
Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6456

GRASSHOPPER OPTIMIZATION-BASED
NEUTROSOPHICAL FUZZY CONVOLUTIONAL NEURAL

NETWORK FOR ENHANCED MOVING OBJECT
DETECTION

S SARAVANAKUMAR 1, M. LINGARAJ 2

1 Research Scholar, Department of Research and Development, Bharathiar University, Coimbatore, India
2 Associate Professor, Department of Computer Science, Sankara College of Science and Commerce,

Coimbatore, India
Email-id :1ssk.saravanakumar@gmail.com, 2maillinga123@gmail.com

ABSTRACT

Detecting moving objects is a cornerstone of computer vision research and has many practical uses
in security, robotics, video analysis, and virtual reality. This paper presents a novel approach, the Grasshopper
Optimization based Neutrosophical Fuzzy Convolutional Neural Network (NFCNN), for enhanced moving
object detection. The proposed approach integrates the Grasshopper Optimization Algorithm (GOA),
neutrosophic principles, and fuzzy logic into a Convolutional Neural Network (CNN) architecture to improve
moving object detection accuracy, robustness, and efficiency. The GOA is employed to optimize the
parameters of the NFCNN, enabling adaptive learning and feature extraction from input data. Neutrosophic
principles are integrated into the NFCNN to handle uncertain and imprecise information, capturing the
nuances and contradictions in moving object detection. Fuzzy logic is incorporated to manage the imprecision
and uncertainties inherent in object detection tasks. The proposed GOA-NFCNN is evaluated on benchmark
datasets, and existing practices are compared to the outcomes. The experimental results demonstrate the
superiority of the Grasshopper Optimization-based Neutrosophical Fuzzy Convolutional Neural Network’s
accuracy, robustness, and computational efficiency. Integrating GOA, neutrosophic principles, and fuzzy
logic in the NFCNN yields significant improvements in moving object detection. The proposed approach
enhances the ability to handle complex motion patterns, occlusions, and variations in lighting conditions,
resulting in more accurate and reliable object detection in dynamic environments.

Keywords: Moving Object Detection, Grasshopper Optimization Algorithm, Neutrosophical Fuzzy Logic,

Convolutional Neural Network (CNN), Enhanced Object Detection, Computer Vision

1. INTRODUCTION

Detecting objects in motion is a critical
component of computer vision, involving identifying
and tracking objects in motion within a given scene
or video. It finds wide application in surveillance
systems, autonomous vehicles, video analysis, and
augmented reality [1]. This section delves into the
concept of moving object detection, exploring its
techniques and highlighting its significance in
computer vision. The primary goal of moving object
detection algorithms is to differentiate between the
static background and the moving objects present in
a video or image sequence. They aim to extract
pertinent information about the moving objects,
including their precise location, shape, size, and
trajectory, while effectively filtering out the static
background clutter [2]. This is typically

accomplished through motion analysis, object
tracking, and background modeling[3].

There are several advantages to using
moving object detection techniques:
 Enhanced Surveillance: Moving object

detection is a fundamental component of
surveillance systems. By accurately detecting
and tracking moving objects, it enables the
identification of potential security threats,
such as intruders or suspicious activities, in
real-time [4]. This capability enhances the
effectiveness of security measures and allows
for prompt intervention when needed.

 Traffic Monitoring: Moving object detection
is crucial for traffic monitoring systems in
urban areas and highways. By identifying and
tracking vehicles and pedestrians, it enables

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6457

traffic flow analysis, congestion detection,
and the implementation of intelligent
transportation systems. This data is invaluable
to controlling traffic better, making roads
safer, and increasing transportation efficiency
[5].

 Autonomous Vehicles: Moving object
detection plays a vital role in developing
autonomous driving systems. To make
educated judgments and guarantee safe
navigation, it is essential to accurately
identify and track things in the vehicle’s
surroundings, such as other cars, people, and
barriers. This capability is of utmost
importance in ensuring the reliability and
safety of autonomous driving technology[6].

 Video Analysis: Moving object detection
finds extensive application in video analysis
tasks such as action recognition, behaviour
understanding, and video summarization. By
identifying and tracking moving objects,
meaningful information can be extracted from
video sequences, enabling higher-level
analysis and interpretation of visual content.
This enables researchers and analysts to gain
valuable insights from video data and extract
relevant information for various applications.
Despite its numerous advantages, moving
object detection also presents several
challenges [7, 8]:

 Variability in Motion Patterns: Objects in
motion can exhibit a wide range of motion
patterns, including different speeds,
directions, and types of motion. The challenge
lies in developing algorithms that can
accurately detect and track objects with
varying motion patterns while handling
occlusions, scale changes, and complex
interactions between multiple objects.

 Real-Time Performance: Many applications
of moving object detection, such as
surveillance systems and autonomous
vehicles, require real-time performance to
ensure timely and responsive actions.

 Illumination Changes and Dynamic
Backgrounds: The performance of moving
object identification algorithms is often
negatively impacted by lighting and backdrop
changes. Shadows, lighting variations, and
moving background objects can introduce
noise and false positives, making it
challenging to separate foreground objects
from the background accurately.

 Computational Efficiency: Algorithms for
detecting moving objects must instantly

process massive volumes of visual input,
which requires efficient computational
techniques. Developing algorithms that
balance accuracy and computational
efficiency is crucial for practical
implementation in resource-constrained
environments.

The ability to recognize and follow moving

objects is a critical application of computer vision
technology. It has many applications, including
surveillance systems, autonomous vehicles, video
analysis, and augmented reality. Traditional
approaches to moving object detection often face
challenges in handling complex motion patterns,
occlusions, and variations in lighting conditions.
Researchers have been exploring advanced
techniques and algorithms to overcome these
challenges and enhance the accuracy and robustness
of moving object detection. Bio-inspired
Optimization [9–22], [34],[35] has several potential
to solve various research issues.

Neutrosophics, Convolutional Neural

Networks (CNNs), and the Grasshopper
Optimization Algorithm (GOA) are three concepts
that can contribute to improving moving object
detection. Neutrosophics can handle uncertainties
and imprecise information inherent in moving object
detection [23]. Neutrosophic logic allows for
representing and processing uncertain and
contradictory data, enabling a more comprehensive
understanding of the complexities involved in the
detection process. Regarding computer vision,
convolutional neural networks (CNNs) have been a
game-changer, particularly in image analysis tasks.
With their hierarchical structure and weight sharing,
CNNs learn and extract meaningful features from
images [24]. They have shown remarkable
performance in object detection, making them well-
suited for moving object detection. The Grasshopper
Optimization Algorithm (GOA) is a nature-inspired
optimization algorithm that emulates the collective
behavior of grasshoppers. This algorithm has shown
promise in optimizing the parameters of moving
object detection algorithms, enabling them to
effectively address challenges commonly
encountered in real-world scenarios, including
occlusions and lighting variations. The GOA’s
ability to explore the search space efficiently and
balance exploration and exploitation makes it a
promising approach for enhancing moving object
detection [25].

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6458

1.1. Problem Statement
The goal of this study is to improve upon

current techniques of moving object recognition by
designing new algorithms that are both more
efficient and more accurate, efficiency, and
robustness of object detection in dynamic
environments. The motivation for this research stems
from the need to unlock the full potential of
computer vision systems in various applications,
including surveillance, autonomous systems, video
analysis, and augmented reality. The specific
problem is to address the challenges current moving
object detection algorithms face, such as difficulties
in accurately identifying and tracking objects with
complex motion patterns, occlusions, and variations
in lighting conditions. The goal is to develop novel
techniques and methodologies to effectively handle
these challenges and provide more reliable and
precise object detection results in real-time
scenarios.

Furthermore, the problem also involves

addressing the computational complexity and
resource limitations associated with moving object
detection. Efficient algorithms and architectures
must be designed to process large amounts of visual
data in real-time while minimizing computational
overhead and optimizing resource utilization. By
addressing these challenges, the research aims to
advance the field of moving object detection and
enable the development of more accurate, efficient,
and robust algorithms. The ultimate objective is to
enhance safety, security, and efficiency in various
domains, such as surveillance systems, autonomous
vehicles, video analysis, and augmented reality
applications.

1.2. Motivation

Moving object detection is critical in
computer vision with significant real-world
applications. Accurately identifying and tracking
objects in dynamic environments are essential for
various fields, including surveillance, autonomous
systems, video analysis, and augmented reality.
However, existing moving object detection
algorithms often face challenges that limit their
performance and applicability in practical scenarios.
The motivation for this research stems from the need
to overcome the limitations of current methods and
improve the accuracy, efficiency, and robustness of
moving object detection. By addressing these
challenges, we can unlock the potential of computer
vision systems in numerous domains, leading to
enhanced safety, security, and efficiency in various
applications. Improved moving object detection

algorithms can have a transformative impact on
surveillance systems. They can enable more
effective threat detection, prompt intervention in
security-sensitive areas, and proactive monitoring of
public spaces. This can significantly enhance public
safety and provide invaluable support to law
enforcement agencies.

1.3. Research Objective

The objectives of this research are as
follows:
 Develop a Grasshopper Optimization

Algorithm for optimizing the parameters of
the Neutrosophical Fuzzy Convolutional
Neural Network.

 Design and implement a Neutrosophical
Fuzzy Convolutional Neural Network
architecture to handle uncertainties and
imprecise information in moving object
detection.

 Measure the method’s performance on
standard datasets, and see how it stacks up
against other popular solutions.

 Conduct an extensive analysis of the results to
demonstrate the advantages and effectiveness
of the proposed Grasshopper Optimization-
based Neutrosophical Fuzzy Convolutional
Neural Network in enhancing moving object
detection.

1.4. Organization of the Paper

The structure of the remaining paper is as
follows: Section 2 reviews related works in moving
object detection, optimization algorithms, and fuzzy
logic, identifying gaps and limitations in the existing
literature. Section 3 presents the proposed
methodology, explaining the Grasshopper
Optimization Algorithm (GOA) and its application
in optimizing the Neutrosophical Fuzzy
Convolutional Neural Network (NFCNN)
parameters for enhanced moving object detection.
Section 4 details the dataset used in the study,
including its source and characteristics. Metrics for
gauging how well the suggested technique works are
introduced in Section 5. Compared to standard
practices, experimental findings achieved using the
suggested methodology are presented and analyzed
in Section 6. Section 7 concludes the paper,
summarizing the essential findings and
contributions, discussing the significance of the
proposed methodology, and suggesting future
research directions.

2. LITERATURE REVIEW

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6459

“Fusion Representation Learning (FRL)”
[26] combines spatial, temporal, and appearance-
based representations so that more foreground
motion may be seen. It involves extracting features
from the input data and fusing them using feature-
level or decision-level fusion techniques. The
approach aims to capture both spatial and temporal
cues and the appearance characteristics of moving
objects. Integrating these different representations
enhances the accuracy and robustness of moving
object detection, especially in challenging scenarios
with occlusions and complex motion patterns.
“Novel RPCA with Nonconvex Logarithm and
Truncated Fraction” [27] introduces a new method
that improves the accuracy of moving object
detection. The approach effectively separates
foreground moving objects from complex
backgrounds using Robust Principal Component
Analysis (RPCA) with nonconvex logarithms and
truncated fraction norms. These innovative
techniques enhance the detection process’s
robustness by modelling the dynamic nature of
moving objects and handling noise and outliers.
Experimental evaluations demonstrate the
approach’s effectiveness in accurately identifying
and separating moving objects in complex scenes.

The “Deep-Learning-Assisted Versatile
Electret Sensor” [28] approach combines deep-
learning techniques with an electret sensor to
improve the detection of moving objects. By
integrating deep learning algorithms with sensor
technology, the approach enhances the accuracy and
versatility of object detection in different scenarios.
The method addresses the challenges associated with
accurately detecting and classifying moving objects.
Electret, an electrostatic sensor, is utilized to capture
relevant data, while deep learning algorithms are
employed to analyze and classify the sensor data.
The proposed approach demonstrates promising
results in accurately detecting and identifying
moving objects in various environments. “Learning
Dynamic Background” [29] enhances moving object
detection by learning dynamic backgrounds using
weak supervision. Training a deep learning model, it
adapts to identify dynamic elements in complex
backgrounds, improving the accuracy of detecting
and tracking moving objects. The approach utilizes
techniques such as background differencing and
foreground saliency analysis to identify regions
deviating from the learned dynamic background. By
incorporating weak supervision, the model
progressively improves its ability to distinguish
moving objects from the dynamic background.
Experimental evaluations validate the effectiveness

of this approach, making it a valuable solution for
moving object detection tasks where fully annotated
training data is limited or unavailable. The method
significantly enhances the robustness and accuracy
of moving object detection systems.

“Full-Spectrum Light Sources” [30] aim for

better object-detecting precision algorithms in
challenging weather scenarios. This approach
enhances the visibility of moving objects in
conditions such as rain, fog, and low-light
environments by utilizing full-spectrum light
sources that emit light across a wide range of
wavelengths. The goal is to develop robust
algorithms to detect and track objects even when
visibility is compromised. By leveraging the
advantages of full-spectrum light sources, this
approach addresses the challenges of adverse
weather conditions, enabling more accurate and
reliable moving object detection. “Atanassov’s
Intuitionistic 3D Fuzzy Histon Roughness Index”
[31] combines the advantages of both methods to
improve the accuracy and reliability of moving
object detection. By utilizing Atanassov’s
Intuitionistic 3D Fuzzy Histogram Roughness Index,
which captures the roughness of the image histogram
along with texture features, the approach effectively
detects and distinguishes moving objects from the
background. This fusion-based approach enhances
the robustness of moving object detection, enabling
accurate and reliable results in various scenarios.

“2D LiDAR-based object detection” [32]

utilizes a 2D LiDAR sensor to detect and track
objects in the vehicle’s vicinity. This approach
enhances the vehicle’s perception capabilities by
leveraging the laser-based technology of LiDAR to
create a detailed and accurate representation of the
surrounding environment. The 2D LiDAR sensor
scans the surrounding area, measuring distances to
objects and generating a point cloud. Object
detection algorithms identify and classify objects
such as pedestrians, vehicles, and obstacles by
analyzing the point cloud data. The tracking
component then continuously tracks the detected
objects over time, enabling the vehicle to maintain
situational awareness and make informed decisions.
“Simultaneous Denoising (SD)” [33] combines
denoising and object detection algorithms to
improve the accuracy of detecting moving objects in
the presence of noise. The method uses a low-rank
approximation to differentiate between a scene’s
background and foreground elements. Using a low-
rank approximation, the approach approximates a
low-rank matrix as the scene’s backdrop. This low-

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6460

rank approximation helps remove the noise and
preserve the static elements in the scene. The
remaining residual matrix after low-rank
approximation is then analyzed to identify and
classify the moving objects.

3. GRASSHOPPEROPTIMIZATION - BASED
NEUTROSOPHICALFUZZYCONVOLUTION
AL NEURAL NETWORK

3.1. Moving Object Detection

Moving object detection is a fundamental
task in computer vision, playing a pivotal role in
various real-world applications. It encompasses the
challenging process of identifying and tracking
objects within dynamic scenes captured by imaging
devices. Computer vision systems can enable
surveillance, autonomous navigation, video
analysis, and activity recognition by accurately
detecting and tracking moving objects. Moving
object detection aims to differentiate foreground
objects from the background, which may contain
stationary elements or other irrelevant information.
Several elements, such as shifting illumination,
occlusions, distracting backdrops, and rapid object
motion, make this a complex process. Effective
moving object detection algorithms should be able to
handle these complexities and uncertainties.

The process of moving object detection
involves several steps. Initially, a background model
is created to represent the stationary elements in the
scene. The current frame is then compared to the
backdrop model to pick out any pixels or areas that
are drastically different. These deviations are
considered potential foreground objects.
Subsequently, post-processing techniques such as
noise removal and object refinement are applied to
improve the accuracy of the detection results.
Finally, object-tracking algorithms can track the
identified objects across subsequent frames.
Accurate moving object detection is crucial for
various applications. Surveillance systems enable
the detection of intruders or suspicious activities in
monitored areas. In autonomous vehicles, moving
object detection is essential for collision avoidance
and pedestrian detection. In video analysis, it assists
in recognizing and tracking objects of interest,
facilitating tasks such as action recognition and
behaviour analysis.

3.2. Neutrosophical Fuzzy Logic

Neutrosophical Fuzzy Logic is a
mathematical framework that combines neutrosophy
and fuzzy logic to handle indeterminacy,

uncertainty, and vagueness in decision-making and
reasoning processes. It provides a comprehensive
approach to dealing with real-world problems’
complexities and ambiguities. Neutrosophy,
introduced by FlorentinSmarandache, deals with the
study of indeterminacy and considers the existence
of three components: truth, falsity, and
indeterminacy. It recognizes that many real-world
situations and phenomena possess inherent
uncertainties, where elements can simultaneously
have degrees of truth, falsity, and indeterminacy. On
the other hand, fuzzy logic is a mathematical
approach that allows for the representation and
manipulation of incomplete or imprecise
information. It is based on the concept of fuzzy sets,
which assign membership degrees to elements rather
than strict binary classifications.

Neutrosophical Fuzzy Logic offers a more
flexible and expressive decision-making framework
by integrating neutrosophy and fuzzy logic. It allows
for representing and handling uncertainties,
vagueness, and contradictions that often arise in
complex real-world problems. In Neutrosophical
Fuzzy Logic, membership functions assign
membership degrees to elements based on their
truth, falsity, and indeterminacy degrees. These
membership degrees are combined using
neutrosophic fuzzy operators such as conjunction,
disjunction, and implication to perform reasoning
and make informed decisions. Neutrosophical Fuzzy
Logic finds applications in various fields, including
artificial intelligence, pattern recognition, image
processing, decision support systems, and control
systems. It enables the modelling and analysis of
problems that involve imprecise or uncertain
information, allowing for more robust and adaptive
solutions.

3.2.1. Neutrosophical fuzzy sets for moving object
detection

In the context of moving object detection, a
digital image “𝐼” can be represented as a matrix of
pixels. Each pixel, denoted as 𝑝(𝑖, 𝑗), corresponds to
a specific location in the image. To handle
uncertainties and indeterminacies associated with
each pixel, we can associate a neutrosophical fuzzy
set 𝐴(𝑖, 𝑗) with it. The neutrosophical fuzzy set
𝐴(𝑖, 𝑗) can be defined as Eq.(1).

𝑨(𝒊, 𝒋) =
𝒙, 𝝁𝑻(𝒊, 𝒋, 𝒙), 𝝁𝑭(𝒊, 𝒋, 𝒙), 𝝁𝑰(𝒊, 𝒋, 𝒙) |𝒙

∈ 𝑿
(1)

Here, 𝑖 and 𝑗 represent the pixel coordinates, 𝑋 is the
set of possible pixel values, and

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6461

𝑥, 𝜇𝑇(𝑖, 𝑗, 𝑥), 𝜇𝐹(𝑖, 𝑗, 𝑥), 𝜇𝐼(𝑖, 𝑗, 𝑥) denotes an
element within the neutrosophical fuzzy set 𝐴(𝑖, 𝑗).
Each element in the set consists of a specific pixel
value 𝑥, and its associated membership degrees of
truth (𝜇𝑇), falsity (𝜇𝐹), and indeterminacy (𝜇𝐼).

The membership degrees
 𝜇𝑇(𝑖, 𝑗, 𝑥), 𝜇𝐹(𝑖, 𝑗, 𝑥), and 𝜇𝐼(𝑖, 𝑗, 𝑥) quantify the
degree to which the pixel 𝑝(𝑖, 𝑗) belongs to the truth,
falsity, and indeterminacy components, respectively.
These membership degrees are determined based on
specific criteria or measures that assess the pixel’s
characteristics or properties, such as intensity,
colour, texture, or motion. By representing pixels as
neutrosophical fuzzy sets, we can handle the
inherent uncertainties and indeterminacies in
moving object detection. This mathematical
framework enables the fusion of different sources of
information, adaptive thresholding, informed
decision-making, and robust object tracking, leading
to more accurate and reliable results in detecting and
tracking moving objects within dynamic scenes.

3.2.2. Membership Functions for Moving Object
Detection

Membership functions are crucial in
Neutrosophical Fuzzy Logic as they determine the
membership degrees associated with pixel
characteristics. In moving object detection, these
membership functions can incorporate motion
information and evaluate the degree to which a pixel
belongs to different components: truth, falsity, and
indeterminacy.

Membership degree of 𝒙 in the truth component:

𝝁𝑻(𝒊, 𝒋, 𝒙) = 𝒇𝒎𝒐𝒕𝒊𝒐𝒏(𝒙) (2)

In Eq.(2), the function 𝑓 (𝑥) represents a
measure of motion for the pixel value 𝑥. It quantifies
the degree to which the pixel value is associated with
motion. Implementing𝑓 (𝑥) can vary
depending on the chosen motion detection algorithm
or technique.

Membership degree of 𝒙 in the falsity component:

𝝁𝑭(𝒊, 𝒋, 𝒙) = 𝟏 − 𝝁𝑻(𝒊, 𝒋, 𝒙) (3)

In Eq.(3), the membership degree in the falsity
component is obtained as the complement of the
membership degree in the truth component. A higher
value of 𝜇𝐹(𝑖, 𝑗, 𝑥) indicates a stronger association
with the falsity component, suggesting a lack of
motion.

Membership degree of 𝒙 in the indeterminacy
component:

𝝁𝑰(𝒊, 𝒋, 𝒙) =
𝟏 − 𝝁𝑻(𝒊, 𝒋, 𝒙) − 𝝁𝑭(𝒊, 𝒋, 𝒙)

(4)

In Eq.(4), the membership degree in the
indeterminacy component represents the remaining
degree of membership not accounted for by the truth
or falsity components. It quantifies the uncertainty or
ambiguity associated with the pixel value 𝑥.

Moving object detection decision rule:

𝝁𝑻(𝒊, 𝒋, 𝒙) > 𝝁𝑭(𝒊, 𝒋, 𝒙) (5)

𝝁𝑻(𝒊, 𝒋, 𝒙) > 𝝁𝑰(𝒊, 𝒋, 𝒙): 𝑷𝒊𝒙𝒆𝒍 𝒑(𝒊, 𝒋) (6)

If Eq.(5) and Eq.(6) get true, it is classified
as a moving object. This decision rule determines
whether a pixel is classified as a moving object based
on the relative values of its membership degrees in
the truth, falsity, and indeterminacy components. If
the membership degree in the truth component is
higher than those in the falsity and indeterminacy
components, the pixel is classified as a moving
object.

3.2.3. Neutrosophical Fuzzy Fusion for Moving
Object Detection

Fusion operators are essential in
Neutrosophical Fuzzy Logic as they enable the
combination of information from multiple sources.
Neutrosophical Fuzzy Logic offers fusion operators
such as neutrosophic fuzzy conjunction (NFC) and
neutrosophic fuzzy disjunction (NFD), which allow
the merging of membership degrees obtained from
different neutrosophical fuzzy sets.

For two given neutrosophical fuzzy sets
𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) associated with a pixel 𝑝(𝑖, 𝑗), the
NFC operator can be defined as Eq.(7).

𝑵𝑭𝑪 𝑨(𝒊, 𝒋), 𝑩(𝒊, 𝒋) =

⎩
⎪
⎨

⎪
⎧ 𝒙, 𝒎𝒊𝒏 𝝁𝑻𝑨(𝒊,𝒋,𝒙), 𝝁𝑻𝑩(𝒊,𝒋,𝒙) ,

𝒎𝒊𝒏 𝝁𝑭𝑨(𝒊,𝒋,𝒙)𝝁𝑭𝑩(𝒊,𝒋,𝒙) ,

𝒎𝒊𝒏 𝝁𝑰𝑨(𝒊,𝒋,𝒙), 𝝁𝑰𝑩(𝒊,𝒋,𝒙) ⎭
⎪
⎬

⎪
⎫

(7)

In Eq.(7), 𝑥, 𝜇𝑇 (, ,), 𝜇𝐹 (, ,), 𝜇𝐼 (, ,)
represents an element of the neutrosophical fuzzy set
𝐴(𝑖, 𝑗), while 𝑥, 𝜇𝑇 (, ,), 𝜇𝐹 (, ,), 𝜇𝐼 (, ,)
represents an element of the neutrosophical fuzzy set
𝐵(𝑖, 𝑗). The NFC operator combines these two sets
by taking the minimum membership degrees for

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6462

each component (truth, falsity, and indeterminacy) at
each pixel value 𝑥.

Similarly, the NFD operator can be defined

as Eq.(8):
𝑵𝑭𝑫 𝑨(𝒊, 𝒋), 𝑩(𝒊, 𝒋) =

⎩
⎪
⎨

⎪
⎧ 𝒙, 𝒎𝒂𝒙 𝝁𝑻𝑨(𝒊,𝒋,𝒙), 𝝁𝑻𝑩(𝒊,𝒋,𝒙) ,

𝒎𝒂𝒙 𝝁𝑭𝑨(𝒊,𝒋,𝒙)𝝁𝑭𝑩(𝒊,𝒋,𝒙) ,

𝒎𝒂𝒙 𝝁𝑰𝑨(𝒊,𝒋,𝒙), 𝝁𝑰𝑩(𝒊,𝒋,𝒙) ⎭
⎪
⎬

⎪
⎫

(8)

The NFD operator combines the

membership degrees by taking the maximum values
for each component (truth, falsity, and
indeterminacy) at each pixel value 𝑥. Utilizing these
fusion operators allows the membership degrees of
different neutrosophical fuzzy sets to be effectively
combined, facilitating the integration of information
from diverse sources. The min-max operations
employed in these operators ensure that the resulting
fusion retains the characteristics of the original sets,
enabling the representation of uncertainties and
indeterminacies more comprehensively.

3.2.4. Neutrosophical Fuzzy Decision-Making for
Moving Object Detection

Decision rules in moving object detection
can be formulated based on membership degrees
obtained from different sources, utilizing logical
operators such as neutrosophic fuzzy conjunction
(NFC) and neutrosophic fuzzy disjunction (NFD).
By applying these operators, we can construct rules
to determine the membership of a pixel in a moving
object. Let’s consider sets 𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗)
representing different information sources
associated with a pixel 𝑝(𝑖, 𝑗). The criterion for
making a call might be stated as follows:

If NFC(𝐴(𝑖, 𝑗), 𝐵(𝑖, 𝑗)) is greater than or
equal to the neutrosophical fuzzy threshold 𝑇(𝑖, 𝑗),
then pixel 𝑝(𝑖, 𝑗) belongs to the moving object. Here,
NFC(𝐴(𝑖, 𝑗), 𝐵(𝑖, 𝑗)) represents the fusion of sets
𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) using the NFC operator. The NFC
operator combines the membership degrees of truth,
falsity, and indeterminacy obtained from the two
sets, resulting in a new neutrosophical fuzzy set
representing the degree of agreement between the
information sources regarding the pixel’s association
with the moving object.

The neutrosophical fuzzy threshold 𝑇(𝑖, 𝑗)
is obtained through the fusion of threshold values
associated with sets 𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗). It serves as a
criterion to decide whether the pixel is considered
part of the moving object based on the combined

information. We can decide the pixel’s membership
in the moving object by comparing the NFC fusion
result with the threshold value. If the NFC result is
greater than or equal to the threshold, the pixel is
classified as belonging to the moving object. These
decision rules, constructed using fusion operators
and thresholds, provide a framework to integrate and
evaluate information from diverse sources.
Neutrosophical Fuzzy Logic enables effective
decision-making in moving object detection by
incorporating uncertainties and indeterminacies,
leading to more accurate and reliable results in
complex scenarios.

3.2.5. Neutrosophical Fuzzy Tracking for Moving
Object Detection

Tracking moving objects over time is a
challenging task requiring considering the dynamic
changes in their states. Neutrosophical Fuzzy Logic
provides a robust framework to handle uncertainties
and indeterminacies inherent in the tracking process.
By representing the position and velocity of the
object as neutrosophical fuzzy sets, tracking
algorithms can effectively update the object’s state
using fusion operators such as neutrosophic fuzzy
conjunction (NFC) and neutrosophic fuzzy
disjunction (NFD) at each time step.

In a tracking scenario, the position and
velocity of the object can be described using
neutrosophical fuzzy sets. Let’s denote the position
set as 𝑃(𝑖, 𝑗) and the velocity set as 𝑉(𝑖, 𝑗), where 𝑖
and 𝑗 represent the object’s coordinates. These sets
can be defined as Eq.(9) and Eq.(10):

𝑃(𝑖, 𝑗) =

𝑥, 𝜇𝑇 (, ,), 𝜇𝐹 (, ,),𝜇𝐼 (, ,) }
(9)

𝑉(𝑖, 𝑗)

= 𝑣, 𝜇𝑇 (, ,), 𝜇𝐹 (, ,),𝜇𝐼 (, ,)
(10)

Here, x denotes the position value, 𝑣 represents the
velocity value, and 𝜇𝑇, 𝜇𝐹and 𝜇𝐼 denote the
membership degrees in the truth, falsity, and
indeterminacy components.

To track the object over time, the state
update process involves fusing the information from
the previous time step with the new measurements.
This fusion can be achieved using the NFC and NFD
operators. For instance, the fusion of position sets
𝑃(𝑖, 𝑗) and 𝑃 (𝑖, 𝑗) at time 𝑡 can be expressed as
Eq.(11):

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6463

𝑁𝐹𝐶 𝑃(𝑖, 𝑗), 𝑃 (𝑖, 𝑗) =
𝑥, 𝑚𝑖𝑛 𝜇𝑇 (, ,), 𝜇𝑇 (, ,) ,

 𝑚𝑖𝑛 𝜇𝐹 (, ,), 𝜇𝐹 (, ,) ,

𝑚𝑖𝑛 𝜇𝐼 (, ,), 𝜇𝐼 (, ,)

(11)

Similarly, the fusion of velocity sets 𝑉(𝑖, 𝑗)
and 𝑉 (𝑖, 𝑗)can be defined as Eq.(12):

𝑁𝐹𝐶 𝑉(𝑖, 𝑗), 𝑉 (𝑖, 𝑗) =
𝑣, 𝑚𝑖𝑛 𝜇𝑇 (, ,), 𝜇𝑇 (, ,) ,

𝑚𝑖𝑛 𝜇𝐹 (, ,), 𝜇𝐹 (, ,) ,

𝑚𝑖𝑛 𝜇𝐼 (, ,), 𝜇𝐼 (, ,)

(12)

Utilizing these fusion operators, the

tracking algorithm can update the object’s position
and velocity sets at each time step. These fused sets
represent the updated state of the object, considering
the uncertainties and indeterminacies associated
with the measurements and the tracking process
itself.

Algorithm 1: Neutrosophical Fuzzy Fusion for
Moving Object Detection

Step 1: Initialize
Load the digital image 𝐼.

Define the set of possible pixel values 𝑋.

Set the threshold values for decision-

making.

Step 2: For each pixel 𝒑(𝒊, 𝒋) in the image 𝑰:
a) Calculate the membership
degrees for truth, falsity, and
indeterminacy:
 Evaluate the degree of motion for

the pixel value using a motion
detection algorithm.

 Determine the percentage of
truth-value membership for each
pixel.

 Calculate the membership degree
of the pixel value in the falsity
component.

 By calculating their values,
determine the percentage of
pixels that belong to the
indeterminacy component.

b) Determine if the pixel is classified
as a moving object:

 Compare the membership degree
in the truth component with those
in the falsity and indeterminacy
components.

 If the membership degree in the
truth component is higher, classify
the pixel as a moving object.

Step 3: Apply fusion operators for moving
object detection

a) Combine membership degrees
from different sources using fusion
operators:

 For each pixel𝑝(𝑖, 𝑗), combine the
membership degrees from
different neutrosophical fuzzy sets
using the fusion operator (e.g.,
NFC or NFD).

 Take the minimum or maximum
values for each component (truth,
falsity, indeterminacy) at each
pixel value.

 Generate a new neutrosophical
fuzzy set representing the fused
membership degrees.

Step 4: Perform decision-making for
moving object detection
 Compare the fused membership

degrees with the threshold values.
 If the fused membership degrees

are greater than or equal to the
thresholds, classify the pixel as
part of the moving object.

Step 5: Repeat Steps 2 to 4 for each pixel in
the image.

Step 6: Optional: Track moving objects
over time using neutrosophical
fuzzy tracking:
 Define neutrosophical fuzzy sets

for the position and velocity of the
object.

 Update the object’s state at each
time step by fusing information
from previous time steps with new
measurements.

 Use fusion operators (e.g., NFC)
to combine the membership
degrees of position and velocity
sets.

 Obtain the updated position and
velocity sets representing the
object’s state.

Step 7: Repeat the tracking process for
subsequent time steps.

Step 8: Output the results of moving
object detection and tracking.

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6464

3.3. Convolutional Neural Networks

3.3.1. Convolution Operation

The convolution operation in CNNs
involves sliding a filter (known as a kernel) across
the input image and then calculating the dot product
of the filter weights with each input patch.
Mathematically, the convolution operation for a
specific output feature map position (𝑖, 𝑗) and
channel (c) can be defined as Eq.(13).

𝑌[𝑖, 𝑗, 𝑐] = ΣΣΣ𝑋[𝑎, 𝑏, 𝑑]
∗ 𝐹[𝑖 − 𝑎, 𝑗 − 𝑏, 𝑑, 𝑐]

(13)

𝑌[𝑖, 𝑗, 𝑐] represents the output value at position (𝑖, 𝑗)
and channel 𝑐 in the feature map. 𝑋[𝑎, 𝑏, 𝑑]
represents the input value at position (𝑎, 𝑏) and
channel 𝑑 in the input image.𝐹[𝑖 − 𝑎, 𝑗 − 𝑏, 𝑑, 𝑐]
represents the filter weight at the position (𝑖 − 𝑎, 𝑗 −
𝑏), input channel 𝑑, and output channel 𝑐.

The summation is performed over all

possible positions (𝑎, 𝑏) and channel 𝑑, which are
determined by the size of the filter and the number
of input channels. We compute the output feature
map 𝑌 by sliding the filter over the entire input
image and applying this equation.

3.3.2. Activation Function

Using an activation function, the network
may describe intricate interactions by making the
convolutional layer’s output non-linear. In
convolutional neural networks (CNNs), the
Rectified Linear Unit (ReLU) activation function is
defined in Eq.(14).

𝐴 = 𝑚𝑎𝑥(0, 𝑍) (14)

where 𝐴 represents the activation output, and 𝑍
represents the input to the activation function. The
ReLU function returns the maximum between 0 and
the input value 𝑍. If 𝑍 is positive, the output 𝐴 will
equal𝑍. If 𝑍 is negative, the output 𝐴 will be 0. This
function effectively “activates” the neuron when the
input is positive and keeps it inactive (outputting 0)
when the input is negative.

An element-by-element application of the
ReLU activation function on a convolutional layer’s
output feature map, we introduce non-linearity and
allow the network to learn complex patterns and
representations.

3.3.3. Pooling Operation

Pooling is a downsampling operation that
reduces the feature maps’ spatial dimensions,
helping extract the essential information while

reducing computational complexity. Max pooling is
a commonly used technique that selects the
maximum value within each pooling window.
Consider a specific output feature map position (𝑖, 𝑗)
and channel 𝑐. The pooling operation computes the
maximum value within a pooling window of size
𝑃 𝑥 𝑃 in the input feature map, 𝑋 which can be
mathematically represented as Eq/(15).

𝑌[𝑖, 𝑗, 𝑐] = 𝑚𝑎𝑥(𝑋[𝑃𝑖: 𝑃(𝑖 + 1), 𝑃𝑗: 𝑃(𝑗
+ 1), 𝑐])

(15)

𝑌[𝑖, 𝑗, 𝑐] denotes the output value at position (𝑖, 𝑗)
and channel 𝑐 in the pooled feature map.𝑋[𝑃𝑖: 𝑃(𝑖 +
1), 𝑃𝑗: 𝑃(𝑗 + 1), 𝑐] represents the input values
within the pooling window located at position (𝑖, 𝑗),
and channel 𝑐.𝑃 is the pooling size, indicating the
dimensions of the pooling window.

To create the output feature map, the max
pooling operation picks the input value that is the
highest inside the pooling window. We obtain the
pooled feature map 𝑌 by sliding the pooling window
over the input feature map.

3.3.4. Fully Connected Layers

After several convolutional and pooling
layers, CNNs often include one or more fully
connected layers to learn high-level representations.
These layers connect every neuron to every neuron
in the subsequent layer, allowing for complex
mappings. Let’s denote the output of the last pooling
layer as a vector 𝑉. The fully connected layer can be
represented mathematically as Eq.(16).

𝑌 = 𝑊 ∗ 𝑉 + 𝐵 (16)

where 𝑌 represents the ultimately linked layer’s
output vector, 𝑊 denotes the weight matrix that
defines relationships between neurons in one layer
and those in the next. The dimensions of 𝑊 are
typically (𝑀, 𝑁), where 𝑀 is the number of neurons
in the current layer, and 𝑁 is the number of neurons
in the subsequent layer.𝑉 is the input vector obtained
by flattening what comes out of the final layer of
pooling. Its dimensions are typically (𝑁, 1). 𝐵 is the
bias vector with dimensions (𝑀, 1) is added
element-wise to the weighted sum.

 The input vector 𝑉 is multiplied by the
weight matrix 𝑊, and then the result is added to the
bias vector 𝐵 element by element in the fully
connected layer. The resultant vector 𝑌 is the
ultimately linked layer’s output.

3.3.5. Softmax Function

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6465

To transform raw scores into class
probabilities, a softmax function is typically used to
output the final fully connected layer in a
classification job. The softmax function normalizes
the output scores, ensuring that they sum up to 1 and
can be interpreted as probabilities. Let’s consider the
input vector 𝑋 with dimensions (𝐶, 1), where 𝐶 is
the number of classes. The softmax function can be
mathematically defined as Eq.(17).

𝑌[𝑖] = 𝑒𝑥𝑝 𝑋[𝑖]/Σ(𝑋[𝑗]) (17)

where 𝑌[𝑖] represents the output probability for class
𝑖, and 𝑋[𝑖] is the raw score or logit for class 𝑖. The
sum in the denominator is computed over all classes
𝑗. The softmax function exponentiates each raw
score and divides it by the sum of all exponentiated
scores, ensuring that the output probabilities are non-
negative and sum up to 1. This allows us to interpret
the output probability 𝑌 as the likelihood of the input
belonging to each class.

3.3.6. Backpropagation and Optimization
Algorithms

Backpropagation and optimization
algorithms are crucial in training CNNs by updating
the network’s parameters to minimize the loss
function. The input data is propagated through the
network during the forward pass, and the output
predictions are computed. Then, during the
backward pass, the gradients of the loss concerning
the network’s parameters are calculated using the
chain rule of calculus. These gradients represent the
sensitivity of the loss to changes in the parameters
and indicate the direction in which the parameters
should be adjusted.

Optimization algorithms, such as gradient
descent and its variants, utilize these gradients to
update the network’s parameters iteratively. The
objective is to determine the best values for the
parameters to maximize the model’s prediction
ability while minimizing the loss function. Gradient
descent, a widely used optimization algorithm,
adjusts the weights and biases in the network by
taking steps proportional to the negative of the
gradients. The magnitude of these steps is
determined by the learning rate, which controls the
convergence speed. Stochastic gradient descent
(SGD), a variant of gradient descent, further
enhances the optimization process by randomly
selecting a subset of training samples, called a mini-
batch, to compute the gradients and update the
parameters. This introduces noise that helps escape
local minima and can lead to faster convergence.
3.3.7. Regularization Techniques

Overfitting is avoided in CNNs because to
regularization methods like 𝐿1 and 𝐿2. A dropout is
a specific form of regularization that enhances the
model’s robustness.

L1 Regularization

𝐿1 regularization introduces an additional
term in the loss function that penalizes the absolute
values of the weights. Let’s consider a specific layer
in a CNN with weights represented by the matrix 𝑊.
The L1 regularization term can be written as Eq.(18).

𝐿1 = 𝜆 ∗ Σ|𝑊| (18)

where 𝜆 is the regularization parameter and |𝑊|
represents the element-wise absolute values of the
weights. The overall loss function with 𝐿1
regularization can be written as Eq.(19).

𝐿𝑜𝑠𝑠 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 + 𝐿1 (19)

During backpropagation, the gradients of

the 𝐿1 regularization term concerning the weights
are computed as Eq.(20).

𝜕𝐿1/𝜕𝑊 = 𝜆 ∗ 𝑠𝑖𝑔𝑛(𝑊) (20)

These gradients are then added to the
gradients of the cross-entropy loss during
backpropagation to update the weights.

L2 Regularization
 In 𝐿2 regularization, often called weight
decay, a component is added to the loss function that
penalizes squared weights. Let’s consider a specific
layer in a CNN with weights represented by the
matrix 𝑊. The 𝐿2 regularization term can be written
as Eq/(21).

𝐿2 = 𝜆 ∗ Σ𝑊 (21)

where 𝜆 is the regularization parameter, and
𝑊 represents the element-wise squared values of
the weights. The overall loss function with𝐿2
regularization can be written as Eq.(22).

𝐿𝑜𝑠𝑠 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 + 𝐿2 (22)

During backpropagation, the gradients of

the 𝐿2 regularization term concerning the weights
are computed as Eq.(23).

𝜕𝐿2/𝜕𝑊 = 2 ∗ 𝜆 ∗ 𝑊 (23)

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6466

These gradients are then added to the
gradients of the cross-entropy loss during
backpropagation to update the weights.

3.3.8. Dropout

A dropout is a regularization approach that
sets a small percentage of activations in each training
layer to zero at random. Let’s consider a specific
layer in a CNN with activations represented by
matrix 𝐴. Dropout is applied by multiplying the
activations with a binary mask matrix 𝐷, where each
element of 𝐷 is set to 0 or 1 with a certain
probability. During forward propagation, the
dropout mask is applied element-wise to the
activations. The masked activations, 𝐴 , are
computed asEq.(24).

𝐴 = 𝐴 ∗ 𝐷 (24)

where 𝐴 represents the initial activations, and the
masked activations are then passed to the subsequent
layers.

During backpropagation, the gradients
from the subsequent layers are multiplied element-
wise with the dropout mask, ensuring that only the
active neurons receive gradients. Let 𝜕𝐿/𝜕𝐴
be the gradients concerning the masked activations.
The gradients concerning the original activations,
∂L/∂A, are calculated as Eq.(25).

𝜕𝐿/𝜕𝐴 = 𝜕𝐿/𝜕𝐴 ∗ 𝐷 (25)

where * represents element-wise multiplication.

Using regularization strategies like 𝐿1 and

𝐿2 regularization, CNNs can learn more robust and
generalized representations while mitigating
overfitting risks. The regularization terms affect the
loss function and gradients during backpropagation,
providing a penalty on the weights. Dropout
introduces stochasticity by randomly dropping out
activations, which helps prevent over-reliance on
specific activations and encourages the network to
learn more robust features. Together, these
techniques contribute to improved generalization
and model performance in CNNs.

Algorithm 2: CNN

Step 1: Initialize the network parameters,
including the filter weights and
biases, for each layer in the CNN.

Step 2: Perform a forward pass through the
network:

a) Convolution operation: We
implement the activation function
by sliding the filters across the
input moving objects from a video
file and computing the dot product
of the filter weights and the input
patches.

b) Pooling operation: Picking
maximum values inside pooling
windows might help you reduce
the feature maps’ spatial
dimensions.

c) To retrieve a vector from the last
pooling layer’s output, we must
flatten it.

d) Fully connected layers: The input
vector should be multiplied by the
weight matrix, and then the bias
vector should be added to it,
element by element. Invoke the
activation procedure.

e) Softmax function: Convert the raw
scores into class probabilities.

Step 3: Compute the loss function, typically
using cross-entropy loss, by
comparing the predicted class
probabilities with the accurate labels.

Step 4: Backpropagation may be used to
compute the loss function gradients
for the network parameters.

Step 5: Update the network parameters using
an optimization algorithm:

a) Initialize the parameter update
values.

b) Compute the gradients for the
parameters.

c) Update the parameters by taking
steps proportional to the negative
gradients, scaled by the learning
rate.

d) Repeat steps b and c for a
specified number of iterations or
until a convergence criterion is
met.

Step 6: To avoid overfitting, use
regularization methods like 𝐿1 or 𝐿2
regularization to add terms to the
reduction function and tweak the
gradients in backpropagation.

Step 7: Repeat steps 2 to 6 for a fixed
number of epochs or until the desired
level of accuracy is achieved.

Step 8: Evaluate the trained CNN on a
separate test dataset to assess its
performance.

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6467

Step 9: Adjust the hyperparameters, such as
learning rate and regularization
strength, based on the evaluation
results and repeat steps 2 to 8 if
necessary.

3.4. Grasshopper Optimization based
Neutrosophical Fuzzy Logic CNN

The proposed Grasshopper Optimization-
based Neutrosophical Fuzzy Logic CNN leverages a
modified architecture that combines the strengths of
traditional Convolutional Neural Networks (CNNs)
with the optimization capabilities of the Grasshopper
Optimization algorithm and the flexibility of
Neutrosophical Fuzzy Logic. This section provides a
mathematical exploration of the architectural design
of the proposed CNN. The architecture of the
proposed CNN consists of several key components,
incorporating pooling layers, fully connected layers,
and convolutional layers. These components
combine to extract hierarchical features from the
input data and perform classification tasks.

3.4.1. Convolutional Layers

Convolutional layers capture local features
and spatial relationships in the input data. Let’s
denote the input to the 𝑘-th convolutional layer as
𝑋 , which has dimensions 𝐻 × 𝑊 × 𝐷 , where 𝐻
represents the height, 𝑊 represents the width, and
𝐷 represents the number of channels. The
convolution operation is performed by applying a set
of learnable filters 𝐹 with dimensions 𝐹 × 𝐹 ×
𝐷 × 𝑁 , where𝐹 and 𝐹 denote the filter height and
width, respectively, and 𝑁 represents the number of
filters in the 𝑘-th layer.The output feature maps of
the 𝑘-th convolutional layer, denoted as 𝑍 , can be
computed using the convolution operation described
in Eq.(26).

𝑍 [, ,] = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ΣΣΣ𝑋 [, ,]

∗ 𝐹 [, , ,]
(26)

where 𝑍 [, ,] represents the activation at position
(𝑖, 𝑗) of the 𝑛-th filter in the 𝑘-th layer, 𝑋 [, ,]
represents the input activation at position (𝑎, 𝑏) in
the channel 𝑑 and activation() is the activation
function, which introduces non-linearity.

3.4.2. Pooling Layers

The computational burden is lightened and
some translation invariance is introduced by using
pooling layers for down sampling each of the spatial
dimensions of the feature maps. Max pooling is the
most typical form of pooling. Given an input feature

map 𝑋 , the max pooling operation with a pooling
size of 𝑃 × 𝑃 can be defined as Eq.(27).

𝑌 [, ,]

= 𝑚𝑎𝑥 𝑋 𝑃 : 𝑃 (), 𝑃 : 𝑃 (), 𝑛
(27)

where 𝑌 [, ,] represents the output activation at
position (𝑖, 𝑗) of the 𝑛-th filter in the 𝑘-th layer.

3.4.3. Fully Connected Layers

After several convolutional and pooling
layers, the feature maps are typically flattened into a
vector and fed to one or more fully connected layers
to learn high-level representations. Let’s denote the
input vector to the 𝑙-th fully connected layer as 𝑉 ,
which has dimension𝑀 × 1, where 𝑀 represents
the number of neurons in the 𝑙-th layer. The fully
connected layer can be represented as Eq.(28).

𝑌 = 𝑊 ∗ 𝑉 + 𝐵 (28)

where 𝑌 represents the output vector, 𝑊 denotes the
weight matrix with dimensions 𝑀{ } × 𝑀 , and 𝐵
represents the bias vector with dimensions 𝑀{ } ×

1. The weight matrix 𝑊 and bias vector 𝐵 are
learnable parameters that are updated during the
training process.

3.4.4. Neutrosophical Fuzzy Logic-based
Activation Function:

Neutrosophical Fuzzy Logic-based
activation functions are employed in the proposed
CNN instead of traditional ones. These functions
introduce uncertainty and contradiction into the
activation values, allowing for greater flexibility in
the network. Let’s denote the input activation to the
𝑙-th layer as 𝐴 , which has dimension 𝑀 × 1. The
Neutrosophical Fuzzy Logic-based activation
function for the 𝑙-th layer can be defined as Eq.(29).

𝐴 [] = 1 − 𝜇 [] ∗ 1 − 𝛾 [] ∗ 𝐴 []

+ 𝜇 [] ∗ 𝛾 [] ∗ 𝐴 []

+ 𝜇 [] ∗ 1 − 𝛾 []

∗ 𝑚𝑎𝑥 𝐴 [], 0

+ 1 − 𝜇 [] ∗ 𝛾 []

∗ 𝑚𝑖𝑛 𝐴 [], 0

(29)

where 𝐴 []represents the 𝑖 −th element of the input
activation vector to the 𝑙-th layer, 𝜇 []denotes the
truth membership value, and 𝛾 [] represents the
indeterminacy membership value. These
membership values allow for capturing the uncertain
and contradictory nature of the activation values.

The truth membership value 𝜇 [] and
indeterminacy membership value 𝛾 [] can be

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6468

computed based on Neutrosophic Fuzzy Logic
principles, considering the input activation and
certain parameters specific to the layer. By
incorporating the Neutrosophical Fuzzy Logic-based
activation function, the proposed CNN introduces a
new level of adaptability and robustness, allowing it
to handle uncertain and contradictory information
effectively.

3.4.5. Grasshopper Optimization-based Weight
Update

The Grasshopper Optimization algorithm is
a nature-inspired optimization algorithm that mimics
the behaviour of grasshoppers in their search for
optimal food sources. In the context of the proposed
Grasshopper Optimization based Neutrosophical
Fuzzy Logic CNN, the algorithm is adapted to
update the network weights during training. Let’s
denote the network weights as 𝑊, including the
weight matrices in the convolutional and fully
connected layers. The goal is to optimize these
weights based on the grasshoppers’ fitness values
and movement equations.

Initialization

The initialization phase in Grasshopper
Optimization-based Weight Update involves setting
up the initial conditions for the algorithm. Firstly, the
population size, denoted as 𝑁, represents the number
of grasshoppers. This determines the diversity of
solutions explored during the optimization process.
Next, the maximum number of iterations is
determined, indicating the termination criterion for
the algorithm. The population of grasshoppers is
initialized randomly within the search space. Each
grasshopper is assigned a position vector that
represents a potential solution. By randomly
distributing the grasshoppers, the algorithm covers a
broader area of the search space, ensuring a
comprehensive exploration of possible solutions.
Additionally, the weight values, 𝑊 and 𝑊 , are
set to define the range within which the weight factor
will be adjusted. These values can be predefined
based on the specific problem requirements. The
decay rate parameter, 𝛾, controls the rate at which
the weight decays over iterations, influencing the
balance between exploration and exploitation in the
algorithm.

Fitness Evaluation

Fitness evaluation is a crucial step in the
Grasshopper Optimization-based Weight Update. It
involves assessing the quality of each grasshopper’s
position in the population based on the objective
function of the optimization problem. The objective

function captures the specific goals and constraints
of the problem. For each grasshopper, the objective
function is applied to its position vector, producing
a fitness value that quantifies how well the
grasshopper’s solution performs. The fitness
evaluation guides the algorithm by providing a
measure of the quality or desirability of each
solution. The objective function is problem-
dependent and can vary widely across different
optimization scenarios. It encapsulates the
performance metrics, constraints, and goals of the
problem domain. By evaluating the fitness of each
grasshopper, the algorithm gains insights into the
performance landscape and can make informed
decisions about the search direction. The fitness
values obtained during this step are vital in
subsequent phases, such as selecting the best
grasshopper and updating the global best position.
The fitness evaluation step facilitates the
identification of promising solutions and guides the
algorithm towards the optimal solution in the search
space.

Update of Best Grasshopper

After the fitness evaluation, the next step in
the Grasshopper Optimization-based Weight Update
is determining the best grasshopper in the
population. This is done by identifying the
grasshopper with the highest fitness value,
representing the global best grasshopper. By
comparing the fitness values of all grasshoppers, the
algorithm selects the one that exhibits the most
promising solution. This global best grasshopper
represents the currently known optimal solution
found during the iterations. The global best
grasshopper is crucial in guiding the movement and
exploration of other grasshoppers in subsequent
steps. It serves as a reference for desirable positions
and helps direct the search towards regions more
likely to contain better solutions.

Weight Update

In Grasshopper Optimization-based Weight
Update, the weight value, 𝑊(𝑡), is dynamically
adjusted at each iteration to balance exploration and
exploitation. The weight update equation is as
Eq.(30).

𝑊(𝑡) = 𝑊 + [(𝑊 − 𝑊)
∗ 𝑒𝑥𝑝(−𝛾 ∗ 𝑡)]

(30)

The weight value 𝑊(𝑡) determines the

influence of the globally best position found so far,
𝑋 , on the movement of grasshoppers. It regulates
the exploitation aspect of the algorithm, encouraging
the grasshoppers to converge towards the globally

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6469

best solution. The weight update equation ensures
that the weight value starts from the minimum
weight value, 𝑊 , and decays exponentially over
iterations according to the decay rate parameter 𝛾.
This decay factor allows the algorithm to gradually
reduce the impact of the global best position, leading
to a more diverse exploration of the search space in
the early iterations. To achieve a happy medium
between exploration and exploitation during
optimization, the algorithm constantly modifies its
behaviour by changing the weight value dependent
on the current iteration. This adaptive weight update
mechanism enhances the algorithm’s convergence
rate and improves its ability to find high-quality
solutions.

Position Update

In the Grasshopper Optimization-based
Weight Update, the position update step plays a
crucial role in guiding the movement of
grasshoppers towards potentially better solutions.
Each grasshopper in the population’s position is
updated using Eq.(31).

𝑋(𝑡 + 1) =
𝑋(𝑡) + 𝑅 ∗ 𝑒𝑥𝑝(−𝛽 ∗ 𝑡)

∗ 𝑏𝑒𝑠𝑡_𝑔𝑟𝑎𝑠𝑠ℎ𝑜𝑝𝑝𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

− 𝑋(𝑡) + 𝑊(𝑡) ∗ 𝑋 − 𝑋(𝑡)

(31)

Here, 𝑋(𝑡) represents the current position of the
grasshopper at iteration 𝑡,
𝑏𝑒𝑠𝑡_𝑔𝑟𝑎𝑠𝑠ℎ𝑜𝑝𝑝𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 denotes the position
of the best grasshopper found so far, and 𝑋
represents the global best position obtained during
the optimization process.

The position update equation consists of
two components: exploration and exploitation. The
term 𝑅 ∗ 𝑒𝑥𝑝(−𝛽 ∗ 𝑡) ∗

𝑏𝑒𝑠𝑡_𝑔𝑟𝑎𝑠𝑠ℎ𝑜𝑝𝑝𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑋(𝑡) introduces
exploration by adding a random factor 𝑅 and a
decaying exponential term that directs the
grasshoppers towards potentially unexplored regions
of the search space.The term 𝑊(𝑡) ∗ 𝑋 − 𝑋(𝑡)
represents exploitation, as it guides the grasshoppers
towards the globally best position found so far. The
weight factor 𝑊(𝑡) determines the strength of
exploitation, which is dynamically adjusted based on
the weight update equation.

Boundary Handling

A boundary-handling mechanism is
employed to ensure that the updated positions of
grasshoppers remain within the boundaries of the
search space. During the position update, if a

grasshopper’s new position violates the predefined
boundaries, it is adjusted accordingly. Boundary
handling techniques can vary depending on the
problem domain. Common approaches include
reflection, where the grasshopper’s position is
mirrored back into the feasible region, and random
reinitialization, where the grasshopper is assigned a
new position randomly within the boundaries. The
purpose of boundary handling is to maintain the
feasibility of solutions throughout the optimization
process. Boundary handling ensures that the
algorithm focuses on valid and meaningful solutions
by preventing the grasshoppers from venturing
outside the allowed search space.

Fitness Update

Following the position update, the fitness of
the new positions of grasshoppers is re-evaluated
using the objective function. The objective function
calculates the fitness value based on the updated
positions and represents the quality or desirability of
each grasshopper’s solution. By updating the fitness
values, the algorithm captures the improvements or
deterioration in the grasshoppers’ solutions. This
step allows for continuous monitoring and
assessment of the population’s performance,
enabling the algorithm to adapt and adjust its search
direction. The fitness update is vital for comparing
the current solutions with the previously identified
best solution. Suppose any grasshopper exhibits a
better fitness value than the best global grasshopper.
The global best grasshopper is updated accordingly.
This ensures that the algorithm progresses towards
the most promising solutions discovered throughout
the optimization process. By iteratively evaluating
and updating the fitness of the grasshoppers, the
algorithm can refine its search and converge towards
optimal or near-optimal solutions in the search
space. The fitness update step is integral to the
continuous improvement and refinement of the
population during the optimization process.

Termination Condition

The termination condition determines when
the Grasshopper Optimization-based Weight Update
algorithm should stop iterating and conclude the
optimization process. There are two common
termination conditions: Maximum Number of
Iterations: The algorithm can run for a predefined
maximum number of iterations. Once this limit is
reached, the algorithm terminates, regardless of
whether an optimal solution has been found. This
termination condition ensures the algorithm does not
run indefinitely and allows for a controlled runtime.
The algorithm can terminate if a certain fitness

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6470

threshold is achieved. This threshold represents a
desired level of fitness that is considered satisfactory
for the optimization problem. If the fitness of the
global best grasshopper surpasses or meets this
threshold, the algorithm stops iterating. Termination
conditions help prevent unnecessary computations
and allow for efficient resource utilization. They
ensure that the algorithm terminates when it has
either reached a satisfactory solution or has
exhausted the predefined computational resources.

Once the termination condition is met, the
Grasshopper Optimization-based Weight Update
algorithm produces the final output, which consists
of the global best position and its corresponding
fitness value. This output represents the optimal or
near-optimal solution found during the optimization
process. The globally best position indicates the
solution that achieved the highest fitness value
throughout the iterations. It serves as the
recommended solution to the given optimization
problem. The fitness value associated with the
globally best position quantifies the quality or
desirability of the solution. The output provides
valuable insights into the problem domain, allowing
decision-makers to make informed choices based on
the discovered optimal or near-optimal solution.
Depending on the problem, the output can be further
utilized for decision-making and analysis or as input
for subsequent processes.

Algorithm 3:Grasshopper Optimization-based
Weight Update

Step 1: Initialization
Set the population size and the number
of possible repetitions.
Initialize the population of
grasshoppers randomly within the
search space.
Set the weight values, 𝑊 and,
𝑊 , and the decay rate parameter 𝛾.

Step 2: Fitness Evaluation
Evaluate the fitness of each
grasshopper in the population based on
the objective function of the
optimization problem.

Step 3: Update of Best Grasshopper
Identify the grasshopper with the best
fitness value as the global best
grasshopper.

Step 4: Weight Update
Calculate the weight value, 𝑊(𝑡), at
each iteration

Step 5: Position Update

For each grasshopper in the population,
update its position

Step 6: Boundary Handling
Ensure that the updated positions of
grasshoppers lie within the boundaries
of the search space. If a position violates
the boundaries, adjust it accordingly.

Step 7: Fitness Update
Evaluate the fitness of the new positions
of grasshoppers using the objective
function.

Step 8: Update the Best Grasshopper
If any grasshopper has a better fitness
value than the global best grasshopper,
update the global best grasshopper
accordingly.

Step 9: Termination Condition
Repeat steps 4 to 8 until the maximum
number of iterations is reached or a
termination criterion is satisfied (e.g.,
achieving a desired fitness threshold).

Step 10: Output
Return the global best position and
corresponding fitness value as the
optimal solution.

4. ABOUT AAU RAINSNOW TRAFFIC
SURVEILLANCE DATASET

The Rain, Snow, and Bad Weather in
Traffic Surveillance dataset focuses on the
challenges of adverse weather conditions in traffic
surveillance. It addresses the limitations of vision-
based image analysis algorithms when visibility is
impaired by factors such as rain, snow, haze, and
fog. The dataset consists of 22 five-minute videos
captured from seven different traffic intersections.
These videos precisely capture rainfall and snowfall
scenarios, representing varying lighting conditions
from daylight to twilight and night. The scenes
include challenging elements such as glare from car
headlights, reflections from puddles, and blurring
caused by raindrops on the camera lens. Data
collection involved using a conventional RGB
colour camera and a thermal infrared camera.
Combining these two modalities, the dataset aims to
facilitate robust detection and classification of road
users even in difficult weather conditions. The
dataset offers valuable features and attributes for
training and evaluating object detection and
classification algorithms under challenging weather
conditions. These features include:

 Weather Conditions: The dataset focuses
on two adverse weather conditions: rainfall
and snowfall. This allows researchers to
assess the performance of algorithms in

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6471

scenarios with impaired visibility due to
precipitation.

 Lighting Variations: The dataset captures
scenes with varying lighting conditions,
ranging from broad daylight to twilight and
night. This variation in illumination enables
the evaluation of algorithms across
different lighting scenarios, which is
crucial for real-world deployment.

 Challenging Elements: The dataset
includes challenging elements commonly
encountered in bad weather, such as glare
from car headlights, reflections from
puddles, and blurring caused by raindrops
on the camera lens. These elements mimic
real-world conditions and provide realistic
challenges for object detection algorithms.

 Dual Modalities: Data collection uses a
conventional RGB colour camera and a
thermal infrared camera. The availability of
dual modalities enables researchers to
explore the benefits of combining visual
and thermal information for robust
detection and classification of road users
under adverse weather conditions.

 Per-Pixel, Instance-Level Annotations:
The dataset provides per-pixel, instance-
level annotations for road users in 100
frames randomly selected from each video
sequence. This level of annotation
granularity allows for detailed analysis and
evaluation of algorithms, enabling precise
localization and categorization of objects in
challenging weather scenarios.

 Annotation Statistics: The dataset
contains 2,200 annotated frames, with
annotations for 13,297 objects. These
annotation statistics provide sufficient
labelled data for training and evaluating
object detection and classification
algorithms.

5. Performance Metrics
 Precision: It measures the accuracy of the

detected moving objects. It is the
proportion of successfully recognized
moving items (true positives) over all
detected moving objects (true positives plus
false positives).

 Recall: It is also known as sensitivity,
quantifies the completeness of the detected
moving objects. It is determined by
dividing the number of correct
identifications by the sum of the correct

identifications and the number of false
negatives (moving objects missed).

 Classification Accuracy: In moving object
detection, classification accuracy measures
the algorithm’s ability to classify moving
objects and background regions correctly.
It is the fraction of assessed areas that have
been appropriately categorized.

 F-Measure: The 𝐹-measure, often known
as the 𝐹1 score, is a composite measure of
accuracy and recall that is used to rank
algorithms. Precision measures the fraction
of moving items accurately recognized out
of the total number of detected objects,
whereas recall measures the same fraction
out of the total number of real-world
moving objects.

All performance indicators are calculated

using the words TP, TN, FP, and FN, which are
widely used to assess the efficacy of an object
identification system. The brief definition of each
term:

 True Positive (TP): A true positive is
when the algorithm correctly detects and
identifies a moving object as present in the
scene. In other words, it indicates that the
algorithm has accurately identified a
positive instance (the presence of a moving
object) when it is indeed present.

 True Negative (TN): A true negative
occurs when the algorithm correctly
identifies and labels a region as background
or non-object, with no moving object in that
region. It represents the correct rejection of
the absence of a moving object.

 False Positive (FP): A false positive is
when the algorithm incorrectly identifies a
region containing a moving object, but no
object is present. It indicates a false alarm,
where the algorithm detects an object
where none exists.

 False Negative (FN): A false negative
occurs when the algorithm fails to detect a
moving object in the scene. It represents a
missed detection, where the algorithm fails
to identify the presence of an object that
should have been detected.

6. RESULTS AND DISCUSSION
6.1. Precision and Recall Analysis

The analyses of precision and recall for the
three approaches are shown in Figure 1: FRL, SD,
and GOA-NFCNN. The result values of Figure 1 are
provided in Table 1.

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6472

Figure 1. Precision And Recall

Firstly, regarding the precision results in

Figure 1, FRL achieves a precision of 48.83%,
indicating that 48.83% of the detected moving
objects by this method are true positives. This means
there is a relatively high chance of false positives,
where background regions are mistakenly classified
as moving objects. SD performs better with a
precision of 62.93%, implying a higher accuracy in
identifying true moving objects. However, the
proposed GOA-NFCNN method surpasses both
existing works with an impressive precision of
95.04%. This indicates a significantly lower rate of
false positives and a higher accuracy in identifying
moving objects. Secondly, regarding the recall
results in Figure 1, FRL achieves a recall of 47.40%,
indicating that only 47.40% of the true moving
objects in the scene are correctly detected by this
method. This implies a high rate of false negatives,
where actual moving objects are missed. SD
performs slightly better with a recall of 64.60%,
indicating a higher ability to detect a more
significant proportion of the true moving objects.
However, GOA-NFCNN outperforms FRL and SD
with a recall of 95.94%, indicating its superior
capability to detect more true moving objects.

The precision and recall analysis results
reveal essential insights into the performance of the
different methods. FRL exhibits relatively low
precision and recall values, indicating its limitations
in accurately detecting moving objects. SD
demonstrates better performance in terms of
precision and recall, suggesting its ability to achieve
a reasonable balance between accuracy and
completeness. However, the proposed GOA-

NFCNN method outshines FRL and SD, showcasing
its exceptional precision and recall values. GOA-
NFCNN demonstrates a significantly higher
accuracy in identifying moving objects while
maintaining a high level of completeness.

These findings highlight the effectiveness
of the GOA-NFCNN approach in enhancing moving
object detection. Fusing grasshopper optimization-
based techniques with the neutrosophical fuzzy
convolutional neural network contributes to
exceptional precision and recall values. The GOA-
NFCNN method achieves an excellent trade-off
between accurately identifying moving objects and
minimizing false positives and negatives.

Table 1. Precision And Recall Results

 Precision Recall

FRL 48.83 47.40

SD 62.93 64.60

GOA-NFCNN 95.04 95.94

6.2. Classification Accuracy and F-Measure
Analysis

Figure 2 illustrates the classification
accuracy and F-measure analysis results for three
different methods: FRL, SD, and GOA-NFCNN.

FRL achieves a relatively lower
classification accuracy of 47.83% and an F-measure
of 48.10%. This can be attributed to its working
mechanism, which may not effectively capture
moving objects’ complex and diverse
characteristics. FRL may struggle to handle
variations in lighting conditions, occlusions, and
background clutter, leading to misclassifications and
imbalanced performance. FRL’s fusion
representation learning approach might not
sufficiently capture the discriminative features
necessary for accurate object detection.

SD performs better with a classification

accuracy of 64.33% and an F-measure of 63.76%.
The working mechanism of SD, which combines
denoising and moving object detection, allows for
more effective removal of noise and enhances object
classification accuracy. By leveraging low-rank
approximation techniques, SD can better extract
relevant information and reduce the impact of noise
and interference. This leads to improved
classification accuracy and a more balanced F-
measure than FRL.

0
10
20
30
40
50
60
70
80
90

100

Precision Recall

R
es

u
lt

s
(%

)

Performance Metrics

FRL SD GOA-NFCNN

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6473

Figure 2. Classification Accuracy And F-Measure

GOA-NFCNN outperforms both FRL and
SD with a classification accuracy of 95.38% and an
F-measure of 95.49%. The impressive results can be
attributed to the unique working mechanism of
GOA-NFCNN. The integration of grasshopper
optimization and neutrosophical fuzzy convolutional
neural network allows for enhanced feature
extraction, robust object representation, and precise
classification. The grasshopper optimization
algorithm optimizes the network parameters,
enabling better adaptability to different scenarios
and improving the accuracy of moving object
detection. The neutrosophical fuzzy framework
handles uncertainties and imprecise data, ensuring a
more balanced performance in terms of precision
and recall. This comprehensive approach enables
GOA-NFCNN to achieve exceptional classification
accuracy and a highly balanced F-measure.

The superior performance of GOA-
NFCNN can also be attributed to its ability to handle
various challenges in moving object detection, such
as complex backgrounds, illumination changes, and
occlusions. The fusion of grasshopper optimization
and neutrosophical fuzzy techniques allows for
effective representation learning, noise reduction,
and robust feature extraction, leading to more
accurate object detection and classification.
Additionally, the deep learning capabilities of the
neural network component in GOA-NFCNN enable
it to learn and adapt to complex patterns and
variations in moving objects, further enhancing its
performance.

The achieved results in Figure 2 can be
attributed to the working mechanisms of the
methods. FRL struggles with accurate classification
and balanced performance, while SD improves upon
FRL by incorporating denoising techniques.
However, GOA-NFCNN surpasses both methods by
leveraging grasshopper optimization and
neutrosophical fuzzy concepts, leading to
significantly higher classification accuracy and a
well-balanced F-measure. The unique working
mechanism of GOA-NFCNN enables it to handle
various challenges and extract robust features,
resulting in superior performance in moving object
detection tasks. The result values of Figure 2 are
provided in Table 2.

Table 2. Classification Accuracy And F-Measure Results

Classification

Accuracy
F-

Measure

FRL 47.83 48.10

SD 64.33 63.76
GOA-

NFCNN 95.38 95.49

7. CONCLUSION

This research presents a novel approach
called the Grasshopper Optimization-based
Neutrosophical Fuzzy Convolutional Neural
Network (GOA-NFCNN) for enhanced moving
object detection. The proposed method leverages the
fusion of grasshopper optimization and
Neutrosophical fuzzy techniques to address the
challenges associated with accurate object
classification. The GOA-NFCNN method aims to
overcome limitations in existing approaches and
improve moving object detection under various
weather conditions. The integration of grasshopper
optimization and neutrosophical fuzzy concepts
offers a promising solution to handle uncertainties,
inaccurate data, and complex scenarios, thereby
enhancing the accuracy and robustness of the
detection process. The classification accuracy result
further validates the effectiveness of the proposed
GOA-NFCNN method. With a high classification
accuracy of 95.38%, GOA-NFCNN demonstrates its
capability to accurately classify moving objects,
even under challenging conditions such as adverse
weather, lighting variations, and occlusions. This
remarkable accuracy showcases the potential of the
proposed approach to address real-world scenarios
and applications where precise object detection is
crucial. The superior classification accuracy
achieved by GOA-NFCNN indicates its ability to

0

10

20

30

40

50

60

70

80

90

100

Classification
Accuracy

F-Measure

R
es

ul
ts

 (
%

)

Performance Metrics

FRL SD GOA-NFCNN

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6474

extract relevant features, optimize network
parameters through grasshopper optimization, and
leverage the power of neutrosophical fuzzy
techniques for robust object classification. This
signifies the significant contributions of the
proposed method in improving the performance of
moving object detection systems. The results
highlight the potential of GOA-NFCNN for various
practical applications such as traffic surveillance,
video analysis, and autonomous driving systems,
where accurate and reliable moving object detection
is essential. The utilization of GOA-NFCNN can
lead to improved safety, efficiency, and decision-
making in these domains.

REFERENCES:

[1]. Jadallah, H., Al Aghbari, Z.: SwapQt: Cloud-

based in-memory indexing of dynamic spatial
data. Futur. Gener. Comput. Syst. 106, 360–
373 (2020).
https://doi.org/10.1016/j.future.2020.01.009.

[2]. Niemiec, S.L.S., Wagas, R., Vigen, C.L.P.,
Blanchard, J., Barber, S.J., Schoenhals, A.:
Preliminary User Evaluation of a Physical
Activity Smartphone App for Older Adults.
Heal. Policy Technol. 11, (2022).
https://doi.org/10.1016/j.hlpt.2022.100639.

[3]. Dou, J., Li, J., Qin, Q., Tu, Z.: Moving object
detection based on incremental learning low
rank representation and spatial constraint.
Infrared Phys. Technol. 124, 205–212 (2022).
https://doi.org/https://doi.org/10.1016/j.jvcir.
2018.09.009.

[4]. Mei, J., Ding, Y., Zhang, W., Zhang, C.: Fast
detection, position and classification of
moving objects on production line. Optik
(Stuttg). 121, 2176–2178 (2010).
https://doi.org/https://doi.org/10.1016/j.ijleo.
2009.11.003.

[5]. Ahmed, S.A., Topalov, A. V, Shakev, N.G.,
Popov, V.L.: Model-Free Detection and
Following of Moving Objects by an
Omnidirectional Mobile Robot using 2D
Range Data. IFAC-PapersOnLine. 51, 226–
231 (2018).
https://doi.org/https://doi.org/10.1016/j.ifacol
.2018.11.546.

[6]. Christy Jeba Malar, A., Deva Priya, M.,
Janakiraman, S.: A Hybrid Crow Search and
Gray Wolf Optimization Algorithm-based
Reliable Non-Line-of-Sight Node Positioning
Scheme for Vehicular Ad hoc Networks. Int.
J. Commun. Syst. 34, e4697 (2021).
https://doi.org/10.1002/dac.4697.

[7]. Resmi, H.B., Deepambika, V.A., Rahman,
M.A.: Symmetric Mask Wavelet Based
Detection and Tracking of Moving Objects
Using Variance Method. Procedia Comput.
Sci. 58, 58–65 (2015).
https://doi.org/https://doi.org/10.1016/j.procs
.2015.08.012.

[8]. Elafi, I., Jedra, M., Zahid, N.: Unsupervised
detection and tracking of moving objects for
video surveillance applications. Pattern
Recognit. Lett. 84, 70–77 (2016).
https://doi.org/https://doi.org/10.1016/j.patre
c.2016.08.008.

[9]. Ramkumar, J., Vadivel, R.: Improved frog
leap inspired protocol (IFLIP) – for routing in
cognitive radio ad hoc networks (CRAHN).
World J. Eng. 15, 306–311 (2018).
https://doi.org/10.1108/WJE-08-2017-0260.

[10]. Ramkumar, J., Vadivel, R.: Performance
Modeling of Bio-Inspired Routing Protocols
in Cognitive Radio Ad Hoc Network to
Reduce End-to-End Delay. Int. J. Intell. Eng.
Syst. 12, 221–231 (2019).
https://doi.org/10.22266/ijies2019.0228.22.

[11]. D. Jayaraj, J. Ramkumar, M. Lingaraj, B.
Sureshkumar, “AFSORP: Adaptive Fish
Swarm Optimization-Based Routing Protocol
for Mobility Enabled Wireless Sensor
Network”, International Journal of Computer
Networks and Applications(IJCNA), 10(1),
PP: 119-129, 2023, DOI:
10.22247/ijcna/2023/218516.

[12]. Jaganathan, R., Vadivel, R.: Intelligent Fish
Swarm Inspired Protocol (IFSIP) for
Dynamic Ideal Routing in Cognitive Radio
Ad-Hoc Networks. Int. J. Comput. Digit.
Syst. 10, 1063–1074 (2021).
https://doi.org/10.12785/ijcds/100196.

[13]. Vadivel, R., Ramkumar, J.: QoS-enabled
improved cuckoo search-inspired protocol
(ICSIP) for IoT-based healthcare
applications. Inc. Internet Things Healthc.
Appl. Wearable Devices. 109–121 (2019).
https://doi.org/10.4018/978-1-7998-1090-
2.ch006.

[14]. Ramkumar, J., Vadivel, R.: CSIP—cuckoo
search inspired protocol for routing in
cognitive radio ad hoc networks. In:
Advances in Intelligent Systems and
Computing. pp. 145–153. Springer Verlag
(2017). https://doi.org/10.1007/978-981-10-
3874-7_14.

[15]. Lingaraj, M., Sugumar, T.N., Felix, C.S.,
Ramkumar, J.: Query aware routing protocol
for mobility enabled wireless sensor network.

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6475

Int. J. Comput. Networks Appl. 8, 258–267
(2021).
https://doi.org/10.22247/ijcna/2021/209192.

[16]. Ramkumar, J., Vadivel, R.: Whale
optimization routing protocol for minimizing
energy consumption in cognitive radio
wireless sensor network. Int. J. Comput.
Networks Appl. 8, 455–464 (2021).
https://doi.org/10.22247/ijcna/2021/209711.

[17]. Ramkumar, J., Samson Dinakaran, S.,
Lingaraj, M., Boopalan, S., Narasimhan, B.:
IoT-Based Kalman Filtering and Particle
Swarm Optimization for Detecting Skin
Lesion. Presented at the (2023).
https://doi.org/10.1007/978-981-19-8353-
5_2.

[18]. Ramkumar, J., Vadivel, R Meticulous
Elephant Herding Optimization based
Protocol for Detecting Intrusions in Cognitive
Radio Ad Hoc Networks. Int. J. Emerg.
Trends Eng. Res. 8, 4548–4554 (2020).
https://doi.org/10.30534/ijeter/2020/8288202
0.

[19]. Ramkumar, J., Vadivel, R.: Multi-Adaptive
Routing Protocol for Internet of Things based
Ad-hoc Networks. Wirel. Pers. Commun.
120, 887–909 (2021).
https://doi.org/10.1007/s11277-021-08495-z.

[20]. Ramkumar, J.: Bee inspired secured protocol
for routing in cognitive radio ad hoc
networks. Indian J. Sci. Technol. 13, 2159–
2169 (2020).
https://doi.org/10.17485/ijst/v13i30.1152.

[21]. Ramkumar, J., Kumuthini, C., Narasimhan,
B., Boopalan, S.: Energy Consumption
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol. 2022 Int.
Conf. Adv. Comput. Technol. Appl. ICACTA
2022. 1–6 (2022).
https://doi.org/10.1109/ICACTA54488.2022.
9752899.

[22]. Menakadevi, P., Ramkumar, J.: Robust
Optimization Based Extreme Learning
Machine for Sentiment Analysis in Big Data.
2022 Int. Conf. Adv. Comput. Technol. Appl.
ICACTA 2022. 1–5 (2022).
https://doi.org/10.1109/ICACTA54488.2022.
9753203.

[23]. Sharma, M., Kandasamy, I., Vasantha, W.B.:
Comparison of neutrosophic approach to
various deep learning models for sentiment
analysis[Formula presented]. Knowledge-
Based Syst. 223, 107058 (2021).

https://doi.org/10.1016/j.knosys.2021.10705
8.

[24]. Munigadiapa, P., Adilakshmi, T.: MOOC-
LSTM: The LSTM Architecture for
Sentiment Analysis on MOOCs Forum Posts.
(2023). https://doi.org/10.1007/978-981-19-
3391-2_21.

[25]. Zhang, Y., Zheng, J., Zhang, C., Li, B.: An
effective motion object detection method
using optical flow estimation under a moving
camera. J. Vis. Commun. Image Represent.
55, 215–228 (2018).
https://doi.org/https://doi.org/10.1016/j.jvcir.
2018.06.006.

[26]. Wang, P., Wu, J., Fang, A., Zhu, Z., Wang,
C., Ren, S.: Fusion representation learning for
foreground moving object detection. Digit.
Signal Process. 138, 104046 (2023).
https://doi.org/https://doi.org/10.1016/j.dsp.2
023.104046.

[27]. Yang, Y., Yang, Z., Li, J.: Novel RPCA with
nonconvex logarithm and truncated fraction
norms for moving object detection. Digit.
Signal Process. 133, 103892 (2023).
https://doi.org/https://doi.org/10.1016/j.dsp.2
022.103892.

[28]. Wang, L., Hu, M., Kong, K., Tao, J., Ji, K.,
Dai, Z.: A deep-learning-assisted versatile
electret sensor for moving object detection.
Nano Energy. 104, 107934 (2022).
https://doi.org/https://doi.org/10.1016/j.nano
en.2022.107934.

[29]. Zhang, Z., Chang, Y., Zhong, S., Yan, L.,
Zou, X.: Learning dynamic background for
weakly supervised moving object detection.
Image Vis. Comput. 121, 104425 (2022).
https://doi.org/https://doi.org/10.1016/j.imavi
s.2022.104425.

[30]. Rebai Boukhriss, R., Fendri, E., Hammami,
M.: Moving object detection under different
weather conditions using full-spectrum light
sources. Pattern Recognit. Lett. 129, 205–212
(2020).
https://doi.org/https://doi.org/10.1016/j.patre
c.2019.11.004.

[31]. Giveki, D.: Robust moving object detection
based on fusing Atanassov’s Intuitionistic 3D
Fuzzy Histon Roughness Index and texture
features. Int. J. Approx. Reason. 135, 1–20
(2021).
https://doi.org/https://doi.org/10.1016/j.ijar.2
021.04.007.

[32]. Soitinaho, R., Moll, M., Oksanen, T.: 2D
LiDAR based object detection and tracking
on a moving vehicle. IFAC-Papers OnLine.

Journal of Theoretical and Applied Information Technology

31st August 2023. Vol.101. No 16
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6476

55, 66–71 (2022).
https://doi.org/https://doi.org/10.1016/j.ifacol
.2022.11.116.

[33]. B., S., Tom, A.J., George, S.N.: Simultaneous
denoising and moving object detection using
low rank approximation. Futur. Gener.
Comput. Syst. 90, 198–210 (2019).
https://doi.org/https://doi.org/10.1016/j.futur
e.2018.07.065.

[34]. A. Senthilkumar, J. Ramkumar, M. Lingaraj,
D. Jayaraj, B. Sureshkumar, “Minimizing
Energy Consumption in Vehicular Sensor
Networks Using Relentless Particle Swarm
Optimization Routing”, International Journal
of Computer Networks and Applications
(IJCNA), 10(2), PP: 217-230, 2023, DOI:
10.22247/ijcna/2023/220737.

[35]. L. Mani, S. Arumugam, and R. Jaganathan,
“Performance Enhancement of Wireless
Sensor Network Using Feisty Particle Swarm
Optimization Protocol,” ACM Int. Conf.
Proceeding Ser., pp. 1–5, Dec. 2022, doi:
10.1145/3590837.3590907.

