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ABSTRACT 

 
Rough terrain that is difficult or impossible to access does not lend itself well to traditional Wireless Sensor 
Networks (WSNs). Smart dust is a technology that gathers remote sensing data from harsh terrain by 
utilising a network of numerous microscopic sensors. The small sensors are dispersed in large numbers 
across difficult terrains using airborne distribution from drones or aeroplanes, eliminating the need for 
manual placement. Although it is clear that this technology can be applied to a wide range of remote 
sensing applications, the small size of smart dusts essentially precludes the integration of complex circuitry 
on tiny sensors. This poses a number of challenges, one of which is locating the smart dusts.  In order to 
pinpoint the precise location of events detected by the smart dusts, this study suggests a localization 
algorithm. General regression neural network is used in the method to forecast the locations. Because real 
smart dusts aren't readily available, we created a simulator to assess the proposed method's accuracy when 
used to monitor forest fires. The simulation trials indicate that the method is reasonably accurate. 
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1. INTRODUCTION 

 In recent years, studies on wireless sensor 
networks (WSNs) have demonstrated their efficacy 
for a variety of remote sensing applications, 
including precision agriculture [1-3], logistics 
carrier monitoring [4, 5], industrial monitoring and 
control [6, 7], monitoring of underground coal 
mines [8, 9], monitoring of seismic activity [10], 
monitoring of the marine environment [11], and so 
on. The fact that WSN technology is ad hoc and 
simple to administer and deploy is its main benefit. 
However, because WSN deployment involves 
assistance from people, it is not appropriate for 
rocky terrain that is challenging or impossible for 
humans to access. In this study, we employ cutting-
edge technology (smart dust) to track remote 

sensing uses for unforgiving terrains [12–14]. We 
put smart dust to the test for detecting forest fires. 
The technology known as "smart dust" relies on the 
cooperation of several small 
microelectromechanical sensors (MEMS) [15–17]. 
These small sensors can pick up on a wide range of 
properties, including pressure, humidity, 
temperature, vibration, acceleration, and light [14, 
17, 18]. The technology for detecting and wireless 
transmission is built into each tiny sensor. The 
autonomous power source for smart dust can come 
from thick-film batteries or solar energy. In a tiny 
sensor with a footprint of just a few millimeters, all 
these capabilities are condensed [19–21]. A smart 
dust's architecture is depicted in Figure 1. 
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Emerging technology is Smart Dust. One of the 
upcoming technologies over the next ten years, 
according to the Gartner hype cycle for 2018, is 
smart dust. This technique has drawn a lot of 
interest from the scientific community in recent 
years due to the fact that it may be used in a variety 
of remote sensing applications to monitor difficult 
terrains, including forests, frozen areas, mountains, 
the sea, space, planets, etc. [22–25]. Researchers 
studying the environment can use this technology, 
for example, to count the number of pollutants, 
carbon, or any other chemical component in the air. 
Using this technology, the agricultural industry can 
keep tabs on soil quality, the ideal time to harvest 
crops, and other sensory information that is good 
for plant growth [26]. Geologists can gain by 
keeping an eye on seismic or earthquake activity 
and how it affects the design of bridges and other 
structures. This technique can be used by biologists 
to track the movements of little insects or other 
wild creatures in order to learn more about their 
natural surroundings. This technique can also be 
used by the military to track troops or find 
radioactivity or dangerous chemical substances in 
the atmosphere [25, 27]. 
 

 
FIGURE 1:  PROPOSES ARCHITECTURE FOR SMART 
DUST. 

 
When smart Dusts are dispersed in huge numbers 
on a monitoring zone without being manually 
located, aerial dispersion utilising drones or planes 
is the optimum way for scattering sensors 
throughout a specific area [12]. Because these 
sensors may stay in the environment like dust, they 
may be difficult to find and remove after 
deployment. The smart dusts detect the predefined 
events and pass them from sensor to sensor until 
they reach the base stations. In order to perform a 
task, the base stations send events to the cloud for 
processing or analytics. The fundamental functions 
of smart dusts are to detect events, briefly store 
them in memory, and wirelessly broadcast them to 
adjacent sensors or base stations. Despite the fact 

that it is clear that a variety of distant sensing 
applications could benefit from this technology, 
there are numerous challenges involved in 
distributing a large number of smart dust sensors 
throughout a specific monitoring zone, including 
sensor localization, device failure, and bottleneck 
[28]. The main focus of localization research in 
WSNs is locating the sensors [29, 30]. Since 
sensors are used to monitor the existence of 
preprogramed events, pinpointing the precise 
position of an event is essential for many 
applications, such as tracking troop movements, 
wild animals, and forest fires. The tiny size of smart 
dust, on the other hand, results in a variety of 
constraints, including those related to energy usage, 
wireless communication, and scalability, which 
fundamentally distinguishes this technology from 
others such as WSNs or the internet of things (IoT) 
[31]. For example, the majority of IoT sensors on 
the market now are the size of matchboxes, 
providing adequate space for an embedded CPU 
with high performance, a radio transceiver with a 
longer communication range of tens of meters, a 
modest amount of Memory, and a shared 
bandwidth of tens of kilobits. These sensors are too 
costly, too big, and have a short battery life. Thus, 
these are not suitable for applications that require 
energy-efficient sensors that should last for years 
without a charge or battery replacement. Moreover, 
the sensors for these applications need to be small, 
light, and inexpensive enough to be easily sprinkled 
on a monitoring area as well as easy to combine 
with coatings and paint. 
 
        Because of the energy, size, and cost 
constraints of this technology, smart dust sensors 
have much lower processing, communication, and 
storage capabilities than WSNs or IoT devices [31]. 
Moreover, the smart dust cannot locate itself via 
GPS or radio waves because those technologies 
would demand additional resources that would be 
unsuitable in terms of space, money, and energy. 
Future hardware advances of this technology will 
likely focus more on size reduction, energy 
optimization, and communication than on 
equipping the smart dusts with cutting-edge 
technology because of the technology's specific 
uses [32]. There have lately been several range-
based and range-free sensor localization approaches 
published in the context of WSNs and IoT domains 
[29, 30, 33, 34]. These systems require sensors to 
be equipped with long-range wireless chips in order 
for them to instantly relay their signals to anchor 
(base) sensors for the purpose of detecting the 
position of sensors. These localization algorithms, 
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however, cannot be used directly on smart dusts 
because to resource limitations (long-range wireless 
technology is not available on smart dusts) [31]. As 
a result, new localization strategies that are 
effective in the context of smart dust are required. 
We take these constraints into consideration in this 
study and propose a unique localization technique 
for smart dust that efficiently pinpoints the location 
of events perceived by the smart dusts. The 
proposed technique pinpoints the location of 
occurrences by using signal timestamps (time of 
arrival) received from base stations. 
        The approach works as follows. The 
monitoring zone is split into n cells to calculate the 
location of an incident. The approach assumes that 
each cell has an equal number of distributed smart 
dusts. The monitoring zone is surrounded by m 
manually positioned base stations. These base 
stations can report their precise locations via GPS 
and have cutting-edge hardware and software 
characteristics. Figure 2 provides an illustration of 
how the system uses base stations and smart dusts 
to monitor forest fires. The smart dust signals to 
nearby smart dusts when it detects an event. The 
signal is retransmitted to more neighbors by the 
nearby smart dusts. With this method, the perceived 
event travels from source smart dusts to base 
stations. Because of the positioning of the base 
stations across multiple geographies and the extent 
of the monitoring zone, each base station acquires 
unique (time of arrival) timestamps for distinct 
sensed events taking place at various geographic 
locations. We were able to generate a large number 
of samples for training a machine learning classifier 
utilising this concept by simulating multiple events 
across various geographic locations inside a 
simulated monitoring region. Finally, using a neural 
network and training data, we created a machine 
learning (ML) classifier. When the ML classifier is 
ready, the system uses the time of arrival of the 
signals base stations received to accurately predict 
the position of each sensed event. The suggested 
method can scale up to very large networks. 

2.  ALLIED EXERTION 

          The tiny size and limited resources on the 
sensor provide various challenges for smart dust 
technologies. Park et al. [12] proposed a 
hierarchical layered system for smart dust dispersal. 
According to the authors, the proposed approach 
reduces the transmission bottleneck caused by 
many smart dusts and dynamically creates plan 
partitions for a particular workload. The three 
layers of the suggested architecture are where the 

smart dust and gadgets are placed. Smart dusts are 
present in the top layer and are utilized to monitor 
their surroundings. The smart dusts' short 
communication range prevents them from sending 
sensed events across great distances. Dust relay 
sensors are located in the second layer.  Despite 
having a small number, these sensors have 
sufficient computation and transmission power to 
process and communicate data over a considerable 
distance to the higher layer. A pool control node 
and a smart IoT server with several processing 
nodes are both present in the third layer. Processing 
nodes are responsible for processing data from 
relay dust sensors. The workload on the processing 
nodes is dynamically distributed by the pool control 
node. The authors of [16] employed this 
hierarchically tiered design to keep track of the 
climate data for a fictitious remote area.  
      The transmission technique was created by 
Park et al. [28] to effectively transmit events 
noticed by the smart dusts to IoT servers. Sensible 
data is divided into two kinds in the recommended 
procedure: ordinary sensed data and sensible data 
of a certain urgency. The data in the urgent class 
needs to be sent to the IoT server right away, while 
the data in the regular class can be sent with a small 
delay because of the transmission of the data in the 
urgent class. To further safeguard the data of the 
typical class, the authors used block chain 
technology. The processing of data in the urgent 
category is forwarded urgently to an IoT server. 
When there are no data accessible for the urgent 
condition, the data of the regular detected class is 
first recorded on the block chain ledger and then 
transmitted. 
 
     A use of smart dust technology for surveillance 
was suggested by Mohan et al. [27]. They talked on 
the role that smart dust technology can play in 
terrorism border surveillance. A smart court system 
using smart dust technology was presented by Jain 
et al. [35]. Throughout their work, they covered the 
topic of how technology may be employed in smart 
cities to identify and lessen crime. They also talked 
about new uses for smart dust technology, 
including meta security, privacy protection systems, 
and preventing the transmission of bacteria and 
fungus that cause disease. 
 
    Romer et al. [31] recommended employing a 
localization approach to locate smart dusts. To 
detect their location, the smart dusts employ laser 
patterns sent to them by an infrastructure device. 
However, this strategy is ineffective for monitoring 
places with uneven surfaces (such as woodlands, 
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mountains, or planets), since smart dusts cannot 
perceive the infrastructure device's laser patterns 
owing to barriers on uneven surfaces. The 
technique we propose differs from that described in 
the published paper. We built a machine learning 
classifier utilising signal timestamps (time of 
arrival) obtained from base stations to properly 
estimate the position of smart dusts. Our approach 
is extremely versatile, since it may be employed 
over large areas of difficult-to-access mountainous 
terrain. 

3 APPROXIMATING LOCALITY OF SMART 
DUSTS 

 
The recommended technique aims to predict event 
locations reasonably precisely. The recommended 
system should also be able to operate within the 
constraints of power, cost, and communication 
range while covering a substantial monitoring zone. 
The smart dust is a small device that collaborates 
with other smart dusts to achieve its objective. Due 
to their limited computer and communication 
capabilities, these small devices are unable to 
transmit detected events across great distances. An 
RFID-based system and (ii) a light source-based 
system are the two main techniques for allowing 
wireless communication for smart dusts [32]. 
Compared to optical transceivers, RFID-based 
communication is more appealing since it may be 
used to monitor areas that are difficult to access 
because it does not require a direct line of sight for 
communication. Smart dust that uses RFID is 
exemplified by Hitachi's smart tag technology. The 
Hitachi minuscule chip is an RFID chip that can be 
used for wireless sensing and has a miniscule CPU 
and ROM of size 128b. All of these features are 
built into a chip with a 0.15 x 0.15 mm surface area 
and a 75 m height. 
       Another layer of cutting-edge sensors known as 
base stations in the monitoring region convey 
discovered events over a long distance or to a cloud 
server [12]. These base stations are manually 
positioned along the perimeter of the monitoring 
region. The base stations are outfitted with cutting-
edge technology and software, and they may 
employ GPS to relay their precise positions to a 
cloud server for extra predictive analytics and 
decision-making. The following illustrates how the 
smart dust system for remote sensing works. After 
sensing a pre-programmed event, the smart dust 
communicates the perceived event to other smart 
dusts within its RFID communication range. Upon 
signal receipt, surrounding smart dusts retransmit 
the signal to further nearby smart dusts. In this way, 

the perceived event travels from the source smart 
dusts to the base stations. Figure 2 displays the 
architecture of smart dust-based remote sensing for 
identifying forest fires. Each smart dust comprises a 
threshold module that regulates the quantity of data 
transferred, conserves energy, and reduces 
bottleneck [16]. When the difference between the 
current event and the preceding event is less than a 
predefined threshold, the smart dust employs the 
threshold module to prevent the observed event 
from being sent to neighboring sensors. When an 
incident in the monitoring region is identified, the 
smart dusts transmit a signal to the base stations. 
Each base station receives a unique signal 
timestamp for every detected event that takes place 
at a unique point within the monitoring region due 
to the varying geographical placements of the base 
stations. 
       Figure 3 illustrates an illustration of how base 
sensors obtain varied timestamps for three events 
taking place in different places. At random 
locations throughout the monitoring area, a varying 
number of smart dusts are scattered. There is a few-
meter signal transmission range for every 
intelligent dust particle. Five base stations are 
spread out evenly over the monitoring area. 
Compared to other sensors, the base station I 
detects the event A faster. This is so because sensor 
I is closest to the site of event A compared to the 
other sensors. The timestamps acquired at other 
lower-level sensors for event A differ depending on 
their proximity to event A. Similarly, the base 
station j detects event B sooner than other sensors 
since it is closest to it. We used this idea, as well as 
a large number of training data, to develop a 
machine learning (ML) classifier using a neural 
network by simulating numerous events at various 
places inside the monitoring zone. After the ML 
classifier is ready, the base stations transmit the 
timestamps of detected events to the cloud server. 
The cloud server aggregates the timestamps into a 
multidimensional vector and feeds it to an ML 
classifier to predict the location of observed events. 
 
Using multi-output regression, the system learns an 
ML classifier [36–37]. The goal of multi-output 
regression, in contrast to normal regression, which 
aims to predict a single numerical value, is to 
anticipate the numerical outputs of two or more 
numerical characteristics. In this case, they are the 
geographic coordinates of observed occurrences. A 
multi-output regression predictor can be trained 
using many conventional ML classifiers. Decision 
trees or ensembles of decision tresses, for instance, 
can be utilized for this. Decision trees, however, are 
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not appropriate when the training samples include 
input and output attribute relationships that are 
highly structured. Multi-output regression is 
supported by neural networks employing GRNNs 
(generic regression neural networks). It's possible to 
use it to train a continuous function that can 
identify a more agreeable connection between input 
and output. The multi-output regression is learned 
by the GRNN by explicitly changing the numeric 
output characteristics on the output layer. The 
classifier is trained by the GRNN using kernel 
regression. It is one sort of radial basis function 
(RBF) network and is based on the conventional 
statistical method [38]. Recent research on GRNN 
has shown that it is a training-efficient network that 
offers relatively high accuracy even when it is 
trained with a small sample size [39–40]. 

         To understand the GRNN's learning 
procedure, assume there is a training sample with 
input and output vectors. The input vector has m 
independent input characteristics Ki = [k1, k2,..., 
km], but the output vector has k dependent features 
Mi = [m1, m2,...mk]. If enough training samples 
are submitted to the network, the GRNN may 
effectively learn the regression surface (linear or 
non-linear) and predict the values of the dependent 
outputs of a new unknown sample Kj. The 
following are the steps in GRNN training: 
 

𝐸[𝑴|𝑲] =
∫ 𝑲𝒇(𝑴,𝑲)𝒅𝑲

శಮ
షಮ

∫ 𝒇(𝑴𝑲)𝒅𝑲
శಮ

షಮ

 --- (1) 

 
    The predicted value of the attribute M is 
represented by the E[M|K] given an input vector K 
from training samples n. The probability density of 
the joining of K and Y is represented by the 
function f(M, K). 

 

 
 
Figure 2: GRNN (General Regression Neural Network) 

Architecture 

 

The GRNN architecture consists of four levels. 
Output layer, pattern layer, summation layer, and 
input layer are these. The GRNN's architecture is 
depicted in Figure 4. The total number of 
characteristics in the input vector Ki is equal to the 
number of nodes (neurons) in the input layer. Each 
node of the input vector represents a distinct 
attribute. Each input layer node transmits its data 
value to every node in the pattern layer. The total 
number of training samples is represented by the 
number of nodes on the pattern layer. The pattern 
layer receives the values of the input attributes in 
order to comprehend the connection between nodes 
of the input layer and the (proper reaction) nodes of 
the output layer. This map between both the input 
layer and the pattern layer transforms the input 
space into the pattern space in a nonlinear manner. 
The following is a description of the pattern layer 
pi's Gaussian function: 

𝒑𝒊 = 𝒆𝒙𝒑 ቂ− 
(𝒌ି𝒌𝒊)𝑻(𝒌ି𝒌𝒊)

𝟐𝝈𝟐 ቃ ,    𝒊 = 𝟏, 𝟐, … , 𝒏                                            

 (2) 
 
The parameter for smoothing is σ. k is a network 
input variable. A sample from the training set for 
the pattern layer's node I is called Ki. 

   There are two different types of summing 
functions in the summation layer. Simple 
summation and weighted summation are these. A 
simple summation is Ss. With an interconnection 
weight of 1, it adds up the values received from the 
pattern layer nodes. Sw uses the interconnection 
weight of w to calculate the weighted sum of the 
pattern layer nodes using t. The definition of the 
summation functions is: 

𝑺𝒔 =  ∑ 𝒑𝒕
𝒏
𝒕ୀ𝟏                                      (3) 

𝑺𝒘 =  ∑ 𝒘𝒕𝒑𝒕
𝒏
𝒕ୀ𝟏                       (4) 

 
The weight of the pattern layer node that is 
connected to the summation layer is indicated by 
the wt. 
     The output layer is the bottom layer, and it 
has exactly as many nodes as there are dependent 
characteristics in all of the training samples. Two 
nodes of the output layer can be used to specify the 
two numeric attributes of the geographical co-
ordinate’s prediction task. The output layer receives 
the calculated values from the summing layer. The 
node's output is calculated as follows at the output 
layer: 

𝑴𝒐 =  
𝑺𝒔

𝑺𝒘
,    𝒐 = 𝟏 … 𝒌         (5) 
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The spread parameter is critical in training the 
GRNN for the optimum prediction accuracy [41]. 
Training the GRNN with a lesser value of σ, for 
example, can result in a localized regression 
prediction. In this situation, training samples that 
are very close to the prediction sample's neighbour 
only contribute to the prediction of final output. 
Training the GRNN with a bigger value of σ, on the 
other hand, can result in globalized regression 
prediction, which incorporates all of the samples 
for predicting the value of the output node. The 
projected value of the output node in this scenario 
is fairly close to the average value of the dependent 
attribute across all samples of the training dataset.  
        Because GRNNs are stochastic, it is critical to 
test the network several times using the same 
training data. For this aim, we use k-fold cross 
validation with 10 folds. To do this, we randomly 
split the training samples into five groups, with an 
equal number of samples in each group. Lastly, we 
use cross validation to randomly choose four 
groups to discover an ideal value for the spread 
parameter. The first set is comprised of the four 
groups that were chosen. The remaining group is 
then included in the construction of a second set, 
which is then used to assess the prediction 
accuracy. In order to train the GRNN using cross 
validation, we build the model using a random 
value of the spread parameter (σ) on a random three 
groups from the first batch. The model is assessed 
on the group from the second set after training. If 
the GRNN model has the highest prediction 
accuracy on the test partition, it is output as the 
result. If the GRNN model does not produce the 
best prediction accuracy, the system retrains the 
model with a new value (σi) for the speared 
parameter (σ). The following rule produces the new 
value of (σ). 
 
σi = σo + (i × η)                                                      (6) 

The initial spread parameter is σo. In the 
experiment, the σo is set to a low value of 0.1. The 
learning ratio is indicated by the η. We utilize the 
with 0.1 in the experiments. When the cross 
validation's mean square error is less than the target 
error, e0, training is terminated. In experiments, the 
e0 with 0.01 is used. When to stop training to avoid 
over-fitting is decided using a different criterion 
(maximum number of iterations). We do the trials 
up to a maximum of 20 times. When the number of 
training phase iterations is greater than 20, the 
system randomly selects new sets for training, 
testing, and cross validation. 

4. EXPERIMENTS 

Unfortunately, true smart dust hardware is currently 
unavailable. We created a simulator to evaluate the 
efficacy of the proposed study for tracking forest 
fires, which is just one way used to illustrate the 
practicality of the proposed strategy. Our ultimate 
objective is to implement a practical project that 
uses smart dusts to monitor forest fires. The tests 
were carried out using an Intel Core i7-7th 
generation Processor with a 2.11 GHz clock speed 
and an 8 GB main memory. We constructed a 
rectangular-shaped simulated monitoring region 
with a width and length of 10 kilometers. One 
kilometer wide by one-kilometer-long partitions 
were used to split the monitoring area into 100 
parts. On the edge of the monitoring area, sixteen 
base stations were positioned with equal spacing 
between them. Smart dusts were applied to 
partitions with various densities using simulation. 
Equal numbers of smart dusts were distributed 
randomly onto each partition, one for each 
partition. Each smart dust particle could relay the 
signal of the sensed event over a 25-meter-radius. A 
random setting of 1 nanosecond was used for the 
time it takes for a signal to travel from a smart dust 
to the other or from a base station to another. For 
the simulation, stochastic network elements like 
signal loss and node failure were taken into 
account. 
 
The simulator creates fire incidents at random in 
the monitoring zones. If a fire occurs within the 
range of the smart dusts, they detect it and transmit 
a signal to the base stations. The base stations 
collect signal timestamps and send them to a cloud 
server, which aggregates them in to the training set 
to train a GRNN. To alleviate the transmission 
bottleneck, each smart dust has an event detection 
threshold. When the value of an observed event 
exceeds the threshold, the smart dust generates a 
signal and sends it to nearby smart dusts. If there 
are enough generated samples, the system trains the 
GRNN using the manner outlined in section 3 
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Figure 3: Base Station Performance At The Left Edge In 

Relation To Detected Events Occurring At Different 
Locations In The Monitoring Zone. 

 
In the second component, we examined the 
suggested method's accuracy in the event that some 
base stations were unable to receive timestamps 
from the smart dusts due to the smart dusts being 
believed to be defective. We sought to assess the 
ML predictor's performance in this domain if the 
unknown input samples had missing values, 
because base station data serve as dimensions of an 
input sample. Base station values with varying 
percentages were deleted at random in order to 
conduct the experiments. Using percentages of 
25%, 50%, 75%, and 100%, we eliminated the base 
station values from every edge. Figure 8 depicts the 
GRNN predictor's accuracy for different 
percentages of missing variables. The accuracy of 
the GRNN predictor was greatly affected by more 
than 50% of base stations having missing values. 
This shows that even if a few smart dusts were 
malfunctioning and unable to communicate felt 
events to base stations, the suggested approach can 
still reasonably estimate the event's location 
The results reveal that when events occur close to 
the base station, the values of signal arrival 
timestamps are smaller than when events occur far 
away from the base station 
 

 
 
Figure 4. GRNN Effectiveness On Missing Base Station 

Values. 

5. CONCLUSION 
 
Smart dust is a revolutionary technology with 
several applications for distant sensing in difficult-
to-reach areas. Yet, the small size of smart dust 
severely limits the integration of cutting-edge IoT 
technology on miniscule sensors. One of the 
difficulties was locating smart dusts. The paper 

describes a strategy for finding events observed by 
smart dusts. Using a generic regression neural 
network, the approach predictions the locations. 
Because genuine smart dusts were not widely 
accessible, we created a simulator to evaluate the 
effectiveness of the proposed technique for the 
application of detecting forest fires. While there are 
different techniques to assessing the accuracy of the 
proposed methodology, our main goal is to analyse 
the accuracy using real smart dusts across a vast 
monitoring zone. According to tests on a specially 
constructed simulator, the technique offers an 
acceptable degree of accuracy. To assess the 
strategy's success, we did experiments using a 
variety of factors. When about 60% of base sensors 
acquire event timestamps from smart dusts, the 
suggested strategy is 60% more successful. A 
GRNN was used to train the current prediction 
model (General Regression Neural Network). The 
GRNN has a performance advantage, but it takes 
longer to train. Further research may be required to 
develop a predictive classifier that may expedite 
computing while improving accuracy. 
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