j-2) | M(i-3,j-1) | M(i-3,j)) | M(i-3,j+1) [M(i-3,j+2) | M(i-3,j+3) | M(i-3,j+4)
M(i-4,-4) | M(i-4,i-2) | M(i-4,i-1) | M(i-4,i) | M(i-4,i+1) | M(i-4,i+2) | M(i-4,i+3) | M(-4,j+4)

Figure 9 : Hardware Sharing M2 pixel points

In the Fig.10 architecture will shows the hardware
sharing machine 3, it will calculate RB';jB¥ - Green
interpolation, and RBY;©BR Blue and Red
interpolation, and it can realize by the equation (3)
and (4). Its consists of five pipelined registers to
avoid critical path and eleven carry skip adder, a
sub-tractors and three shifters. This Hardware
sharing M3 method will capture green interpolation
pixels from the CFA inputs, with the help of
boundary mirror machine and G' from register bank 2
[1]. The input of CFA pixel point in the hardware
sharing M3 will shows in Fig.11, it's having twenty

6947

Journal of Theoretical and Applied Information Technology

2
15t September 2023. Vol.101. No 17 iA

© 2023 Little Lion Scientific

ISSN: 1992-8645

Www.jatit.org

E-ISSN: 1817-3195

SiX pixel point such as “M(i.l,j+2), M(i.1,j+3), M(i.1J+4),
Mi-13+3), Mt M+j+3), Misgray, M), Glgy,
Miij3), Mi-143), Mii1j+2), Mj+2), M4y, M),

read out and converted into hex format. Finally, the
MATLAB GUI will have shown the output of input
image and output image with PSNR comparisons,

thus, one of 256 x 256 Akiyo image result analysis
will shows Fig.14. Its contain two image left image is
input it will take PSNR 44.0693, and right side image

Mit15+2), Mr1j3), MaLiray, Gla-1g-1, Gty Gltgins
G'i-1), Gliv g1y, Gy Glirtjrny, Glivt),

Vi s MG D Mia] Meesg MM Mims s varagea] 1S output 1t will take PSNR 44.1796 [10].
M(i+2,j-3) | M(i+2,j-2) | M(i+2,j-1) | M(i+2,j) [M(i+2,j+1)] M(i+2,j+2)| M(i+2,j+3) M(i+2,j+4)
M(i+1,j-3) [M(i+1,j-2) [M(i+1,-2) [M(i+1,) [M(i+1,j+1)]M(i+1,i+2) | M(i+1,i+3) [M(i+1,j+4)
M(i,j-3) | M(i,j-2) | M(ij-1) M(i,j) M(i,j+1) M(,i+3) | M(,j+4) S NS At RSSO SRR PR ;
M(i-1,j-3) | M(i-1,j-2) | M(i-1,i-1) | M(i-1,j) | M(i-L,j+1) [M(i-1,j+2) | M(i-1,j+3) | M(i-1,j+4) | loeer S g i
M(i-2,j-3) | M(i-2,j-2) | M(i-2,j-1) | M(i-2,j) | M(i-2,j+1) | M(i-2,j+2) | M(i-2,j+3) [M(i-2,j+4) | r—1{ij}
M(i-3,-3) | M(-3,i-2) [MG-3,-1) | MG-3,) | MG-3,+1) | M(i-3,i+2) [M(i-3,i+3) | M(i-3,+4) I R —
M(i-4,j-4) | M(i-4,i-2) [M(i-4,i-1) | M(i-4,) | M(i-4,i+1) | M(i-4,j+2) | M(i-4,j+3) | M(i-4,j+4) | .eg. Reg | e
| G (i-1j-1) Gl I |I .
. . . . | |
Figure 10 : Hardware Sharing M3 pixel points | |
! I
! I
] Reg Reg Reg | Gli,l+1}“n
) G i) Gij) G {i,j+1) [RBy G}
! I
: : RED £ BLUE Intaraalatian
' I
| Reg KT
I Gli+Lj-1) [1
) | 6w}
) 1
' I

Figure 12 : VLSI Architecture of the register bank 2

M(i+3,j-3) [M(i+3,-2) | M(i+3,j-1) | M(i+3,) [M(i+3,j+1) [M(i4+3,j+2)| M(i43,j+3) | M(i+4,j+4)
M(i+2,-3) [M(i+2,-2) | M(i+2,j-1) | M(i+2,j) [M{i+2,j+1) [M(i+2,}+2)| M(i+2,j+3) | M(i+2,j+4)
M(i+1,-3) [M(i+1,-2) | G(i+1,-1) | G(i+Lj) [G(i+1,j+1) [M(i+1,j+2)| M(i+1,j+3) | M(i+1,j+4)
M(ij-3) | M(ij-2) | Glij-1) Gl(i,)) Glijt1) | M(i,j+2) | M(ij+3) | M(ij+4)
M(i-1,j-3) | M(i-1,j-2) | Gi-Lj-1) | G(i-1,j) | G(i-1,j+1) | M(i-1,j+2) | M(i-L,j+3) [M(i-1,j+4)
M(i-2,j-3) | M(i-2,j-2) [M(i-2,j-1) | M(i-2,)) | M(i-2,j+1) | M(i-2,j+2) | M(i-2,j+3) [M(i-2,j+4)
. . . M(i-3,j-3) | M(i-3,j-2) [M(i-3,j-1) | M(i-3,)) | M(i-3,j+1)| M(i-3,j+2) | M(i-3,j+3) [M(i-3,j+4)
Figur eslié}m?fjf»i ft];l’tézt;‘r; e;,g;hj CZZ; dware M(4,14) | M(4,2) | M40 | M(4,) |00 MG 2) | M4 543) [Mi2,+4)
In the Fig.12 architecture will shows CFA Pixel Figure 13: Register Bank Pixel point values
register bank 2, it will calculate G' value from the EFEETTETTETTTTTTsTTsTTTTTETTETTTE ==
input of “G'(i-1,j), RB'(G)RB form Hardware FPGA Imp oD ing VLSI Design
sharing M2, G'(i-1,j), G'(i+1,j-1), G'(i+1,j+1)” from Sengcany.SKpaceer
44.0693 441796

Hardware sharing M1. This Register bank will
pipeline the interpolation value and give it to G'
output as per the boundary detector position changes,
those positioning pixel point values are given in
Fig.13 [8], [11], [12]. In this register bank will
contain six registers and it's having three level upper,
middle and lower, the upper part will consider green
interpolation, middle and lower part will consider
red and blue interpolation from hardware sharing
machine M1 and M2. Finally, the control unit and
control buffer block, will arranging all the CFA pixel
point positions (i,j) and stored into the output block
memory buffer 8x196608 [9]. Once the output
memory block filled out, the output image data will

BROWSE HEX File

BROWSE IMAGE

Figure 14 : 256X256 Image result analysis on
MATLAB with PSNR

e
6948

Journal of Theoretical and Applied Information Technology

2
15t September 2023. Vol.101. No 17 iA

© 2023 Little Lion Scientific

ISSN: 1992-8645

Www.jatit.org

E-ISSN: 1817-3195

3. FPGA RESULTS AND
IMPLEMENTATIONS

In this paper, we offer a high-quality color
de-mosaicking technique that makes use of a carry
skip adder to cut down on hardware expenses in
digital image processing software. This construction
of a color filter array is supported in the simulation
process by the MATLAB distribution, which allows
for the conversion of images to and from
hexadecimal notation as well as the inspection of
PSNR and SSIM values [13], [14]. Initial steps
included implementing a high-quality color
de-mosaicking algorithm using an 8x8 image size
and two adders, both a carry skip adder and a typical
RCA (ripple carry adder). This 8x8 image size will
yield better results using the proposed method of
carry skip adder implementation, so the numbers in
Table.1 will be updated to reflect the latest values for
things like slice register count (497 vs. 579), look-up
table count (343 vs. 516), and delay performance
(3.617ns vs. 3.617 ns) [15] for both the conventional
and proposed implementations of the 8x8 image.

Table 1: Comparison Table Of High Quality Color DE
Mosaicking VLSI Design - Image Size 8x8

High Quality Color DE mosaicking
VLSI Design
CFA - CFA- Carry
Conventional Skip Adder
Adder
Image Size 8x8 8x8
Slice Register 579 497
LUT 516 343
10B 52 52
Delay (ns) 4.027 3.617
Power (mW) 361 353

600 -

500 -

400 -

300 -+

200 -

100 A

M Slice Register
mLUT
0B

W Delay (ns)

m Power (mW)

CFA- Conventional
Adder

CFA- Carry Skip Adder

High Quality Color Demosaicking VLSI Design

Figure 15 : Comparisons Analysis Of High Quality Color
DE Mosaicking VLSI Design - Image Size 8 X 8

Following that, the work that is presented for this
study will show a high grade color demosaicking
approach that makes use of a 256 x 256 picture size
using a multi bit carry skip adder method. According
to this, the design was created using the VHDL
programming language; the simulation was run in
Modelsim 6.5b; and the results of the simulation
were synthesized on Xilinx 14.2 by using an FPGA
with the model number XC6LX150-2CSG484. In
conclusion, the work that was presented
demonstrated a satisfactory performance in terms of
area (slice register, LUT), IOB (Input output block),
latency, and power. On Table.2 you'll find an
updated version of the comparison table with
high-quality 256 x 256 color demosaicking designs.
It will take 679, and the LUT will take 758, and the
delay will take 15.114 nanoseconds, and the power
will take 184 milliwatts. This will demonstrate that
the number of slices register will decrease in the CFA
- Carry skip adder architecture. The results of the
analysis will be shows in Fig.16 for these
comparisons. The RTL schematic of the 256 x 256
CFA demosaicking technique will be given in Figure
19, and the simulation results will be given in Figure
20. For synthesizing result analysis of 256 x 256
image sizes using carry skip adder method will
provide in Fig.17, and Fig.18 will updated with delay
report.

Table 2 : Comparison Table Of High Quality Color
De-Mosaicking VLSI Design - Image Size 256 X 256

High Quality Color De-mosaicking VLSI
Design 256 x256
CFA - CFA - Carry
Conventional Skip Adder
Adder
PSNR 44.0693 44.1796
Slice Register 689 679
LUT 754 758
10B 82 82
Delay (ns) 33.904 15.114
Power (mW) 198 184

6949

Journal of Theoretical and Applied Information Technology

15t September 2023. Vol.101. No 17 AT
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

800 7
700 o
600 o
500 o
400 o
300 + mLUT
200 A

 Slice Register

m10B
100
0 = Delay (ns)
CFA- Conventional CFA- Carry Skip Adder m Power (MW}

Adder

High Quality Color Demosaicking VLSI Design
256 x256

Figure 16 : Comparisons Analysis Of High Quality Color
De-Mosaicking VLSI Design - Image Size 256x256

i File Edit View Project Source Process Jools Window Layout Help. [=I=1x]
D2 dd XBbXx[wal| JArEpRAE] SR v\»gflﬁ
[Design “Oex £ Design Overview — - =
view: © mulation @ & Summary 7 = A3zt 1=
[oo) [2) 108 Properties Project File: PAR xise Parser Errors: Mo Errors
&l H'E’;"‘Y &= =4 E _’\rﬂodu\E[LE\rE\ Utilization De _256x256 tion State: Placed and Routed
i 5] iming Constraints =
&2 O i el o [Pioit Reoort Target Device: xc6ebe 150 259464 Errors: o Errors |
& [D 2563256 - rtl (D: _256x256.vhd] [E) Clock Report Product Version: ISE 14.2 = Warnings: 368 Warninas (2 new) b
=i [a] Input_Buffer - Memory_Buffer 8x196608 - mem (Memory_Buffer || L @ Static Timing Py m—— - Routing Resulte: e o
& [Output_Buffer - Memory. Buffer_8x196608 - mem (Memory_Buffq Errors and Warnings = = Al sianals Complesel Bouted
Fa] <_buff - control_buffer - ril (control_buffervhd) 8 [2 Parser Messages Design Strategy: xiliny: Default (unlocked) * Timing Ce All Constraints Met
[1 - Register_Bankl - rtl (Register_Bankl.vhd) Iy [@ Synthesis Messages £ i System Settings = Final Timi 0 (Timing Report)
=3} [€2 - Register_Bank2 - rtl (Register_Bank2.vhd) il == [E Translation Messages
= [€6 - Boundary_detector - rit (Boundary_detectorvhd) [E] Map Messages
e 4 <7 - Boundary_Mirror_Machine - rtl (Boundary_Mirror_Machine.y [£] Place and Route Messages - I =
@[€3 - Hardware_sharingl - rtl (Hardware_sharingl.vhd) - [Timing Messages. — ~ —
i =) : - O Bitgen Messages Slice Logic Utilization Used |Available |Utilization |Wote(s)
[2 Alllmplementation Messages Number of Siice Registers 153 184,304 1%
B | 82 Mo Processes Running Dﬂgdsﬁjﬁgs e Number used as Fip Flops 284
Y | Processes: Demosaicking_256x256 - rtl F= [2 Translstion Report Number used as Latches 395
2o} Design Summary/Reports 2 Map Report B Number used as Latch-thrus o
- Design Utilities [Z] Place and Route Report -
%= User Constraints [Z] Post-PAR Static Timing Report Plamber: used o= ARDIOR logics 9
= [Create Timing Constraints A (] PowerRepart - | | [Number o slice LUTs 758 92,152 1%
! : 10 Pin Planning (PlanAhead) - Pre-Synthesis = v T—— T —= o o
& /O Pin Planning (PlanAhead) - Post-Synthesis 9 P
[@ Floorplan Area/10/Logic (PlanAhead) e tEI fD able; M:mse F"'E”"f . Number using 06 output only 462
Synthesize - XST Eianal e SemimayContents iumber using O5 output on
= E‘} e '] Show Clock Report Numbs g O5 output only &0
View Technelogy Schematic W - [[] Show Failing Constraints Number using 05 and 06 217
& crecksymar 1B Show Warnings Number used 22 ROM o
B ow Errors
-SSR P Syine Smalatn Mok = Namioer ueed == Memory = 21650 o
mplement Design
= GA e Number used 2s Dual Port RAM o
() Number used as Single Port RAM o
=T Fiote & route i Number used 2s Shift Register Fe) =
te Post Dlace & Route Static Ti
o Start | B3 pesign | Fies [[y Libraries = Design Summary 8|
Console +O&8 x
INFO:HDLCompiler:1061 — Parsing VEDL file "E:/Nxfese RIL 2015/D: icking/Simulace D icking_with carry skip_adder/Simulace 256x256_modified/pkg_cfa.vhd" into library cfa -
INFO:HDLCompiler:1061 — Parsing VEDL file "E:/Nxfee RTL_2015/D: icking/Simulace D xing_with carry skip adder/Simulace 256x256 modified/rca.vhd" into library work
3 INFO:ProjectMgmt - Parsing design hi ny compleced 11y.
Launching Design Summary/Report Viewer... pul
< an v/Report =
RN F—— v
[El console |©@ Errors [1) wamings | g6 Findm ries Resuis |

Figure 17 : Synthesize Result Of Proposed Color De-Mosaicking Method With Using Carry Skip Adder

E Project Source Process Jools Window Layout Help [=[=][]
D2 e ADbX[wo| S[[A2AAS = m=eer=s£]Q
[Desion Design Overview ~|[Asvncnronous Contzol Signals Information: B
View: © {8 imulations = [S summacy M
[°) 2 108 Properies No aswncnronous control signals found in This design
&&] | Hierarchy E B Module Level Utilization
© PaR [5) D Timing Constraints Timing Summary:
& £3 xc6sixd50-2eagitd o D Pinout Report
= 2565256 - I D Clock Report Speed Grads: -2
Input_Duffer - Mermary_Duffer 0196608 - mern (Memory_Duffer |=| L & Static Timing
Outpur Bufer Mermory_Buffer 8196608 merm (Memory Buffd | g | £ Errare and Warnings Minimem peried: 15.1ldns (Maximam Fraguency: 65.184Mz)
_buff - control_buffer - i (contral_bufferxhd) D Parcer Meceages L Minimmm impun Arrival Time hefors olock: 7.353ns
el - Register_Bankd - rt (Register_Banklvhd) o8 [2 Synthesis Messages 3 Maximum output required time after clock: 5.831ns
3 - Regicter_Rank? - rt (Regicter_Rank?whd) i [2 Translation Messages Maximum combinacional path delav: 3.583ns
6 - Boundary_detector - rit (Boundary._detectorvhd) [Map Messages
<7 - Boundary Mirror Machine - rtl (Boundary Mirror Machine:v % Place and Route Messages Timing Dectails:
<3 - Hardware sharingl - rtl (Hardware sharingl.vhe) = Timing Messages
20" =] 5 [Bitgen Messages 211 values displayed in nanoseconds (ns)
[E Al Implementation Messages
» | €2 No Processes Running Detailed Reports
= [E] Synthesis Report | || Timing constraint: Default period amalysis for Clock ‘cli’
T | Processes: Demosaicking_256x256 - rtl = [E Iransiation Keport Clock period: 15.1l4ns (freguency: 66.164MHz)
eg| ¢ Design Summary/Reports [E Map Report lotal number of patns / Gestination PoTts: /51876 / 453
=le Design Utilities [2 Place and Route Report
| = User Conslraints. [2) Pusl-PAR Stalic Tirning Repurl p=iay: 15.114us (Levels of Logic — 55)
— 5 Crale Timing Comstisints =— Souzce c6/pus_i_1 (FE)
1 170 Pin Planning (PlanAhead) - Pre-Synthesis = Synthesis Report = Descimacion c2/G_dmsh_z1 (FF)
VO Pin Planning (PlanAhcad) Post Synthesis lﬂn :‘fﬂerg'ft 5 Source Clock: o1k rising =
[@ Floorplan Ares/10/Logic (PlanAhead) S S ey Destinacion Clock: elk zising
Synthesiza - XST arsing
B e HDL Elahortion Pata Pamh: ce/pos_i_1 me a3/G_dasn 21
View Technology Schematic m e L B e “Gate Nec
E) CheckSyntax : bynthece [Repori Cell:in->ouc fanout Delay Delay Logical Name (Net Name)
€2 Generate Post-Synthesis Simulation Model AchancedTDE Synthests
1\, Implement Desian SuAcvanted LR SymthessiKeport FDCE:C->0 73 ©.s25 2.227 c6/pos_i_1 (c6/pos_i_1)
Transiate Low bevelisynthesis LUT3:10-50 5 0.235 0.241 c3/csa 2/bS/rcaz/carzyi3l (c3/csa ~
Partition Report T =
Place & Route =
+ AP R ~| B Find: Delay [=] § Mext [Previous Options.
[& strt| =3 pesion [ries [Ty Lbranes = Design Summary [<]
“oex
11061 - Parsing VADL Lils "E:/Nefw= _RIL_2015/D: = Simalaie_D SCKing_willi_cariy skip_addei/Simulal=_256x256_mudili=d/pRe_cla.vhd" inlo libiacy ofa -~
11061 - Parsing VIDL £ile “E:/Nxfes STL_2015/D: xing/Simulace D fcking with cazzy skip_addes/Simalate 250x250 medifisd/zca.vhd® ints librasy work
Pazoing design ha ny complotad 11
Launcning Design Summary/Report Views=... i
o an v/Rep =l
« i 1 »

Console Erors | 5 Warnings | 28 Find in Files Resuts |

Figure 18 : Delay report of Proposed Color De-mosaicking method with using Carry skip Adder

B —————————————
6950

Journal of Theoretical and Applied Information Technology

8g
15 September 2023. Vol.101. No 17 : =

© 2023 Little Lion Scientific

ISSN: 1992-8645
o

Www.jatit.org

=] Demosaicking 2sex2s6 (RILT)

[460,1840]

Figure 19 : RTL Schematic of Proposed Color De-mosaicking method with using Carry skip Adder

™ ModeiSim ALTERA STARTER EDITION 6.5 - Custom Altera Ve
File Edit View Compile Simulste Add Wave Tools Layout Window Help

|O-zB & sB@O2 ME%E|| 00X gl s 3292

Tamiss [esamn|

[2Lesrz &5
[>im

|gtes FH wosnnn noeduHoe]|QQaan|| N o b

am|wave
Messages
— _256x256

101111111131111111

Y EEELYSEREERY

0101111

00110010

0101111

00101111

001011110010111100101111
1
101111111131111111

0111100701131

0101111

o
001100100010111100101111

o
o
111

111

001100100010111100101111

0101111

00110010

0101111

00101111

00001101

01001100
10000000000 ps.

1566115000 ps.

7864951000 ps

] 3 JET | 4

[ransas it | gm| Wave [Objects | 5 Processes T Gbrary | B Memory [5m |

[Now: 10ms Delta: 2 [Sme/_demosaicing_25ex256

Ons to 10500 us Now: 10ms Delta: 2

Figure 20 : Simulation result of Proposed Color De-mosaicking method with using Carry Skip Adder

4. CONCLUSION

The purpose of this study is to accomplish the
goal of reducing the hardware logic size as well as
the power consumptions of the color de-mosaicking
approach while maintaining a low cost and good
performance in image processing applications. The
previous approach of a color filter array will occupy
more logic size in VLSI System design due to large
number of arithmetic operations. With the proposed
color filter array architecture of hardware sharing
machines, boundary mirror machines, and boundary

detectors with register banks, this approach for color
interpolation will reduced a number of arithmetic
operations pertaining to the filtering of all sets of
image resolutions. Here, the approach that is being
proposed would incorporate a linear deviation based
color interpolation methodology using a carry skip
adder as instead of an traditional ripple carry adder.
This work was produced on a Xilinx FPGA with a
model number of XC6SLX150-2CSG484 and an
operational clock frequency of 200 MHz. As a result,
the performance of the area (Slice registers, LUT,
and IOB), latency, and power was proven.

6951

Journal of Theoretical and Applied Information Technology

8g
15 September 2023. Vol.101. No 17 AT

© 2023 Little Lion Scientific

ISSN: 1992-8645

Www.jatit.org

E-ISSN: 1817-3195

REFERENCES

[1] Shih-Lun Chen, Huan-Rui Chang, IEEE
Member, Fully Pipelined Low Cost and High
Quality Color De-mosaicking VLSI Design for
Real Time Video Applications, 2015, IEEE
Transactions on Circuit and Systems-II.

[2] Milad Bahadori, Mehdi Kamal, Ali
Afzali-Kusha, Massoud Pedram, IEEE Member,
High Speed and Energy Efficient Carry Skip
Adder Operating Under a Wide Range of

Supply Voltage Levels, 2015 IEEE
Transactions on Very Large Scale Integration
systems.

[3] K.Chirca et al,. "A Static low power high
performance 32-bit carry skip adder," in Proc.
Euromicro Symp, Digit, Syst, Design (DSD),
Aug/Sep. 2004, pp. 615-619.

[4] M. Alioto and G. Palumbo, "A Simple strategy
for optimized design of one-level carry skip
adders," IEEE Trans, Circuits Syst. I, Fundam,
Theory Appl,. Vol. 50, no.1, pp. 141-148, Jan
2003.

[5] Z. Wang, A. Bovik, H. Sheikh, and E.
Simoncelli, “Image quality assessment: From
error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp.
600-612, Apr. 2004.

[6] S.L.ChenandE.D.Ma, “VLSI Implementation
of an Adaptive EdgeEnhanced Color
Interpolation Processor for Real-Time Video
Applications,” IEEE Transaction on Circuits
and Systems for Video Technology, 2014.
(Accepted).

[7]1 Y. H. Shiau, P. Y. Chen, and C. W. Chang, “An
area-efficient color de-mosaicking scheme for
VLSI architecture,” International Journal of
Innovative Computing, Information and
Control, Vol.7, No.4, pp.1739- 1752, Apr.
2011.

[8] S. C. Hsia, M. H. Chen, and P. S. Tsai, “VLSI
implementation of lowpower high-quality color
interpolation processor for CCD camera,” IEEE
Transaction on Very Large Scale Integration
(VLSI) Systems, Vol. 14, no. 4, pp. 361-369,
Apr. 2006.

[9] C. Hu, L. Cheng, and Y. M. Lu, “Graph-based
regularization for color image de-mosaicking,”
in Proc. IEEE Int. Conf. Image Processing
(ICIP), Oct. 2012, pp. 2769-2772.

[10]X. Chen, G. Jeon, and J. Jeong, “Voting-based
directional interpolation method and its
application to still color image demosaicking,”

IEEE Transaction on Circuits and Systems for
Video Technology, vol. 24, no. 2, pp. 255-262,
Feb. 2014.

[11]K. L. Chung, W.J. Yang, W. M. Yan, and C. C.
Wang, “Demosaicing of Color Filter Array
Captured Images Using Gradient Edge
Detection Masks and Adaptive
Heterogeneity-Projection,” IEEE Trans. Image
Processing, vol. 17, no. 12, pp. 2356-2367,
Dec. 2008.

[12]D. Harris and I. Sutherland, “Logical effort of
carry propagate adders,” Proceedings of the
Thirty-Seventh ~ Asilomar Conference on
Signals, Systems and Computers, vol. 1, pp.
873-878, November, 2003.

[13]V. Kantabutra, “Accelerated two-level
carry-skip addersa type of very fast adders,”
IEEE Transactions on Computers, vol. 42, no.
11, pp. 1389-1393, November 1993.

[14]P. Chan, M. Schlag, C. Thomborson, and V.
Oklobdzija, “Delay optimization of carry-skip
adders and block carry-lookahead adders using
multidimensional ~dynamic programming,”
IEEE Transactions on Computers, vol. 41, no. 8,
pp. 920-930, August 1992.

[15]S. Turrini, “Optimum group distribution in
carry-skip adders,” in Proceedings of the 9th
IEEE Symposium on Computer Arithmetic, pp.
96-103, September, 1989.

[16]M. Alioto and G. Palumbo, “A simple strategy
for optimized design of one-level carry-skip
adders,”” IEEE Transactions on Circuits and
Systems I: Fundamental Theory and
Applications, vol. 50, no. 1, pp. 141-148,
January 2003.

[17]V. G. Oklobdzija, B. R. Zeydel, H. Dao, S.
Mathew, and R. Krishnamurthy, “Energy-delay
estimation technique for high-performance
microprocessor VLSI adders,”” Proceedings of
the 16th IEEE Symposium on Computer
Arithmetic, pp. 272-279, June 2003.

[18]C. Nagendra, M. J. Irwin, and R. M. Owens,
“Area-timepower tradeoffs in parallel adders,”’
IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 53,
no. 10, pp. 689-702, October 1996.

[19]1 Koren, Computer Arithmetic Algorithms, 2nd
edition A. K. Peters, Ltd., Natick, MA, 2002.

[20]K. Uming, T. Balsara, and W. Lee, “Low-power
design techniques for high-performance CMOS
adders,”” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 3, no. 2,
pp. 327-333, June 1995.

6952

