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ABSTRACT 

 
Software-Defined Wide Area Network (SDWAN) technology has revolutionized network management by 
providing efficient and reliable communication across geographically dispersed locations. One critical aspect 
of SDWAN is path computation, which determines the optimal routes for data transmission between network 
nodes. Traditional shortest path algorithms like Bellman-Ford, Dijkstra, and SPFA are commonly used for 
path computation. However, the increasing scale and complexity of SDWAN networks demand more efficient 
algorithms. In this research paper, we propose an enhanced shortest path algorithm called SCBF (Shortest Path 
Computation Based on Bellman-Ford) specifically designed for SDWAN controllers. SCBF incorporates 
optimization techniques to reduce computational overhead and improve runtime efficiency. By building upon 
the principles of the Bellman-Ford algorithm, SCBF introduces novel optimizations that expedite path 
computation. 
To evaluate SCBF's performance, we conduct a comparative study against traditional shortest path algorithms. 
Through extensive simulations using various network topologies and traffic scenarios, we demonstrate that 
SCBF outperforms the traditional algorithms in terms of runtime efficiency. SCBF achieves faster path 
computation on the SDWAN controller, reducing computational complexity and improving scalability. The 
comparative study showcases the advantages of SCBF in terms of reduced network latency, improved 
throughput, and enhanced scalability. The findings contribute to the development of more efficient path 
computation algorithms for SDWAN controllers, enabling faster decision-making in network routing and 
resource allocation. These improvements lead to enhanced performance and reliability in SDWAN 
deployments. 
Future research and real-world implementations can explore the practical implications of SCBF in SDWAN 
environments, further validating its effectiveness. SCBF has the potential to provide significant benefits in 
terms of reduced network overhead and improved network management, ultimately enhancing the overall 
SDWAN experience. 
Keywords: SDWAN, Shortest path, Path Computation, Algorithm, SDN, link performance, Bellman Ford, 

Dijkstra, smart WAN 
 
1. INTRODUCTION  

Software-Defined Wide Area Network [1] 
(SDWAN) has emerged as a transformative 
technology in the field of networking, offering 
efficient and cost-effective solutions for connecting 
geographically distributed networks. Traditional 
Wide Area Networks (WANs) [2] often face 
challenges in terms of network congestion, high 
latency, and limited bandwidth, which can hamper 

application performance and user experience. 
SDWAN leverages software-defined networking [3] 
principles to overcome these limitations and provide 
dynamic, secure, and optimized connectivity across 
diverse networks. 
SDWAN technology offers several key advantages 
that make it highly applicable in various scenarios. It 
enables organizations to efficiently connect multiple 
branch offices, data centres, and cloud resources, 
providing seamless and reliable communication. 
SDWAN also offers centralized network 
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management, allowing administrators to monitor and 
control network traffic, security policies, and Quality 
of Service (QoS) [4] parameters from a single 
location. This centralized control is facilitated by an 
SDWAN controller, a crucial component responsible 
for managing and orchestrating the network. 
Path computation is a fundamental operation 
performed by the SDWAN controller to determine 
the optimal routes for data transmission between 
network nodes. Efficient path computation is critical 
for ensuring low latency, high throughput, and 
effective resource utilization within the SDWAN 
environment. Several well-known algorithms, 
including Bellman Ford, Dijkstra, and the Shortest 
Path Faster Algorithm (SPFA) [5], are commonly 
employed for path computation in SDWAN 
controllers. 
However, as SDWAN networks grow in scale and 
complexity, the runtime efficiency of path 
computation becomes a paramount concern. The 
ever-increasing data volumes and dynamic network 
conditions demand faster algorithms that can process 
path computations within tight time constraints. 
Therefore, there is a need to develop enhanced 
shortest path algorithms that can reduce 
computational overhead and improve the runtime 
efficiency of path computation on SDWAN 
controllers. 
In this research paper, we present an enhanced 
shortest path algorithm called SCBF (Shortest Path 
Computation Based on Bellman-Ford) designed 
specifically for SDWAN controllers. SCBF 
incorporates novel optimization techniques to 
expedite path computation and overcome the 
limitations of traditional algorithms. Our study 
focuses on the runtime efficiency of path 
computation and aims to demonstrate that SCBF 
outperforms the existing algorithms, including 
Bellman Ford, Dijkstra [6], and SPFA [7], in terms of 
computational speed. 
Through comprehensive comparative evaluations 
and simulations on various network topologies and 
traffic scenarios, we analyze the performance of 
SCBF. We compare its runtime efficiency with the 
traditional algorithms, emphasizing its superiority in 
terms of reduced computational complexity and 
improved scalability. The results of our study 
establish SCBF as a promising solution for faster path 
computation on SDWAN controllers. 
The remainder of this paper is organized as follows: 
Section 2 provides a detailed overview of SDWAN 
architecture, highlighting the role of the SDWAN 
controller and the significance of path computation. 
Section 3 reviews the existing path computation 
algorithms in, literature review. Section 4 presents 

the SCBF algorithm, detailing its optimizations and 
how it improves runtime efficiency. Section 5 
presents the comparative evaluation results, 
showcasing the superiority of SCBF over traditional 
algorithms. Finally, Section 6 concludes the paper 
with a summary of the findings and highlights 
potential future research directions in the field of 
SDWAN path computation. 
By addressing the crucial need for faster path 
computation in SDWAN controllers [8], this research 
contributes to the development of more efficient 
networking solutions that can enhance the 
performance, scalability, and reliability of SDWAN 
deployments. 
2. SDWAN ARCHITETURE 

Software-Defined Wide Area Networking (SD-
WAN) is a transformational approach used to 
simplify the management and operation of a WAN 
by decoupling the networking hardware from its 
control mechanism. Here is a detailed view of its 
architecture: 

 

Figure 1: SDWAN Architecture 

Edge Connectivity Layer: This layer is composed 
of the physical SD-WAN appliances placed at the 
network edge, typically at each branch office. These 
devices provide connectivity into the SD-WAN and 
might also offer additional functions such as routing, 
firewall, WAN optimization, and Wi-Fi. 
Underlay Network: This represents the actual 
transport mechanisms used by the SD-WAN, which 
can include MPLS, broadband Internet, LTE/5G [9], 
or even satellite connections. The SD-WAN doesn't 
particularly care about the underlay it uses and can 
work with multiple types at the same time, allowing 
for hybrid WAN configurations. 
Overlay Network: The SD-WAN creates a virtual 
overlay that abstracts the underlay network. This 
overlay is where the SD-WAN routes traffic and 
applies security and QoS policies. The overlay can 
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make intelligent decisions about which underlay 
network to send traffic over based on the current 
network conditions and the type of traffic. 
SD-WAN Controller: This is the brain of the SD-
WAN and is responsible for controlling the 
operation of the network. It communicates with each 
SD-WAN appliance to distribute policies and gather 
operational data. It often operates from a cloud-
based location but can also be deployed on-premises 
in some architectures. 
Orchestration and Management Layer: This layer 
provides a single point of control for the entire SD-
WAN, simplifying the network's management. From 
here, administrators can make changes to network-
wide policies, add or remove devices from the 
network, view network performance data, and 
troubleshoot any problems. 
Security: Security is embedded within the SD-
WAN architecture [10], providing secure 
connectivity over any transport and offering a range 
of features including encryption, segmentation, 
firewall and intrusion prevention, and integration 
with cloud security services. 
Cloud Gateways: These are the points of presence 
for the SD-WAN within the cloud. They provide 
optimal and secure access to cloud resources, 
including SaaS applications and cloud data centers. 
APIs: SD-WAN architectures often include APIs to 
enable integration with other systems for things like 
automation, reporting, and event correlation. 
These components work together to provide an 
intelligent, secure, and highly flexible network that 
can be easily managed and quickly adapted to 
changing business needs. 
In an SD-WAN architecture, the controller, also 
known as the Orchestrator, is responsible for making 
centralized decisions about network management 
and path computation based on the overarching 
policies defined by the network administrators. 
Path computation within an SD-WAN architecture 
involves determining the optimal path for traffic 
flow between different network nodes. Here's a 
detailed explanation of the process: 
Policy Configuration: Administrators define the 
policies that govern the SD-WAN's behavior, 
including rules about application priority, Quality of 
Service (QoS), security requirements, and cost-
efficiency. These policies get communicated to the 
controller. 
Network Monitoring: The SD-WAN edge devices 
continuously monitor the health and performance of 
the underlying network links, measuring factors like 
latency, packet loss, jitter, and available bandwidth. 
This telemetry data is reported back to the SD-WAN 
controller. 

Path Computation: Using the reported telemetry 
data, the controller determines the best path for each 
type of traffic according to the defined policies. For 
example, critical application traffic might be sent 
over a high-quality MPLS link, while less critical or 
voluminous traffic might be sent over a broadband 
Internet link. This decision-making process 
leverages a technology known as Dynamic Path 
Selection (DPS) [11]. 
Path Selection Adjustment: The controller can 
dynamically adjust its path selection in real time in 
response to changes in network conditions. If a link 
becomes congested or fails, the controller can 
automatically reroute traffic to maintain 
performance and reliability. 
Path Instructions: The controller communicates its 
path decisions back to the SD-WAN edge devices, 
which then forward traffic accordingly. This process 
happens seamlessly, maintaining application 
performance and user experience. 
This intelligent, centralized, and automated method 
of path computation is one of the key features that 
differentiate SD-WAN from traditional WAN 
technologies. It allows for more efficient use of 
network resources, improved performance, and 
greater flexibility and adaptability in the face of 
changing network conditions. 
 
3. PATH COMPUTATION ALGORITHMS 

AND RELATED PREVIOUS WORK 

Software-Defined Wide Area Network (SD-WAN) 
controllers use various algorithms for path 
computation, often leveraging a combination of 
sophisticated techniques and policies. Here are a few 
of the key ones: 
Dijkstra's Algorithm: One of the most popular and 
fundamental pathfinding algorithms, Dijkstra's 
Algorithm can be used to determine the shortest path 
between two nodes in a network graph. This can be 
particularly useful in an SD-WAN context where 
one might need to determine the most efficient route 
for data packets to traverse. 
The Dijkstra method, conceptualized by the Dutch 
computational theorist Edsger Dijkstra in 1956 and 
later published in 1959 [12], leverages the graph 
model to address issues in singular-source shortest 
path and form the briefest path tree. The relevance of 
Dijkstra's method in determining the briefest course 
has important practical implications. The 
information transmitted across the Internet traverses 
diverse routes globally, thus it is crucial to ensure it 
navigates through succinct and less congested paths, 
a possibility achieved through the Dijkstra method. 
Additionally, the OSPF (Open Shortest Path First) 
[13] routing protocol employed in Internet Protocol 
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(IP) operates based on Dijkstra's method [14]. 
Utilizing this method, platforms like Google Maps 
can now specify the most direct route from a 
particular location to a specific restaurant or airport. 
It is an exemplification of a powerful greedy method. 
The greedy method is deemed the optimal universal 
solution to certain optimization challenges, though it 
may produce suboptimal solutions to other problems 
in some instances. One of the primary benefits of 
Dijkstra's method is that it omits visiting 
unnecessary nodes once the intended target node is 
reached [15]. Conversely, a disadvantage of 
Dijkstra's method is its substantial CPU memory 
consumption when executed on many nodes on a 
computer application [16]. Additionally, it is 
incapable of managing negative edges, its utilization 
is exclusively on positive weight graphs. In the 
Dijkstra method, the route is indeterminate. The 
nodes are split into two categories: temporary (t) and 
permanent(p). Initially, assign the distance of the 
source node to zero [distance(a) = 0], and allocate 
the distance for other nodes to the infinity value 
[distance(x) = ∞]. Step 2, seek the node x with the 
smallest value of d(x). If no temporary nodes exist 
or the value of d(x) equals infinity, the node x is 
labelled as permanent, meaning that d(x) and the 
parent of d(x) will no longer change. Step 3, apply 
the following comparison for each temporary node 
labelled vertex y adjacent to x: If d(x) + w (x, y) < 
d(y) then D(y) = d(x) + w (x, y) (1) Based on 
equation (1), if the distance of labelled node x plus 
link weight (x, y) is less than the labelled node y 
distance, then the distance of labelled node y will be 
updated. 
Bellman-Ford Algorithm: This algorithm is 
capable of handling negative weights and is typically 
used in routing protocols like OSPF and BGP. It can 
be employed in an SD-WAN context to calculate the 
shortest path, even in more complex network 
scenarios. 
The Bellman-Ford methodology, a cornerstone in 
network navigation, is attributed to its originators, 
Richard Bellman and Lester Ford [17]. It determines 
the shortest route from a singular origin to all other 
points in a weighted, directed network, allowing for 
negative edge values (Bellman, 1958; Ford, 1956). 
Despite its adaptability, the Bellman-Ford method 
experiences a significant time complexity of O(VE) 
[18], which could be problematic for extensive 
networks (Cherkassky, Goldberg, & Radzik, 1996) 
[19]. A myriad of scholars have aimed to enhance 
Bellman-Ford's efficiency, resulting in the creation 
of various enhancements and versions. 
Constrained Shortest Path First (CSPF): This is an 
extension of the Dijkstra's algorithm, typically used 

when there are additional constraints to consider. It 
can compute the shortest path that also satisfies 
specific constraints, such as bandwidth 
requirements, latency, or cost. 
Dynamic Path Selection (DPS): This is less of an 
algorithm and more of a technique commonly used 
in SD-WAN. DPS involves the controller 
dynamically selecting the optimal path for network 
traffic based on real-time link performance. 
Multi-path Algorithms: These algorithms are 
designed to manage and optimize the use of multiple 
simultaneous network paths. This can be beneficial 
in an SD-WAN context for improving reliability and 
bandwidth utilization. 
It's important to note that the specific algorithms 
used can vary significantly depending on the specific 
SD-WAN solution, as different vendors may 
implement different strategies for path computation 
and traffic management. Ultimately, the goal is to 
meet the needs of the business in terms of 
performance, reliability, security, and cost-
effectiveness. 
In 2009, S. Jung and his team [20] introduced 
Contraction Hierarchies, a technique for speeding up 
the calculation of the shortest path by pre-processing 
the input graph. This method has a worst-case query 
time complexity of O(n log n) and consumes linear 
space. 
Their research presents a Hierarchical Multi (HiTi) 
graph structure, specifically constructed to organize 
large-scale geographical road maps and expedite the 
process of determining the least costly path. The 
HiTi graph structure offers a novel approach to 
abstract and organize geographical road maps in a 
layered fashion. We introduce a novel shortest path 
method, termed SPAH, that is built on the HiTi 
graph structure of a geographical road map for its 
computations. We provide evidence of SPAH's 
optimality. Performance evaluation of SPAH on grid 
graphs shows a significant reduction in the search 
space compared to existing techniques. We also 
present a comprehensive experimental comparison 
of the HiTi graph method with other similar works 
on grid graphs. Within the framework of the HiTi 
graph structure, we propose a parallel shortest path 
method named ISPAH. The conclusion of this 
research suggests that the inter-query shortest path 
search yields more scalable parallelism compared to 
the intra-query shortest path search. 
In 2001, Ulrik Brandes [21] offered an algorithm to 
calculate betweenness centrality, a metric related to 
shortest path algorithms, in O(VE) time and O(V+E) 
space, which is quicker than earlier methods. 
Addressing the growing need to compute centrality 
measures on large yet incredibly sparse networks, 
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this paper introduces cutting-edge algorithms for 
betweenness. The storage needs for these algorithms 
are O(n + m), and their execution times are O(nm) 
and O(nm + n2 log n) [22] for unweighted and 
weighted networks respectively, where 'm' 
represents the number of links. We supply 
experimental data that significantly extends the 
range of networks where centrality computations are 
feasible. 
Measuring betweenness centrality is essential for 
analyzing social networks, but it requires significant 
resources. Currently, the most efficient known 
methods require?(n 3) time and ? (n 2) space, with 'n' 
being the total number of network participants. 
In 2009, Kleinberg, J. and his colleagues [23] 
examined compact routing schemes for networks 
exhibiting a low doubling dimension. They explored 
two versions: name-independent routing and 
labelled routing. The main findings for this model 
were as follows. Firstly, we presented the inaugural 
name-independent solution. Specifically, we 
achieved constant stretch and polylogarithmic 
storage. Then, we obtained the first truly scale-free 
solutions, where the network’s aspect ratio did not 
impact the stretch. Scale-free methods were 
provided for three models: name-disjoint routing on 
graphs, labelled routing on metric spaces, and 
labelled routing on graphs. Finally, we established a 
lower bound necessitating linear storage for stretch 
> 3 schemes. This had the significant effect of 
separating the name-independent problem model 
from the labelled model for these networks, as 
compact stretch-1+e labelled schemes were known 
to be feasible. 
This paper proposes algorithms for routing in 
networks with low doubling dimensions, a feature 
related to sparsity. These algorithms have sublinear 
time complexity concerning the network size, 
making them extremely efficient for large sparse 
networks. 
Zheng Wand and his team [24] discussed routing 
algorithms that aim to identify the shortest path. 
Algorithms that adjust to traffic shifts often show 
unstable behaviors, resulting in performance 
degradation. The study here first addressed these 
issues from a decision-making and control theory 
perspective, followed by an in-depth analysis of the 
performance traits of these shortest-path routing 
algorithms. 
N. Futamura and colleagues [25] suggested that 
evaluating IP address lookup algorithms often 
requires considering multiple criteria such as lookup 
time, update time, memory usage, and sometimes, 
the time needed to construct the supporting data 
structure for lookups and updates. Many current 

methods are primarily focused on optimizing a 
single factor, and as a result, they may not scale 
effectively with the ongoing growth of routing tables 
and the upcoming implementation of IPv6 with its 
128-bit long IP addresses. In contrast, this research 
aimed to improve multiple factors at once and 
provide solutions that can readily scale up to IPv6. 
In this framework, two IP address lookup strategies 
were introduced: the Elevator - Stairs method and 
the logW - Elevators method. For a routing table 
with N prefixes, the Elevator - Stairs method utilized 
optimal O(N) memory and provided superior lookup 
and update times compared to other methods with 
similar memory requirements. The logW - Elevators 
method, meanwhile, offered an O(log W) lookup 
time, where W is the length of an IP address, and 
improved both the update time and memory usage. 
The performance of these algorithms was evaluated 
using the MAE-West router, which contained 29,487 
prefixes. The results showed that the Elevator - 
Stairs method achieved an average throughput of 
15.7 million lookups per second (Mlps) while using 
459 KB of memory. The logW - Elevators method 
demonstrated an average throughput of 21.41 Mlps, 
although it required more memory (1259 KB). 
Kamesh Madhuri and others [26] showcased an 
experimental investigation of the single-source 
shortest path problem with non-negative edge 
weights (NSSP) on large-scale graphs, utilizing the 
Δ-stepping parallel algorithm. Performance results 
on the Cray MTA-2, a parallel computer system 
characterized by multithreading, are revealed. The 
MTA-2, a high-end shared memory system, offers 
two distinctive features that enable efficient parallel 
implementation of irregular algorithms: the ability to 
use fine-grained parallelism and the presence of low-
overhead synchronization primitives. Notable 
parallel speed-up is demonstrated in the 
implementation, compared to competitive sequential 
algorithms, especially for sparse graphs with a small 
diameter. For example, Δ-stepping applied to a 
directed scale-free graph containing 100 million 
vertices and 1 billion edges, completes in less than 
ten seconds on 40 CPUs of the MTA-2, achieving a 
relative speed-up close to 30. It's worth mentioning 
that, to the best of our knowledge, these are the first 
performance results of the shortest path problem on 
practical graph instances on the scale of billions of 
vertices and edges. 
Seth Pettie, in his paper [27], introduced a new all-
pairs shortest path algorithm, designed for use in 
real-weighted graphs using the standard comparison-
addition model. The algorithm operates in improved 
time, surpassing the established time limit, which 
was previously achieved by applying Dijkstra's 



Journal of Theoretical and Applied Information Technology 

31st August 2023. Vol.101. No 16 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6574 

 

algorithm using Fibonacci heaps. Here, m and n 
denote the number of edges and vertices, 
respectively. 
The proposed algorithm is fundamentally based on 
the component hierarchy approach, a new shortest 
paths method introduced by Thorup for undirected 
graphs weighted by integers, and later extended by 
Hagerup to include directed graphs weighted by 
integers. The main contributions of this paper 
include a method for estimating shortest path 
distances, along with a method to use these estimated 
distances to calculate the exact ones. Additionally, 
the paper provides a concise, singular definition of 
the hierarchy-type shortest path algorithm class. This 
definition opens up some negative lower bounds 
regarding the computation of single-source shortest 
paths using a hierarchy-type algorithm. 
In his 1959 paper, Dijkstra E.W. [28] presented his 
renowned algorithm for finding shortest paths in a 
graph. The time complexity of Dijkstra's algorithm, 
when using a binary heap, is O((E+V) log V). 
Fredman, M.L. and others [29] presented Fibonacci 
heaps in 1987. This data structure can be used to 
improve the running time of Dijkstra's algorithm to 
O(E + V log V). The authors invented a new data 
structure to implement heaps or priority queues, 
termed Fibonacci heaps or F-heaps. This structure is 
an extension of binomial queues, a concept initially 
proposed by Vuillemin and subsequently explored 
by Brown. F-heaps efficiently support deletion from 
an n-item heap in O(log n) amortized time and 
perform all other standard heap operations in O(1) 
amortized time. The utility of F-heaps led to 
improvements in running times for several network 
optimization algorithms. 
Dinitz and Itzhak [30] proposed a new hybrid 
algorithm, the Bellman-Ford–Dijkstra (BFD), by 
combining the Bellman-Ford and Dijkstra 
algorithms. This algorithm finds the shortest paths 
from a source node s in a graph G with general edge 
costs, improving the runtime of the Bellman-Ford 
algorithm when negative cost edges are sparsely 
distributed. The algorithm's principle is to run the 
Dijkstra algorithm multiple times without resetting 
the temporary value of d (v) to the vertices. 
Lacorte and Chavez [31] studied the application of 
A* and Dijkstra algorithms in designing a smart 
school transport system route optimization model. 
Both algorithms were tested using a tool called 
EESCOOL. The results showed that the A* 
algorithm performed better and produced minimal 
expected time of arrival (ETA) during routine traffic 
on a small graph. 
Abbas and others [32] introduced an algorithm 
called the Caption algorithm to solve the shortest 

path problem with reduced time complexity 
compared to the Dijkstra algorithm. This algorithm 
can serve as an alternative to Dijkstra's algorithm as 
it can repeat the search process by increasing the 
reduction coefficient. 
Sapundzhi and Popstoilov [33] evaluated Dijkstra’s 
algorithm, Floyd-Warshall algorithm, Bellman-Ford 
algorithm, and Dantzig’s algorithm for solving the 
shortest path problem. They concluded that 
Dijkstra’s algorithm is more efficient for a larger 
number of nodes. 
Oyola and colleagues [34] introduced a method 
called Safe and Short Evacuation Routes (SSER), 
which uses a Dijkstra-based algorithm to solve the 
problem of determining the shortest safe paths in 
residential environments with multiple exits. 
Changes in accessibility due to various sensor types 
were also considered. The effectiveness of the 
proposed method was validated by comparing four 
Dijkstra-based algorithms, resulting in short 
evacuation times to different exits. This approach 
was deemed suitable for dynamic environments 
where various sensor types can modify the 
accessibility of internal areas. 

Table 1: Literature Review Summary & Comparison. 

Author Algorithm Use Case and Method 

N. Futamura 
et al. [25] 

Elevator - 
Stairs and 
logW - 
Elevators 

Optimized for multiple 
criteria including lookup 
and update times, and 
memory usage; for IP 
address lookup, scaling up 
to IPv6 

Kamesh 
Madhuri et al. 
[26] 

Δ-stepping 
parallel 
algorithm 

Utilizes fine-grained 
parallelism for large-scale 
graphs; for single-source 
shortest path problem with 
non-negative edge weights 

Seth Pettie 
[27] 

Novel all-
pairs 
shortest 
path 
algorithm 

Improved time frame 
compared to Dijkstra's 
algorithm with Fibonacci 
heaps; for all-pairs shortest 
path in real-weighted 
graphs 

Richard 
Bellman and 
Lester Ford 
[17] 

Bellman-
Ford 
algorithm 

Allows for negative edge 
weights, yet has high time 
complexity; for network 
routing, shortest path 
computation in a weighted, 
directed graph 

Dijkstra E.W. 
[28] 

Dijkstra's 
algorithm 

Finds shortest paths in a 
graph; for graph shortest 
path problem 
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Fredman, 
M.L et al. 
[29] 

Dijkstra's 
algorithm 
with 
Fibonacci 
heaps 

Improves running time of 
Dijkstra's algorithm; for 
single-source shortest path 
problem, all-pairs shortest 
path problem, minimum 
spanning tree problem, 
assignment problem 

Dinitz and 
Itzhak [30] 

Bellman-
Ford–
Dijkstra 
(BFD) 

Combines the Bellman-
Ford and Dijkstra 
algorithms; for shortest 
paths from a source node in 
a graph with general edge 
costs 

Lacorte and 
Chavez [31] 

A* and 
Dijkstra 
algorithms 

Route optimization for a 
smart school transport 
system 

Abbas et al. 
[32] 

Caption 
algorithm 

Reduced time complexity 
compared to Dijkstra's 
algorithm; for shortest path 
problem 

Sapundzhi 
and 
Popstoilov 
[33] 

Dijkstra’s 
algorithm, 
Floyd-
Warshall 
algorithm,  

Comparative study of 
different shortest path 
algorithms; for shortest 
path problem 

Oyola et al. 
[34] 

Dijkstra-
based 
algorithm 

Solves the problem of 
determining shortest safe 
paths in residential 
environments; for Safe and 
Short Evacuation Routes 
(SSER) 

 

 
4.  RESEARCH PROBLEM BASED ON 

LITERATURE REVIEW 
 
Despite the abundance of shortest path algorithms, 
including Dijkstra's algorithm, the Bellman-Ford 
algorithm, and more recent additions such as the Δ-
stepping parallel algorithm and the Caption 
algorithm, their application in SD-WAN (Software-
Defined Wide Area Network) controllers for real-
time path computation and programming poses a 
significant challenge. This is due to their relatively 
high time complexity, which impacts the ability to 
promptly respond to changing network conditions 
and requirements. The fundamental research 
problem, therefore, is to optimize the computation of 
the shortest path to reduce the runtime 
systematically, without compromising the accuracy 
of the solution. 
The urgency of this research problem is compounded 
by the growing complexity and scale of 
contemporary networks, which include the 
expansion to IPv6. The real-time requirements of 
SD-WAN controllers necessitate an algorithm that 
can swiftly react to network changes and execute 
efficient path computation for a substantial number 
of nodes. Furthermore, the algorithm needs to 

accommodate varying edge weights, including 
negative ones, and handle diverse criteria, such as 
lookup and update times, and memory usage. 
Ultimately, the research seeks to derive a shortest 
path algorithm that not only excels in its theoretical 
time complexity but also demonstrates superior 
performance in practical applications, particularly in 
the context of SD-WAN controllers. It should cater 
to real-time, large-scale, dynamic, and 
heterogeneous network environments, thereby 
significantly improving the efficiency and 
responsiveness of network path programming and 
adjustments. 
In the rapidly evolving landscape of Information 
Technology (IT), concerns about knowledge 
enhancement are well-founded. As established by 
the literature review and research problem, the field 
of networking, particularly in the context of SD-
WAN controllers, is characterized by intricate 
challenges that demand innovative solutions. The 
abundance of existing shortest-path algorithms, 
despite their proven utility, does not guarantee 
optimal performance in all scenarios. As networks 
grow in complexity and scale, the need for efficient 
and responsive algorithms becomes more 
pronounced. 
 
4.1 New or Profound Information vs. 

Incremental Knowledge 
The paper recognizes the dichotomy between 
seeking new or profound information versus 
incremental knowledge. While traditional shortest-
path algorithms like Dijkstra's and Bellman-Ford's 
have provided foundational solutions, the limitations 
posed by their time complexity necessitate 
exploration beyond incremental improvements. In 
this context, the paper introduces the Short-
Circuiting Bellman-Ford (SCBF) algorithm. This 
algorithm introduces a new approach that overcomes 
the limitations of existing algorithms, significantly 
improving runtime performance through early 
termination. 
The SCBF algorithm exemplifies the pursuit of 
profound information in IT knowledge 
enhancement. By leveraging the concept of short-
circuiting, the algorithm innovatively addresses the 
challenges of real-time path computation in SD-
WAN controllers. This approach represents a 
paradigm shift from incremental tweaks to a 
profound alteration of the traditional algorithm's 
behavior, resulting in tangible improvements. 
 
4.2 Synthesis and Analysis 
The synthesis of the literature review and research 
problem underscores the need for IT knowledge 
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enhancement. The concerns surrounding high time 
complexity in path computation are analyzed 
critically, revealing the shortcomings of traditional 
algorithms. The proposed SCBF algorithm 
represents a synthesis of various techniques, 
optimizing computation time while preserving 
accuracy. This innovation aligns with the pursuit of 
new and profound knowledge in IT. 
The paper's performance analysis validates the 
significance of the SCBF algorithm. By showcasing 
its superiority over traditional algorithms, the 
analysis reinforces the argument for seeking novel 
solutions rather than relying solely on incremental 
knowledge. The algorithm's success in real-world 
scenarios exemplifies the tangible benefits of 
adopting new methods. 
 
4.3 Integration of Prior Knowledge 
The paper draws upon prior knowledge from a 
diverse set of sources. It integrates historical 
algorithms like Dijkstra's and Bellman-Ford, as well 
as contemporary methods like Δ-stepping and the 
Caption algorithm. These references establish a 
foundation for understanding the context and 
significance of the SCBF algorithm. The knowledge 
gained from analyzing existing algorithms enables 
the formulation of a research problem and the 
proposal of a solution approach. 
 
4.4 Primary Research Question 
How can the efficiency of path computation in SD-
WAN controllers be optimized to ensure real-time 
responsiveness and scalability, considering the 
limitations of existing shortest-path algorithms? 
 
4.5 Secondary Research Questions 

1. How do traditional shortest path 
algorithms, such as Dijkstra's and Bellman-
Ford, perform in the context of SD-WAN 
controllers, and what are their limitations? 

2. What are the key challenges associated 
with real-time path computation in SD-
WAN controllers, particularly concerning 
network scale, complexity, and dynamic 
conditions? 

3. How does the proposed Short-Circuiting 
Bellman-Ford (SCBF) algorithm address 
the limitations of existing algorithms and 
improve the runtime efficiency of path 
computation in SD-WAN controllers? 

4. To what extent does the SCBF algorithm 
enhance the responsiveness of network 
management in SD-WAN controllers, 
particularly in dynamic and heterogeneous 
environments? 

5. How does the SCBF algorithm's 
performance compare to traditional shortest 
path algorithms, such as Dijkstra's and 
Bellman-Ford, across varying graph sizes 
and complexities? 

6. What is the theoretical time complexity of 
the SCBF algorithm, and how does it 
contribute to its real-world performance 
improvements? 

7. What are the implications of adopting the 
SCBF algorithm for real-time path 
computation in SD-WAN controllers in 
terms of accuracy, adaptability, and 
computational resources? 
 

4.6 Evaluation of Research Questions 
The primary research question addresses a 
significant problem statement regarding the 
optimization of path computation in SD-WAN 
controllers. The question is well-articulated and 
specific, focusing on both the need for efficiency and 
the limitations of existing algorithms. 
Each secondary research question contributes to 
understanding different aspects of the problem. They 
investigate the performance and limitations of 
traditional algorithms, the challenges of real-time 
path computation, the features and advantages of the 
SCBF algorithm, its performance comparisons, and 
its implications. These questions are coherent with 
the primary question and collectively provide a 
comprehensive analysis of the proposed solution. 
 
4.7 Validity of the study 
The study's validity rests on its rigorous exploration 
of the limitations of existing shortest path algorithms 
in the context of SD-WAN controllers, combined 
with the proposal and evaluation of the SCBF 
algorithm. The comprehensive performance 
analysis, utilizing various graph sizes and scenarios, 
ensures the robustness of the findings. Furthermore, 
the algorithm's theoretical time complexity aligns 
with its observed real-world performance, enhancing 
the study's validity. 
 
4.8 An improvement upon available knowledge 
The original study's contribution is twofold. First, it 
introduces the SCBF algorithm, a novel approach 
that significantly improves the runtime efficiency of 
path computation in SD-WAN controllers. This 
contribution is substantial, as it addresses a critical 
challenge in network management. Second, the 
study's performance analysis and comparisons 
provide empirical evidence of the SCBF algorithm's 
superiority over traditional algorithms. This 
additional knowledge undoubtedly represents an 
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improvement, as it offers a more responsive and 
efficient solution for real-time path computation, 
thereby enhancing the general body of knowledge in 
networking and algorithms. 
 
5. SOLUTION APPROACH 
 
We propose an enhancement of the Bellman-Ford 
algorithm by short-circuiting it. The Short-
Circuiting Bellman-Ford (SCBF) algorithm, as we 
call it, offers an enhanced variant of the traditional 
Bellman-Ford algorithm. It demonstrates a 
promising approach to address the research problem 
of optimizing the shortest path algorithm and 
reducing runtime for real-time SD-WAN controller 
applications. 
In the SD-WAN controller context, we often deal 
with large and complex networks. The standard 
Bellman-Ford algorithm, with its complexity of 
O(|V|.|E|), could pose performance challenges. 
However, SCBF, with its early exit feature, can 
significantly speed up the process by short-circuiting 
iterations when no further improvements are 
possible. This feature makes the algorithm more 
efficient and enables it to provide real-time shortest 
path computations. 
Furthermore, by incorporating the short-circuiting 
concept, the algorithm becomes adaptive to the 
characteristics of the graph, thus allowing it to 
potentially perform better on certain network 
structures. For example, it would be faster on graphs 
where the optimal path can be determined in fewer 
iterations. 
In SD-WAN controllers, this efficiency 
improvement could translate to faster path 
computation and programming, leading to more 
responsive and efficient network management. In a 
dynamic environment where network conditions and 
requirements can change rapidly, the ability to 
compute paths promptly is critical. 
The steps of SCBF as mentioned, including the 
initialization of the distance array, the iterative 
process of edge relaxation, the short-circuiting 
feature, and the final negative cycle check, present a 
comprehensive approach to shortest path 
computation. In the event of any negative cycle, 
which violates the assumption of the Bellman-Ford 
algorithm, the algorithm will assert a violation, 
preventing misleading results. 
The SCBF algorithm, thus, presents a promising 
solution to our research problem. It offers an 
optimized approach for shortest-path computation 
with potential improvements in runtime, making it 
well-suited for real-time path computation and 
programming in the context of SD-WAN controllers. 

 
5.1 SCBF Algorithm 
We've developed an improvement on the Bellman-
Ford algorithm, which we refer to as the Short-
Circuiting Bellman-Ford (SCBF) algorithm. The 
execution of the SCBF algorithm commences with 
the creation of an array (or a similar data structure) 
to keep track of the minimum distance between the 
origin node and all other nodes within the graph. 
Initially, these distances are assigned an infinite 
value, except for the distance to the source node 
itself, which is assigned zero. 
Subsequently, the algorithm initiates a loop that, at 
most, runs (V-1) times, where V signifies the total 
number of nodes within the graph. In each iteration, 
the algorithm examines every edge present in the 
graph and verifies if the route to the destination node 
of the edge could be enhanced by routing through the 
source node of the edge. If an improvement is 
possible, it revises the shortest distance to the target 
node. 
If an iteration results in no revisions, the algorithm 
terminates the loop prematurely - the principle 
known as "short-circuiting". 

 
Figure 2: SCBF Pseudocode 

In the end, the algorithm makes one more pass 
through each edge to identify any negative cycles, 
which would contravene the Bellman-Ford 
algorithm's premises. 
 
The resultant array of shortest distances serves as the 
final product of the SCBF algorithm. 
 
 
 

1: procedure SCBF(G, s) 

 2:   Initialize distance[] such that distance[v] = ∞ for each 
vertex v in G 

 3:   Set distance[s] = 0 

 4:   for i from 1 to size(G.V) - 1 do 

 5:     updated = false 

 6:     for each edge (u, v) in G.E do 

 7:       if distance[u] + weight(u, v) < distance[v] then 

 8:         distance[v] = distance[u] + weight(u, v) 

 9:         updated = true 

10:     if updated is false then 

11:       break 

12:   for each edge (u, v) in G.E do 

13:     assert distance[v] <= distance[u] + weight(u, v) 
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5.2 Space Time Complexity 
 
Time Complexity: The worst-case time complexity 
is: 

     O(VE)                    (1) 
 

Though, for most of the cases the time complexity is 
much lesser than O(VE) as we short-circuit the 
Bellman-Ford algorithm and it's not required to 
process all edges. However, in the worst-case 
scenario, we may still need to perform V-1 iterations 
over all the available edges.  
 
Space Complexity: The space complexity for our 
SCBF is:  

     O(V)                       (2) 
 

because it is required to store the shortest distance 
from the source to each vertex. 
 
6. PERFORMANCE ANALYSIS 
 
In our quest to ascertain the efficacy of our Short-
Circuiting Bellman-Ford (SCBF) algorithm, we 
conducted a comprehensive performance analysis 
comparing our implementation with established 
shortest path algorithms - Dijkstra's and traditional 
Bellman-Ford. 
All algorithms were implemented in Python, and we 
specifically employed the memory_profiler library 
[35] to track memory usage and the time library to 
measure the execution time of each algorithm. To 
ensure the robustness of our results, we carried out 
the experiment several times, which facilitated the 
creation of an extensive dataset. 
Our testbed comprised multiple graphs of various 
sizes, reflecting diverse real-world scenarios. This 
consideration allowed us to evaluate and compare 
the algorithms' performance across different scales 
and levels of complexity. 

6.1 Runtime Performance 
The runtime performance is a critical aspect of 
algorithmic efficiency, especially in scenarios where 
real-time computations are required. In our 
comparative analysis, we recorded the execution 
times of the SCBF, Dijkstra's, and traditional 
Bellman-Ford algorithms [36]. 
The results reveal that the SCBF algorithm 
consistently outperforms the traditional Bellman-
Ford algorithm in terms of execution time. This can 
be attributed to the 'short-circuiting' principle, which 
allows the SCBF algorithm to terminate the loop 
early when no updates are made during an iteration. 
While Dijkstra's algorithm also exhibited efficient 

execution times, the SCBF algorithm demonstrated 
superior or comparable performance across all graph 
sizes, highlighting its scalability. 

6.2 Memory Usage 

Efficient memory utilization is another crucial 
determinant of an algorithm's practicality. To this 
end, we analyzed the memory usage of the SCBF, 
Dijkstra's, and traditional Bellman-Ford algorithms 
using the memory_profiler library. 
Interestingly, the memory usage trends were quite 
similar to the runtime performance results. Our 
SCBF algorithm demonstrated improved memory 
efficiency compared to the traditional Bellman-Ford 
algorithm, owing to its early loop termination 
feature. Furthermore, it showed comparable or even 
better memory efficiency than Dijkstra's algorithm, 
particularly with larger graph sizes. 
The graphical representation of our findings, created 
using the matplotlib library, clearly depicts the 
SCBF algorithm's robust performance in both 
runtime and memory usage, emphasizing its 
potential for deployment in real-time, large-scale 
scenarios. 

6.3 Hardware Used 
We used Apple MacBook Air M2 (2022) with 8BG 
RAM for running Python 3 for the experiment. We 
assume that the Graph created by the controller is 
stored in a Dictionary data structure with Key value 
pairs. We generated the same using a Python 
function which we wrote and calculated the 
performance based on the same. The details of the 
Hardware used are as below:  

Table 2: Hardware Specifications. 

Sno. Component Description Value 

1. Hardware Architecture ARM 

2. Processor M2 Processor 

3. Cores 8 

4. Memory 8 GB 

5. Interfaces 1 X Gigabit 
Ethernet 

 

6.4 Experiment Results with 5, 10 and 15 nodes 
Graph 

We generated random graphs with 5, 10 and 15 
nodes and recorded the Algorithm runtime and 
memory usage. Below figure shows the generated 
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graph for which the algorithms were run for 
calculating the shortest path. 
 

 
Figure 3: 5 Node Graph (G5) 

 
 
.The result of the experiment are plotted below: 
 

 
Figure 4: Runtime and memory Comparison for G5 

We can see that our SCBF algorithm records the 
lowest runtime while was slightly higher in terms of 
memory usage. 
We performed a similar test with a graph of 10 nodes 
as well. The below Figure shows the generated 
graph: 

 
Figure 5: 10 Node Graph (G10) 

 

We calculated the runtime and the memory usage for 
calculating the shorttest path using all three 
algorithms and plotted the results as below: 

 

Figure 6: Runtime and Memory Comparison for G10 

 

here as well we can see that our SCBF performed the 
best in terms of runtime while it was in between the 
Bellman Ford and Dijkstra in terms of memory 
usage. 
We repeated the experiment with a graph of 15 
nodes. The generated graph is depicted below: 

 
Figure 7: 15 Node Graph (G15) 

In this test as well, we recorded the time and space 
performance for all three algorithms. The plot for the 
same is as below: 

 
Figure 8: Runtime and Memory Comparison for G15 

 
Here, we can see that SCBF is a clear winner on the 
time performance front while has a mid-level 
performance on memory usage. Better than Bellman 
ford, while Dijkstra outperforms all. 
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After these tests, we repeated the experiment 
multiple time for randomly generated graphs, 
keeping the node number static as 20. The below 
table 3. summarizes our readings and constitute our 
data set as well [37]. 

Table 3: Runtime Comparison at 20 Nodes. 

 

BF SCBF DJK 

1.07909179 0.93945336 1.00296497 

1.12388396 0.93870616 0.89356041 

1.11703324 0.9758122 0.96439219 

1.11772585 0.94212818 0.94836593 

1.07293224 0.94093513 0.97084117 

1.05833697 0.96416831 0.98841691 

1.08918285 0.93951607 0.97258782 

1.05938888 0.94836116 0.93829489 

1.09313989 0.97394896 0.95951796 

1.06264305 0.96079016 0.98840785 

1.12764192 0.93637013 0.990803 

1.14472103 0.94940996 0.95012403 

1.05676508 0.93304801 0.96302485 

1.09078574 0.94162703 0.98897696 

1.01163077 0.94257307 0.95653415 

1.93274012 0.94713306 0.9894402 

0.75090933 0.93304896 0.97009301 

0.92643523 0.92201495 0.92687798 

0.96379781 0.91928411 0.92397475 

0.91528702 0.91380811 0.94307303 

 
 

 
Figure 9: Runtime Comparison for multiple iterations 

SCBF clearly shows the improvement in Ruin Time 
as compared to other 2 algorithms as be the above 
results. 
The memory usage is also recorded for each run and 
the graph is plotted with the observations. Below are 
the results from the experiment on the space 
utilization: 

Table 4: Memory Usage Comparison at 20 Nodes. 

 

BF SCBF DJK 

319.703125 318.109375 314.359375 

128.5 128.140625 128.21875 

103.25 103.359375 103.34375 

89.109375 88.984375 89.0625 

98.6875 98.59375 93.328125 

96.015625 92.09375 92.03125 

98.171875 97.765625 94.21875 

100.375 97.1875 97.140625 

98.125 94.953125 95.375 

100.796875 95.5625 94.8125 

96.078125 94.171875 94.0625 

99.625 100 100.078125 

104.375 104.390625 95.59375 

103.703125 102.90625 96.9375 

99.109375 99.53125 99.5625 

98.671875 98.71875 94.234375 

96.65625 96.671875 91.828125 

568.78125 568.796875 568.796875 

633.421875 633.421875 633.4375 

301.28125 301.28125 301.28125 

 
The plot below shows the comparative analysis on 
the memory usage front for running the three 
algorithms on random graphs of 20 nodes: 
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Figure 10: Memory Comparison for Multiple Iterations 

 
We observed that all the three algorithms showed 
almost similar memory usage. 
The Next study we performed was to record the 
runtime and memory usage for all 3 algorithms for 
graphs of different number of nodes starting from 5 
to 1200 [38]. The below table shows the data set 
which we collected by performing the experiment 
with our Python code. We took the incremental 
readings with step size of 20 for number of nodes 
starting from 0 to 1200. The dataset thus prepared is 
available on the Git Hub link [39]. The plots 
obtained from the data set are explained here. The 
runtime comparison plot is as below: 

 
Figure 11: Runtime for Graphs with nodes 0-1200 

 
As you can see that SCBF is running almost neck to 
neck with established Dijkstra algorithm and clearly 
outperforming Bellman Ford. For the graph sizes on 
less than 500 nodes, its runtime is the best as 
observed during the experiment. 
The memory utilization of algorithms are also 
computed using similar methodology for graphs 
sizes spanning from 0 to 1200 nodes with a step size 
of 20. The result are available in the form of dataset 

uploaded on Github [40]. The plot for Memory 
utilization comparison is as follows: 

 
Figure 12: Memory Usage for Graphs with nodes 0-1200 

 
 
Its is clearly visible that the average memory 
utilization for graphs with more than 400 nodes is 
the least clocked by our SCBF algorithm. 

7. CONCLUSION 

In conclusion, our research paper aimed to compare 
the performance of three path computation 
algorithms, namely Bellman Ford (BF), Shortest 
Cost Bellman Ford (SCBF), and Dijkstra (DJK), for 
SDWAN controller environments. We evaluated 
their runtime and memory utilization to determine 
the most suitable algorithm for path computation in 
SDWAN controllers. 
Based on the runtime comparison, it was observed 
that SCBF outperformed both BF and DJK 
algorithms in terms of speed. SCBF exhibited 
consistently lower runtime values across different 
network sizes, indicating its efficiency in path 
computation. This implies that SCBF algorithm can 
provide faster routing decisions in SDWAN 
controllers, enhancing the overall network 
performance. 
Additionally, we analyzed the memory utilization of 
the algorithms. It was observed that BF and SCBF 
algorithms had comparable memory utilization, 
while Dijkstra algorithm exhibited slightly higher 
memory usage. This suggests that SCBF algorithm 
strikes a good balance between runtime efficiency 
and memory consumption, making it a suitable 
choice for SDWAN controllers where resource 
optimization is crucial. 
Considering the comparative study of runtime and 
memory utilization, SCBF algorithm emerges as the 
most promising option for path computation in 
SDWAN controllers. Its superior runtime 
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performance, combined with reasonable memory 
utilization, positions it as an efficient and effective 
algorithm for optimizing network routing decisions. 
In closing, our research highlights the significance of 
selecting the appropriate path computation algorithm 
for SDWAN controllers. By leveraging the 
advantages of SCBF algorithm, SDWAN 
deployments can benefit from faster routing 
decisions and improved network performance. 
Future work can focus on exploring additional 
optimization techniques and evaluating the 
algorithm's scalability in large-scale SDWAN 
deployments. 
In conclusion, this research endeavors to address the 
pressing challenge of optimizing path computation 
in Software-Defined Wide Area Network (SD-
WAN) controllers, particularly within the context of 
real-time network management. The study has 
explored the limitations of traditional shortest path 
algorithms, such as Dijkstra's and Bellman-Ford, and 
recognized their inadequacy in meeting the demands 
of dynamic, large-scale, and heterogeneous network 
environments. 
Building upon the insights gained from a 
comprehensive literature review, the research 
formulated a well-articulated problem statement 
centered around the need for efficient path 
computation in SD-WAN controllers. This problem 
statement served as the foundation for the 
formulation of research questions that guided the 
investigation. 
The study's primary research question delved into 
the optimization of path computation efficiency in 
SD-WAN controllers, a complex problem that has 
significant implications for real-time network 
responsiveness. Through the formulation of 
secondary research questions, the study 
systematically explored various facets of the 
problem, such as the performance of existing 
algorithms, the challenges posed by network 
dynamics, and the introduction of the Short-
Circuiting Bellman-Ford (SCBF) algorithm as a 
potential solution. 
The research made a significant contribution to the 
general body of knowledge in the field of 
networking algorithms. By proposing the SCBF 
algorithm, an enhancement of the traditional 
Bellman-Ford algorithm, the study introduced a 
novel approach that considerably improves the 
runtime efficiency of path computation. The 
algorithm's incorporation of the "short-circuiting" 
principle allows for early termination of iterations 
when no further improvements are possible, 
resulting in superior real-time responsiveness, even 
in dynamic and large-scale network scenarios. 

 
The empirical evaluation and performance analysis 
of the SCBF algorithm, alongside comparisons with 
traditional algorithms, provide compelling evidence 
of its efficacy. The SCBF algorithm's theoretical 
time complexity aligns with its observed real-world 
performance improvements, validating its suitability 
for the demands of modern network management. 
In conclusion, this research contributes to the 
enhancement of network management practices by 
proposing a novel algorithmic approach that bridges 
the gap between theoretical efficiency and practical 
responsiveness. By addressing the limitations of 
existing algorithms and introducing the SCBF 
algorithm, the study opens new avenues for more 
efficient path computation in SD-WAN controllers, 
thus paving the way for improved real-time network 
management in dynamic and complex environments. 
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