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ABSTRACT 
 

Detecting moving objects is a cornerstone of computer vision research and has many practical uses 
in security, robotics, video analysis, and virtual reality. This paper presents a novel approach, the Grasshopper 
Optimization based Neutrosophical Fuzzy Convolutional Neural Network (NFCNN), for enhanced moving 
object detection. The proposed approach integrates the Grasshopper Optimization Algorithm (GOA), 
neutrosophic principles, and fuzzy logic into a Convolutional Neural Network (CNN) architecture to improve 
moving object detection accuracy, robustness, and efficiency. The GOA is employed to optimize the 
parameters of the NFCNN, enabling adaptive learning and feature extraction from input data. Neutrosophic 
principles are integrated into the NFCNN to handle uncertain and imprecise information, capturing the 
nuances and contradictions in moving object detection. Fuzzy logic is incorporated to manage the imprecision 
and uncertainties inherent in object detection tasks. The proposed GOA-NFCNN is evaluated on benchmark 
datasets, and existing practices are compared to the outcomes. The experimental results demonstrate the 
superiority of the Grasshopper Optimization-based Neutrosophical Fuzzy Convolutional Neural Network’s 
accuracy, robustness, and computational efficiency. Integrating GOA, neutrosophic principles, and fuzzy 
logic in the NFCNN yields significant improvements in moving object detection. The proposed approach 
enhances the ability to handle complex motion patterns, occlusions, and variations in lighting conditions, 
resulting in more accurate and reliable object detection in dynamic environments. 
 
Keywords: Moving Object Detection, Grasshopper Optimization Algorithm, Neutrosophical Fuzzy Logic, 

Convolutional Neural Network (CNN), Enhanced Object Detection, Computer Vision 
 
1. INTRODUCTION  

Detecting objects in motion is a critical 
component of computer vision, involving identifying 
and tracking objects in motion within a given scene 
or video. It finds wide application in surveillance 
systems, autonomous vehicles, video analysis, and 
augmented reality [1]. This section delves into the 
concept of moving object detection, exploring its 
techniques and highlighting its significance in 
computer vision. The primary goal of moving object 
detection algorithms is to differentiate between the 
static background and the moving objects present in 
a video or image sequence. They aim to extract 
pertinent information about the moving objects, 
including their precise location, shape, size, and 
trajectory, while effectively filtering out the static 
background clutter [2]. This is typically 

accomplished through motion analysis, object 
tracking, and background modeling[3]. 
 

There are several advantages to using 
moving object detection techniques: 
 Enhanced Surveillance: Moving object 

detection is a fundamental component of 
surveillance systems. By accurately detecting 
and tracking moving objects, it enables the 
identification of potential security threats, 
such as intruders or suspicious activities, in 
real-time [4]. This capability enhances the 
effectiveness of security measures and allows 
for prompt intervention when needed. 

 Traffic Monitoring: Moving object detection 
is crucial for traffic monitoring systems in 
urban areas and highways. By identifying and 
tracking vehicles and pedestrians, it enables 
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traffic flow analysis, congestion detection, 
and the implementation of intelligent 
transportation systems. This data is invaluable 
to controlling traffic better, making roads 
safer, and increasing transportation efficiency 
[5]. 

 Autonomous Vehicles: Moving object 
detection plays a vital role in developing 
autonomous driving systems. To make 
educated judgments and guarantee safe 
navigation, it is essential to accurately 
identify and track things in the vehicle’s 
surroundings, such as other cars, people, and 
barriers. This capability is of utmost 
importance in ensuring the reliability and 
safety of autonomous driving technology[6]. 

 Video Analysis: Moving object detection 
finds extensive application in video analysis 
tasks such as action recognition, behaviour 
understanding, and video summarization. By 
identifying and tracking moving objects, 
meaningful information can be extracted from 
video sequences, enabling higher-level 
analysis and interpretation of visual content. 
This enables researchers and analysts to gain 
valuable insights from video data and extract 
relevant information for various applications. 
Despite its numerous advantages, moving 
object detection also presents several 
challenges [7, 8]: 

 Variability in Motion Patterns: Objects in 
motion can exhibit a wide range of motion 
patterns, including different speeds, 
directions, and types of motion. The challenge 
lies in developing algorithms that can 
accurately detect and track objects with 
varying motion patterns while handling 
occlusions, scale changes, and complex 
interactions between multiple objects. 

 Real-Time Performance: Many applications 
of moving object detection, such as 
surveillance systems and autonomous 
vehicles, require real-time performance to 
ensure timely and responsive actions.  

 Illumination Changes and Dynamic 
Backgrounds: The performance of moving 
object identification algorithms is often 
negatively impacted by lighting and backdrop 
changes. Shadows, lighting variations, and 
moving background objects can introduce 
noise and false positives, making it 
challenging to separate foreground objects 
from the background accurately. 

 Computational Efficiency: Algorithms for 
detecting moving objects must instantly 

process massive volumes of visual input, 
which requires efficient computational 
techniques. Developing algorithms that 
balance accuracy and computational 
efficiency is crucial for practical 
implementation in resource-constrained 
environments. 

 
The ability to recognize and follow moving 

objects is a critical application of computer vision 
technology. It has many applications, including 
surveillance systems, autonomous vehicles, video 
analysis, and augmented reality. Traditional 
approaches to moving object detection often face 
challenges in handling complex motion patterns, 
occlusions, and variations in lighting conditions. 
Researchers have been exploring advanced 
techniques and algorithms to overcome these 
challenges and enhance the accuracy and robustness 
of moving object detection. Bio-inspired 
Optimization [9–22], [34],[35] has several potential 
to solve various research issues. 

 
Neutrosophics, Convolutional Neural 

Networks (CNNs), and the Grasshopper 
Optimization Algorithm (GOA) are three concepts 
that can contribute to improving moving object 
detection. Neutrosophics can handle uncertainties 
and imprecise information inherent in moving object 
detection [23]. Neutrosophic logic allows for 
representing and processing uncertain and 
contradictory data, enabling a more comprehensive 
understanding of the complexities involved in the 
detection process. Regarding computer vision, 
convolutional neural networks (CNNs) have been a 
game-changer, particularly in image analysis tasks. 
With their hierarchical structure and weight sharing, 
CNNs learn and extract meaningful features from 
images [24]. They have shown remarkable 
performance in object detection, making them well-
suited for moving object detection. The Grasshopper 
Optimization Algorithm (GOA) is a nature-inspired 
optimization algorithm that emulates the collective 
behavior of grasshoppers. This algorithm has shown 
promise in optimizing the parameters of moving 
object detection algorithms, enabling them to 
effectively address challenges commonly 
encountered in real-world scenarios, including 
occlusions and lighting variations. The GOA’s 
ability to explore the search space efficiently and 
balance exploration and exploitation makes it a 
promising approach for enhancing moving object 
detection [25]. 
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1.1. Problem Statement 
The goal of this study is to improve upon 

current techniques of moving object recognition by 
designing new algorithms that are both more 
efficient and more accurate, efficiency, and 
robustness of object detection in dynamic 
environments. The motivation for this research stems 
from the need to unlock the full potential of 
computer vision systems in various applications, 
including surveillance, autonomous systems, video 
analysis, and augmented reality. The specific 
problem is to address the challenges current moving 
object detection algorithms face, such as difficulties 
in accurately identifying and tracking objects with 
complex motion patterns, occlusions, and variations 
in lighting conditions. The goal is to develop novel 
techniques and methodologies to effectively handle 
these challenges and provide more reliable and 
precise object detection results in real-time 
scenarios. 

 
Furthermore, the problem also involves 

addressing the computational complexity and 
resource limitations associated with moving object 
detection. Efficient algorithms and architectures 
must be designed to process large amounts of visual 
data in real-time while minimizing computational 
overhead and optimizing resource utilization. By 
addressing these challenges, the research aims to 
advance the field of moving object detection and 
enable the development of more accurate, efficient, 
and robust algorithms. The ultimate objective is to 
enhance safety, security, and efficiency in various 
domains, such as surveillance systems, autonomous 
vehicles, video analysis, and augmented reality 
applications. 
 
1.2. Motivation 

Moving object detection is critical in 
computer vision with significant real-world 
applications. Accurately identifying and tracking 
objects in dynamic environments are essential for 
various fields, including surveillance, autonomous 
systems, video analysis, and augmented reality. 
However, existing moving object detection 
algorithms often face challenges that limit their 
performance and applicability in practical scenarios. 
The motivation for this research stems from the need 
to overcome the limitations of current methods and 
improve the accuracy, efficiency, and robustness of 
moving object detection. By addressing these 
challenges, we can unlock the potential of computer 
vision systems in numerous domains, leading to 
enhanced safety, security, and efficiency in various 
applications. Improved moving object detection 

algorithms can have a transformative impact on 
surveillance systems. They can enable more 
effective threat detection, prompt intervention in 
security-sensitive areas, and proactive monitoring of 
public spaces. This can significantly enhance public 
safety and provide invaluable support to law 
enforcement agencies. 

 
1.3. Research Objective 

The objectives of this research are as 
follows: 
 Develop a Grasshopper Optimization 

Algorithm for optimizing the parameters of 
the Neutrosophical Fuzzy Convolutional 
Neural Network. 

 Design and implement a Neutrosophical 
Fuzzy Convolutional Neural Network 
architecture to handle uncertainties and 
imprecise information in moving object 
detection. 

 Measure the method’s performance on 
standard datasets, and see how it stacks up 
against other popular solutions. 

 Conduct an extensive analysis of the results to 
demonstrate the advantages and effectiveness 
of the proposed Grasshopper Optimization-
based Neutrosophical Fuzzy Convolutional 
Neural Network in enhancing moving object 
detection.         

 
1.4. Organization of the Paper 

The structure of the remaining paper is as 
follows: Section 2 reviews related works in moving 
object detection, optimization algorithms, and fuzzy 
logic, identifying gaps and limitations in the existing 
literature. Section 3 presents the proposed 
methodology, explaining the Grasshopper 
Optimization Algorithm (GOA) and its application 
in optimizing the Neutrosophical Fuzzy 
Convolutional Neural Network (NFCNN) 
parameters for enhanced moving object detection. 
Section 4 details the dataset used in the study, 
including its source and characteristics. Metrics for 
gauging how well the suggested technique works are 
introduced in Section 5. Compared to standard 
practices, experimental findings achieved using the 
suggested methodology are presented and analyzed 
in Section 6. Section 7 concludes the paper, 
summarizing the essential findings and 
contributions, discussing the significance of the 
proposed methodology, and suggesting future 
research directions. 

 
2. LITERATURE REVIEW 
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“Fusion Representation Learning (FRL)” 
[26] combines spatial, temporal, and appearance-
based representations so that more foreground 
motion may be seen. It involves extracting features 
from the input data and fusing them using feature-
level or decision-level fusion techniques. The 
approach aims to capture both spatial and temporal 
cues and the appearance characteristics of moving 
objects. Integrating these different representations 
enhances the accuracy and robustness of moving 
object detection, especially in challenging scenarios 
with occlusions and complex motion patterns. 
“Novel RPCA with Nonconvex Logarithm and 
Truncated Fraction” [27] introduces a new method 
that improves the accuracy of moving object 
detection. The approach effectively separates 
foreground moving objects from complex 
backgrounds using Robust Principal Component 
Analysis (RPCA) with nonconvex logarithms and 
truncated fraction norms. These innovative 
techniques enhance the detection process’s 
robustness by modelling the dynamic nature of 
moving objects and handling noise and outliers. 
Experimental evaluations demonstrate the 
approach’s effectiveness in accurately identifying 
and separating moving objects in complex scenes.  
 

The “Deep-Learning-Assisted Versatile 
Electret Sensor” [28] approach combines deep-
learning techniques with an electret sensor to 
improve the detection of moving objects. By 
integrating deep learning algorithms with sensor 
technology, the approach enhances the accuracy and 
versatility of object detection in different scenarios. 
The method addresses the challenges associated with 
accurately detecting and classifying moving objects. 
Electret, an electrostatic sensor, is utilized to capture 
relevant data, while deep learning algorithms are 
employed to analyze and classify the sensor data. 
The proposed approach demonstrates promising 
results in accurately detecting and identifying 
moving objects in various environments. “Learning 
Dynamic Background” [29] enhances moving object 
detection by learning dynamic backgrounds using 
weak supervision. Training a deep learning model, it 
adapts to identify dynamic elements in complex 
backgrounds, improving the accuracy of detecting 
and tracking moving objects. The approach utilizes 
techniques such as background differencing and 
foreground saliency analysis to identify regions 
deviating from the learned dynamic background. By 
incorporating weak supervision, the model 
progressively improves its ability to distinguish 
moving objects from the dynamic background. 
Experimental evaluations validate the effectiveness 

of this approach, making it a valuable solution for 
moving object detection tasks where fully annotated 
training data is limited or unavailable. The method 
significantly enhances the robustness and accuracy 
of moving object detection systems. 

 
“Full-Spectrum Light Sources” [30] aim for 

better object-detecting precision algorithms in 
challenging weather scenarios. This approach 
enhances the visibility of moving objects in 
conditions such as rain, fog, and low-light 
environments by utilizing full-spectrum light 
sources that emit light across a wide range of 
wavelengths. The goal is to develop robust 
algorithms to detect and track objects even when 
visibility is compromised. By leveraging the 
advantages of full-spectrum light sources, this 
approach addresses the challenges of adverse 
weather conditions, enabling more accurate and 
reliable moving object detection. “Atanassov’s 
Intuitionistic 3D Fuzzy Histon Roughness Index” 
[31] combines the advantages of both methods to 
improve the accuracy and reliability of moving 
object detection. By utilizing Atanassov’s 
Intuitionistic 3D Fuzzy Histogram Roughness Index, 
which captures the roughness of the image histogram 
along with texture features, the approach effectively 
detects and distinguishes moving objects from the 
background. This fusion-based approach enhances 
the robustness of moving object detection, enabling 
accurate and reliable results in various scenarios. 

 
“2D LiDAR-based object detection” [32] 

utilizes a 2D LiDAR sensor to detect and track 
objects in the vehicle’s vicinity. This approach 
enhances the vehicle’s perception capabilities by 
leveraging the laser-based technology of LiDAR to 
create a detailed and accurate representation of the 
surrounding environment. The 2D LiDAR sensor 
scans the surrounding area, measuring distances to 
objects and generating a point cloud. Object 
detection algorithms identify and classify objects 
such as pedestrians, vehicles, and obstacles by 
analyzing the point cloud data. The tracking 
component then continuously tracks the detected 
objects over time, enabling the vehicle to maintain 
situational awareness and make informed decisions. 
“Simultaneous Denoising (SD)” [33] combines 
denoising and object detection algorithms to 
improve the accuracy of detecting moving objects in 
the presence of noise. The method uses a low-rank 
approximation to differentiate between a scene’s 
background and foreground elements. Using a low-
rank approximation, the approach approximates a 
low-rank matrix as the scene’s backdrop. This low-
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rank approximation helps remove the noise and 
preserve the static elements in the scene. The 
remaining residual matrix after low-rank 
approximation is then analyzed to identify and 
classify the moving objects. 
 
3. GRASSHOPPEROPTIMIZATION - BASED 
NEUTROSOPHICALFUZZYCONVOLUTION
AL NEURAL NETWORK 
 
3.1. Moving Object Detection 

Moving object detection is a fundamental 
task in computer vision, playing a pivotal role in 
various real-world applications. It encompasses the 
challenging process of identifying and tracking 
objects within dynamic scenes captured by imaging 
devices. Computer vision systems can enable 
surveillance, autonomous navigation, video 
analysis, and activity recognition by accurately 
detecting and tracking moving objects. Moving 
object detection aims to differentiate foreground 
objects from the background, which may contain 
stationary elements or other irrelevant information. 
Several elements, such as shifting illumination, 
occlusions, distracting backdrops, and rapid object 
motion, make this a complex process. Effective 
moving object detection algorithms should be able to 
handle these complexities and uncertainties.  
 

The process of moving object detection 
involves several steps. Initially, a background model 
is created to represent the stationary elements in the 
scene. The current frame is then compared to the 
backdrop model to pick out any pixels or areas that 
are drastically different. These deviations are 
considered potential foreground objects. 
Subsequently, post-processing techniques such as 
noise removal and object refinement are applied to 
improve the accuracy of the detection results. 
Finally, object-tracking algorithms can track the 
identified objects across subsequent frames. 
Accurate moving object detection is crucial for 
various applications. Surveillance systems enable 
the detection of intruders or suspicious activities in 
monitored areas. In autonomous vehicles, moving 
object detection is essential for collision avoidance 
and pedestrian detection. In video analysis, it assists 
in recognizing and tracking objects of interest, 
facilitating tasks such as action recognition and 
behaviour analysis. 
 
3.2. Neutrosophical Fuzzy Logic 

Neutrosophical Fuzzy Logic is a 
mathematical framework that combines neutrosophy 
and fuzzy logic to handle indeterminacy, 

uncertainty, and vagueness in decision-making and 
reasoning processes. It provides a comprehensive 
approach to dealing with real-world problems’ 
complexities and ambiguities. Neutrosophy, 
introduced by FlorentinSmarandache, deals with the 
study of indeterminacy and considers the existence 
of three components: truth, falsity, and 
indeterminacy. It recognizes that many real-world 
situations and phenomena possess inherent 
uncertainties, where elements can simultaneously 
have degrees of truth, falsity, and indeterminacy. On 
the other hand, fuzzy logic is a mathematical 
approach that allows for the representation and 
manipulation of incomplete or imprecise 
information. It is based on the concept of fuzzy sets, 
which assign membership degrees to elements rather 
than strict binary classifications. 
 

Neutrosophical Fuzzy Logic offers a more 
flexible and expressive decision-making framework 
by integrating neutrosophy and fuzzy logic. It allows 
for representing and handling uncertainties, 
vagueness, and contradictions that often arise in 
complex real-world problems. In Neutrosophical 
Fuzzy Logic, membership functions assign 
membership degrees to elements based on their 
truth, falsity, and indeterminacy degrees. These 
membership degrees are combined using 
neutrosophic fuzzy operators such as conjunction, 
disjunction, and implication to perform reasoning 
and make informed decisions. Neutrosophical Fuzzy 
Logic finds applications in various fields, including 
artificial intelligence, pattern recognition, image 
processing, decision support systems, and control 
systems. It enables the modelling and analysis of 
problems that involve imprecise or uncertain 
information, allowing for more robust and adaptive 
solutions. 
 
3.2.1. Neutrosophical fuzzy sets for moving object 
detection 

In the context of moving object detection, a 
digital image “𝐼” can be represented as a matrix of 
pixels. Each pixel, denoted as 𝑝(𝑖, 𝑗), corresponds to 
a specific location in the image. To handle 
uncertainties and indeterminacies associated with 
each pixel, we can associate a neutrosophical fuzzy 
set 𝐴(𝑖, 𝑗) with it. The neutrosophical fuzzy set 
𝐴(𝑖, 𝑗) can be defined as Eq.(1). 

𝑨(𝒊, 𝒋) = 
𝒙, 𝝁𝑻(𝒊, 𝒋, 𝒙), 𝝁𝑭(𝒊, 𝒋, 𝒙), 𝝁𝑰(𝒊, 𝒋, 𝒙) |𝒙

∈ 𝑿  
(1) 

 
Here, 𝑖 and 𝑗 represent the pixel coordinates, 𝑋 is the 
set of possible pixel values, and 
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𝑥, 𝜇𝑇(𝑖, 𝑗, 𝑥), 𝜇𝐹(𝑖, 𝑗, 𝑥), 𝜇𝐼(𝑖, 𝑗, 𝑥)  denotes an 
element within the neutrosophical fuzzy set 𝐴(𝑖, 𝑗). 
Each element in the set consists of a specific pixel 
value 𝑥, and its associated membership degrees of 
truth (𝜇𝑇), falsity (𝜇𝐹), and indeterminacy (𝜇𝐼). 
 

The membership degrees 
 𝜇𝑇(𝑖, 𝑗, 𝑥), 𝜇𝐹(𝑖, 𝑗, 𝑥), and 𝜇𝐼(𝑖, 𝑗, 𝑥) quantify the 
degree to which the pixel 𝑝(𝑖, 𝑗) belongs to the truth, 
falsity, and indeterminacy components, respectively. 
These membership degrees are determined based on 
specific criteria or measures that assess the pixel’s 
characteristics or properties, such as intensity, 
colour, texture, or motion. By representing pixels as 
neutrosophical fuzzy sets, we can handle the 
inherent uncertainties and indeterminacies in 
moving object detection. This mathematical 
framework enables the fusion of different sources of 
information, adaptive thresholding, informed 
decision-making, and robust object tracking, leading 
to more accurate and reliable results in detecting and 
tracking moving objects within dynamic scenes. 
 
3.2.2. Membership Functions for Moving Object 
Detection 

Membership functions are crucial in 
Neutrosophical Fuzzy Logic as they determine the 
membership degrees associated with pixel 
characteristics. In moving object detection, these 
membership functions can incorporate motion 
information and evaluate the degree to which a pixel 
belongs to different components: truth, falsity, and 
indeterminacy. 
 
Membership degree of 𝒙 in the truth component: 

𝝁𝑻(𝒊, 𝒋, 𝒙) = 𝒇𝒎𝒐𝒕𝒊𝒐𝒏(𝒙) (2) 

In Eq.(2), the function 𝑓 (𝑥) represents a 
measure of motion for the pixel value 𝑥. It quantifies 
the degree to which the pixel value is associated with 
motion. Implementing𝑓 (𝑥) can vary 
depending on the chosen motion detection algorithm 
or technique. 
 
Membership degree of 𝒙 in the falsity component: 

𝝁𝑭(𝒊, 𝒋, 𝒙) = 𝟏 − 𝝁𝑻(𝒊, 𝒋, 𝒙) (3) 

In Eq.(3), the membership degree in the falsity 
component is obtained as the complement of the 
membership degree in the truth component. A higher 
value of 𝜇𝐹(𝑖, 𝑗, 𝑥) indicates a stronger association 
with the falsity component, suggesting a lack of 
motion. 

Membership degree of 𝒙 in the indeterminacy 
component: 

𝝁𝑰(𝒊, 𝒋, 𝒙) = 
𝟏 − 𝝁𝑻(𝒊, 𝒋, 𝒙) − 𝝁𝑭(𝒊, 𝒋, 𝒙) 

(4) 

In Eq.(4), the membership degree in the 
indeterminacy component represents the remaining 
degree of membership not accounted for by the truth 
or falsity components. It quantifies the uncertainty or 
ambiguity associated with the pixel value 𝑥. 
 
Moving object detection decision rule: 

𝝁𝑻(𝒊, 𝒋, 𝒙) > 𝝁𝑭(𝒊, 𝒋, 𝒙) (5) 

𝝁𝑻(𝒊, 𝒋, 𝒙) > 𝝁𝑰(𝒊, 𝒋, 𝒙): 𝑷𝒊𝒙𝒆𝒍 𝒑(𝒊, 𝒋) (6) 

If Eq.(5) and Eq.(6) get true, it is classified 
as a moving object. This decision rule determines 
whether a pixel is classified as a moving object based 
on the relative values of its membership degrees in 
the truth, falsity, and indeterminacy components. If 
the membership degree in the truth component is 
higher than those in the falsity and indeterminacy 
components, the pixel is classified as a moving 
object. 

 
3.2.3. Neutrosophical Fuzzy Fusion for Moving 
Object Detection 

Fusion operators are essential in 
Neutrosophical Fuzzy Logic as they enable the 
combination of information from multiple sources. 
Neutrosophical Fuzzy Logic offers fusion operators 
such as neutrosophic fuzzy conjunction (NFC) and 
neutrosophic fuzzy disjunction (NFD), which allow 
the merging of membership degrees obtained from 
different neutrosophical fuzzy sets. 
 

For two given neutrosophical fuzzy sets 
𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) associated with a pixel 𝑝(𝑖, 𝑗), the 
NFC operator can be defined as Eq.(7). 

𝑵𝑭𝑪 𝑨(𝒊, 𝒋), 𝑩(𝒊, 𝒋) = 

⎩
⎪
⎨

⎪
⎧ 𝒙, 𝒎𝒊𝒏 𝝁𝑻𝑨(𝒊,𝒋,𝒙), 𝝁𝑻𝑩(𝒊,𝒋,𝒙) ,

𝒎𝒊𝒏 𝝁𝑭𝑨(𝒊,𝒋,𝒙)𝝁𝑭𝑩(𝒊,𝒋,𝒙) ,

𝒎𝒊𝒏 𝝁𝑰𝑨(𝒊,𝒋,𝒙),   𝝁𝑰𝑩(𝒊,𝒋,𝒙) ⎭
⎪
⎬

⎪
⎫

 

 

(7) 

In Eq.(7), 𝑥, 𝜇𝑇 ( , , ), 𝜇𝐹 ( , , ), 𝜇𝐼 ( , , )  
represents an element of the neutrosophical fuzzy set 
𝐴(𝑖, 𝑗), while 𝑥, 𝜇𝑇 ( , , ), 𝜇𝐹 ( , , ), 𝜇𝐼 ( , , )  
represents an element of the neutrosophical fuzzy set 
𝐵(𝑖, 𝑗). The NFC operator combines these two sets 
by taking the minimum membership degrees for 
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each component (truth, falsity, and indeterminacy) at 
each pixel value 𝑥. 

 
Similarly, the NFD operator can be defined 

as Eq.(8): 
𝑵𝑭𝑫 𝑨(𝒊, 𝒋), 𝑩(𝒊, 𝒋) = 

⎩
⎪
⎨

⎪
⎧ 𝒙, 𝒎𝒂𝒙 𝝁𝑻𝑨(𝒊,𝒋,𝒙), 𝝁𝑻𝑩(𝒊,𝒋,𝒙) ,

𝒎𝒂𝒙 𝝁𝑭𝑨(𝒊,𝒋,𝒙)𝝁𝑭𝑩(𝒊,𝒋,𝒙) ,

𝒎𝒂𝒙 𝝁𝑰𝑨(𝒊,𝒋,𝒙),   𝝁𝑰𝑩(𝒊,𝒋,𝒙) ⎭
⎪
⎬

⎪
⎫

 
(8) 

 
The NFD operator combines the 

membership degrees by taking the maximum values 
for each component (truth, falsity, and 
indeterminacy) at each pixel value 𝑥. Utilizing these 
fusion operators allows the membership degrees of 
different neutrosophical fuzzy sets to be effectively 
combined, facilitating the integration of information 
from diverse sources. The min-max operations 
employed in these operators ensure that the resulting 
fusion retains the characteristics of the original sets, 
enabling the representation of uncertainties and 
indeterminacies more comprehensively. 

 
3.2.4. Neutrosophical Fuzzy Decision-Making for 
Moving Object Detection 

Decision rules in moving object detection 
can be formulated based on membership degrees 
obtained from different sources, utilizing logical 
operators such as neutrosophic fuzzy conjunction 
(NFC) and neutrosophic fuzzy disjunction (NFD). 
By applying these operators, we can construct rules 
to determine the membership of a pixel in a moving 
object. Let’s consider sets 𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) 
representing different information sources 
associated with a pixel 𝑝(𝑖, 𝑗). The criterion for 
making a call might be stated as follows: 
 

If NFC(𝐴(𝑖, 𝑗), 𝐵(𝑖, 𝑗)) is greater than or 
equal to the neutrosophical fuzzy threshold 𝑇(𝑖, 𝑗), 
then pixel 𝑝(𝑖, 𝑗) belongs to the moving object. Here, 
NFC(𝐴(𝑖, 𝑗), 𝐵(𝑖, 𝑗)) represents the fusion of sets 
𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) using the NFC operator. The NFC 
operator combines the membership degrees of truth, 
falsity, and indeterminacy obtained from the two 
sets, resulting in a new neutrosophical fuzzy set 
representing the degree of agreement between the 
information sources regarding the pixel’s association 
with the moving object. 

The neutrosophical fuzzy threshold 𝑇(𝑖, 𝑗) 
is obtained through the fusion of threshold values 
associated with sets 𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗). It serves as a 
criterion to decide whether the pixel is considered 
part of the moving object based on the combined 

information. We can decide the pixel’s membership 
in the moving object by comparing the NFC fusion 
result with the threshold value. If the NFC result is 
greater than or equal to the threshold, the pixel is 
classified as belonging to the moving object. These 
decision rules, constructed using fusion operators 
and thresholds, provide a framework to integrate and 
evaluate information from diverse sources. 
Neutrosophical Fuzzy Logic enables effective 
decision-making in moving object detection by 
incorporating uncertainties and indeterminacies, 
leading to more accurate and reliable results in 
complex scenarios. 

 
3.2.5. Neutrosophical Fuzzy Tracking for Moving 
Object Detection 

Tracking moving objects over time is a 
challenging task requiring considering the dynamic 
changes in their states. Neutrosophical Fuzzy Logic 
provides a robust framework to handle uncertainties 
and indeterminacies inherent in the tracking process. 
By representing the position and velocity of the 
object as neutrosophical fuzzy sets, tracking 
algorithms can effectively update the object’s state 
using fusion operators such as neutrosophic fuzzy 
conjunction (NFC) and neutrosophic fuzzy 
disjunction (NFD) at each time step. 
 

In a tracking scenario, the position and 
velocity of the object can be described using 
neutrosophical fuzzy sets. Let’s denote the position 
set as 𝑃(𝑖, 𝑗) and the velocity set as 𝑉(𝑖, 𝑗), where 𝑖 
and 𝑗 represent the object’s coordinates. These sets 
can be defined as Eq.(9) and Eq.(10): 

𝑃(𝑖, 𝑗) =

𝑥, 𝜇𝑇 ( , , ), 𝜇𝐹 ( , , ),𝜇𝐼 ( , , ) } 
(9) 

𝑉(𝑖, 𝑗)

= 𝑣, 𝜇𝑇 ( , , ), 𝜇𝐹 ( , , ),𝜇𝐼 ( , , )  
(10) 

Here, x denotes the position value, 𝑣 represents the 
velocity value, and 𝜇𝑇, 𝜇𝐹and 𝜇𝐼 denote the 
membership degrees in the truth, falsity, and 
indeterminacy components. 
 

To track the object over time, the state 
update process involves fusing the information from 
the previous time step with the new measurements. 
This fusion can be achieved using the NFC and NFD 
operators. For instance, the fusion of position sets 
𝑃(𝑖, 𝑗) and 𝑃 (𝑖, 𝑗) at time 𝑡 can be expressed as 
Eq.(11): 
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𝑁𝐹𝐶 𝑃(𝑖, 𝑗), 𝑃 (𝑖, 𝑗) = 
𝑥, 𝑚𝑖𝑛 𝜇𝑇 ( , , ), 𝜇𝑇 ( , , ) ,

 𝑚𝑖𝑛 𝜇𝐹 ( , , ), 𝜇𝐹 ( , , ) ,

𝑚𝑖𝑛 𝜇𝐼 ( , , ), 𝜇𝐼 ( , , )

 
(11) 

Similarly, the fusion of velocity sets 𝑉(𝑖, 𝑗) 
and 𝑉 (𝑖, 𝑗)can be defined as Eq.(12): 

𝑁𝐹𝐶 𝑉(𝑖, 𝑗), 𝑉 (𝑖, 𝑗) = 
𝑣, 𝑚𝑖𝑛 𝜇𝑇 ( , , ), 𝜇𝑇 ( , , ) ,

𝑚𝑖𝑛 𝜇𝐹 ( , , ), 𝜇𝐹 ( , , ) ,

𝑚𝑖𝑛 𝜇𝐼 ( , , ), 𝜇𝐼 ( , , )

 
(12) 

 
Utilizing these fusion operators, the 

tracking algorithm can update the object’s position 
and velocity sets at each time step. These fused sets 
represent the updated state of the object, considering 
the uncertainties and indeterminacies associated 
with the measurements and the tracking process 
itself. 
 

Algorithm 1: Neutrosophical Fuzzy Fusion for 
Moving Object Detection 

Step 1: Initialize 
Load the digital image 𝐼. 

Define the set of possible pixel values 𝑋. 

Set the threshold values for decision-

making. 

Step 2:  For each pixel 𝒑(𝒊, 𝒋) in the image 𝑰: 
a) Calculate the membership 
degrees for truth, falsity, and 
indeterminacy: 
 Evaluate the degree of motion for 

the pixel value using a motion 
detection algorithm. 

 Determine the percentage of 
truth-value membership for each 
pixel. 

 Calculate the membership degree 
of the pixel value in the falsity 
component. 

 By calculating their values, 
determine the percentage of 
pixels that belong to the 
indeterminacy component. 

b) Determine if the pixel is classified 
as a moving object: 

 Compare the membership degree 
in the truth component with those 
in the falsity and indeterminacy 
components. 

 If the membership degree in the 
truth component is higher, classify 
the pixel as a moving object. 

Step 3: Apply fusion operators for moving 
object detection 

a) Combine membership degrees 
from different sources using fusion 
operators: 

 For each pixel𝑝(𝑖, 𝑗), combine the 
membership degrees from 
different neutrosophical fuzzy sets 
using the fusion operator (e.g., 
NFC or NFD). 

 Take the minimum or maximum 
values for each component (truth, 
falsity, indeterminacy) at each 
pixel value. 

 Generate a new neutrosophical 
fuzzy set representing the fused 
membership degrees. 

Step 4:  Perform decision-making for 
moving object detection 
 Compare the fused membership 

degrees with the threshold values. 
 If the fused membership degrees 

are greater than or equal to the 
thresholds, classify the pixel as 
part of the moving object. 

Step 5: Repeat Steps 2 to 4 for each pixel in 
the image. 

Step 6: Optional: Track moving objects 
over time using neutrosophical 
fuzzy tracking: 
 Define neutrosophical fuzzy sets 

for the position and velocity of the 
object. 

 Update the object’s state at each 
time step by fusing information 
from previous time steps with new 
measurements. 

 Use fusion operators (e.g., NFC) 
to combine the membership 
degrees of position and velocity 
sets. 

 Obtain the updated position and 
velocity sets representing the 
object’s state. 

Step 7: Repeat the tracking process for 
subsequent time steps. 

Step 8: Output the results of moving 
object detection and tracking. 
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3.3. Convolutional Neural Networks 
 
3.3.1. Convolution Operation 

The convolution operation in CNNs 
involves sliding a filter (known as a kernel) across 
the input image and then calculating the dot product 
of the filter weights with each input patch. 
Mathematically, the convolution operation for a 
specific output feature map position (𝑖, 𝑗) and 
channel (c) can be defined as Eq.(13). 

𝑌[𝑖, 𝑗, 𝑐] = ΣΣΣ𝑋[𝑎, 𝑏, 𝑑]
∗ 𝐹[𝑖 − 𝑎, 𝑗 − 𝑏, 𝑑, 𝑐] 

(13) 

𝑌[𝑖, 𝑗, 𝑐] represents the output value at position (𝑖, 𝑗) 
and channel 𝑐 in the feature map. 𝑋[𝑎, 𝑏, 𝑑] 
represents the input value at position (𝑎, 𝑏) and 
channel 𝑑 in the input image.𝐹[𝑖 − 𝑎, 𝑗 − 𝑏, 𝑑, 𝑐] 
represents the filter weight at the position (𝑖 − 𝑎, 𝑗 −
𝑏), input channel 𝑑, and output channel 𝑐. 

 
The summation is performed over all 

possible positions (𝑎, 𝑏) and channel 𝑑, which are 
determined by the size of the filter and the number 
of input channels. We compute the output feature 
map 𝑌 by sliding the filter over the entire input 
image and applying this equation. 

 
3.3.2. Activation Function 

Using an activation function, the network 
may describe intricate interactions by making the 
convolutional layer’s output non-linear. In 
convolutional neural networks (CNNs), the 
Rectified Linear Unit (ReLU) activation function is 
defined in Eq.(14). 

𝐴 = 𝑚𝑎𝑥(0, 𝑍) (14) 

where 𝐴 represents the activation output, and 𝑍 
represents the input to the activation function. The 
ReLU function returns the maximum between 0 and 
the input value 𝑍. If 𝑍 is positive, the output 𝐴 will 
equal𝑍. If 𝑍 is negative, the output 𝐴 will be 0. This 
function effectively “activates” the neuron when the 
input is positive and keeps it inactive (outputting 0) 
when the input is negative. 
 

An element-by-element application of the 
ReLU activation function on a convolutional layer’s 
output feature map, we introduce non-linearity and 
allow the network to learn complex patterns and 
representations. 
 
3.3.3. Pooling Operation 

Pooling is a downsampling operation that 
reduces the feature maps’ spatial dimensions, 
helping extract the essential information while 

reducing computational complexity. Max pooling is 
a commonly used technique that selects the 
maximum value within each pooling window. 
Consider a specific output feature map position (𝑖, 𝑗) 
and channel 𝑐. The pooling operation computes the 
maximum value within a pooling window of size 
𝑃 𝑥 𝑃 in the input feature map, 𝑋 which can be 
mathematically represented as Eq/(15). 

𝑌[𝑖, 𝑗, 𝑐] = 𝑚𝑎𝑥(𝑋[𝑃𝑖: 𝑃(𝑖 + 1), 𝑃𝑗: 𝑃(𝑗
+ 1), 𝑐]) 

(15) 

𝑌[𝑖, 𝑗, 𝑐] denotes the output value at position (𝑖, 𝑗) 
and channel 𝑐 in the pooled feature map.𝑋[𝑃𝑖: 𝑃(𝑖 +
1), 𝑃𝑗: 𝑃(𝑗 + 1), 𝑐] represents the input values 
within the pooling window located at position (𝑖, 𝑗), 
and channel 𝑐.𝑃 is the pooling size, indicating the 
dimensions of the pooling window. 
 

To create the output feature map, the max 
pooling operation picks the input value that is the 
highest inside the pooling window. We obtain the 
pooled feature map 𝑌 by sliding the pooling window 
over the input feature map. 
 
3.3.4. Fully Connected Layers 

After several convolutional and pooling 
layers, CNNs often include one or more fully 
connected layers to learn high-level representations. 
These layers connect every neuron to every neuron 
in the subsequent layer, allowing for complex 
mappings. Let’s denote the output of the last pooling 
layer as a vector 𝑉. The fully connected layer can be 
represented mathematically as Eq.(16). 

𝑌 = 𝑊 ∗ 𝑉 + 𝐵 (16) 

where 𝑌 represents the ultimately linked layer’s 
output vector, 𝑊 denotes the weight matrix that 
defines relationships between neurons in one layer 
and those in the next. The dimensions of 𝑊 are 
typically (𝑀, 𝑁), where 𝑀 is the number of neurons 
in the current layer, and 𝑁 is the number of neurons 
in the subsequent layer.𝑉 is the input vector obtained 
by flattening what comes out of the final layer of 
pooling. Its dimensions are typically (𝑁, 1). 𝐵 is the 
bias vector with dimensions (𝑀, 1) is added 
element-wise to the weighted sum. 
 
 The input vector 𝑉 is multiplied by the 
weight matrix 𝑊, and then the result is added to the 
bias vector 𝐵 element by element in the fully 
connected layer. The resultant vector 𝑌 is the 
ultimately linked layer’s output. 
 
3.3.5. Softmax Function 
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To transform raw scores into class 
probabilities, a softmax function is typically used to 
output the final fully connected layer in a 
classification job. The softmax function normalizes 
the output scores, ensuring that they sum up to 1 and 
can be interpreted as probabilities. Let’s consider the 
input vector 𝑋 with dimensions (𝐶, 1), where 𝐶 is 
the number of classes. The softmax function can be 
mathematically defined as Eq.(17). 

𝑌[𝑖] = 𝑒𝑥𝑝 𝑋[𝑖]/Σ(𝑋[𝑗])  (17) 

where 𝑌[𝑖] represents the output probability for class 
𝑖, and 𝑋[𝑖] is the raw score or logit for class 𝑖. The 
sum in the denominator is computed over all classes 
𝑗. The softmax function exponentiates each raw 
score and divides it by the sum of all exponentiated 
scores, ensuring that the output probabilities are non-
negative and sum up to 1. This allows us to interpret 
the output probability 𝑌 as the likelihood of the input 
belonging to each class. 
 
3.3.6. Backpropagation and Optimization 
Algorithms 

Backpropagation and optimization 
algorithms are crucial in training CNNs by updating 
the network’s parameters to minimize the loss 
function. The input data is propagated through the 
network during the forward pass, and the output 
predictions are computed. Then, during the 
backward pass, the gradients of the loss concerning 
the network’s parameters are calculated using the 
chain rule of calculus. These gradients represent the 
sensitivity of the loss to changes in the parameters 
and indicate the direction in which the parameters 
should be adjusted. 
 

Optimization algorithms, such as gradient 
descent and its variants, utilize these gradients to 
update the network’s parameters iteratively. The 
objective is to determine the best values for the 
parameters to maximize the model’s prediction 
ability while minimizing the loss function. Gradient 
descent, a widely used optimization algorithm, 
adjusts the weights and biases in the network by 
taking steps proportional to the negative of the 
gradients. The magnitude of these steps is 
determined by the learning rate, which controls the 
convergence speed. Stochastic gradient descent 
(SGD), a variant of gradient descent, further 
enhances the optimization process by randomly 
selecting a subset of training samples, called a mini-
batch, to compute the gradients and update the 
parameters. This introduces noise that helps escape 
local minima and can lead to faster convergence. 
3.3.7. Regularization Techniques 

Overfitting is avoided in CNNs because to 
regularization methods like 𝐿1 and 𝐿2. A dropout is 
a specific form of regularization that enhances the 
model’s robustness. 
 
L1 Regularization 

𝐿1 regularization introduces an additional 
term in the loss function that penalizes the absolute 
values of the weights. Let’s consider a specific layer 
in a CNN with weights represented by the matrix 𝑊. 
The L1 regularization term can be written as Eq.(18). 

𝐿1 = 𝜆 ∗ Σ|𝑊| (18) 

where 𝜆 is the regularization parameter and |𝑊| 
represents the element-wise absolute values of the 
weights. The overall loss function with 𝐿1 
regularization can be written as Eq.(19). 

𝐿𝑜𝑠𝑠 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 + 𝐿1 (19) 

 
During backpropagation, the gradients of 

the 𝐿1 regularization term concerning the weights 
are computed as Eq.(20). 

𝜕𝐿1/𝜕𝑊 = 𝜆 ∗ 𝑠𝑖𝑔𝑛(𝑊) (20) 

These gradients are then added to the 
gradients of the cross-entropy loss during 
backpropagation to update the weights. 

 
L2 Regularization 
 In 𝐿2 regularization, often called weight 
decay, a component is added to the loss function that 
penalizes squared weights. Let’s consider a specific 
layer in a CNN with weights represented by the 
matrix 𝑊. The 𝐿2 regularization term can be written 
as Eq/(21). 

𝐿2 = 𝜆 ∗ Σ𝑊  (21) 

where 𝜆 is the regularization parameter, and 
𝑊 represents the element-wise squared values of 
the weights. The overall loss function with𝐿2 
regularization can be written as Eq.(22). 

𝐿𝑜𝑠𝑠 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 + 𝐿2 (22) 

 
During backpropagation, the gradients of 

the 𝐿2 regularization term concerning the weights 
are computed as Eq.(23). 

𝜕𝐿2/𝜕𝑊 = 2 ∗ 𝜆 ∗ 𝑊 (23) 
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These gradients are then added to the 
gradients of the cross-entropy loss during 
backpropagation to update the weights. 
 
3.3.8. Dropout 

A dropout is a regularization approach that 
sets a small percentage of activations in each training 
layer to zero at random. Let’s consider a specific 
layer in a CNN with activations represented by 
matrix 𝐴. Dropout is applied by multiplying the 
activations with a binary mask matrix 𝐷, where each 
element of 𝐷 is set to 0 or 1 with a certain 
probability. During forward propagation, the 
dropout mask is applied element-wise to the 
activations. The masked activations, 𝐴 , are 
computed asEq.(24). 

𝐴 = 𝐴 ∗ 𝐷 (24) 

where 𝐴 represents the initial activations, and the 
masked activations are then passed to the subsequent 
layers. 
 

During backpropagation, the gradients 
from the subsequent layers are multiplied element-
wise with the dropout mask, ensuring that only the 
active neurons receive gradients. Let 𝜕𝐿/𝜕𝐴  
be the gradients concerning the masked activations. 
The gradients concerning the original activations, 
∂L/∂A, are calculated as Eq.(25). 

𝜕𝐿/𝜕𝐴 = 𝜕𝐿/𝜕𝐴 ∗ 𝐷 (25) 

where * represents element-wise multiplication. 
 
Using regularization strategies like 𝐿1 and 

𝐿2 regularization, CNNs can learn more robust and 
generalized representations while mitigating 
overfitting risks. The regularization terms affect the 
loss function and gradients during backpropagation, 
providing a penalty on the weights. Dropout 
introduces stochasticity by randomly dropping out 
activations, which helps prevent over-reliance on 
specific activations and encourages the network to 
learn more robust features. Together, these 
techniques contribute to improved generalization 
and model performance in CNNs. 
 

Algorithm 2: CNN 

Step 1: Initialize the network parameters, 
including the filter weights and 
biases, for each layer in the CNN. 

Step 2: Perform a forward pass through the 
network: 

a) Convolution operation: We 
implement the activation function 
by sliding the filters across the 
input moving objects from a video 
file and computing the dot product 
of the filter weights and the input 
patches. 

b) Pooling operation: Picking 
maximum values inside pooling 
windows might help you reduce 
the feature maps’ spatial 
dimensions. 

c) To retrieve a vector from the last 
pooling layer’s output, we must 
flatten it. 

d) Fully connected layers: The input 
vector should be multiplied by the 
weight matrix, and then the bias 
vector should be added to it, 
element by element. Invoke the 
activation procedure. 

e) Softmax function: Convert the raw 
scores into class probabilities. 

Step 3: Compute the loss function, typically 
using cross-entropy loss, by 
comparing the predicted class 
probabilities with the accurate labels. 

Step 4: Backpropagation may be used to 
compute the loss function gradients 
for the network parameters. 

Step 5: Update the network parameters using 
an optimization algorithm: 

a) Initialize the parameter update 
values. 

b) Compute the gradients for the 
parameters. 

c) Update the parameters by taking 
steps proportional to the negative 
gradients, scaled by the learning 
rate. 

d) Repeat steps b and c for a 
specified number of iterations or 
until a convergence criterion is 
met. 

Step 6: To avoid overfitting, use 
regularization methods like 𝐿1 or 𝐿2 
regularization to add terms to the 
reduction function and tweak the 
gradients in backpropagation.  

Step 7: Repeat steps 2 to 6 for a fixed 
number of epochs or until the desired 
level of accuracy is achieved. 

Step 8: Evaluate the trained CNN on a 
separate test dataset to assess its 
performance. 
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Step 9: Adjust the hyperparameters, such as 
learning rate and regularization 
strength, based on the evaluation 
results and repeat steps 2 to 8 if 
necessary. 
 

 
3.4. Grasshopper Optimization based 
Neutrosophical Fuzzy Logic CNN 

The proposed Grasshopper Optimization-
based Neutrosophical Fuzzy Logic CNN leverages a 
modified architecture that combines the strengths of 
traditional Convolutional Neural Networks (CNNs) 
with the optimization capabilities of the Grasshopper 
Optimization algorithm and the flexibility of 
Neutrosophical Fuzzy Logic. This section provides a 
mathematical exploration of the architectural design 
of the proposed CNN. The architecture of the 
proposed CNN consists of several key components, 
incorporating pooling layers, fully connected layers, 
and convolutional layers. These components 
combine to extract hierarchical features from the 
input data and perform classification tasks. 
 
3.4.1. Convolutional Layers 

Convolutional layers capture local features 
and spatial relationships in the input data. Let’s 
denote the input to the 𝑘-th convolutional layer as 
𝑋 , which has dimensions 𝐻 × 𝑊 × 𝐷 , where 𝐻  
represents the height, 𝑊  represents the width, and 
𝐷  represents the number of channels. The 
convolution operation is performed by applying a set 
of learnable filters 𝐹 with dimensions 𝐹 ×  𝐹 ×
𝐷 × 𝑁 , where𝐹  and 𝐹  denote the filter height and 
width, respectively, and 𝑁  represents the number of 
filters in the 𝑘-th layer.The output feature maps of 
the 𝑘-th convolutional layer, denoted as 𝑍 , can be 
computed using the convolution operation described 
in Eq.(26). 

𝑍 [ , , ] = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ΣΣΣ𝑋 [ , , ]

∗ 𝐹 [ , , , ]  
(26) 

where 𝑍 [ , , ] represents the activation at position 
(𝑖, 𝑗) of the 𝑛-th filter in the 𝑘-th layer, 𝑋 [ , , ] 
represents the input activation at position (𝑎, 𝑏) in 
the channel 𝑑 and activation() is the activation 
function, which introduces non-linearity. 
 
3.4.2. Pooling Layers 

The computational burden is lightened and 
some translation invariance is introduced by using 
pooling layers for down sampling each of the spatial 
dimensions of the feature maps. Max pooling is the 
most typical form of pooling. Given an input feature 

map 𝑋 , the max pooling operation with a pooling 
size of 𝑃 × 𝑃  can be defined as Eq.(27). 

𝑌 [ , , ]

= 𝑚𝑎𝑥 𝑋 𝑃 : 𝑃 ( ), 𝑃 : 𝑃 ( ), 𝑛  
(27) 

where 𝑌 [ , , ] represents the output activation at 
position (𝑖, 𝑗) of the 𝑛-th filter in the 𝑘-th layer. 
 
3.4.3. Fully Connected Layers 

After several convolutional and pooling 
layers, the feature maps are typically flattened into a 
vector and fed to one or more fully connected layers 
to learn high-level representations. Let’s denote the 
input vector to the 𝑙-th fully connected layer as 𝑉 , 
which has dimension𝑀 × 1, where 𝑀  represents 
the number of neurons in the 𝑙-th layer. The fully 
connected layer can be represented as Eq.(28). 

𝑌 = 𝑊 ∗ 𝑉 + 𝐵  (28) 

where 𝑌  represents the output vector, 𝑊 denotes the 
weight matrix with dimensions 𝑀{ } × 𝑀 , and 𝐵  
represents the bias vector with dimensions 𝑀{ } ×

1. The weight matrix 𝑊 and bias vector 𝐵  are 
learnable parameters that are updated during the 
training process. 
 
3.4.4. Neutrosophical Fuzzy Logic-based 
Activation Function: 

Neutrosophical Fuzzy Logic-based 
activation functions are employed in the proposed 
CNN instead of traditional ones. These functions 
introduce uncertainty and contradiction into the 
activation values, allowing for greater flexibility in 
the network. Let’s denote the input activation to the 
𝑙-th layer as 𝐴 , which has dimension 𝑀 × 1. The 
Neutrosophical Fuzzy Logic-based activation 
function for the 𝑙-th layer can be defined as Eq.(29). 

𝐴 [ ] = 1 − 𝜇 [ ] ∗ 1 − 𝛾 [ ] ∗ 𝐴 [ ]

+ 𝜇 [ ] ∗ 𝛾 [ ] ∗ 𝐴 [ ]

+ 𝜇 [ ] ∗ 1 − 𝛾 [ ]

∗ 𝑚𝑎𝑥 𝐴 [ ], 0

+ 1 − 𝜇 [ ] ∗ 𝛾 [ ]

∗ 𝑚𝑖𝑛 𝐴 [ ], 0  
 

(29) 

where 𝐴 [ ]represents the 𝑖 −th element of the input 
activation vector to the 𝑙-th layer, 𝜇 [ ]denotes the 
truth membership value, and 𝛾 [ ] represents the 
indeterminacy membership value. These 
membership values allow for capturing the uncertain 
and contradictory nature of the activation values. 
 

The truth membership value 𝜇 [ ] and 
indeterminacy membership value 𝛾 [ ] can be 
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computed based on Neutrosophic Fuzzy Logic 
principles, considering the input activation and 
certain parameters specific to the layer. By 
incorporating the Neutrosophical Fuzzy Logic-based 
activation function, the proposed CNN introduces a 
new level of adaptability and robustness, allowing it 
to handle uncertain and contradictory information 
effectively. 
 
3.4.5. Grasshopper Optimization-based Weight 
Update 

The Grasshopper Optimization algorithm is 
a nature-inspired optimization algorithm that mimics 
the behaviour of grasshoppers in their search for 
optimal food sources. In the context of the proposed 
Grasshopper Optimization based Neutrosophical 
Fuzzy Logic CNN, the algorithm is adapted to 
update the network weights during training. Let’s 
denote the network weights as 𝑊, including the 
weight matrices in the convolutional and fully 
connected layers. The goal is to optimize these 
weights based on the grasshoppers’ fitness values 
and movement equations. 
 
Initialization 

The initialization phase in Grasshopper 
Optimization-based Weight Update involves setting 
up the initial conditions for the algorithm. Firstly, the 
population size, denoted as 𝑁, represents the number 
of grasshoppers. This determines the diversity of 
solutions explored during the optimization process. 
Next, the maximum number of iterations is 
determined, indicating the termination criterion for 
the algorithm. The population of grasshoppers is 
initialized randomly within the search space. Each 
grasshopper is assigned a position vector that 
represents a potential solution. By randomly 
distributing the grasshoppers, the algorithm covers a 
broader area of the search space, ensuring a 
comprehensive exploration of possible solutions. 
Additionally, the weight values, 𝑊  and 𝑊 , are 
set to define the range within which the weight factor 
will be adjusted. These values can be predefined 
based on the specific problem requirements. The 
decay rate parameter, 𝛾, controls the rate at which 
the weight decays over iterations, influencing the 
balance between exploration and exploitation in the 
algorithm. 
 
Fitness Evaluation 

Fitness evaluation is a crucial step in the 
Grasshopper Optimization-based Weight Update. It 
involves assessing the quality of each grasshopper’s 
position in the population based on the objective 
function of the optimization problem. The objective 

function captures the specific goals and constraints 
of the problem. For each grasshopper, the objective 
function is applied to its position vector, producing 
a fitness value that quantifies how well the 
grasshopper’s solution performs. The fitness 
evaluation guides the algorithm by providing a 
measure of the quality or desirability of each 
solution. The objective function is problem-
dependent and can vary widely across different 
optimization scenarios. It encapsulates the 
performance metrics, constraints, and goals of the 
problem domain. By evaluating the fitness of each 
grasshopper, the algorithm gains insights into the 
performance landscape and can make informed 
decisions about the search direction. The fitness 
values obtained during this step are vital in 
subsequent phases, such as selecting the best 
grasshopper and updating the global best position. 
The fitness evaluation step facilitates the 
identification of promising solutions and guides the 
algorithm towards the optimal solution in the search 
space. 

 
Update of Best Grasshopper 

After the fitness evaluation, the next step in 
the Grasshopper Optimization-based Weight Update 
is determining the best grasshopper in the 
population. This is done by identifying the 
grasshopper with the highest fitness value, 
representing the global best grasshopper. By 
comparing the fitness values of all grasshoppers, the 
algorithm selects the one that exhibits the most 
promising solution. This global best grasshopper 
represents the currently known optimal solution 
found during the iterations. The global best 
grasshopper is crucial in guiding the movement and 
exploration of other grasshoppers in subsequent 
steps. It serves as a reference for desirable positions 
and helps direct the search towards regions more 
likely to contain better solutions. 
 
Weight Update 

In Grasshopper Optimization-based Weight 
Update, the weight value, 𝑊(𝑡), is dynamically 
adjusted at each iteration to balance exploration and 
exploitation. The weight update equation is as 
Eq.(30). 

𝑊(𝑡) = 𝑊 + [(𝑊 − 𝑊 )
∗ 𝑒𝑥𝑝(−𝛾 ∗ 𝑡)] 

(30) 

 
The weight value 𝑊(𝑡) determines the 

influence of the globally best position found so far, 
𝑋 , on the movement of grasshoppers. It regulates 
the exploitation aspect of the algorithm, encouraging 
the grasshoppers to converge towards the globally 
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best solution. The weight update equation ensures 
that the weight value starts from the minimum 
weight value, 𝑊 , and decays exponentially over 
iterations according to the decay rate parameter 𝛾. 
This decay factor allows the algorithm to gradually 
reduce the impact of the global best position, leading 
to a more diverse exploration of the search space in 
the early iterations. To achieve a happy medium 
between exploration and exploitation during 
optimization, the algorithm constantly modifies its 
behaviour by changing the weight value dependent 
on the current iteration. This adaptive weight update 
mechanism enhances the algorithm’s convergence 
rate and improves its ability to find high-quality 
solutions. 
 
Position Update 

In the Grasshopper Optimization-based 
Weight Update, the position update step plays a 
crucial role in guiding the movement of 
grasshoppers towards potentially better solutions. 
Each grasshopper in the population’s position is 
updated using Eq.(31). 

𝑋(𝑡 + 1) = 
𝑋(𝑡) + 𝑅 ∗ 𝑒𝑥𝑝(−𝛽 ∗ 𝑡)

∗ 𝑏𝑒𝑠𝑡_𝑔𝑟𝑎𝑠𝑠ℎ𝑜𝑝𝑝𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

− 𝑋(𝑡) + 𝑊(𝑡) ∗ 𝑋 − 𝑋(𝑡)  
 

(31) 

Here, 𝑋(𝑡) represents the current position of the 
grasshopper at iteration 𝑡, 
𝑏𝑒𝑠𝑡_𝑔𝑟𝑎𝑠𝑠ℎ𝑜𝑝𝑝𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 denotes the position 
of the best grasshopper found so far, and 𝑋  
represents the global best position obtained during 
the optimization process. 
 

The position update equation consists of 
two components: exploration and exploitation. The 
term 𝑅 ∗ 𝑒𝑥𝑝(−𝛽 ∗ 𝑡) ∗

𝑏𝑒𝑠𝑡_𝑔𝑟𝑎𝑠𝑠ℎ𝑜𝑝𝑝𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑋(𝑡)  introduces 
exploration by adding a random factor 𝑅 and a 
decaying exponential term that directs the 
grasshoppers towards potentially unexplored regions 
of the search space.The term 𝑊(𝑡) ∗ 𝑋 − 𝑋(𝑡)  
represents exploitation, as it guides the grasshoppers 
towards the globally best position found so far. The 
weight factor 𝑊(𝑡) determines the strength of 
exploitation, which is dynamically adjusted based on 
the weight update equation. 
 
Boundary Handling 

A boundary-handling mechanism is 
employed to ensure that the updated positions of 
grasshoppers remain within the boundaries of the 
search space. During the position update, if a 

grasshopper’s new position violates the predefined 
boundaries, it is adjusted accordingly. Boundary 
handling techniques can vary depending on the 
problem domain. Common approaches include 
reflection, where the grasshopper’s position is 
mirrored back into the feasible region, and random 
reinitialization, where the grasshopper is assigned a 
new position randomly within the boundaries. The 
purpose of boundary handling is to maintain the 
feasibility of solutions throughout the optimization 
process. Boundary handling ensures that the 
algorithm focuses on valid and meaningful solutions 
by preventing the grasshoppers from venturing 
outside the allowed search space. 
 
Fitness Update 

Following the position update, the fitness of 
the new positions of grasshoppers is re-evaluated 
using the objective function. The objective function 
calculates the fitness value based on the updated 
positions and represents the quality or desirability of 
each grasshopper’s solution. By updating the fitness 
values, the algorithm captures the improvements or 
deterioration in the grasshoppers’ solutions. This 
step allows for continuous monitoring and 
assessment of the population’s performance, 
enabling the algorithm to adapt and adjust its search 
direction. The fitness update is vital for comparing 
the current solutions with the previously identified 
best solution. Suppose any grasshopper exhibits a 
better fitness value than the best global grasshopper. 
The global best grasshopper is updated accordingly. 
This ensures that the algorithm progresses towards 
the most promising solutions discovered throughout 
the optimization process. By iteratively evaluating 
and updating the fitness of the grasshoppers, the 
algorithm can refine its search and converge towards 
optimal or near-optimal solutions in the search 
space. The fitness update step is integral to the 
continuous improvement and refinement of the 
population during the optimization process. 
 
Termination Condition 

The termination condition determines when 
the Grasshopper Optimization-based Weight Update 
algorithm should stop iterating and conclude the 
optimization process. There are two common 
termination conditions: Maximum Number of 
Iterations: The algorithm can run for a predefined 
maximum number of iterations. Once this limit is 
reached, the algorithm terminates, regardless of 
whether an optimal solution has been found. This 
termination condition ensures the algorithm does not 
run indefinitely and allows for a controlled runtime. 
The algorithm can terminate if a certain fitness 
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threshold is achieved. This threshold represents a 
desired level of fitness that is considered satisfactory 
for the optimization problem. If the fitness of the 
global best grasshopper surpasses or meets this 
threshold, the algorithm stops iterating. Termination 
conditions help prevent unnecessary computations 
and allow for efficient resource utilization. They 
ensure that the algorithm terminates when it has 
either reached a satisfactory solution or has 
exhausted the predefined computational resources. 
 

Once the termination condition is met, the 
Grasshopper Optimization-based Weight Update 
algorithm produces the final output, which consists 
of the global best position and its corresponding 
fitness value. This output represents the optimal or 
near-optimal solution found during the optimization 
process. The globally best position indicates the 
solution that achieved the highest fitness value 
throughout the iterations. It serves as the 
recommended solution to the given optimization 
problem. The fitness value associated with the 
globally best position quantifies the quality or 
desirability of the solution. The output provides 
valuable insights into the problem domain, allowing 
decision-makers to make informed choices based on 
the discovered optimal or near-optimal solution. 
Depending on the problem, the output can be further 
utilized for decision-making and analysis or as input 
for subsequent processes. 
 

Algorithm 3:Grasshopper Optimization-based 
Weight Update 

Step 1: Initialization 
Set the population size and the number 
of possible repetitions. 
Initialize the population of 
grasshoppers randomly within the 
search space. 
Set the weight values, 𝑊  and, 
𝑊 , and the decay rate parameter 𝛾. 

Step 2: Fitness Evaluation 
Evaluate the fitness of each 
grasshopper in the population based on 
the objective function of the 
optimization problem. 

Step 3: Update of Best Grasshopper 
Identify the grasshopper with the best 
fitness value as the global best 
grasshopper. 

Step 4: Weight Update 
Calculate the weight value, 𝑊(𝑡), at 
each iteration 

Step 5: Position Update 

For each grasshopper in the population, 
update its position 

Step 6: Boundary Handling 
Ensure that the updated positions of 
grasshoppers lie within the boundaries 
of the search space. If a position violates 
the boundaries, adjust it accordingly. 

Step 7: Fitness Update 
Evaluate the fitness of the new positions 
of grasshoppers using the objective 
function. 

Step 8: Update the Best Grasshopper 
If any grasshopper has a better fitness 
value than the global best grasshopper, 
update the global best grasshopper 
accordingly. 

Step 9: Termination Condition 
Repeat steps 4 to 8 until the maximum 
number of iterations is reached or a 
termination criterion is satisfied (e.g., 
achieving a desired fitness threshold). 

Step 10: Output 
Return the global best position and 
corresponding fitness value as the 
optimal solution. 

 
4. ABOUT AAU RAINSNOW TRAFFIC 
SURVEILLANCE DATASET 

The Rain, Snow, and Bad Weather in 
Traffic Surveillance dataset focuses on the 
challenges of adverse weather conditions in traffic 
surveillance. It addresses the limitations of vision-
based image analysis algorithms when visibility is 
impaired by factors such as rain, snow, haze, and 
fog. The dataset consists of 22 five-minute videos 
captured from seven different traffic intersections. 
These videos precisely capture rainfall and snowfall 
scenarios, representing varying lighting conditions 
from daylight to twilight and night. The scenes 
include challenging elements such as glare from car 
headlights, reflections from puddles, and blurring 
caused by raindrops on the camera lens. Data 
collection involved using a conventional RGB 
colour camera and a thermal infrared camera. 
Combining these two modalities, the dataset aims to 
facilitate robust detection and classification of road 
users even in difficult weather conditions. The 
dataset offers valuable features and attributes for 
training and evaluating object detection and 
classification algorithms under challenging weather 
conditions. These features include: 

 Weather Conditions: The dataset focuses 
on two adverse weather conditions: rainfall 
and snowfall. This allows researchers to 
assess the performance of algorithms in 
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scenarios with impaired visibility due to 
precipitation. 

 Lighting Variations: The dataset captures 
scenes with varying lighting conditions, 
ranging from broad daylight to twilight and 
night. This variation in illumination enables 
the evaluation of algorithms across 
different lighting scenarios, which is 
crucial for real-world deployment. 

 Challenging Elements: The dataset 
includes challenging elements commonly 
encountered in bad weather, such as glare 
from car headlights, reflections from 
puddles, and blurring caused by raindrops 
on the camera lens. These elements mimic 
real-world conditions and provide realistic 
challenges for object detection algorithms. 

 Dual Modalities: Data collection uses a 
conventional RGB colour camera and a 
thermal infrared camera. The availability of 
dual modalities enables researchers to 
explore the benefits of combining visual 
and thermal information for robust 
detection and classification of road users 
under adverse weather conditions. 

 Per-Pixel, Instance-Level Annotations: 
The dataset provides per-pixel, instance-
level annotations for road users in 100 
frames randomly selected from each video 
sequence. This level of annotation 
granularity allows for detailed analysis and 
evaluation of algorithms, enabling precise 
localization and categorization of objects in 
challenging weather scenarios. 

 Annotation Statistics: The dataset 
contains 2,200 annotated frames, with 
annotations for 13,297 objects. These 
annotation statistics provide sufficient 
labelled data for training and evaluating 
object detection and classification 
algorithms. 
 
 

5. Performance Metrics 
 Precision: It measures the accuracy of the 

detected moving objects. It is the 
proportion of successfully recognized 
moving items (true positives) over all 
detected moving objects (true positives plus 
false positives). 

 Recall: It is also known as sensitivity, 
quantifies the completeness of the detected 
moving objects. It is determined by 
dividing the number of correct 
identifications by the sum of the correct 

identifications and the number of false 
negatives (moving objects missed). 

 Classification Accuracy: In moving object 
detection, classification accuracy measures 
the algorithm’s ability to classify moving 
objects and background regions correctly. 
It is the fraction of assessed areas that have 
been appropriately categorized. 

 F-Measure: The 𝐹-measure, often known 
as the 𝐹1 score, is a composite measure of 
accuracy and recall that is used to rank 
algorithms. Precision measures the fraction 
of moving items accurately recognized out 
of the total number of detected objects, 
whereas recall measures the same fraction 
out of the total number of real-world 
moving objects. 

 
All performance indicators are calculated 

using the words TP, TN, FP, and FN, which are 
widely used to assess the efficacy of an object 
identification system. The brief definition of each 
term: 

 True Positive (TP): A true positive is 
when the algorithm correctly detects and 
identifies a moving object as present in the 
scene. In other words, it indicates that the 
algorithm has accurately identified a 
positive instance (the presence of a moving 
object) when it is indeed present. 

 True Negative (TN): A true negative 
occurs when the algorithm correctly 
identifies and labels a region as background 
or non-object, with no moving object in that 
region. It represents the correct rejection of 
the absence of a moving object. 

 False Positive (FP): A false positive is 
when the algorithm incorrectly identifies a 
region containing a moving object, but no 
object is present. It indicates a false alarm, 
where the algorithm detects an object 
where none exists. 

 False Negative (FN): A false negative 
occurs when the algorithm fails to detect a 
moving object in the scene. It represents a 
missed detection, where the algorithm fails 
to identify the presence of an object that 
should have been detected. 
 

6. RESULTS AND DISCUSSION 
6.1. Precision and Recall Analysis 

The analyses of precision and recall for the 
three approaches are shown in Figure 1: FRL, SD, 
and GOA-NFCNN. The result values of Figure 1 are 
provided in Table 1. 
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Figure 1. Precision And Recall 

 
Firstly, regarding the precision results in 

Figure 1, FRL achieves a precision of 48.83%, 
indicating that 48.83% of the detected moving 
objects by this method are true positives. This means 
there is a relatively high chance of false positives, 
where background regions are mistakenly classified 
as moving objects. SD performs better with a 
precision of 62.93%, implying a higher accuracy in 
identifying true moving objects. However, the 
proposed GOA-NFCNN method surpasses both 
existing works with an impressive precision of 
95.04%. This indicates a significantly lower rate of 
false positives and a higher accuracy in identifying 
moving objects. Secondly, regarding the recall 
results in Figure 1, FRL achieves a recall of 47.40%, 
indicating that only 47.40% of the true moving 
objects in the scene are correctly detected by this 
method. This implies a high rate of false negatives, 
where actual moving objects are missed. SD 
performs slightly better with a recall of 64.60%, 
indicating a higher ability to detect a more 
significant proportion of the true moving objects. 
However, GOA-NFCNN outperforms FRL and SD 
with a recall of 95.94%, indicating its superior 
capability to detect more true moving objects. 
 

The precision and recall analysis results 
reveal essential insights into the performance of the 
different methods. FRL exhibits relatively low 
precision and recall values, indicating its limitations 
in accurately detecting moving objects. SD 
demonstrates better performance in terms of 
precision and recall, suggesting its ability to achieve 
a reasonable balance between accuracy and 
completeness. However, the proposed GOA-

NFCNN method outshines FRL and SD, showcasing 
its exceptional precision and recall values. GOA-
NFCNN demonstrates a significantly higher 
accuracy in identifying moving objects while 
maintaining a high level of completeness. 
 

These findings highlight the effectiveness 
of the GOA-NFCNN approach in enhancing moving 
object detection. Fusing grasshopper optimization-
based techniques with the neutrosophical fuzzy 
convolutional neural network contributes to 
exceptional precision and recall values. The GOA-
NFCNN method achieves an excellent trade-off 
between accurately identifying moving objects and 
minimizing false positives and negatives. 
 

Table 1. Precision And Recall Results 

 Precision Recall 

FRL 48.83 47.40 

SD 62.93 64.60 

GOA-NFCNN 95.04 95.94 
 
6.2. Classification Accuracy and F-Measure 
Analysis 

Figure 2 illustrates the classification 
accuracy and F-measure analysis results for three 
different methods: FRL, SD, and GOA-NFCNN. 
 

FRL achieves a relatively lower 
classification accuracy of 47.83% and an F-measure 
of 48.10%. This can be attributed to its working 
mechanism, which may not effectively capture 
moving objects’ complex and diverse 
characteristics. FRL may struggle to handle 
variations in lighting conditions, occlusions, and 
background clutter, leading to misclassifications and 
imbalanced performance. FRL’s fusion 
representation learning approach might not 
sufficiently capture the discriminative features 
necessary for accurate object detection. 

 
SD performs better with a classification 

accuracy of 64.33% and an F-measure of 63.76%. 
The working mechanism of SD, which combines 
denoising and moving object detection, allows for 
more effective removal of noise and enhances object 
classification accuracy. By leveraging low-rank 
approximation techniques, SD can better extract 
relevant information and reduce the impact of noise 
and interference. This leads to improved 
classification accuracy and a more balanced F-
measure than FRL. 
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Figure 2. Classification Accuracy And F-Measure 

 
 

GOA-NFCNN outperforms both FRL and 
SD with a classification accuracy of 95.38% and an 
F-measure of 95.49%. The impressive results can be 
attributed to the unique working mechanism of 
GOA-NFCNN. The integration of grasshopper 
optimization and neutrosophical fuzzy convolutional 
neural network allows for enhanced feature 
extraction, robust object representation, and precise 
classification. The grasshopper optimization 
algorithm optimizes the network parameters, 
enabling better adaptability to different scenarios 
and improving the accuracy of moving object 
detection. The neutrosophical fuzzy framework 
handles uncertainties and imprecise data, ensuring a 
more balanced performance in terms of precision 
and recall. This comprehensive approach enables 
GOA-NFCNN to achieve exceptional classification 
accuracy and a highly balanced F-measure. 
 

The superior performance of GOA-
NFCNN can also be attributed to its ability to handle 
various challenges in moving object detection, such 
as complex backgrounds, illumination changes, and 
occlusions. The fusion of grasshopper optimization 
and neutrosophical fuzzy techniques allows for 
effective representation learning, noise reduction, 
and robust feature extraction, leading to more 
accurate object detection and classification. 
Additionally, the deep learning capabilities of the 
neural network component in GOA-NFCNN enable 
it to learn and adapt to complex patterns and 
variations in moving objects, further enhancing its 
performance. 

The achieved results in Figure 2 can be 
attributed to the working mechanisms of the 
methods. FRL struggles with accurate classification 
and balanced performance, while SD improves upon 
FRL by incorporating denoising techniques. 
However, GOA-NFCNN surpasses both methods by 
leveraging grasshopper optimization and 
neutrosophical fuzzy concepts, leading to 
significantly higher classification accuracy and a 
well-balanced F-measure. The unique working 
mechanism of GOA-NFCNN enables it to handle 
various challenges and extract robust features, 
resulting in superior performance in moving object 
detection tasks. The result values of Figure 2 are 
provided in Table 2. 

 
Table 2. Classification Accuracy And F-Measure Results 

 
Classification 

Accuracy 
F-

Measure 

FRL 47.83 48.10 

SD 64.33 63.76 
GOA-

NFCNN 95.38 95.49 
 
7. CONCLUSION 

This research presents a novel approach 
called the Grasshopper Optimization-based 
Neutrosophical Fuzzy Convolutional Neural 
Network (GOA-NFCNN) for enhanced moving 
object detection. The proposed method leverages the 
fusion of grasshopper optimization and 
Neutrosophical fuzzy techniques to address the 
challenges associated with accurate object 
classification. The GOA-NFCNN method aims to 
overcome limitations in existing approaches and 
improve moving object detection under various 
weather conditions. The integration of grasshopper 
optimization and neutrosophical fuzzy concepts 
offers a promising solution to handle uncertainties, 
inaccurate data, and complex scenarios, thereby 
enhancing the accuracy and robustness of the 
detection process. The classification accuracy result 
further validates the effectiveness of the proposed 
GOA-NFCNN method. With a high classification 
accuracy of 95.38%, GOA-NFCNN demonstrates its 
capability to accurately classify moving objects, 
even under challenging conditions such as adverse 
weather, lighting variations, and occlusions. This 
remarkable accuracy showcases the potential of the 
proposed approach to address real-world scenarios 
and applications where precise object detection is 
crucial. The superior classification accuracy 
achieved by GOA-NFCNN indicates its ability to 
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extract relevant features, optimize network 
parameters through grasshopper optimization, and 
leverage the power of neutrosophical fuzzy 
techniques for robust object classification. This 
signifies the significant contributions of the 
proposed method in improving the performance of 
moving object detection systems. The results 
highlight the potential of GOA-NFCNN for various 
practical applications such as traffic surveillance, 
video analysis, and autonomous driving systems, 
where accurate and reliable moving object detection 
is essential. The utilization of GOA-NFCNN can 
lead to improved safety, efficiency, and decision-
making in these domains. 
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