
Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6404

REAL-TIME ANOMALY DETECTION IN INTERNET OF
THINGS DEVICES USING TEMPORAL CONVOLUTIONAL

NETWORK

GHAZOUANI MOHAMED1, ABDERAHMANE DAIF2, ARDCHIR SOUFIANE³, MOHAMED
AZZOUAZI4

1,2,3,4 Department of Mathematics and Computer Science

Hassan II University, Faculty of sciences Ben M'sik, Casablanca, Morocco

E-mail: 1ghazouani.fsbm@gmail.com, 2daif.abdou@gmail.com, ,3soufiane79@gmail.com,
4azouazii@gmail.com

ABSTRACT

Anomaly detection is the examination of specific data points and the detection of rare occurrences that appear
suspicious because they are different from the established pattern of behaviors. Anomaly detection is nothing
new, but the increase in data volume makes manual tracking impossible. When such an anomaly occurs, it is
sometimes difficult to realize it, and the delay between the beginning of the anomaly and its observation can
be a day or more, depending on the case. This article proposes a neural network-based model for real-time
anomaly detection in Internet of Things sensors. The aim of this study is to detect defective Internet of Things
Devices at the Laboratory Information Technology and Modeling, Faculty of Sciences Ben M'sik, Hassan II
University Casablanca, Morocco. Different neural network models were compared, namely, Long Short-
Term Memory (LSTM), gate recurrent unit (GRU) and a Temporal Convolutional Network (TCN). In
conclusion, our experiment has demonstrated that the TCN model surpasses other models in terms of
performance. The impressive performance of these models reaffirms the significance of this approach and its
potential for enhancing preventive maintenance of Internet of Things devices.
Keywords: TCN, LSM, GRU, Anomaly Detection, Internet of Things

1. INTRODUCTION

The use of connected devices has become
increasingly popular in recent years, with many
people relying on these devices for a wide range of
tasks. However, one concern that has been raised is
the potential for these devices to collect incorrect or
inaccurate data due to a variety of factors. For
example, a malfunction in the device itself or adverse
weather conditions could lead to erroneous data being
collected. Additionally, security, radio interference or
other environmental factors may also impact the
accuracy of the data collected. As a result, it is crucial
to identify any irregularities at the earliest to prevent
or minimize the damage. Researchers have explored
data-centric approaches to model and identify
anomalies, capitalizing on the emergence of machine
and deep learning techniques and the abundance of
data from interconnected devices. The causes of
anomalous data can be broken down into three points.

 Specific events occurred in the area monitored

by sensor nodes (when a forest fire occurs, the
temperature readings of sensors will rise
sharply).

 Sensors may not work normally due to their own
hardware failures or energy depletion.

 The deviation or measurement error exists in
collected data due to the influence of external
factors (e.g., illumination intensity readings of
sensor nodes in shaded areas are significantly
lower than those of nodes directly exposed to
sunlight).

 In the literature [1], there is a general classification
of anomalies that applies in several fields of
application and which can be divided into three main
types: punctual, contextual and collective.
 Punctual anomalies correspond to a data point

that is considered an outlier because it is
sufficiently different or far from the data set.
Figure 1 shows an example of a building energy
consumption time series. An observation that
has a very high value (overconsumption)

Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6405

relative to a building's typical consumption
range presents a point or point anomaly.

Figure 1: Punctual anomaly in a time series of energy

consumption of a building [1].

 Contextual anomalies correspond to a data

point (or sequence of points) different or distant
from other data points but in a specific context
(spatial or temporal). For example, Figure 2
shows a contextual anomaly in a monthly
temperature time series. A low temperature in
winter at time t1 is considered normal, while the
same case might not be normal in high summer
at time t2.

Figure 2: Contextual anomaly in a monthly temperature

time series [1].

 Collective anomalies correspond to a

collection of observations that is different from
the data set. For example, Figure 3 shows an
example of a time series containing an
anomalous subseries because it is different
from the set of subsequences in the time series.
This may correspond to a stopped counter,
which fails to upload data.

Figure 3: Collective anomaly corresponding to a meter

stoppage [1].

Anomaly detection in deep learning is a particular
problem that can be dealt with in a supervised or
unsupervised way. In a supervised approach, it is
possible to approach this as a binary classification
problem, the goal then being to classify each
observation as an anomaly or not. The peculiarity of
this approach is that anomalies are the minority class
represented by a very small percentage of the data set.
Most classification algorithms are sensitive to this
type of imbalance. They are therefore unable to deal
effectively with the problem. In addition, great care
must be taken in the evaluation of classification
models and the choice of metrics. An unsupervised
approach is the most suitable for anomaly detection
problems. In this approach, the different algorithms
try to distinguish outliers by learning on all the data,
without having the labels of the observations, there is
no set of observations identified a priori as anomalies.
It is therefore not necessary to have labeled data and
this simplifies the problem of preparing data before
learning and all the difficulty in constructing labels.
To address the above-mentioned issues, a method of
intrusion detection is proposed and implemented
using deep learning.

The rest of the paper is organized as follows.
Section 2 describes related work. We review the
methodology in Section 3. Theoretical explanations
and experimental results of the proposed TCN model
are denoted in section 4. The conclusion of the
proposed model is represented in Section 5.

2. RELATED WORKS

There have been numerous research efforts on
anomaly detection in Internet of Things Devices
Using Deep Learning. Here are a few noteworthy and

Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6406

recent studies that have been analyzed and discussed.
The authors of [2] demonstrate that the LSTM RNN
model they create is capable of detecting abnormal
and suspicious behavior in IoT systems with high
accuracy based on a dataset of IoT sensors readings.
The model they have developed offers a remarkably
high rate of detection and a correspondingly low rate
of false alarms. Where all of the tests performed were
assigned different values of volume and iterative
periods, randomly-generated values are used for
weights and biases as well as the various layers,
nodes, and learning rate until the model was able to
achieve the best rate of accuracy detection. In article
[2], the authors presented a study on the use of deep
learning methods in intrusion detection in IoT
devices. They used standard dataset Bot-IoT for IoT
intrusion detection, they also used different kind of
deep learning methods such as Convolutional Neural
Network, Gated Recurrent Unit and Long Short
Memory Neural Network for intrusion detection in
IoT. The authors in [2] investigate the performance of
deep learning models, including bidirectional LSTM
(BI-LSTM) and Long Short-Term Memory (LSTM),
CNN-based Temporal Convolutional (TCN), and
CuDNN-LSTM, which is a fast LSTM
implementation. They used the SWaT Dataset
(December-January 2015-2016, dataset with
anomaly) from iTrust, Center for Cybersecurity
Research, Singapore University of Technology and
Design. The models consist of two hidden layers, each
of which has an appropriate number of neurons for the
model based on observations made during the model
training phase, using the 'tanh' activation function
with a dropout rate of 0.3. For the experiments
conducted in this study, they set Batch size=150 and
epoch=20 for all models to maintain consistency. The
algorithm used in the article [5] to detect anomalies
called DeepAnT, is an unsupervised learning-based
anomaly detection technique for continuous data. This
method consists of two modules. The first module, the
time series predictor, is responsible for predicting the
next time stamp. The predicted value is then passed to
the anomaly detection module. This module is
responsible for labeling a data instance as normal or
abnormal. The prediction module of DeepAnT is
based on CNN. CNN is a type of artificial neural
network that has been widely used in different fields
such as computer vision and natural language
processing in a range of different capabilities due to
the efficiency of its parameters. As the name suggests,
this network uses a mathematical operation called
convolution. The article [6] is about IoT network
anomaly and attacks detection as the massive rise in

data transmission via various IoT devices and
communication protocols has increased security
concerns, and for that researchers have focused their
attention on more comprehensive artificial
intelligence methods of anomaly detection. The CNN
models have proven that it's more is more effective
than the FFN (FeedForward Neural Network) and
RNN (Recurrent Neural Network) models. The main
contributions of article [7] are the proposed integrated
model of CNN and LSTM-based autoencoder, the use
of sliding windows for time series preprocessing, and
the evaluation of anomaly detection based on
reconstruction error using an autoencoder trained only
on normal data. The article discusses the use of deep
learning for anomaly detection in time series data. The
authors focus on using a combination of convolutional
neural networks (CNN) and recurrent neural networks
(RNN) to extract spatial and temporal features,
respectively. They propose an improved network
architecture, which builds on a previous method called
C-LSTM that uses a two-stage sliding window in data
preprocessing to generate time-dependent
subsequences for better feature extraction. The
features extracted by the CNN are then input into an
autoencoder with two LSTM layers for feature
extraction. The authors in article [8] present a new
method called Multi-Scale Convolutional Recurrent
Encoder-Decoder (MSCRED) for anomaly detection
and diagnosis in multivariate time series data. The
authors state that building a system for this purpose is
challenging as it requires not only capturing the
temporal dependency in each time series, but also
encoding the inter-correlations between different pairs
of time series. They also note that existing
unsupervised anomaly detection algorithms may not
address all of these challenges. The proposed
MSCRED method first constructs multi-scale
signature matrices to characterize multiple levels of
the system statuses in different time steps. Then, a
convolutional encoder is used to encode the inter-
sensor (time series) correlations and an attention-
based Convolutional Long-Short Term Memory
(ConvLSTM) network is developed to capture the
temporal patterns. Finally, a convolutional decoder is
used to reconstruct the input signature matrices, and
the residual signature matrices are further utilized to
detect and diagnose anomalies. Table 1 summarises
the literature survey.

Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6407

Table 1: Summarises literature survey.

Ref. Objective Proposal Drawbacks
[2] Using deep learning

to detecting
abnormal behavior
in internet of things

LSTM RNN model LSTM RNN models need enough normal data to
effectively train the model, a lack of or insufficient

normal data can lead to imperfect anomaly detection
results.

The result supports the hypothesis that the model's
accuracy depends at least in part on the characteristics

of the data that it is trained on.
[3] Intrusion Detection

in IoT Using Deep
Learning

Convolutional Neural
Network, Gated

Recurrent Unit and
Long Short Memory

Neural Network.

The use of deep learning in security enhancement for
IoT traffic is limited by the need to balance high

accuracy with minimal false alarms during
communication, which is particularly challenging when

using Convolutional Neural Networks (CNNs).
[4] Deep Learning-

Based Time-Series
Analysis for

Detecting
Anomalies in

Internet of Things

LSTM (BI-LSTM)
and Long Short-Term

Memory (LSTM),
CNN-based Temporal
Convolutional (TCN),
and CuDNN-LSTM,
which is a fast LSTM

implementation.

This approach needs to remove Trends and seasonality
in the time-series dataset before modeling. Also, there
are long training time to achieve a better performance

in terms of model accuracy.

[5] A Deep Learning
Approach for
Unsupervised

Anomaly Detection
in Time Series

A prediction module
based on CNN

Poor data quality can corrupt the data modeling phase.
On the other hand, if the level of contamination is too

high (more than 5%), the system will try to model these
instances, thus considering them as normal at the time
of inference. Another limitation is the selection of the

network architecture and the corresponding
hyperparameters.

[6] A Deep Learning-
Based Model for

Anomaly Detection
in IoT Networks

Convolutional Neural
Networks (CNN)

As the model is used to detect anomalies and attacks,
which could occur on IOT devices, several attackers
could use evasive techniques to prevent detections by
the model. Additionally, the CNN3D model which use
3 convolutional layers is less effective than the CNN1D

and CNN2D model.
[7] Extract spatial and

temporal features,
respectively for

anomaly detection
in time series data.

An improved network
architecture, which
builds on a previous

method called C-
LSTM.

It is stated that the error vector classification results
obtained with this method are insufficient to correctly

identify anomalous data. In general, this can be seen as
a limitation of this approach for anomaly detection in

time series.
[8] Anomaly detection

and diagnosis in
multivariate time

series data.

Multi-Scale
Convolutional

Recurrent Encoder-
Decoder (MSCRED)

MSCRED relies on the quality of the data used for
training the RNNs. If the data is noisy or incomplete, it

may affect the performance of anomaly detection.
MSCRED is based on a single dataset, which limits the

generalization of the results.
The RNNs used in MSCRED are a type of black box
model which makes it difficult to interpret the results
and understand the causes of the detected anomalies.

Our solution builds upon and addresses the
drawbacks of existing related work in this domain.
Previous studies on anomaly detection in IoT devices
have often struggled with handling the real-time
nature of data streams and capturing complex
temporal dependencies. Additionally, they have faced
challenges in achieving high accuracy while
maintaining low computational overhead. In contrast,

our TCN-based approach excels in real-time anomaly
detection by effectively modeling and capturing
temporal dependencies in IoT data streams. By
leveraging the power of TCN, we not only achieve
remarkable accuracy in detecting anomalies but also
ensure low computational complexity, making it
suitable for resource-constrained IoT devices. Our
solution's ability to overcome the limitations of

Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6408

previous approaches marks a significant advancement
in real-time anomaly detection for IoT devices, paving
the way for improved operational efficiency and
enhanced device performance.

3. METHODOLOGY

In order to address existing drawbacks and create
additional opportunities, we propose a real-time
anomaly detection in Internet of Things devices using
deep learning. Our proposed system leverages cutting-
edge technologies to provide a secure and efficient
solution in order to address the nascent challenge of
detecting anomalies in IoT. Figure 4 shows the
workflow of the proposed model. In this section, we
will delve into the specifics of the chosen Recurrent
Neural Networks (RNNs) model and expound on the
rationale behind our assumptions and decisions.
RNNs are a type of neural network that are
particularly well-suited for processing sequential data.
RNNs have a "memory" that allows them to remember
previous inputs, which allows them to understand the
context and relationships between elements in a
sequence. This makes RNNs useful for tasks such as
language modeling, speech recognition, and time
series prediction. Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) are both types of
RNNs that have been designed to better handle the
problem of vanishing gradients, which can occur
when training traditional RNNs.

Figure 4: The workflow of the proposed model

3.1 Long Short-Term Memory (LSTM)

 Firstly, Long Short-Term Memory (LSTM) is a

type of Recurrent Neural Network (RNN) that is
designed to better handle the problem of vanishing
gradients, which can occur when training traditional
RNNs. LSTMs have a more complex structure than
traditional RNNs and use a series of gates to control
the flow of information. These gates, called the input
gate, forget gate, and output gate, allow LSTMs to
selectively choose which information to remember
and which to discard, enabling them to preserve
information over long periods of time. This makes
LSTMs useful for tasks such as language modeling,
speech recognition, and time series prediction where
the output at a certain time step is dependent on the
previous time steps. LSTMs are also used in many
other applications such as natural language
processing, speech synthesis, and machine translation.

The architecture of a Long Short-Term Memory
(LSTM) network is composed of a series of memory
cells, input gates, forget gates, and output gates as
seen in figure 5. Each memory cell is responsible for
maintaining a state that can be used to remember
information over long periods of time. The input gate,
forget gate, and output gate are used to control the
flow of information into and out of the memory cell
[9].

Figure 5: The architecture of a basic LSTM cell

The forget gate f(.) is used to decide which
information from the previous state should be
discarded.

𝐹(.) = 𝜎 (𝑊𝑓𝑥 𝑋𝑡 + 𝑊𝑓ℎ ℎ𝑡 − 1 + 𝑏𝑓) (1)

The input gate i(.) is used to decide which
information from the current input should be passed
to the memory cell.

Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6409

ht = g (Whx Xt + Whh ht-1 + bh) (2)

The output gate o(.) is used to decide which
information from the current state should be passed on
as the output.

𝑜(.) = 𝜎 (𝑊𝑜𝑥 𝑋𝑡 + 𝑊𝑜ℎ ℎ𝑡 − 1 + 𝑏𝑜)
(3)

The LSTM network also has a hidden state, which
is passed from one-time step to the next, allowing the
network to maintain information over longer periods
of time. This hidden state is also passed through a
fully connected layer to produce the final output.

LSTMs are often used in deep learning tasks such
as language modeling, speech recognition, and time
series prediction, where the output at a certain time
step is dependent on the previous time steps.

3.2 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a type of Recurrent
Neural Network (RNN) that is similar to Long Short-
Term Memory (LSTM) in that it is designed to handle
the problem of vanishing gradients (Bibi et al., 2020).
However, unlike LSTMs, GRUs have a simpler
structure and use a single update gate to control the
flow of information. This single update gate allows
GRUs to decide what information from the past to
keep and what to discard, making it more efficient
than LSTMs in terms of computation and memory.
GRUs are also useful for tasks such as language
modeling, speech recognition, and time series
prediction where the output at a certain time step is
dependent on the previous time steps. They are also
used in many other applications such as natural
language processing, speech synthesis, and machine
translation. GRUs are often considered a good balance
between the performance and computational
efficiency, making them a popular choice in many
deep learning applications.

The architecture of a Gated Recurrent Unit (GRU)
network is composed of two gates: the update gate and
the reset gate as in figure 6. These gates are used to
control the flow of information into and out of the
hidden state of the network [10].

Figure 6: The architecture of a basic GRU cell

The update gate is used to decide how much of the
previous hidden state should be passed on to the
current hidden state. It ranges from 0 to 1 and the
closer to 1, the more information from the previous
hidden state is passed on.

The reset gate is used to decide how much of the
previous hidden state should be discarded. It also
ranges from 0 to 1 and the closer to 1, the more
information from the previous hidden state is
discarded.

The current hidden state is then computed by a
combination of the previous hidden state, the current
input and the values of the update and reset gates. This
hidden state is then passed through a fully connected
layer to produce the final output.

While an LSTM or GRU implementation may
seem like the rational choice for the deep learning
model, we have implemented two models, the first one
with LSTM and the second one with GRU, but we
have noticed that they have several weaknesses. Some
of the weaknesses of LSTM (Long Short-Term
Memory) include the potential for overfitting,
difficulty in training with long sequences, and
sensitivity to the choice of hyperparameters.
Additionally, LSTM models can suffer from
vanishing gradients, where the gradients become very
small, making it difficult for the model to learn long-
term dependencies. Finally, LSTM models can be
computationally expensive, making them challenging
to train on large datasets. As regards GRU, it includes
similar issues as LSTM, such as the potential for
overfitting and sensitivity to hyperparameters.
Additionally, GRU models may have difficulty
learning complex long-term dependencies in some
cases. While GRUs were designed to have fewer
parameters than LSTMs, they may still be

Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6410

computationally expensive in certain contexts.
Finally, it's worth noting that the effectiveness of
GRUs can depend on the specific task and dataset at
hand, and they may not always outperform other
recurrent neural network architectures.

To address some of the limitations of LSTM and
GRU models, the authors have implemented Temporal
Convolutional Networks (TCN). TCN are a type of
deep neural network architecture designed
specifically for processing sequential data, such as
time series or natural language [11]. The TCN
architecture is based on convolutional neural
networks (CNNs), but with a few key modifications to
better handle the temporal structure of sequential data.
A TCN architecture is composed of multiple layers of
temporal convolutional blocks, with each block
consisting of one or more convolutional layers. The
convolutional layers in a TCN use dilated
convolutions, which allow for the capture of long-
range dependencies in the input sequence by
increasing the receptive field of each convolutional
kernel. Additionally, the TCN uses causal
convolution, meaning that the output of each
convolutional layer depends only on the inputs up to
that point in the sequence and not on future inputs.

The dilated convolutions and causal convolution in
TCN make it well-suited for processing sequential
data with long-range dependencies. The network can
be trained end-to-end to perform a specific task, such
as classification or regression, on sequential input
data. The TCN can also be extended with additional
layers, such as pooling layers or recurrent layers, to
further improve its performance on specific tasks as
shown in figure 7.

The main components of a Temporal
Convolutional Network (TCN) are: [11]

 Input layer: The input layer takes in the
sequential data and converts it into a tensor
representation that can be processed by the
network.

 Convolutional layers: The core of the TCN
architecture is made up of one or more
convolutional layers. These layers use dilated
convolutions to capture long-range
dependencies in the input data and causal
convolution to ensure that the output of each
layer depends only on past inputs.

 Activation functions: Activation functions are
used in each convolutional layer to introduce
non-linearity into the network. Common
activation functions used in TCN include ReLU,
sigmoid, and tanh.

 Pooling layers: Pooling layers can be used in

TCN to reduce the spatial dimensions of the
output of the convolutional layers, which can
help to control overfitting and improve the
training time.

 Output layer: The output layer takes the
processed output of the convolutional layers and
performs the final prediction or classification
task. The output layer can be a fully connected
layer, a softmax layer, or any other type of layer
that is appropriate for the task at hand.

Figure 7: The architecture of a basic TCN cell
4. EXPERIMENTAL RESULTS

Our system was based on research conducted at our
university in Casablanca in Morocco. A real mini
greenhouse that incorporates numerous sensors, as
shown in the figure 8 below, was used to find patterns
in our time series data that do not conform to the
expected behavior and help us to identify problems
with our devices early.

Figure 8: The experimental greenhouse at Hassan II
University of Casablanca. Morocco

A stepwise methodology was employed in

implementing this research, which involved
developing a comprehensive real-time anomaly

Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6411

detection model using a deep learning approach. This
model aims to enhance the accuracy of anomaly
detection in the Internet of Things.

Step 1: Data collection
To collect data, the ESP32 board equipped with a

temperature and humidity sensor is utilized. The data
is then stored in a MySQL database, with a table that
includes the characteristics of time, temperature, and
humidity. The data is transferred from the sensor to
the MySQL database using Arduino IDE, Mosquitto
and Node Red. In order to ensure a consistent and
periodic collection of data, the system is set up to
capture each list of indoor temperature and indoor
humidity data every 10 minutes. The dataset contains
939350 lines.

Step 2: Data Cleaning
In order to prepare the raw dataset for a DL

method, several processing steps are required, which
include standardization, normalization, and data
cleaning [12]. The entire process is divided into three
sub-steps. Firstly, the dataset is standardized to ensure
that all data points are on the same scale and have a
distribution value between 0 and 1 based on the
standard normal distribution. This is crucial to enable
accurate comparison and analysis of data. Secondly,
data normalization is performed to transform the data
and avoid negative values that could be detrimental to
neural networks. All data in the dataset are normalized
between 0 and 1. Finally, data cleaning is carried out
to remove unwanted data, such as NaN and null
values. This is necessary to prevent any inaccuracies
or errors in the subsequent analysis.

Step 3: Training, Testing, and Evaluating
During the training, testing, and evaluation of our

model, we set aside 20% of the dataset for testing
purposes. This helps us to evaluate the accuracy and
generalization ability of the model on unseen data. We
use the 'RMSE' metric to measure the performance of
the model, which is a common evaluation metric used
in regression analysis. We also utilize the 'ADAM'
optimization function, which is a popular optimization
algorithm used to update the model weights during
training. In addition, we set the number of epochs to
10, which determines the number of iterations that the
training process runs through the entire dataset.
Finally, we set the rollback date to 10 minutes,
meaning that the model will use the 10 previous time
steps as input variables to predict the next time period.
Overall, this approach helps us to develop a robust and
accurate model for making predictions on future data.

Figure 9 displays the loss value trends during the
training and validation stages of constructing a TCN
model. The x-axis represents the epoch number, while

the y-axis represents the loss value.

Figure 9: Training and Validation Loss of TCN Model.

The plots given in Figure 10 demonstrate the
predicted (colored in blue) and the actual humidity
(colored in orange) values for the sensor data studied
and obtained by the TCN model.

Figure 10: The Original and Predicted humidity Value of
TCN Model

The plots given in Figure 11 demonstrate the
predicted (colored in blue) and the actual temperature
(colored in orange) values for the sensor data studied
and obtained by the TCN model.

Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6412

Figure 11: The Original and Predicted temperature
Value of TCN Model

Step 4: Anomaly detection
In our study, we utilized the Persistence Anomaly

Detection (PersistAD) approach for anomaly
detection, which involves several steps to detect
anomalies in complex systems. First, a time-delay
embedding of the data is created to capture the
system's dynamics, followed by the application of
topological data analysis to identify persistent
homology features. To determine the severity of an
anomaly, PersistAD employs a threshold based on the
persistence level of the homology feature, with higher
persistence values indicating more severe anomalies.
This allows for the identification of anomalies that are
not only statistically significant but also have a
significant impact on the system's behavior. The
approach also uses a sliding window to account for
changes in the system's behavior over time, and it
employs a statistical significance test to determine if a
detected anomaly is statistically significant or merely
a random occurrence. The use of a threshold not only
helps to reduce false positives but also provides an
interpretable method for detecting anomalies in
complex systems. Overall, the PersistAD approach
provides a robust and reliable method for detecting
anomalies in complex systems with high accuracy.

There are methods to make the anomaly detection
threshold adaptive depending on the situation. One of
the most common methods is to use data statistics to
automatically determine an appropriate threshold. In
this paper, the authors used the distribution-based
anomaly detection method, which involves using the
mean and standard deviation of our data to determine
an appropriate threshold. Any value that is greater
than a certain number of standard deviations of the
mean can be considered an anomaly. The authors used
the sliding window to calculate the mean and the

partial and relative standard deviation for the last 3
data entered as shown on figure 12.

Figure 12: Detection anomaly function.

Step 5: Sending SMS on a mobile phone via

Twilio
When anomalies are detected, a real-time SMS

notification is sent to the responsible person via
Twilio, to promptly alert them and allow them to
take necessary measures as shown in figure 13.

Figure 13: SMS alert from Twilio

5. CONCLUSION

The aim of this paper is to evaluate and compare
the performance of several machine/deep learning
techniques. The study focuses on examining various
versions of RNN-based models such as LSTM and
GRU, and comparing them with a CNN-based model
known as TCN. The primary motivation behind this
research is to identify the fundamental dissimilarities
in the performance of CNN and RNN models.

Based on our findings, we note that TCN

Journal of Theoretical and Applied Information Technology
31st August 2023. Vol.101. No 16

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6413

demonstrates relatively strong anomaly detection
capability with lower RMSE values. A noteworthy
feature of TCN is its relatively shorter training time
when compared to RNN models. In contrast, the fast
version of LSTM exhibits the highest level of
accuracy, but necessitates a longer training duration.
As a potential avenue for future research, it is essential
to compare the outcomes of these models with
different datasets of varying sizes and assess the trade-
off between them.

In a promising outlook, we plan to explore the
possibilities of detecting anomalies from multiple
sensors simultaneously. By focusing on multi-sensor
anomaly detection, we aim to gain a deeper
understanding of the complex interactions and
correlations between different sensor data streams. By
developing techniques that can effectively analyze
and identify anomalous patterns across multiple
sensor streams, we aim to enhance the overall
anomaly detection capabilities and provide a more
comprehensive understanding of the IoT system's
health.

REFERENCES:

[1] Chandola, V., Banerjee, A. et Kumar, V. (2009).
Anomaly detection: A survey. ACM computing
surveys (CSUR), 41(3), pages 1-58.

[2] Al-Shabi, Mohammed & Abuhamdah, Anmar.
(2021). Using deep learning to detecting
abnormal behavior in internet of things.
International Journal of Electrical and
Computer Engineering. 12. 2108-2120.
10.11591/ijece.v12i2.pp2108-2120.

[3] Banaamah, Alaa & Ahmad, Iftikhar. (2022).
Intrusion Detection in IoT Using Deep
Learning. Sensors. 22. 8417.
10.3390/s22218417.

 [4] Gopali, Saroj & Siami Namin, Akbar. (2022).
Deep Learning-Based Time-Series Analysis for
Detecting Anomalies in Internet of Things.
Electronics. 11. 3205.
10.3390/electronics11193205.

[5] Munir, Mohsin & Siddiqui, Shoaib & Dengel,
Andreas & Ahmed, Sheraz. (2018). DeepAnT:
A Deep Learning Approach for Unsupervised
Anomaly Detection in Time Series. IEEE
Access. PP. 1-1.
10.1109/ACCESS.2018.2886457.

[6] Ullah, Imtiaz & Mahmoud, Qusay. (2021). A
Framework for Anomaly Detection in IoT
Networks Using Conditional Generative
Adversarial Networks. IEEE Access. PP. 1-1.

10.1109/ACCESS.2021.3132127.

[7] Yin, Chunyong & Zhang, Sun & Wang, Jin &
Xiong, Naixue. (2022). Anomaly Detection
Based on Convolutional Recurrent Autoencoder
for IoT Time Series. IEEE Transactions on
Systems, Man, and Cybernetics: Systems. 52.
112-122. 10.1109/TSMC.2020.2968516.

[8] Zhang, Chuxu & Song, Dongjin & Chen,
Yuncong & Feng, Xinyang & Lumezanu,
Cristian & Cheng, Wei & Ni, Jingchao & Zong,
Bo & Chen, Haifeng & Chawla, Nitesh. (2018).
A Deep Neural Network for Unsupervised
Anomaly Detection and Diagnosis in
Multivariate Time Series Data.

[9] ElMoaqet, Hisham & Eid, Mohammad & Glos,
Martin & Ryalat, Mutaz & Penzel, Thomas.
(2020). Deep Recurrent Neural Networks for
Automatic Detection of Sleep Apnea from
Single Channel Respiration Signals. Sensors
(Basel, Switzerland). 20. 10.3390/s20185037.

[10] Bibi, Iram & Akhunzada, Adnan & Malik,
Jahanzaib & Iqbal, Javed & Musaddiq, Arslan
& Kim, Sung. (2020). A Dynamic DL-Driven
Architecture to Combat Sophisticated Android
Malware. IEEE Access. PP. 1-1.
10.1109/ACCESS.2020.3009819.

[11] Hewage, Pradeep & Behera, Ardhendu &
Trovati, Marcello & Pereira, Ella &
Ghahremani, Morteza & Palmieri, Francesco &
Liu, Yonghuai. (2020). Temporal convolutional
neural (TCN) network for an effective weather
forecasting using time-series data from the local
weather station. Soft Computing. 24.
10.1007/s00500-020-04954-0.

[12] Peterson, J.M., Leevy, J.L., & Khoshgoftaar,
T.M. (2021). A Review and Analysis of the Bot-
IoT Dataset. 2021 IEEE International
Conference on Service-Oriented System
Engineering (SOSE), 20-27.

