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ABSTRACT 
 

Anomaly detection is the examination of specific data points and the detection of rare occurrences that appear 
suspicious because they are different from the established pattern of behaviors. Anomaly detection is nothing 
new, but the increase in data volume makes manual tracking impossible. When such an anomaly occurs, it is 
sometimes difficult to realize it, and the delay between the beginning of the anomaly and its observation can 
be a day or more, depending on the case.  This article proposes a neural network-based model for real-time 
anomaly detection in Internet of Things sensors. The aim of this study is to detect defective Internet of Things 
Devices at the Laboratory Information Technology and Modeling, Faculty of Sciences Ben M'sik, Hassan II 
University Casablanca, Morocco. Different neural network models were compared, namely, Long Short-
Term Memory (LSTM), gate recurrent unit (GRU) and a Temporal Convolutional Network (TCN). In 
conclusion, our experiment has demonstrated that the TCN model surpasses other models in terms of 
performance. The impressive performance of these models reaffirms the significance of this approach and its 
potential for enhancing preventive maintenance of Internet of Things devices. 
Keywords: TCN, LSM, GRU, Anomaly Detection, Internet of Things 
 
1. INTRODUCTION  
 

The use of connected devices has become 
increasingly popular in recent years, with many 
people relying on these devices for a wide range of 
tasks. However, one concern that has been raised is 
the potential for these devices to collect incorrect or 
inaccurate data due to a variety of factors. For 
example, a malfunction in the device itself or adverse 
weather conditions could lead to erroneous data being 
collected. Additionally, security, radio interference or 
other environmental factors may also impact the 
accuracy of the data collected. As a result, it is crucial 
to identify any irregularities at the earliest to prevent 
or minimize the damage. Researchers have explored 
data-centric approaches to model and identify 
anomalies, capitalizing on the emergence of machine 
and deep learning techniques and the abundance of 
data from interconnected devices. The causes of 
anomalous data can be broken down into three points. 

 Specific events occurred in the area monitored 

by sensor nodes (when a forest fire occurs, the 
temperature readings of sensors will rise 
sharply).  

 Sensors may not work normally due to their own 
hardware failures or energy depletion. 

 The deviation or measurement error exists in 
collected data due to the influence of external 
factors (e.g., illumination intensity readings of 
sensor nodes in shaded areas are significantly 
lower than those of nodes directly exposed to 
sunlight).  

   In the literature [1], there is a general classification 
of anomalies that applies in several fields of 
application and which can be divided into three main 
types: punctual, contextual and collective. 
 Punctual anomalies correspond to a data point 

that is considered an outlier because it is 
sufficiently different or far from the data set. 
Figure 1 shows an example of a building energy 
consumption time series. An observation that 
has a very high value (overconsumption) 
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relative to a building's typical consumption 
range presents a point or point anomaly. 

 

 
Figure 1: Punctual anomaly in a time series of energy 

consumption of a building [1]. 
 
 Contextual anomalies correspond to a data 

point (or sequence of points) different or distant 
from other data points but in a specific context 
(spatial or temporal). For example, Figure 2 
shows a contextual anomaly in a monthly 
temperature time series. A low temperature in 
winter at time t1 is considered normal, while the 
same case might not be normal in high summer 
at time t2. 

 

 
Figure 2: Contextual anomaly in a monthly temperature 

time series [1]. 
 
 Collective anomalies correspond to a 

collection of observations that is different from 
the data set. For example, Figure 3 shows an 
example of a time series containing an 
anomalous subseries because it is different 
from the set of subsequences in the time series. 
This may correspond to a stopped counter, 
which fails to upload data. 

 
Figure 3: Collective anomaly corresponding to a meter 

stoppage [1]. 
 

Anomaly detection in deep learning is a particular 
problem that can be dealt with in a supervised or 
unsupervised way. In a supervised approach, it is 
possible to approach this as a binary classification 
problem, the goal then being to classify each 
observation as an anomaly or not. The peculiarity of 
this approach is that anomalies are the minority class 
represented by a very small percentage of the data set. 
Most classification algorithms are sensitive to this 
type of imbalance. They are therefore unable to deal 
effectively with the problem. In addition, great care 
must be taken in the evaluation of classification 
models and the choice of metrics. An unsupervised 
approach is the most suitable for anomaly detection 
problems. In this approach, the different algorithms 
try to distinguish outliers by learning on all the data, 
without having the labels of the observations, there is 
no set of observations identified a priori as anomalies. 
It is therefore not necessary to have labeled data and 
this simplifies the problem of preparing data before 
learning and all the difficulty in constructing labels. 
To address the above-mentioned issues, a method of 
intrusion detection is proposed and implemented 
using deep learning.  

The rest of the paper is organized as follows. 
Section 2 describes related work. We review the 
methodology in Section 3. Theoretical explanations 
and experimental results of the proposed TCN model 
are denoted in section 4. The conclusion of the 
proposed model is represented in Section 5. 

2. RELATED WORKS 

There have been numerous research efforts on 
anomaly detection in Internet of Things Devices 
Using Deep Learning. Here are a few noteworthy and 
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recent studies that have been analyzed and discussed. 
The authors of [2] demonstrate that the LSTM RNN 
model they create is capable of detecting abnormal 
and suspicious behavior in IoT systems with high 
accuracy based on a dataset of IoT sensors readings. 
The model they have developed offers a remarkably 
high rate of detection and a correspondingly low rate 
of false alarms. Where all of the tests performed were 
assigned different values of volume and iterative 
periods, randomly-generated values are used for 
weights and biases as well as the various layers, 
nodes, and learning rate until the model was able to 
achieve the best rate of accuracy detection. In article 
[2], the authors presented a study on the use of deep 
learning methods in intrusion detection in IoT 
devices. They used standard dataset Bot-IoT for IoT 
intrusion detection, they also used different kind of 
deep learning methods such as Convolutional Neural 
Network, Gated Recurrent Unit and Long Short 
Memory Neural Network for intrusion detection in 
IoT. The authors in [2] investigate the performance of 
deep learning models, including bidirectional LSTM 
(BI-LSTM) and Long Short-Term Memory (LSTM), 
CNN-based Temporal Convolutional (TCN), and 
CuDNN-LSTM, which is a fast LSTM 
implementation. They used the SWaT Dataset 
(December-January 2015-2016, dataset with 
anomaly) from iTrust, Center for Cybersecurity 
Research, Singapore University of Technology and 
Design. The models consist of two hidden layers, each 
of which has an appropriate number of neurons for the 
model based on observations made during the model 
training phase, using the 'tanh' activation function 
with a dropout rate of 0.3. For the experiments 
conducted in this study, they set Batch size=150 and 
epoch=20 for all models to maintain consistency. The 
algorithm used in the article [5] to detect anomalies 
called DeepAnT, is an unsupervised learning-based 
anomaly detection technique for continuous data. This 
method consists of two modules. The first module, the 
time series predictor, is responsible for predicting the 
next time stamp. The predicted value is then passed to 
the anomaly detection module. This module is 
responsible for labeling a data instance as normal or 
abnormal. The prediction module of DeepAnT is 
based on CNN. CNN is a type of artificial neural 
network that has been widely used in different fields 
such as computer vision and natural language 
processing in a range of different capabilities due to 
the efficiency of its parameters. As the name suggests, 
this network uses a mathematical operation called 
convolution. The article [6] is about IoT network 
anomaly and attacks detection as the massive rise in 

data transmission via various IoT devices and 
communication protocols has increased security 
concerns, and for that researchers have focused their 
attention on more comprehensive artificial 
intelligence methods of anomaly detection. The CNN 
models have proven that it's more is more effective 
than the FFN (FeedForward Neural Network) and 
RNN (Recurrent Neural Network) models. The main 
contributions of article [7] are the proposed integrated 
model of CNN and LSTM-based autoencoder, the use 
of sliding windows for time series preprocessing, and 
the evaluation of anomaly detection based on 
reconstruction error using an autoencoder trained only 
on normal data. The article discusses the use of deep 
learning for anomaly detection in time series data. The 
authors focus on using a combination of convolutional 
neural networks (CNN) and recurrent neural networks 
(RNN) to extract spatial and temporal features, 
respectively. They propose an improved network 
architecture, which builds on a previous method called 
C-LSTM that uses a two-stage sliding window in data 
preprocessing to generate time-dependent 
subsequences for better feature extraction. The 
features extracted by the CNN are then input into an 
autoencoder with two LSTM layers for feature 
extraction. The authors in article [8] present a new 
method called Multi-Scale Convolutional Recurrent 
Encoder-Decoder (MSCRED) for anomaly detection 
and diagnosis in multivariate time series data. The 
authors state that building a system for this purpose is 
challenging as it requires not only capturing the 
temporal dependency in each time series, but also 
encoding the inter-correlations between different pairs 
of time series. They also note that existing 
unsupervised anomaly detection algorithms may not 
address all of these challenges. The proposed 
MSCRED method first constructs multi-scale 
signature matrices to characterize multiple levels of 
the system statuses in different time steps. Then, a 
convolutional encoder is used to encode the inter-
sensor (time series) correlations and an attention-
based Convolutional Long-Short Term Memory 
(ConvLSTM) network is developed to capture the 
temporal patterns. Finally, a convolutional decoder is 
used to reconstruct the input signature matrices, and 
the residual signature matrices are further utilized to 
detect and diagnose anomalies. Table 1 summarises 
the literature survey. 
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Table 1: Summarises literature survey. 

 
Ref. Objective Proposal Drawbacks 
[2] Using deep learning 

to detecting 
abnormal behavior 
in internet of things 

LSTM RNN model LSTM RNN models need enough normal data to 
effectively train the model, a lack of or insufficient 

normal data can lead to imperfect anomaly detection 
results. 

The result supports the hypothesis that the model's 
accuracy depends at least in part on the characteristics 

of the data that it is trained on. 
[3] Intrusion Detection 

in IoT Using Deep 
Learning 

Convolutional Neural 
Network, Gated 

Recurrent Unit and 
Long Short Memory 

Neural Network. 

The use of deep learning in security enhancement for 
IoT traffic is limited by the need to balance high 

accuracy with minimal false alarms during 
communication, which is particularly challenging when 

using Convolutional Neural Networks (CNNs). 
[4] Deep Learning-

Based Time-Series 
Analysis for 

Detecting 
Anomalies in 

Internet of Things 

LSTM (BI-LSTM) 
and Long Short-Term 

Memory (LSTM), 
CNN-based Temporal 
Convolutional (TCN), 
and CuDNN-LSTM, 
which is a fast LSTM 

implementation. 

This approach needs to remove Trends and seasonality 
in the time-series dataset before modeling. Also, there 
are long training time to achieve a better performance 

in terms of model accuracy. 

[5] A Deep Learning 
Approach for 
Unsupervised 

Anomaly Detection 
in Time Series 

A prediction module 
based on CNN 

Poor data quality can corrupt the data modeling phase. 
On the other hand, if the level of contamination is too 

high (more than 5%), the system will try to model these 
instances, thus considering them as normal at the time 
of inference. Another limitation is the selection of the 

network architecture and the corresponding 
hyperparameters. 

[6] A Deep Learning-
Based Model for 

Anomaly Detection 
in IoT Networks 

Convolutional Neural 
Networks (CNN) 

As the model is used to detect anomalies and attacks, 
which could occur on IOT devices, several attackers 
could use evasive techniques to prevent detections by 
the model. Additionally, the CNN3D model which use 
3 convolutional layers is less effective than the CNN1D 

and CNN2D model. 
[7] Extract spatial and 

temporal features, 
respectively for 

anomaly detection 
in time series data. 

An improved network 
architecture, which 
builds on a previous 

method called C-
LSTM. 

It is stated that the error vector classification results 
obtained with this method are insufficient to correctly 

identify anomalous data. In general, this can be seen as 
a limitation of this approach for anomaly detection in 

time series. 
[8] Anomaly detection 

and diagnosis in 
multivariate time 

series data. 

Multi-Scale 
Convolutional 

Recurrent Encoder-
Decoder (MSCRED) 

MSCRED relies on the quality of the data used for 
training the RNNs. If the data is noisy or incomplete, it 

may affect the performance of anomaly detection. 
MSCRED is based on a single dataset, which limits the 

generalization of the results. 
The RNNs used in MSCRED are a type of black box 
model which makes it difficult to interpret the results 
and understand the causes of the detected anomalies. 

Our solution builds upon and addresses the 
drawbacks of existing related work in this domain. 
Previous studies on anomaly detection in IoT devices 
have often struggled with handling the real-time 
nature of data streams and capturing complex 
temporal dependencies. Additionally, they have faced 
challenges in achieving high accuracy while 
maintaining low computational overhead. In contrast, 

our TCN-based approach excels in real-time anomaly 
detection by effectively modeling and capturing 
temporal dependencies in IoT data streams. By 
leveraging the power of TCN, we not only achieve 
remarkable accuracy in detecting anomalies but also 
ensure low computational complexity, making it 
suitable for resource-constrained IoT devices. Our 
solution's ability to overcome the limitations of 
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previous approaches marks a significant advancement 
in real-time anomaly detection for IoT devices, paving 
the way for improved operational efficiency and 
enhanced device performance. 

3. METHODOLOGY 
  

In order to address existing drawbacks and create 
additional opportunities, we propose a real-time 
anomaly detection in Internet of Things devices using 
deep learning. Our proposed system leverages cutting-
edge technologies to provide a secure and efficient 
solution in order to address the nascent challenge of 
detecting anomalies in IoT. Figure 4 shows the 
workflow of the proposed model. In this section, we 
will delve into the specifics of the chosen Recurrent 
Neural Networks (RNNs) model and expound on the 
rationale behind our assumptions and decisions. 
RNNs are a type of neural network that are 
particularly well-suited for processing sequential data. 
RNNs have a "memory" that allows them to remember 
previous inputs, which allows them to understand the 
context and relationships between elements in a 
sequence. This makes RNNs useful for tasks such as 
language modeling, speech recognition, and time 
series prediction. Long Short-Term Memory (LSTM) 
and Gated Recurrent Unit (GRU) are both types of 
RNNs that have been designed to better handle the 
problem of vanishing gradients, which can occur 
when training traditional RNNs.  

 
 

Figure 4: The workflow of the proposed model 
 

3.1   Long Short-Term Memory (LSTM) 
 

 Firstly, Long Short-Term Memory (LSTM) is a 

type of Recurrent Neural Network (RNN) that is 
designed to better handle the problem of vanishing 
gradients, which can occur when training traditional 
RNNs. LSTMs have a more complex structure than 
traditional RNNs and use a series of gates to control 
the flow of information. These gates, called the input 
gate, forget gate, and output gate, allow LSTMs to 
selectively choose which information to remember 
and which to discard, enabling them to preserve 
information over long periods of time. This makes 
LSTMs useful for tasks such as language modeling, 
speech recognition, and time series prediction where 
the output at a certain time step is dependent on the 
previous time steps. LSTMs are also used in many 
other applications such as natural language 
processing, speech synthesis, and machine translation. 

The architecture of a Long Short-Term Memory 
(LSTM) network is composed of a series of memory 
cells, input gates, forget gates, and output gates as 
seen in figure 5. Each memory cell is responsible for 
maintaining a state that can be used to remember 
information over long periods of time. The input gate, 
forget gate, and output gate are used to control the 
flow of information into and out of the memory cell 
[9]. 

 

Figure 5: The architecture of a basic LSTM cell 
 

The forget gate f(.) is used to decide which 
information from the previous state should be 
discarded.   

 
𝐹(. ) =  𝜎 ( 𝑊𝑓𝑥 𝑋𝑡 +  𝑊𝑓ℎ ℎ𝑡 − 1 +  𝑏𝑓 )      (1) 
           

The input gate i(.) is used to decide which 
information from the current input should be passed 
to the memory cell.    
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ht =  g ( Whx Xt +  Whh ht-1 +  bh )                (2)     
 

The output gate o(.) is used to decide which 
information from the current state should be passed on 
as the output.    

                   
𝑜(. )  =  𝜎 ( 𝑊𝑜𝑥 𝑋𝑡 +  𝑊𝑜ℎ ℎ𝑡 − 1 +  𝑏𝑜 )      
(3) 

 

The LSTM network also has a hidden state, which 
is passed from one-time step to the next, allowing the 
network to maintain information over longer periods 
of time. This hidden state is also passed through a 
fully connected layer to produce the final output. 

LSTMs are often used in deep learning tasks such 
as language modeling, speech recognition, and time 
series prediction, where the output at a certain time 
step is dependent on the previous time steps. 

3.2 Gated Recurrent Unit (GRU) 

Gated Recurrent Unit (GRU) is a type of Recurrent 
Neural Network (RNN) that is similar to Long Short-
Term Memory (LSTM) in that it is designed to handle 
the problem of vanishing gradients (Bibi et al., 2020). 
However, unlike LSTMs, GRUs have a simpler 
structure and use a single update gate to control the 
flow of information. This single update gate allows 
GRUs to decide what information from the past to 
keep and what to discard, making it more efficient 
than LSTMs in terms of computation and memory. 
GRUs are also useful for tasks such as language 
modeling, speech recognition, and time series 
prediction where the output at a certain time step is 
dependent on the previous time steps. They are also 
used in many other applications such as natural 
language processing, speech synthesis, and machine 
translation. GRUs are often considered a good balance 
between the performance and computational 
efficiency, making them a popular choice in many 
deep learning applications. 

The architecture of a Gated Recurrent Unit (GRU) 
network is composed of two gates: the update gate and 
the reset gate as in figure 6. These gates are used to 
control the flow of information into and out of the 
hidden state of the network [10]. 

 

 
 

Figure 6: The architecture of a basic GRU cell 
 
 

The update gate is used to decide how much of the 
previous hidden state should be passed on to the 
current hidden state. It ranges from 0 to 1 and the 
closer to 1, the more information from the previous 
hidden state is passed on. 

The reset gate is used to decide how much of the 
previous hidden state should be discarded. It also 
ranges from 0 to 1 and the closer to 1, the more 
information from the previous hidden state is 
discarded. 

The current hidden state is then computed by a 
combination of the previous hidden state, the current 
input and the values of the update and reset gates. This 
hidden state is then passed through a fully connected 
layer to produce the final output. 

While an LSTM or GRU implementation may 
seem like the rational choice for the deep learning 
model, we have implemented two models, the first one 
with LSTM and the second one with GRU, but we 
have noticed that they have several weaknesses. Some 
of the weaknesses of LSTM (Long Short-Term 
Memory) include the potential for overfitting, 
difficulty in training with long sequences, and 
sensitivity to the choice of hyperparameters. 
Additionally, LSTM models can suffer from 
vanishing gradients, where the gradients become very 
small, making it difficult for the model to learn long-
term dependencies. Finally, LSTM models can be 
computationally expensive, making them challenging 
to train on large datasets. As regards GRU, it includes 
similar issues as LSTM, such as the potential for 
overfitting and sensitivity to hyperparameters. 
Additionally, GRU models may have difficulty 
learning complex long-term dependencies in some 
cases. While GRUs were designed to have fewer 
parameters than LSTMs, they may still be 
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computationally expensive in certain contexts. 
Finally, it's worth noting that the effectiveness of 
GRUs can depend on the specific task and dataset at 
hand, and they may not always outperform other 
recurrent neural network architectures. 

To address some of the limitations of LSTM and 
GRU models, the authors have implemented Temporal 
Convolutional Networks (TCN). TCN are a type of 
deep neural network architecture designed 
specifically for processing sequential data, such as 
time series or natural language [11]. The TCN 
architecture is based on convolutional neural 
networks (CNNs), but with a few key modifications to 
better handle the temporal structure of sequential data.  
A TCN architecture is composed of multiple layers of 
temporal convolutional blocks, with each block 
consisting of one or more convolutional layers. The 
convolutional layers in a TCN use dilated 
convolutions, which allow for the capture of long-
range dependencies in the input sequence by 
increasing the receptive field of each convolutional 
kernel. Additionally, the TCN uses causal 
convolution, meaning that the output of each 
convolutional layer depends only on the inputs up to 
that point in the sequence and not on future inputs. 

The dilated convolutions and causal convolution in 
TCN make it well-suited for processing sequential 
data with long-range dependencies. The network can 
be trained end-to-end to perform a specific task, such 
as classification or regression, on sequential input 
data. The TCN can also be extended with additional 
layers, such as pooling layers or recurrent layers, to 
further improve its performance on specific tasks as 
shown in figure 7. 

The main components of a Temporal 
Convolutional Network (TCN) are: [11] 

 Input layer: The input layer takes in the 
sequential data and converts it into a tensor 
representation that can be processed by the 
network. 

 Convolutional layers: The core of the TCN 
architecture is made up of one or more 
convolutional layers. These layers use dilated 
convolutions to capture long-range 
dependencies in the input data and causal 
convolution to ensure that the output of each 
layer depends only on past inputs. 

 Activation functions: Activation functions are 
used in each convolutional layer to introduce 
non-linearity into the network. Common 
activation functions used in TCN include ReLU, 
sigmoid, and tanh. 

 Pooling layers: Pooling layers can be used in 

TCN to reduce the spatial dimensions of the 
output of the convolutional layers, which can 
help to control overfitting and improve the 
training time. 

 Output layer: The output layer takes the 
processed output of the convolutional layers and 
performs the final prediction or classification 
task. The output layer can be a fully connected 
layer, a softmax layer, or any other type of layer 
that is appropriate for the task at hand. 

 

 
 

Figure 7: The architecture of a basic TCN cell 
4. EXPERIMENTAL RESULTS  
 

Our system was based on research conducted at our 
university in Casablanca in Morocco. A real mini 
greenhouse that incorporates numerous sensors, as 
shown in the figure 8 below, was used to find patterns 
in our time series data that do not conform to the 
expected behavior and help us to identify problems 
with our devices early. 

 

 
 

Figure 8: The experimental greenhouse at Hassan II 
University of Casablanca. Morocco 

 
A stepwise methodology was employed in 

implementing this research, which involved 
developing a comprehensive real-time anomaly 
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detection model using a deep learning approach. This 
model aims to enhance the accuracy of anomaly 
detection in the Internet of Things. 

Step 1: Data collection  
To collect data, the ESP32 board equipped with a 

temperature and humidity sensor is utilized. The data 
is then stored in a MySQL database, with a table that 
includes the characteristics of time, temperature, and 
humidity. The data is transferred from the sensor to 
the MySQL database using Arduino IDE, Mosquitto 
and Node Red. In order to ensure a consistent and 
periodic collection of data, the system is set up to 
capture each list of indoor temperature and indoor 
humidity data every 10 minutes. The dataset contains 
939350 lines.  

Step 2: Data Cleaning 
In order to prepare the raw dataset for a DL 

method, several processing steps are required, which 
include standardization, normalization, and data 
cleaning [12]. The entire process is divided into three 
sub-steps. Firstly, the dataset is standardized to ensure 
that all data points are on the same scale and have a 
distribution value between 0 and 1 based on the 
standard normal distribution. This is crucial to enable 
accurate comparison and analysis of data. Secondly, 
data normalization is performed to transform the data 
and avoid negative values that could be detrimental to 
neural networks. All data in the dataset are normalized 
between 0 and 1. Finally, data cleaning is carried out 
to remove unwanted data, such as NaN and null 
values. This is necessary to prevent any inaccuracies 
or errors in the subsequent analysis. 

Step 3: Training, Testing, and Evaluating 
During the training, testing, and evaluation of our 

model, we set aside 20% of the dataset for testing 
purposes. This helps us to evaluate the accuracy and 
generalization ability of the model on unseen data. We 
use the 'RMSE' metric to measure the performance of 
the model, which is a common evaluation metric used 
in regression analysis. We also utilize the 'ADAM' 
optimization function, which is a popular optimization 
algorithm used to update the model weights during 
training. In addition, we set the number of epochs to 
10, which determines the number of iterations that the 
training process runs through the entire dataset. 
Finally, we set the rollback date to 10 minutes, 
meaning that the model will use the 10 previous time 
steps as input variables to predict the next time period. 
Overall, this approach helps us to develop a robust and 
accurate model for making predictions on future data. 

Figure 9 displays the loss value trends during the 
training and validation stages of constructing a TCN 
model. The x-axis represents the epoch number, while 

the y-axis represents the loss value.

 

 
Figure 9: Training and Validation Loss of TCN Model. 

 
 

The plots given in Figure 10 demonstrate the 
predicted (colored in blue) and the actual humidity 
(colored in orange) values for the sensor data studied 
and obtained by the TCN model. 

 
 

Figure 10: The Original and Predicted humidity Value of 
TCN Model 

 
 

The plots given in Figure 11 demonstrate the 
predicted (colored in blue) and the actual temperature 
(colored in orange) values for the sensor data studied 
and obtained by the TCN model. 
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Figure 11: The Original and Predicted temperature 
Value of TCN Model 

 

Step 4: Anomaly detection   
In our study, we utilized the Persistence Anomaly 

Detection (PersistAD) approach for anomaly 
detection, which involves several steps to detect 
anomalies in complex systems. First, a time-delay 
embedding of the data is created to capture the 
system's dynamics, followed by the application of 
topological data analysis to identify persistent 
homology features. To determine the severity of an 
anomaly, PersistAD employs a threshold based on the 
persistence level of the homology feature, with higher 
persistence values indicating more severe anomalies. 
This allows for the identification of anomalies that are 
not only statistically significant but also have a 
significant impact on the system's behavior. The 
approach also uses a sliding window to account for 
changes in the system's behavior over time, and it 
employs a statistical significance test to determine if a 
detected anomaly is statistically significant or merely 
a random occurrence. The use of a threshold not only 
helps to reduce false positives but also provides an 
interpretable method for detecting anomalies in 
complex systems. Overall, the PersistAD approach 
provides a robust and reliable method for detecting 
anomalies in complex systems with high accuracy. 

There are methods to make the anomaly detection 
threshold adaptive depending on the situation. One of 
the most common methods is to use data statistics to 
automatically determine an appropriate threshold. In 
this paper, the authors used the distribution-based 
anomaly detection method, which involves using the 
mean and standard deviation of our data to determine 
an appropriate threshold. Any value that is greater 
than a certain number of standard deviations of the 
mean can be considered an anomaly. The authors used 
the sliding window to calculate the mean and the 

partial and relative standard deviation for the last 3 
data entered as shown on figure 12. 

 
 

Figure 12: Detection anomaly function. 
 

Step 5: Sending SMS on a mobile phone via 

Twilio 
When anomalies are detected, a real-time SMS 

notification is sent to the responsible person via 
Twilio, to promptly alert them and allow them to 
take necessary measures as shown in figure 13. 

 

 
 

Figure 13: SMS alert from Twilio 

 

5. CONCLUSION 
 

The aim of this paper is to evaluate and compare 
the performance of several machine/deep learning 
techniques. The study focuses on examining various 
versions of RNN-based models such as LSTM and 
GRU, and comparing them with a CNN-based model 
known as TCN. The primary motivation behind this 
research is to identify the fundamental dissimilarities 
in the performance of CNN and RNN models.  

Based on our findings, we note that TCN 
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demonstrates relatively strong anomaly detection 
capability with lower RMSE values. A noteworthy 
feature of TCN is its relatively shorter training time 
when compared to RNN models. In contrast, the fast 
version of LSTM exhibits the highest level of 
accuracy, but necessitates a longer training duration. 
As a potential avenue for future research, it is essential 
to compare the outcomes of these models with 
different datasets of varying sizes and assess the trade-
off between them. 

In a promising outlook, we plan to explore the 
possibilities of detecting anomalies from multiple 
sensors simultaneously. By focusing on multi-sensor 
anomaly detection, we aim to gain a deeper 
understanding of the complex interactions and 
correlations between different sensor data streams. By 
developing techniques that can effectively analyze 
and identify anomalous patterns across multiple 
sensor streams, we aim to enhance the overall 
anomaly detection capabilities and provide a more 
comprehensive understanding of the IoT system's 
health. 
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