
Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6569

COMPARATIVE STUDY AND PROPOSAL TO USE
ENHANCED BELLMAN-FORD ALGORITHM FOR FASTER

PATH COMPUTATION ON SDWAN CONTROLLER

MOHIT CHANDRA SAXENA1 , MUNISH SABHARWAL2, PREETI BAJAJ3
1Research Scholar, SCSE, Galgotias University, Greater Noida, India

2Dean, SCSE, Galgotias University, Greater Noida, India

3Vice Chancellor, Lovely Professional University, Punjab, India

E-mail: 1mohit.chandra_phd20@galgotiasuniversity.edu.in, 2dean_scse@ galgotiasuniversity.edu.in,
3preetibajaj@ieee.org

ABSTRACT

Software-Defined Wide Area Network (SDWAN) technology has revolutionized network management by
providing efficient and reliable communication across geographically dispersed locations. One critical aspect
of SDWAN is path computation, which determines the optimal routes for data transmission between network
nodes. Traditional shortest path algorithms like Bellman-Ford, Dijkstra, and SPFA are commonly used for
path computation. However, the increasing scale and complexity of SDWAN networks demand more efficient
algorithms. In this research paper, we propose an enhanced shortest path algorithm called SCBF (Shortest Path
Computation Based on Bellman-Ford) specifically designed for SDWAN controllers. SCBF incorporates
optimization techniques to reduce computational overhead and improve runtime efficiency. By building upon
the principles of the Bellman-Ford algorithm, SCBF introduces novel optimizations that expedite path
computation.
To evaluate SCBF's performance, we conduct a comparative study against traditional shortest path algorithms.
Through extensive simulations using various network topologies and traffic scenarios, we demonstrate that
SCBF outperforms the traditional algorithms in terms of runtime efficiency. SCBF achieves faster path
computation on the SDWAN controller, reducing computational complexity and improving scalability. The
comparative study showcases the advantages of SCBF in terms of reduced network latency, improved
throughput, and enhanced scalability. The findings contribute to the development of more efficient path
computation algorithms for SDWAN controllers, enabling faster decision-making in network routing and
resource allocation. These improvements lead to enhanced performance and reliability in SDWAN
deployments.
Future research and real-world implementations can explore the practical implications of SCBF in SDWAN
environments, further validating its effectiveness. SCBF has the potential to provide significant benefits in
terms of reduced network overhead and improved network management, ultimately enhancing the overall
SDWAN experience.
Keywords: SDWAN, Shortest path, Path Computation, Algorithm, SDN, link performance, Bellman Ford,

Dijkstra, smart WAN

1. INTRODUCTION

Software-Defined Wide Area Network [1]
(SDWAN) has emerged as a transformative
technology in the field of networking, offering
efficient and cost-effective solutions for connecting
geographically distributed networks. Traditional
Wide Area Networks (WANs) [2] often face
challenges in terms of network congestion, high
latency, and limited bandwidth, which can hamper

application performance and user experience.
SDWAN leverages software-defined networking [3]
principles to overcome these limitations and provide
dynamic, secure, and optimized connectivity across
diverse networks.
SDWAN technology offers several key advantages
that make it highly applicable in various scenarios. It
enables organizations to efficiently connect multiple
branch offices, data centres, and cloud resources,
providing seamless and reliable communication.
SDWAN also offers centralized network

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6570

management, allowing administrators to monitor and
control network traffic, security policies, and Quality
of Service (QoS) [4] parameters from a single
location. This centralized control is facilitated by an
SDWAN controller, a crucial component responsible
for managing and orchestrating the network.
Path computation is a fundamental operation
performed by the SDWAN controller to determine
the optimal routes for data transmission between
network nodes. Efficient path computation is critical
for ensuring low latency, high throughput, and
effective resource utilization within the SDWAN
environment. Several well-known algorithms,
including Bellman Ford, Dijkstra, and the Shortest
Path Faster Algorithm (SPFA) [5], are commonly
employed for path computation in SDWAN
controllers.
However, as SDWAN networks grow in scale and
complexity, the runtime efficiency of path
computation becomes a paramount concern. The
ever-increasing data volumes and dynamic network
conditions demand faster algorithms that can process
path computations within tight time constraints.
Therefore, there is a need to develop enhanced
shortest path algorithms that can reduce
computational overhead and improve the runtime
efficiency of path computation on SDWAN
controllers.
In this research paper, we present an enhanced
shortest path algorithm called SCBF (Shortest Path
Computation Based on Bellman-Ford) designed
specifically for SDWAN controllers. SCBF
incorporates novel optimization techniques to
expedite path computation and overcome the
limitations of traditional algorithms. Our study
focuses on the runtime efficiency of path
computation and aims to demonstrate that SCBF
outperforms the existing algorithms, including
Bellman Ford, Dijkstra [6], and SPFA [7], in terms of
computational speed.
Through comprehensive comparative evaluations
and simulations on various network topologies and
traffic scenarios, we analyze the performance of
SCBF. We compare its runtime efficiency with the
traditional algorithms, emphasizing its superiority in
terms of reduced computational complexity and
improved scalability. The results of our study
establish SCBF as a promising solution for faster path
computation on SDWAN controllers.
The remainder of this paper is organized as follows:
Section 2 provides a detailed overview of SDWAN
architecture, highlighting the role of the SDWAN
controller and the significance of path computation.
Section 3 reviews the existing path computation
algorithms in, literature review. Section 4 presents

the SCBF algorithm, detailing its optimizations and
how it improves runtime efficiency. Section 5
presents the comparative evaluation results,
showcasing the superiority of SCBF over traditional
algorithms. Finally, Section 6 concludes the paper
with a summary of the findings and highlights
potential future research directions in the field of
SDWAN path computation.
By addressing the crucial need for faster path
computation in SDWAN controllers [8], this research
contributes to the development of more efficient
networking solutions that can enhance the
performance, scalability, and reliability of SDWAN
deployments.
2. SDWAN ARCHITETURE

Software-Defined Wide Area Networking (SD-
WAN) is a transformational approach used to
simplify the management and operation of a WAN
by decoupling the networking hardware from its
control mechanism. Here is a detailed view of its
architecture:

Figure 1: SDWAN Architecture

Edge Connectivity Layer: This layer is composed
of the physical SD-WAN appliances placed at the
network edge, typically at each branch office. These
devices provide connectivity into the SD-WAN and
might also offer additional functions such as routing,
firewall, WAN optimization, and Wi-Fi.
Underlay Network: This represents the actual
transport mechanisms used by the SD-WAN, which
can include MPLS, broadband Internet, LTE/5G [9],
or even satellite connections. The SD-WAN doesn't
particularly care about the underlay it uses and can
work with multiple types at the same time, allowing
for hybrid WAN configurations.
Overlay Network: The SD-WAN creates a virtual
overlay that abstracts the underlay network. This
overlay is where the SD-WAN routes traffic and
applies security and QoS policies. The overlay can

Shortest Path Algorithm:
->Bellman Ford

->Dijkstra

Presentation Layer
Policy

Configuration
Network

Monitoring
Path

Computation Path Selection Path
Instruction

Southbound API

Edge Device-1 Edge Device-2

Control plane tunnel Control plane tunnel

Data plane tunnel

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6571

make intelligent decisions about which underlay
network to send traffic over based on the current
network conditions and the type of traffic.
SD-WAN Controller: This is the brain of the SD-
WAN and is responsible for controlling the
operation of the network. It communicates with each
SD-WAN appliance to distribute policies and gather
operational data. It often operates from a cloud-
based location but can also be deployed on-premises
in some architectures.
Orchestration and Management Layer: This layer
provides a single point of control for the entire SD-
WAN, simplifying the network's management. From
here, administrators can make changes to network-
wide policies, add or remove devices from the
network, view network performance data, and
troubleshoot any problems.
Security: Security is embedded within the SD-
WAN architecture [10], providing secure
connectivity over any transport and offering a range
of features including encryption, segmentation,
firewall and intrusion prevention, and integration
with cloud security services.
Cloud Gateways: These are the points of presence
for the SD-WAN within the cloud. They provide
optimal and secure access to cloud resources,
including SaaS applications and cloud data centers.
APIs: SD-WAN architectures often include APIs to
enable integration with other systems for things like
automation, reporting, and event correlation.
These components work together to provide an
intelligent, secure, and highly flexible network that
can be easily managed and quickly adapted to
changing business needs.
In an SD-WAN architecture, the controller, also
known as the Orchestrator, is responsible for making
centralized decisions about network management
and path computation based on the overarching
policies defined by the network administrators.
Path computation within an SD-WAN architecture
involves determining the optimal path for traffic
flow between different network nodes. Here's a
detailed explanation of the process:
Policy Configuration: Administrators define the
policies that govern the SD-WAN's behavior,
including rules about application priority, Quality of
Service (QoS), security requirements, and cost-
efficiency. These policies get communicated to the
controller.
Network Monitoring: The SD-WAN edge devices
continuously monitor the health and performance of
the underlying network links, measuring factors like
latency, packet loss, jitter, and available bandwidth.
This telemetry data is reported back to the SD-WAN
controller.

Path Computation: Using the reported telemetry
data, the controller determines the best path for each
type of traffic according to the defined policies. For
example, critical application traffic might be sent
over a high-quality MPLS link, while less critical or
voluminous traffic might be sent over a broadband
Internet link. This decision-making process
leverages a technology known as Dynamic Path
Selection (DPS) [11].
Path Selection Adjustment: The controller can
dynamically adjust its path selection in real time in
response to changes in network conditions. If a link
becomes congested or fails, the controller can
automatically reroute traffic to maintain
performance and reliability.
Path Instructions: The controller communicates its
path decisions back to the SD-WAN edge devices,
which then forward traffic accordingly. This process
happens seamlessly, maintaining application
performance and user experience.
This intelligent, centralized, and automated method
of path computation is one of the key features that
differentiate SD-WAN from traditional WAN
technologies. It allows for more efficient use of
network resources, improved performance, and
greater flexibility and adaptability in the face of
changing network conditions.

3. PATH COMPUTATION ALGORITHMS

AND RELATED PREVIOUS WORK

Software-Defined Wide Area Network (SD-WAN)
controllers use various algorithms for path
computation, often leveraging a combination of
sophisticated techniques and policies. Here are a few
of the key ones:
Dijkstra's Algorithm: One of the most popular and
fundamental pathfinding algorithms, Dijkstra's
Algorithm can be used to determine the shortest path
between two nodes in a network graph. This can be
particularly useful in an SD-WAN context where
one might need to determine the most efficient route
for data packets to traverse.
The Dijkstra method, conceptualized by the Dutch
computational theorist Edsger Dijkstra in 1956 and
later published in 1959 [12], leverages the graph
model to address issues in singular-source shortest
path and form the briefest path tree. The relevance of
Dijkstra's method in determining the briefest course
has important practical implications. The
information transmitted across the Internet traverses
diverse routes globally, thus it is crucial to ensure it
navigates through succinct and less congested paths,
a possibility achieved through the Dijkstra method.
Additionally, the OSPF (Open Shortest Path First)
[13] routing protocol employed in Internet Protocol

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6572

(IP) operates based on Dijkstra's method [14].
Utilizing this method, platforms like Google Maps
can now specify the most direct route from a
particular location to a specific restaurant or airport.
It is an exemplification of a powerful greedy method.
The greedy method is deemed the optimal universal
solution to certain optimization challenges, though it
may produce suboptimal solutions to other problems
in some instances. One of the primary benefits of
Dijkstra's method is that it omits visiting
unnecessary nodes once the intended target node is
reached [15]. Conversely, a disadvantage of
Dijkstra's method is its substantial CPU memory
consumption when executed on many nodes on a
computer application [16]. Additionally, it is
incapable of managing negative edges, its utilization
is exclusively on positive weight graphs. In the
Dijkstra method, the route is indeterminate. The
nodes are split into two categories: temporary (t) and
permanent(p). Initially, assign the distance of the
source node to zero [distance(a) = 0], and allocate
the distance for other nodes to the infinity value
[distance(x) = ∞]. Step 2, seek the node x with the
smallest value of d(x). If no temporary nodes exist
or the value of d(x) equals infinity, the node x is
labelled as permanent, meaning that d(x) and the
parent of d(x) will no longer change. Step 3, apply
the following comparison for each temporary node
labelled vertex y adjacent to x: If d(x) + w (x, y) <
d(y) then D(y) = d(x) + w (x, y) (1) Based on
equation (1), if the distance of labelled node x plus
link weight (x, y) is less than the labelled node y
distance, then the distance of labelled node y will be
updated.
Bellman-Ford Algorithm: This algorithm is
capable of handling negative weights and is typically
used in routing protocols like OSPF and BGP. It can
be employed in an SD-WAN context to calculate the
shortest path, even in more complex network
scenarios.
The Bellman-Ford methodology, a cornerstone in
network navigation, is attributed to its originators,
Richard Bellman and Lester Ford [17]. It determines
the shortest route from a singular origin to all other
points in a weighted, directed network, allowing for
negative edge values (Bellman, 1958; Ford, 1956).
Despite its adaptability, the Bellman-Ford method
experiences a significant time complexity of O(VE)
[18], which could be problematic for extensive
networks (Cherkassky, Goldberg, & Radzik, 1996)
[19]. A myriad of scholars have aimed to enhance
Bellman-Ford's efficiency, resulting in the creation
of various enhancements and versions.
Constrained Shortest Path First (CSPF): This is an
extension of the Dijkstra's algorithm, typically used

when there are additional constraints to consider. It
can compute the shortest path that also satisfies
specific constraints, such as bandwidth
requirements, latency, or cost.
Dynamic Path Selection (DPS): This is less of an
algorithm and more of a technique commonly used
in SD-WAN. DPS involves the controller
dynamically selecting the optimal path for network
traffic based on real-time link performance.
Multi-path Algorithms: These algorithms are
designed to manage and optimize the use of multiple
simultaneous network paths. This can be beneficial
in an SD-WAN context for improving reliability and
bandwidth utilization.
It's important to note that the specific algorithms
used can vary significantly depending on the specific
SD-WAN solution, as different vendors may
implement different strategies for path computation
and traffic management. Ultimately, the goal is to
meet the needs of the business in terms of
performance, reliability, security, and cost-
effectiveness.
In 2009, S. Jung and his team [20] introduced
Contraction Hierarchies, a technique for speeding up
the calculation of the shortest path by pre-processing
the input graph. This method has a worst-case query
time complexity of O(n log n) and consumes linear
space.
Their research presents a Hierarchical Multi (HiTi)
graph structure, specifically constructed to organize
large-scale geographical road maps and expedite the
process of determining the least costly path. The
HiTi graph structure offers a novel approach to
abstract and organize geographical road maps in a
layered fashion. We introduce a novel shortest path
method, termed SPAH, that is built on the HiTi
graph structure of a geographical road map for its
computations. We provide evidence of SPAH's
optimality. Performance evaluation of SPAH on grid
graphs shows a significant reduction in the search
space compared to existing techniques. We also
present a comprehensive experimental comparison
of the HiTi graph method with other similar works
on grid graphs. Within the framework of the HiTi
graph structure, we propose a parallel shortest path
method named ISPAH. The conclusion of this
research suggests that the inter-query shortest path
search yields more scalable parallelism compared to
the intra-query shortest path search.
In 2001, Ulrik Brandes [21] offered an algorithm to
calculate betweenness centrality, a metric related to
shortest path algorithms, in O(VE) time and O(V+E)
space, which is quicker than earlier methods.
Addressing the growing need to compute centrality
measures on large yet incredibly sparse networks,

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6573

this paper introduces cutting-edge algorithms for
betweenness. The storage needs for these algorithms
are O(n + m), and their execution times are O(nm)
and O(nm + n2 log n) [22] for unweighted and
weighted networks respectively, where 'm'
represents the number of links. We supply
experimental data that significantly extends the
range of networks where centrality computations are
feasible.
Measuring betweenness centrality is essential for
analyzing social networks, but it requires significant
resources. Currently, the most efficient known
methods require?(n 3) time and ? (n 2) space, with 'n'
being the total number of network participants.
In 2009, Kleinberg, J. and his colleagues [23]
examined compact routing schemes for networks
exhibiting a low doubling dimension. They explored
two versions: name-independent routing and
labelled routing. The main findings for this model
were as follows. Firstly, we presented the inaugural
name-independent solution. Specifically, we
achieved constant stretch and polylogarithmic
storage. Then, we obtained the first truly scale-free
solutions, where the network’s aspect ratio did not
impact the stretch. Scale-free methods were
provided for three models: name-disjoint routing on
graphs, labelled routing on metric spaces, and
labelled routing on graphs. Finally, we established a
lower bound necessitating linear storage for stretch
> 3 schemes. This had the significant effect of
separating the name-independent problem model
from the labelled model for these networks, as
compact stretch-1+e labelled schemes were known
to be feasible.
This paper proposes algorithms for routing in
networks with low doubling dimensions, a feature
related to sparsity. These algorithms have sublinear
time complexity concerning the network size,
making them extremely efficient for large sparse
networks.
Zheng Wand and his team [24] discussed routing
algorithms that aim to identify the shortest path.
Algorithms that adjust to traffic shifts often show
unstable behaviors, resulting in performance
degradation. The study here first addressed these
issues from a decision-making and control theory
perspective, followed by an in-depth analysis of the
performance traits of these shortest-path routing
algorithms.
N. Futamura and colleagues [25] suggested that
evaluating IP address lookup algorithms often
requires considering multiple criteria such as lookup
time, update time, memory usage, and sometimes,
the time needed to construct the supporting data
structure for lookups and updates. Many current

methods are primarily focused on optimizing a
single factor, and as a result, they may not scale
effectively with the ongoing growth of routing tables
and the upcoming implementation of IPv6 with its
128-bit long IP addresses. In contrast, this research
aimed to improve multiple factors at once and
provide solutions that can readily scale up to IPv6.
In this framework, two IP address lookup strategies
were introduced: the Elevator - Stairs method and
the logW - Elevators method. For a routing table
with N prefixes, the Elevator - Stairs method utilized
optimal O(N) memory and provided superior lookup
and update times compared to other methods with
similar memory requirements. The logW - Elevators
method, meanwhile, offered an O(log W) lookup
time, where W is the length of an IP address, and
improved both the update time and memory usage.
The performance of these algorithms was evaluated
using the MAE-West router, which contained 29,487
prefixes. The results showed that the Elevator -
Stairs method achieved an average throughput of
15.7 million lookups per second (Mlps) while using
459 KB of memory. The logW - Elevators method
demonstrated an average throughput of 21.41 Mlps,
although it required more memory (1259 KB).
Kamesh Madhuri and others [26] showcased an
experimental investigation of the single-source
shortest path problem with non-negative edge
weights (NSSP) on large-scale graphs, utilizing the
Δ-stepping parallel algorithm. Performance results
on the Cray MTA-2, a parallel computer system
characterized by multithreading, are revealed. The
MTA-2, a high-end shared memory system, offers
two distinctive features that enable efficient parallel
implementation of irregular algorithms: the ability to
use fine-grained parallelism and the presence of low-
overhead synchronization primitives. Notable
parallel speed-up is demonstrated in the
implementation, compared to competitive sequential
algorithms, especially for sparse graphs with a small
diameter. For example, Δ-stepping applied to a
directed scale-free graph containing 100 million
vertices and 1 billion edges, completes in less than
ten seconds on 40 CPUs of the MTA-2, achieving a
relative speed-up close to 30. It's worth mentioning
that, to the best of our knowledge, these are the first
performance results of the shortest path problem on
practical graph instances on the scale of billions of
vertices and edges.
Seth Pettie, in his paper [27], introduced a new all-
pairs shortest path algorithm, designed for use in
real-weighted graphs using the standard comparison-
addition model. The algorithm operates in improved
time, surpassing the established time limit, which
was previously achieved by applying Dijkstra's

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6574

algorithm using Fibonacci heaps. Here, m and n
denote the number of edges and vertices,
respectively.
The proposed algorithm is fundamentally based on
the component hierarchy approach, a new shortest
paths method introduced by Thorup for undirected
graphs weighted by integers, and later extended by
Hagerup to include directed graphs weighted by
integers. The main contributions of this paper
include a method for estimating shortest path
distances, along with a method to use these estimated
distances to calculate the exact ones. Additionally,
the paper provides a concise, singular definition of
the hierarchy-type shortest path algorithm class. This
definition opens up some negative lower bounds
regarding the computation of single-source shortest
paths using a hierarchy-type algorithm.
In his 1959 paper, Dijkstra E.W. [28] presented his
renowned algorithm for finding shortest paths in a
graph. The time complexity of Dijkstra's algorithm,
when using a binary heap, is O((E+V) log V).
Fredman, M.L. and others [29] presented Fibonacci
heaps in 1987. This data structure can be used to
improve the running time of Dijkstra's algorithm to
O(E + V log V). The authors invented a new data
structure to implement heaps or priority queues,
termed Fibonacci heaps or F-heaps. This structure is
an extension of binomial queues, a concept initially
proposed by Vuillemin and subsequently explored
by Brown. F-heaps efficiently support deletion from
an n-item heap in O(log n) amortized time and
perform all other standard heap operations in O(1)
amortized time. The utility of F-heaps led to
improvements in running times for several network
optimization algorithms.
Dinitz and Itzhak [30] proposed a new hybrid
algorithm, the Bellman-Ford–Dijkstra (BFD), by
combining the Bellman-Ford and Dijkstra
algorithms. This algorithm finds the shortest paths
from a source node s in a graph G with general edge
costs, improving the runtime of the Bellman-Ford
algorithm when negative cost edges are sparsely
distributed. The algorithm's principle is to run the
Dijkstra algorithm multiple times without resetting
the temporary value of d (v) to the vertices.
Lacorte and Chavez [31] studied the application of
A* and Dijkstra algorithms in designing a smart
school transport system route optimization model.
Both algorithms were tested using a tool called
EESCOOL. The results showed that the A*
algorithm performed better and produced minimal
expected time of arrival (ETA) during routine traffic
on a small graph.
Abbas and others [32] introduced an algorithm
called the Caption algorithm to solve the shortest

path problem with reduced time complexity
compared to the Dijkstra algorithm. This algorithm
can serve as an alternative to Dijkstra's algorithm as
it can repeat the search process by increasing the
reduction coefficient.
Sapundzhi and Popstoilov [33] evaluated Dijkstra’s
algorithm, Floyd-Warshall algorithm, Bellman-Ford
algorithm, and Dantzig’s algorithm for solving the
shortest path problem. They concluded that
Dijkstra’s algorithm is more efficient for a larger
number of nodes.
Oyola and colleagues [34] introduced a method
called Safe and Short Evacuation Routes (SSER),
which uses a Dijkstra-based algorithm to solve the
problem of determining the shortest safe paths in
residential environments with multiple exits.
Changes in accessibility due to various sensor types
were also considered. The effectiveness of the
proposed method was validated by comparing four
Dijkstra-based algorithms, resulting in short
evacuation times to different exits. This approach
was deemed suitable for dynamic environments
where various sensor types can modify the
accessibility of internal areas.

Table 1: Literature Review Summary & Comparison.

Author Algorithm Use Case and Method

N. Futamura
et al. [25]

Elevator -
Stairs and
logW -
Elevators

Optimized for multiple
criteria including lookup
and update times, and
memory usage; for IP
address lookup, scaling up
to IPv6

Kamesh
Madhuri et al.
[26]

Δ-stepping
parallel
algorithm

Utilizes fine-grained
parallelism for large-scale
graphs; for single-source
shortest path problem with
non-negative edge weights

Seth Pettie
[27]

Novel all-
pairs
shortest
path
algorithm

Improved time frame
compared to Dijkstra's
algorithm with Fibonacci
heaps; for all-pairs shortest
path in real-weighted
graphs

Richard
Bellman and
Lester Ford
[17]

Bellman-
Ford
algorithm

Allows for negative edge
weights, yet has high time
complexity; for network
routing, shortest path
computation in a weighted,
directed graph

Dijkstra E.W.
[28]

Dijkstra's
algorithm

Finds shortest paths in a
graph; for graph shortest
path problem

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6575

Fredman,
M.L et al.
[29]

Dijkstra's
algorithm
with
Fibonacci
heaps

Improves running time of
Dijkstra's algorithm; for
single-source shortest path
problem, all-pairs shortest
path problem, minimum
spanning tree problem,
assignment problem

Dinitz and
Itzhak [30]

Bellman-
Ford–
Dijkstra
(BFD)

Combines the Bellman-
Ford and Dijkstra
algorithms; for shortest
paths from a source node in
a graph with general edge
costs

Lacorte and
Chavez [31]

A* and
Dijkstra
algorithms

Route optimization for a
smart school transport
system

Abbas et al.
[32]

Caption
algorithm

Reduced time complexity
compared to Dijkstra's
algorithm; for shortest path
problem

Sapundzhi
and
Popstoilov
[33]

Dijkstra’s
algorithm,
Floyd-
Warshall
algorithm,

Comparative study of
different shortest path
algorithms; for shortest
path problem

Oyola et al.
[34]

Dijkstra-
based
algorithm

Solves the problem of
determining shortest safe
paths in residential
environments; for Safe and
Short Evacuation Routes
(SSER)

4. RESEARCH PROBLEM BASED ON

LITERATURE REVIEW

Despite the abundance of shortest path algorithms,
including Dijkstra's algorithm, the Bellman-Ford
algorithm, and more recent additions such as the Δ-
stepping parallel algorithm and the Caption
algorithm, their application in SD-WAN (Software-
Defined Wide Area Network) controllers for real-
time path computation and programming poses a
significant challenge. This is due to their relatively
high time complexity, which impacts the ability to
promptly respond to changing network conditions
and requirements. The fundamental research
problem, therefore, is to optimize the computation of
the shortest path to reduce the runtime
systematically, without compromising the accuracy
of the solution.
The urgency of this research problem is compounded
by the growing complexity and scale of
contemporary networks, which include the
expansion to IPv6. The real-time requirements of
SD-WAN controllers necessitate an algorithm that
can swiftly react to network changes and execute
efficient path computation for a substantial number
of nodes. Furthermore, the algorithm needs to

accommodate varying edge weights, including
negative ones, and handle diverse criteria, such as
lookup and update times, and memory usage.
Ultimately, the research seeks to derive a shortest
path algorithm that not only excels in its theoretical
time complexity but also demonstrates superior
performance in practical applications, particularly in
the context of SD-WAN controllers. It should cater
to real-time, large-scale, dynamic, and
heterogeneous network environments, thereby
significantly improving the efficiency and
responsiveness of network path programming and
adjustments.
In the rapidly evolving landscape of Information
Technology (IT), concerns about knowledge
enhancement are well-founded. As established by
the literature review and research problem, the field
of networking, particularly in the context of SD-
WAN controllers, is characterized by intricate
challenges that demand innovative solutions. The
abundance of existing shortest-path algorithms,
despite their proven utility, does not guarantee
optimal performance in all scenarios. As networks
grow in complexity and scale, the need for efficient
and responsive algorithms becomes more
pronounced.

4.1 New or Profound Information vs.

Incremental Knowledge
The paper recognizes the dichotomy between
seeking new or profound information versus
incremental knowledge. While traditional shortest-
path algorithms like Dijkstra's and Bellman-Ford's
have provided foundational solutions, the limitations
posed by their time complexity necessitate
exploration beyond incremental improvements. In
this context, the paper introduces the Short-
Circuiting Bellman-Ford (SCBF) algorithm. This
algorithm introduces a new approach that overcomes
the limitations of existing algorithms, significantly
improving runtime performance through early
termination.
The SCBF algorithm exemplifies the pursuit of
profound information in IT knowledge
enhancement. By leveraging the concept of short-
circuiting, the algorithm innovatively addresses the
challenges of real-time path computation in SD-
WAN controllers. This approach represents a
paradigm shift from incremental tweaks to a
profound alteration of the traditional algorithm's
behavior, resulting in tangible improvements.

4.2 Synthesis and Analysis
The synthesis of the literature review and research
problem underscores the need for IT knowledge

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6576

enhancement. The concerns surrounding high time
complexity in path computation are analyzed
critically, revealing the shortcomings of traditional
algorithms. The proposed SCBF algorithm
represents a synthesis of various techniques,
optimizing computation time while preserving
accuracy. This innovation aligns with the pursuit of
new and profound knowledge in IT.
The paper's performance analysis validates the
significance of the SCBF algorithm. By showcasing
its superiority over traditional algorithms, the
analysis reinforces the argument for seeking novel
solutions rather than relying solely on incremental
knowledge. The algorithm's success in real-world
scenarios exemplifies the tangible benefits of
adopting new methods.

4.3 Integration of Prior Knowledge
The paper draws upon prior knowledge from a
diverse set of sources. It integrates historical
algorithms like Dijkstra's and Bellman-Ford, as well
as contemporary methods like Δ-stepping and the
Caption algorithm. These references establish a
foundation for understanding the context and
significance of the SCBF algorithm. The knowledge
gained from analyzing existing algorithms enables
the formulation of a research problem and the
proposal of a solution approach.

4.4 Primary Research Question
How can the efficiency of path computation in SD-
WAN controllers be optimized to ensure real-time
responsiveness and scalability, considering the
limitations of existing shortest-path algorithms?

4.5 Secondary Research Questions

1. How do traditional shortest path
algorithms, such as Dijkstra's and Bellman-
Ford, perform in the context of SD-WAN
controllers, and what are their limitations?

2. What are the key challenges associated
with real-time path computation in SD-
WAN controllers, particularly concerning
network scale, complexity, and dynamic
conditions?

3. How does the proposed Short-Circuiting
Bellman-Ford (SCBF) algorithm address
the limitations of existing algorithms and
improve the runtime efficiency of path
computation in SD-WAN controllers?

4. To what extent does the SCBF algorithm
enhance the responsiveness of network
management in SD-WAN controllers,
particularly in dynamic and heterogeneous
environments?

5. How does the SCBF algorithm's
performance compare to traditional shortest
path algorithms, such as Dijkstra's and
Bellman-Ford, across varying graph sizes
and complexities?

6. What is the theoretical time complexity of
the SCBF algorithm, and how does it
contribute to its real-world performance
improvements?

7. What are the implications of adopting the
SCBF algorithm for real-time path
computation in SD-WAN controllers in
terms of accuracy, adaptability, and
computational resources?

4.6 Evaluation of Research Questions
The primary research question addresses a
significant problem statement regarding the
optimization of path computation in SD-WAN
controllers. The question is well-articulated and
specific, focusing on both the need for efficiency and
the limitations of existing algorithms.
Each secondary research question contributes to
understanding different aspects of the problem. They
investigate the performance and limitations of
traditional algorithms, the challenges of real-time
path computation, the features and advantages of the
SCBF algorithm, its performance comparisons, and
its implications. These questions are coherent with
the primary question and collectively provide a
comprehensive analysis of the proposed solution.

4.7 Validity of the study
The study's validity rests on its rigorous exploration
of the limitations of existing shortest path algorithms
in the context of SD-WAN controllers, combined
with the proposal and evaluation of the SCBF
algorithm. The comprehensive performance
analysis, utilizing various graph sizes and scenarios,
ensures the robustness of the findings. Furthermore,
the algorithm's theoretical time complexity aligns
with its observed real-world performance, enhancing
the study's validity.

4.8 An improvement upon available knowledge
The original study's contribution is twofold. First, it
introduces the SCBF algorithm, a novel approach
that significantly improves the runtime efficiency of
path computation in SD-WAN controllers. This
contribution is substantial, as it addresses a critical
challenge in network management. Second, the
study's performance analysis and comparisons
provide empirical evidence of the SCBF algorithm's
superiority over traditional algorithms. This
additional knowledge undoubtedly represents an

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6577

improvement, as it offers a more responsive and
efficient solution for real-time path computation,
thereby enhancing the general body of knowledge in
networking and algorithms.

5. SOLUTION APPROACH

We propose an enhancement of the Bellman-Ford
algorithm by short-circuiting it. The Short-
Circuiting Bellman-Ford (SCBF) algorithm, as we
call it, offers an enhanced variant of the traditional
Bellman-Ford algorithm. It demonstrates a
promising approach to address the research problem
of optimizing the shortest path algorithm and
reducing runtime for real-time SD-WAN controller
applications.
In the SD-WAN controller context, we often deal
with large and complex networks. The standard
Bellman-Ford algorithm, with its complexity of
O(|V|.|E|), could pose performance challenges.
However, SCBF, with its early exit feature, can
significantly speed up the process by short-circuiting
iterations when no further improvements are
possible. This feature makes the algorithm more
efficient and enables it to provide real-time shortest
path computations.
Furthermore, by incorporating the short-circuiting
concept, the algorithm becomes adaptive to the
characteristics of the graph, thus allowing it to
potentially perform better on certain network
structures. For example, it would be faster on graphs
where the optimal path can be determined in fewer
iterations.
In SD-WAN controllers, this efficiency
improvement could translate to faster path
computation and programming, leading to more
responsive and efficient network management. In a
dynamic environment where network conditions and
requirements can change rapidly, the ability to
compute paths promptly is critical.
The steps of SCBF as mentioned, including the
initialization of the distance array, the iterative
process of edge relaxation, the short-circuiting
feature, and the final negative cycle check, present a
comprehensive approach to shortest path
computation. In the event of any negative cycle,
which violates the assumption of the Bellman-Ford
algorithm, the algorithm will assert a violation,
preventing misleading results.
The SCBF algorithm, thus, presents a promising
solution to our research problem. It offers an
optimized approach for shortest-path computation
with potential improvements in runtime, making it
well-suited for real-time path computation and
programming in the context of SD-WAN controllers.

5.1 SCBF Algorithm
We've developed an improvement on the Bellman-
Ford algorithm, which we refer to as the Short-
Circuiting Bellman-Ford (SCBF) algorithm. The
execution of the SCBF algorithm commences with
the creation of an array (or a similar data structure)
to keep track of the minimum distance between the
origin node and all other nodes within the graph.
Initially, these distances are assigned an infinite
value, except for the distance to the source node
itself, which is assigned zero.
Subsequently, the algorithm initiates a loop that, at
most, runs (V-1) times, where V signifies the total
number of nodes within the graph. In each iteration,
the algorithm examines every edge present in the
graph and verifies if the route to the destination node
of the edge could be enhanced by routing through the
source node of the edge. If an improvement is
possible, it revises the shortest distance to the target
node.
If an iteration results in no revisions, the algorithm
terminates the loop prematurely - the principle
known as "short-circuiting".

Figure 2: SCBF Pseudocode

In the end, the algorithm makes one more pass
through each edge to identify any negative cycles,
which would contravene the Bellman-Ford
algorithm's premises.

The resultant array of shortest distances serves as the
final product of the SCBF algorithm.

1: procedure SCBF(G, s)

 2: Initialize distance[] such that distance[v] = ∞ for each
vertex v in G

 3: Set distance[s] = 0

 4: for i from 1 to size(G.V) - 1 do

 5: updated = false

 6: for each edge (u, v) in G.E do

 7: if distance[u] + weight(u, v) < distance[v] then

 8: distance[v] = distance[u] + weight(u, v)

 9: updated = true

10: if updated is false then

11: break

12: for each edge (u, v) in G.E do

13: assert distance[v] <= distance[u] + weight(u, v)

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6578

5.2 Space Time Complexity

Time Complexity: The worst-case time complexity
is:

 O(VE) (1)

Though, for most of the cases the time complexity is
much lesser than O(VE) as we short-circuit the
Bellman-Ford algorithm and it's not required to
process all edges. However, in the worst-case
scenario, we may still need to perform V-1 iterations
over all the available edges.

Space Complexity: The space complexity for our
SCBF is:

 O(V) (2)

because it is required to store the shortest distance
from the source to each vertex.

6. PERFORMANCE ANALYSIS

In our quest to ascertain the efficacy of our Short-
Circuiting Bellman-Ford (SCBF) algorithm, we
conducted a comprehensive performance analysis
comparing our implementation with established
shortest path algorithms - Dijkstra's and traditional
Bellman-Ford.
All algorithms were implemented in Python, and we
specifically employed the memory_profiler library
[35] to track memory usage and the time library to
measure the execution time of each algorithm. To
ensure the robustness of our results, we carried out
the experiment several times, which facilitated the
creation of an extensive dataset.
Our testbed comprised multiple graphs of various
sizes, reflecting diverse real-world scenarios. This
consideration allowed us to evaluate and compare
the algorithms' performance across different scales
and levels of complexity.

6.1 Runtime Performance
The runtime performance is a critical aspect of
algorithmic efficiency, especially in scenarios where
real-time computations are required. In our
comparative analysis, we recorded the execution
times of the SCBF, Dijkstra's, and traditional
Bellman-Ford algorithms [36].
The results reveal that the SCBF algorithm
consistently outperforms the traditional Bellman-
Ford algorithm in terms of execution time. This can
be attributed to the 'short-circuiting' principle, which
allows the SCBF algorithm to terminate the loop
early when no updates are made during an iteration.
While Dijkstra's algorithm also exhibited efficient

execution times, the SCBF algorithm demonstrated
superior or comparable performance across all graph
sizes, highlighting its scalability.

6.2 Memory Usage

Efficient memory utilization is another crucial
determinant of an algorithm's practicality. To this
end, we analyzed the memory usage of the SCBF,
Dijkstra's, and traditional Bellman-Ford algorithms
using the memory_profiler library.
Interestingly, the memory usage trends were quite
similar to the runtime performance results. Our
SCBF algorithm demonstrated improved memory
efficiency compared to the traditional Bellman-Ford
algorithm, owing to its early loop termination
feature. Furthermore, it showed comparable or even
better memory efficiency than Dijkstra's algorithm,
particularly with larger graph sizes.
The graphical representation of our findings, created
using the matplotlib library, clearly depicts the
SCBF algorithm's robust performance in both
runtime and memory usage, emphasizing its
potential for deployment in real-time, large-scale
scenarios.

6.3 Hardware Used
We used Apple MacBook Air M2 (2022) with 8BG
RAM for running Python 3 for the experiment. We
assume that the Graph created by the controller is
stored in a Dictionary data structure with Key value
pairs. We generated the same using a Python
function which we wrote and calculated the
performance based on the same. The details of the
Hardware used are as below:

Table 2: Hardware Specifications.

Sno. Component Description Value

1. Hardware Architecture ARM

2. Processor M2 Processor

3. Cores 8

4. Memory 8 GB

5. Interfaces 1 X Gigabit
Ethernet

6.4 Experiment Results with 5, 10 and 15 nodes
Graph

We generated random graphs with 5, 10 and 15
nodes and recorded the Algorithm runtime and
memory usage. Below figure shows the generated

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6579

graph for which the algorithms were run for
calculating the shortest path.

Figure 3: 5 Node Graph (G5)

.The result of the experiment are plotted below:

Figure 4: Runtime and memory Comparison for G5

We can see that our SCBF algorithm records the
lowest runtime while was slightly higher in terms of
memory usage.
We performed a similar test with a graph of 10 nodes
as well. The below Figure shows the generated
graph:

Figure 5: 10 Node Graph (G10)

We calculated the runtime and the memory usage for
calculating the shorttest path using all three
algorithms and plotted the results as below:

Figure 6: Runtime and Memory Comparison for G10

here as well we can see that our SCBF performed the
best in terms of runtime while it was in between the
Bellman Ford and Dijkstra in terms of memory
usage.
We repeated the experiment with a graph of 15
nodes. The generated graph is depicted below:

Figure 7: 15 Node Graph (G15)

In this test as well, we recorded the time and space
performance for all three algorithms. The plot for the
same is as below:

Figure 8: Runtime and Memory Comparison for G15

Here, we can see that SCBF is a clear winner on the
time performance front while has a mid-level
performance on memory usage. Better than Bellman
ford, while Dijkstra outperforms all.

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6580

After these tests, we repeated the experiment
multiple time for randomly generated graphs,
keeping the node number static as 20. The below
table 3. summarizes our readings and constitute our
data set as well [37].

Table 3: Runtime Comparison at 20 Nodes.

BF SCBF DJK

1.07909179 0.93945336 1.00296497

1.12388396 0.93870616 0.89356041

1.11703324 0.9758122 0.96439219

1.11772585 0.94212818 0.94836593

1.07293224 0.94093513 0.97084117

1.05833697 0.96416831 0.98841691

1.08918285 0.93951607 0.97258782

1.05938888 0.94836116 0.93829489

1.09313989 0.97394896 0.95951796

1.06264305 0.96079016 0.98840785

1.12764192 0.93637013 0.990803

1.14472103 0.94940996 0.95012403

1.05676508 0.93304801 0.96302485

1.09078574 0.94162703 0.98897696

1.01163077 0.94257307 0.95653415

1.93274012 0.94713306 0.9894402

0.75090933 0.93304896 0.97009301

0.92643523 0.92201495 0.92687798

0.96379781 0.91928411 0.92397475

0.91528702 0.91380811 0.94307303

Figure 9: Runtime Comparison for multiple iterations

SCBF clearly shows the improvement in Ruin Time
as compared to other 2 algorithms as be the above
results.
The memory usage is also recorded for each run and
the graph is plotted with the observations. Below are
the results from the experiment on the space
utilization:

Table 4: Memory Usage Comparison at 20 Nodes.

BF SCBF DJK

319.703125 318.109375 314.359375

128.5 128.140625 128.21875

103.25 103.359375 103.34375

89.109375 88.984375 89.0625

98.6875 98.59375 93.328125

96.015625 92.09375 92.03125

98.171875 97.765625 94.21875

100.375 97.1875 97.140625

98.125 94.953125 95.375

100.796875 95.5625 94.8125

96.078125 94.171875 94.0625

99.625 100 100.078125

104.375 104.390625 95.59375

103.703125 102.90625 96.9375

99.109375 99.53125 99.5625

98.671875 98.71875 94.234375

96.65625 96.671875 91.828125

568.78125 568.796875 568.796875

633.421875 633.421875 633.4375

301.28125 301.28125 301.28125

The plot below shows the comparative analysis on
the memory usage front for running the three
algorithms on random graphs of 20 nodes:

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6581

Figure 10: Memory Comparison for Multiple Iterations

We observed that all the three algorithms showed
almost similar memory usage.
The Next study we performed was to record the
runtime and memory usage for all 3 algorithms for
graphs of different number of nodes starting from 5
to 1200 [38]. The below table shows the data set
which we collected by performing the experiment
with our Python code. We took the incremental
readings with step size of 20 for number of nodes
starting from 0 to 1200. The dataset thus prepared is
available on the Git Hub link [39]. The plots
obtained from the data set are explained here. The
runtime comparison plot is as below:

Figure 11: Runtime for Graphs with nodes 0-1200

As you can see that SCBF is running almost neck to
neck with established Dijkstra algorithm and clearly
outperforming Bellman Ford. For the graph sizes on
less than 500 nodes, its runtime is the best as
observed during the experiment.
The memory utilization of algorithms are also
computed using similar methodology for graphs
sizes spanning from 0 to 1200 nodes with a step size
of 20. The result are available in the form of dataset

uploaded on Github [40]. The plot for Memory
utilization comparison is as follows:

Figure 12: Memory Usage for Graphs with nodes 0-1200

Its is clearly visible that the average memory
utilization for graphs with more than 400 nodes is
the least clocked by our SCBF algorithm.

7. CONCLUSION

In conclusion, our research paper aimed to compare
the performance of three path computation
algorithms, namely Bellman Ford (BF), Shortest
Cost Bellman Ford (SCBF), and Dijkstra (DJK), for
SDWAN controller environments. We evaluated
their runtime and memory utilization to determine
the most suitable algorithm for path computation in
SDWAN controllers.
Based on the runtime comparison, it was observed
that SCBF outperformed both BF and DJK
algorithms in terms of speed. SCBF exhibited
consistently lower runtime values across different
network sizes, indicating its efficiency in path
computation. This implies that SCBF algorithm can
provide faster routing decisions in SDWAN
controllers, enhancing the overall network
performance.
Additionally, we analyzed the memory utilization of
the algorithms. It was observed that BF and SCBF
algorithms had comparable memory utilization,
while Dijkstra algorithm exhibited slightly higher
memory usage. This suggests that SCBF algorithm
strikes a good balance between runtime efficiency
and memory consumption, making it a suitable
choice for SDWAN controllers where resource
optimization is crucial.
Considering the comparative study of runtime and
memory utilization, SCBF algorithm emerges as the
most promising option for path computation in
SDWAN controllers. Its superior runtime

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6582

performance, combined with reasonable memory
utilization, positions it as an efficient and effective
algorithm for optimizing network routing decisions.
In closing, our research highlights the significance of
selecting the appropriate path computation algorithm
for SDWAN controllers. By leveraging the
advantages of SCBF algorithm, SDWAN
deployments can benefit from faster routing
decisions and improved network performance.
Future work can focus on exploring additional
optimization techniques and evaluating the
algorithm's scalability in large-scale SDWAN
deployments.
In conclusion, this research endeavors to address the
pressing challenge of optimizing path computation
in Software-Defined Wide Area Network (SD-
WAN) controllers, particularly within the context of
real-time network management. The study has
explored the limitations of traditional shortest path
algorithms, such as Dijkstra's and Bellman-Ford, and
recognized their inadequacy in meeting the demands
of dynamic, large-scale, and heterogeneous network
environments.
Building upon the insights gained from a
comprehensive literature review, the research
formulated a well-articulated problem statement
centered around the need for efficient path
computation in SD-WAN controllers. This problem
statement served as the foundation for the
formulation of research questions that guided the
investigation.
The study's primary research question delved into
the optimization of path computation efficiency in
SD-WAN controllers, a complex problem that has
significant implications for real-time network
responsiveness. Through the formulation of
secondary research questions, the study
systematically explored various facets of the
problem, such as the performance of existing
algorithms, the challenges posed by network
dynamics, and the introduction of the Short-
Circuiting Bellman-Ford (SCBF) algorithm as a
potential solution.
The research made a significant contribution to the
general body of knowledge in the field of
networking algorithms. By proposing the SCBF
algorithm, an enhancement of the traditional
Bellman-Ford algorithm, the study introduced a
novel approach that considerably improves the
runtime efficiency of path computation. The
algorithm's incorporation of the "short-circuiting"
principle allows for early termination of iterations
when no further improvements are possible,
resulting in superior real-time responsiveness, even
in dynamic and large-scale network scenarios.

The empirical evaluation and performance analysis
of the SCBF algorithm, alongside comparisons with
traditional algorithms, provide compelling evidence
of its efficacy. The SCBF algorithm's theoretical
time complexity aligns with its observed real-world
performance improvements, validating its suitability
for the demands of modern network management.
In conclusion, this research contributes to the
enhancement of network management practices by
proposing a novel algorithmic approach that bridges
the gap between theoretical efficiency and practical
responsiveness. By addressing the limitations of
existing algorithms and introducing the SCBF
algorithm, the study opens new avenues for more
efficient path computation in SD-WAN controllers,
thus paving the way for improved real-time network
management in dynamic and complex environments.

8. ACKNOWLEDGEMENT

We would like to express our sincere gratitude to all
those who contributed to the success of this research
paper.
Firstly, we would like to thank our supervisors (Dr.
Sabharwal and Dr. Bajaj) for providing us with
valuable guidance and support throughout the
research process. Their insights and expertise have
been instrumental in shaping the direction and scope
of this paper.
We extend our thanks to Galgotias University which
provided us with the necessary resources to carry out
this study. Without their support, this research would
not have been possible.
Finally, we would like to express our appreciation to
our friends and family who provided us with
encouragement and support throughout this
endeavor. Their unwavering support has been a
source of inspiration for us.
Once again, we extend our heartfelt thanks to all
those who contributed to the success of this research
paper.

REFERENCES:

[1] P. B. Mohit Chandra Saxena, “Evolution of Wide

Area network from Circuit Switched to Digital
Software defined Network,” in International
Conference on Technological Advancements
and Innovations (ICTAI),, Dubai, 2021.

[2] Y. . Zhang, N. . Ansari, M. . Wu and H. . Yu, “On
Wide Area Network Optimization,” IEEE
Communications Surveys and Tutorials, vol. 14,
no. 4, 2012, pp. 1090-1113.

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6583

[3] M. C. Saxena and P. Bajaj, "A Novel method of
End-to-End data security using symmetric key
based data encryption and SDWAN
networking," 2022 5th International Conference
on Contemporary Computing and Informatics
(IC3I), Uttar Pradesh, India, 2022, pp. 1981-
1986, doi: 10.1109/IC3I56241.2022.10073283.

[4] R. B. Ali, S. . Pierre and Y. . Lemieux, “UMTS-
to-IP QoS mapping for voice and video
telephony services,” IEEE Network, vol. 19, no.
2, pp. 26-32, 2005.

[5] R.K. Ahuja, K. Mehlhorn, J. Orlin, & R. E. Tarjan,
“Faster algorithms for the shortest path
problem.”, Journal of the ACM (JACM), 37(2),
1990, pp.213-223.

[6] D.B. Johnson, “A note on Dijkstra's shortest path
algorithm.”, Journal of the ACM (JACM), 20(3),
1973, pp.385-388.

[7] H. Chen, & H. J. Suh, “An improved Bellman-
Ford algorithm based on SPFA.”, The Journal of
the Korea Institute of electronic communication
sciences, 7(4),2012, pp.721-726.

[8] M. Mathur, M. Madan, M.C. Saxena, “A
Proposed Architecture for Placement of Cloud
Data Centre in Software Defined Network
Environment”, International Journal of
Engineering and Advanced Technology,
Volume-11, Issue-2, 2021, pp.104-116.

[9] M. Lauridsen, L. C. Gimenez, I. Rodriguez, T. B.
Sorensen, & P. Mogensen, “From LTE to 5G for
connected mobility.”, IEEE Communications
Magazine, 55(3),2017, pp.156-162.

[10] P. Segeč, M. Moravčik, J. Uratmová, J. Papán,
& O. Yeremenko, “SD-WAN-architecture,
functions and benefits.”, In proceedings of 18th
International Conference on Emerging
eLearning Technologies and Applications
(ICETA), November 2020, pp.593-599.

[11] C. Loeser, A. Brinkmann, & U. Ruckert,
“Distributed path selection (DPS) a traffic
engineering protocol for IP-networks.”, In
Proceedings of 37th Annual Hawaii International
Conference on System Sciences, January 2004,
pp. 8-pp.

[12] E.W. Dijkstra, “A note on two problems in
connexion with graphs.”, In Edsger Wybe
Dijkstra: His Life, Work, and Legacy, 2022, pp.
287-290.

[13] J. Moy, “OSPF version 2, 1997, (No. rfc2178).
[14] B. Fortz, & M. Thorup, “Internet traffic

engineering by optimizing OSPF weights.”, In
Proceedings IEEE INFOCOM 2000. conference
on computer communications. Nineteenth

annual joint conference of the IEEE computer
and communications societies (Cat. No.
00CH37064), Vol. 2, March 2020, pp. 519-528.
IEEE.

[15] R. Bauer, D. Delling, P. Sanders, D.
Schieferdecker, D. Schultes, & D. Wagner,
“Combining hierarchical and goal-directed
speed-up techniques for Dijkstra’s algorithm.”,
In Experimental Algorithms: 7th International
Workshop, WEA 2008 Provincetown, MA,
USA, May 30-June 1, 2008 Proceedings 7 (pp.
303-318). Springer Berlin Heidelberg.

[16] Z. Fuhao, & L. Jiping, “An algorithm of shortest
path based on Dijkstra for huge data.”, In 2009
Sixth International Conference on Fuzzy
Systems and Knowledge Discovery, Vol. 4,
August 2009, pp. 244-247.

[17] R. Bellman, Lecture 24—Dynamic
Programming I.

[18] R. Bellman, “Bottleneck problems and dynamic
programming.”, In Proceedings of the National
Academy of Sciences, 39(9), 1957, 947-951.

[19] B.V. Cherkassky, A. V. Goldberg, & T. Radzik,
“Shortest paths algorithms: Theory and
experimental evaluation.”,Mathematical
programming, 73(2), 1996, pp.129-174.

[20] S. Jung and S. Pramanik, "An efficient path
computation model for hierarchically structured
topographical road maps," in IEEE Transactions
on Knowledge and Data Engineering, vol. 14, no.
5, pp. 1029-1046, Sept.-Oct. 2002, doi:
10.1109/TKDE.2002.1033772.I.

[21] Brandes, Ulrik. "A faster algorithm for
betweenness centrality." Journal of mathematical
sociology 25.2 (2001): 163-177.

[22] H. Nagamochi, S. Nakamura, & T. Ishii,
“Constructing a Cactus for Minimum Cuts of a
Graph in O (mn+n 2 log n) Time and O (m)
Space.”, IEICE transactions on information and
systems, 86(2), 2003, pp.179-185.

[23] Abraham, C. Gavoille, A. V. Goldberg and D.
Malkhi, "Routing in Networks with Low
Doubling Dimension," 26th IEEE International
Conference on Distributed Computing Systems
(ICDCS'06), Lisboa, Portugal, 2006, pp. 75-75,
doi: 10.1109/ICDCS.2006.72.

[24] Z. Wang and J. Crowcroft, “Analysis of shortest-
path routing algorithms in a dynamic network
environment.”, SIGCOMM Comput. Commun.
Rev. 22, 2 (April 1992), 63–71.
https://doi.org/10.1145/141800.141805

[25] N. Futamura, R. Sangireddy, S. Aluru and A. K.
Somani, "Scalable, memory efficient, high-speed

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6584

lookup and update algorithms for IP routing,"
Proceedings. 12th International Conference on
Computer Communications and Networks (IEEE
Cat. No.03EX712), Dallas, TX, USA, 2003, pp.
257-263, doi: 10.1109/ICCCN.2003.1284179.

[26] S. Pettie, “A new approach to all-pairs shortest
paths on real-weighted graphs.”, Theoretical
Computer Science, 312(1), 47-74.

[27] K. Madduri, D. A. Bader, J. W. Berry, & J. R.
Crobak, “An experimental study of a parallel
shortest path algorithm for solving large-scale
graph instances.”, In 2007 Proceedings of the
Ninth Workshop on Algorithm Engineering and
Experiments (ALENEX), January 2007, pp. 23-
35.

[28] E.W. Dijkstra, “A note on two problems in
connexion with graphs.”, In Edsger Wybe
Dijkstra: His Life, Work, and Legacy, 2022, pp.
287-290.

[29] M. L. Fredman, & R. E. Tarjan, “Fibonacci
heaps and their uses in improved network
optimization algorithms.”, Journal of the ACM
(JACM), 34(3), 1987, pp.596-615.

[30] Y. Dinitz, & R. Itzhak, “Hybrid Bellman–Ford–
Dijkstra algorithm.”, Journal of Discrete
Algorithms, 42, 2017, pp.35–44.
doi:10.1016/j.jda.2017.01.001.

[31] A. M. Lacorte, & E. P. Chavez, “Analysis on the
Use of A* and Dijkstra’s Algorithms for
Intelligent School Transport Route Optimization
System.”, In Proceedings of the 4th International
Conference on Human-Computer Interaction and
User Experience in Indonesia, 2018, CHIuXiD
’18 -CHIuXiD ’18.
doi:10.1145/3205946.3205948.

[32] Q. Abbas, Q. Hussain, T. Zia, & A. Mansoor,
“Reduced Solution Set Shortest Path Problem:
Capton Algoritm With Special Reference To
Dijkstra’s Algorithm.”, Malaysian Journal of
Computer Science, [S.l.], v. 31, n. 3, p. 175-187,
july 2018. ISSN 0127-9084.

[33] F. I. Sapundzhi, M. S. Popstoilov, “Optimization
algorithms for finding the shortest paths.”,
Bulgarian Chemical Communications, Volume
50, Special Issue B, 2018, pp. 115 – 120.

[34] A. Oyola, D. G. Romero, & B. X. Vintimilla, “A
Dijkstra-Based Algorithm for Selecting the
Shortest-Safe Evacuation Routes in Dynamic
Environments (SSER).”, Lecture Notes in
Computer Science, 2017, pp.131–135.
doi:10.1007/978-3-319-60042-0_15.

[35] T. Sarkar, “Memory and Timing Profile. In
Productive and Efficient Data Science with

Python: With Modularizing, Memory profiles,
and Parallel/GPU Processing”, 2022, pp. 211-
228. Berkeley, CA: Apress.

[36]) X. Zhou, “An Improved SPFA Algorithm for
Single-Source Shortest Path Problem Using
Forward Star Data Structure.”, International
Journal of Managing Information Technology
(IJMIT) Vol 6, No.1, February 2014.

[37] M. Saxena. (2023), BF-SCBF-and-Dijkstra-
Comparative-Analysis, GitHub,
https://github.com/m22aie240/BF-SCBF-and-
Dijkstra-Comparative-Analysis

[38] M. Saxena. (2023), BF-SCBF-and-Dijkstra-
Comparative-Analysis, GitHub,
https://github.com/m22aie240/BF-SCBF-and-
Dijkstra-Comparative-
Analysis/blob/main/loop_test.py

[39] M. Saxena. (2023), BF-SCBF-and-Dijkstra-
Comparative-Analysis, GitHub,
https://github.com/m22aie240/BF-SCBF-and-
Dijkstra-Comparative-
Analysis/blob/main/Runtime_Data.csv

[40] M. Saxena. (2023), BF-SCBF-and-Dijkstra-
Comparative-Analysis, GitHub,
https://github.com/m22aie240/BF-SCBF-and-
Dijkstra-Comparative-
Analysis/blob/main/Memory_Data.csv

