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ABSTRACT 
 

The remote sensing research community has devoted particular focus to the classification of hyperspectral 
images (HSI).  To improve the classification accuracy of hyperspectral images (HSI), deep learning-based 
technology has been proposed. However, it remains a challenging obstacle to achieve satisfactory 
classification accuracy with insufficient data for training. Therefore, a more effective neural network 
design needs to be devised in order to boost the effectiveness of the HSI classification function. To address 
this concern, this letter provides a novel Hybrid-Inception CNN (Hyb-ICNN) framework for dynamically 
obtaining characteristics by laying inception components in the model which can acquire better accurate 
properties with smaller training samples by employing volatile spatial dimension convolutional filters and 
dynamic CNN framework. The outcomes of the experiments show that the presented model can boost 
classification performance by adaptively changing the network structure. The experiments are carried out 
on both the new data sets and the publicly accessible benchmark data sets to expose the efficiency and 
durability of the proposed model. The proposed Hybrid-Inception CNN model has achieved accuracies of 
80.79% on the AH1 (Ahmedabad-1) dataset, 87.98% on the AH2 (Ahmedabad-2) dataset, 99.99% on the 
PU (Pavia University), 99.99% on the SA (Salinas), and 99.92% on the IP (Indian Pines) dataset. 
Empirically, it has been demonstrated that the presented model succeeds over the remaining state-of-the-
art approaches in terms of classification accuracy. 
Keywords: Hyperspectral Image, Inception Network, Convolutional Neural Network, Feature Extraction, 

Classification 
 
 
1.  INTRODUCTION  

A hyperspectral image (HSI) is a 3D (3-
dimensional) cube recorded with a spectrometer that 
incorporates spectral and image information to show 
the emission properties and spatial geometric 
connection of the object [1-2]. HSI is more spectral 
band-rich and has a greater spectral resolution than 
multispectral remote sensing images and 
conventional RGB images. HSI is widely employed 
in a variety of industries, including agriculture, 
geological exploration, environment, and ecology, 
due to its rich spatial and spectral information [3-7]. 
Land cover and land use classification are frequently 
required in these applications [8].  

The spectral properties of HSI pixels are the 
primary criterion for categorization in the initial HSI 
classification techniques [9]. The spectral 

characteristics of ground objects may change as a 
result of spectral fluctuations and distortion. As a 
result, depending solely on spectral data could lead 
to incorrect classification. A variety of spatial-
spectral-based feature retrieval and classification 
approaches have been proposed by researchers to 
utilize full spatial data. These approaches typically 
outperform traditional spectral-based classification 
techniques in terms of reliability and precision. 
Nevertheless, such approaches are frequently used 
for particular intended features. It may result in poor 
classification efficiency if certain characteristics are 
not appropriate for particular application criteria. 

Deep learning (DL) approaches are widely used 
for feature retrieval and classification of HSIs 
because of their ability to dynamically acquire 
suitable features for particular application 
challenges. However, a significant number of 
labeled samples are typically needed to train the 
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model to reach the comparable rate of classification. 
The typical method for obtaining sample labels for 
HSI is field research or straight interpretation by 
sight from images with a high resolution. The 
quantity of training samples is significantly reduced 
by the cost and time involved in conducting field 
studies, which are frequently utilized to generate 
more accurate labeling. Real-world scenarios 
frequently include a small-sample classification 
challenge, and it can be challenging to get enough 
training data to properly satisfy a DL network's 
sample needs. Researchers have developed a number 
of small-sample DL approaches for HSI 
classification to address this issue, including small-
scale learning [10-11], lightweight networks [12–
14], and data augmentation [15]. 

Approaches for data augmentation could be 
employed to boost the quantity of labeled samples. 
Adding random noise, flipping, translation, clipping, 
rotating are common data augmentation techniques 
that can improve the quantity and variety of samples. 
To increase the sample size, Li et al. [15] suggested 
a pixel-block pair (PBP) technique, in which each 
pixel is formed into a pixel block, and a PBP is 
applied for training. A random occlusion data 
augment strategy for training CNN was put out by 
Haut et al. [16]. It created training images with 
varying degrees of occlusion by randomly occluding 
pixels in various rectangular spatial locations. 
Methods for enhancing the data can increase the 
quantity of training samples, which enhances 
classification performance. Yet, these techniques are 
vulnerable to adding noisy data during the data 
augmentation process, which could result in unstable 
classification performance. 

Various lightweight networks are suggested 
[12–14] to decrease reliance on the quantity of 
training data. The lightweight network employs light 
network layout principles including depth-separable 
convolution [14], clustered convolution [17], and 
other lightweight convolution techniques that can 
minimize the amount of computing required for 
convolution as well as the network parameters. Yet, 
the lightweight network's capacity for discrimination 
may also be degraded. 

The objective of few-shot learning is to discover 
new classes from a small number of labelled 
examples [10]. For small-sample HSI classification, 
Liu et al. [11] introduced a deep few-shot learning 
(DFSL) approach that builds a deep 3D ResNet to 
gain a metric space where samples from the same 
class are near and those from distinct classes are 
separated. The fundamental drawback of these 
methods is that because the public HSI datasets are 

so limited, it is impractical to build a deep method 
since more training instances are needed.   

We proposed a hybrid inception CNN (Hyb-
ICNN) model for HSI classification and to resolve 
the issues mentioned earlier. The subsequent 
summarizes the contributions of the work: 

 
 Proposed a hybrid inception CNN that can 

adapt the convolution kernel size to various 
locations in order to enhance the 
performance of HSIs classification. 
 

 The proposed approach uses the CNN 
structure with inception components to 
address the overfitting issue. 

 
Here is how the remainder of the paper is 

laid out: The review of the literature for the 
proposed work is mentioned in Section 2, and 
the model architecture is presented in Section 3. 
The experimental research, outcomes and 
conversations of the proposed framework are 
stated in Section 4. Finally, Section 5 presents 
the inferences. 
 
2. RELATED WORK  

It is widely acknowledged in the research 
community that classifying hyperspectral images is 
a significant problem in the field. However, earlier 
research mostly focused on traditional 
computational techniques. We quickly cover the 
most recent deep learning pixel-based models in this 
section.   

A 2D-CNN pixel--based method was presented 
in [18] to retrieve the spectral-spatial data embedded 
in HSIs, where 2D-CNN has been used to examine 
the band selection outcomes. A variety of pixel--
based techniques were put forth to combine specific 
2D-CNN models for the classification of HSI based 
on the band selection outcomes. As an illustration, 
Liu et al. [19] used deep belief networks to retrieve 
deep spectral characteristics. A 2D-CNN adaptive 
HSI classification model has been presented by Zhu 
[20] and is composed of adaptable convolutions and 
down sampling which integrate the underlying 
information of every input sequence in an adaptive 
manner. Through the addition of three feature 
regions based on spectrum information to spatial 
regions, in [21], Han developed a 2D-CNN method 
to assess spectral-spatial characteristics. Zhao and 
Du [22] gave an example of a spectral-spatial 
feature-based categorization method that utilizes a 
2DCNN to collect spatial data and a linear local 
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distinction encase to find spectral data. Although 
these methods might produce models with 
comparable performance, they required a huge 
training dataset, which is not feasible for the 
majority of real-world implementations. 

There are techniques that account the spatial-
spectral features of the HSI data. As CNN models 
are so flexible, a wide range of methods and 
networks can be created to do spectral-spatial 
analysis. Chen [23] presented a deep 3D-CNN 
model comprised of multiple 3D convolutional 
layers that extracted spectral–spatial characteristics 
for classification. Similar to this, Lee [24] proposed 
a deep network with such an emphasis on 3D data. 
The proposed model is capable of accurately 
capturing alterations in local impulses stated in 
spectral-spatial data. In order to evaluate a series of 
volumetric models of the HSI, Hamida [25] devised 
and assessed a set of 3D schemes that combine the 
conventional 3D convolution operations to enable a 
joint spatial-spectral information analysis. Kanthi 
[26] presented a 3D-CNN method that splits HSI 
into 3D regions and pulls deep spectral-spatial data 
for HSI classification. 

However, certain hybrid approaches 
incorporated 2D-CNNs and 3D-CNNs. For example, 
Roy [27] proposed HybridSN model that merges 
spectral and spatial 3D-CNN with spatial 2D-CNN. 
Raviteja [28] established hierarchical image fusion 
model for HSI classification to merge specified 
spectral features into image groups. Wan [29] 
presented multiscale graph convolutional network 
for irregular image region convolution for HSI 
classification. Meng [30] employed connections 
with feed-forward shortcuts to access all 
convolutional layers’ hierarchical input to create a 
dense multiscale hybrid network and a multi-scale 
HSI spatial and spectral HybridCNN was presented 
by Mohan [31] for Classification tasks. Kanthi [32] 
introduced a deep CNN model that uses three 
distinct multi-scale spatial-spectral regions to 
retrieve features from both the spatial and spectral 
bands. Inception and ResNet network designs were 
created by Bandar Alotaibi [33], integrating the 
fundamental idea of ResNet, the use of residual 
blocks and the input sequence of the Inception model 
that its topology is preferable to each one 
individually in terms of accuracy. Yet, certain data 
sets have very poor accuracy. An AI-Net that could 
apply deep learning to discover reflective 
characteristics was introduced by Haokui Zhang 
[34]. This AI-Net also included a transfer learning of 
data convergence model for more precise model 
initialization and faster training. However, the model 
improvement must use some techniques to get 

beyond the data's HSI categorization imbalance. In 
feature learning, Yang [35] created a SyCNN model 
that incorporates 2D and 3D CNNs with a hybrid 
component that blends spectral-spatial HSI data with 
3D attention mechanisms. Kanthi [36] presented 3D-
ICNN that uses 3D-CNN and inception blocks to 
retrieve features with varying filters. However, 
optimal design of models is required to enhance the 
feature extraction procedure.  

Along with to the specified samples, no more 
than 10% of the samples could be utilized for HSIs 
classification training. Nevertheless, deep learning 
models typically include an extensive amount of 
training variables. Deep models will likely overfit if 
there is a small enough data collection. Deep 
network structures have recently been proposed, and 
even with more than 100 layers, they are fairly 
profound. Examples are DensNet [37] and ResNet 
[38]. The networks, like Coco and Imagenet, operate 
in vast volumes of data. However, these networks 
prove too complicated for HSI imaging. These 
models have overfitting obstacles since the training 
data are minimal. 

 
3. PROPOSED METHODOLOGY 

This section focuses primarily on the CNNs 
history, Inception module, and proposed method. 

3.1 CNN 

CNN employs a multiple-layer trained structure 
composed of stacking, pooling layers and uncertainty 
for learning properties including patterns and edges 
and advanced features that contain additional 
perceptive input [39-41]. The usual construction of a 
CNN is shown in figure 1.  

In contrast to the conversion layer, that may 
consist of 2-dimensional size 𝑝 x 𝑞 feature 
conversions in the convolution layer, each hidden 
layer component is related by shared weights to the 
local receptive field across the input rather than 
having completely attached to the input. The 
convolution layer is responsible for producing an 
intensity of the 𝑍 input feature maps using a 𝐹 kernel 
with the dimensions 𝑓 x 𝑓 x n and a nonlinear unit 
activated function. This concentration is then applied 
to the 𝑍 output maps. Following the completion of 
the stacked layers comes the application of 
completely connected layers with Softmax so that 
classification labels can be predicted. 
 

3.2 Inception Network 

A standard CNN model consists of multiple 
layers of convolution preceding one or more fully 
connected (FC) layers. The FC layer comprises a 
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multilayer neural network in the usual sense. The 
outcome is saved in the bottommost FC layer.  

 
Figure 1:  Illustration of A Basic CNN Structure. 

 

 
Figure 2: The Inception Model's Main Building Block. 

 
The convolutional layer uses several filters to 
condense the input image, while the pooling layer 
down samples the data. The pooling layer often has 
max-pooling and average-pooling functions. The 
CNN converts the input image over numerous 
stacked layers, from the initial basic pixels to the final 
class values. Multiple semantic approaches to 
segmentation are built on top of CNN designs. 

The powerful and sophisticated deep learning 
network Goog-LeNet [42] is adopted. As shown in 
Fig. 2, GoogleNet is a deep CNN design created by 
Google researchers and released to the public in 2014. 
This design made the top five ranking of the ILSVRC 
with a 93.3 percent accuracy rate. The GoogleNet is 
incredibly intricate with 22 layers and a special 
structural component known as the Inception model. 
This design makes use of a network in a pooling 
layer, a network layer, and big and tiny convolution 
layers that are computed concurrently rather than in 
the traditional sequence. After that, the 
dimensionality is decreased using a 1 x 1 convolution 
process. The number of parameters and operations 
has been significantly reduced as a result of the 
parallelism and dimensionality reduction 
incorporated in this design, leading to considerable 
memory and processing decreases [42]. 

3.3 Hyb-ICNN model 

The proposed Hyb-InceptionCNN (Hyb-ICNN) 
model is explained in this section. The model uses 3D 
patches as input to produce deep spatial features from 
an HSI data cube for pixel classification, as shown in 
Figure 3. Consider an HSI X, which is a 3D cube with 
dimensions 𝑊 x 𝐻 x 𝐵, where 𝑊 and 𝐻 represent 
the image's spatial height and width, respectively, and 
𝐵 represents the spectral bands. Before processing, 
each CNN model needs an image that has been 
normalized. PCA is initially employed to the initial 
HSI to decrease spectral correlation and redundancy. 
In this, we employed two inception layers 
sequentially in the Hyb-ICNN model to extract deep 
spatial spectral features by supplying small (25 x 25) 
cubes of the initial dataset. It is due to the fact that 
each pixel and the pixels around it have a strong 
association.  

For the Hyb-Inception layers, the (25 x 25) 
dimension was selected to allow for the use of 
different-sized filters. Each Hyb-Inception layer is 
made of a number of convolution and pooling kernels 
of varied sizes, the proportions of which are dictated 
by the original GoogLeNet structure. Inception 
modules make extensive use of (1 x 1 x 1) 
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convolution kernels to significantly decrease the 
number of parameters required to conduct more 
sophisticated operations such as (5 x 5) Max Pooling 
or (3 x 3) convolution. This strategy improves the 
number of learning parameters and permits the use of 
many convolutional and pooling kernels in a single 
layer, allowing the model to use the best of all 
available filters. As a result, the depth of the network 
is decreased, and the overfitting issue is avoided. 

As illustrated in Figure 3, the 3D-Inception 
module comprises of an input layer, a (1 x 1 x 1) 
convolution layer, a (3 x 3 x 3) convolution layer, a 
(3 x 3 x 5) convolution layer, a max-pooling layer, 
and a concatenation layer for each inception layer. 
Initially, a three-dimensional image path with a size 
of (25 x 25 x 30)  is received as input and fed to three 
(1 x 1 x 1) convolution layers (𝐶ଵଵ, 𝐶ଶଵ, 𝑎𝑛𝑑 𝐶ଷଵ) 
provided with three sets of filters 𝐾ଵଵ = 32,  𝐾ଶଵ =
48, 𝑎𝑛𝑑 𝐾ଷଵ = 8, respectively, and to a max pooling 
layer (𝑃) provided with strides of (1 x 1 x 1). The 
features retrieved from the layers 𝐶ଵଵ,
𝐶ଶଵ, 𝐶ଷଵ, 𝑎𝑛𝑑 𝑃ଵ  following the 
(1 x 1 x 1 )   convolution operation is sent to the 
(1 x 1), (3 x 3 x 3), (3 x 3 x 5), and (3 x 3 x 3) 
convolution layers, respectively, to obtain additional 
characteristics from the 𝐶ଵଶ, 𝐶ଶଶ,  𝐶ଷଶ,
𝑎𝑛𝑑 𝐶 convolution layers using filters  𝐾ଵଶ =

32, 𝐾ଶଶ = 48,  𝐾ଷଶ = 64, 𝑎𝑛𝑑 𝐾 = 16. The 
features retrieved from the layers  𝐶ଶଶ, 𝐶ଷଶ, 𝑎𝑛𝑑 𝐶ସଶ   
are sent to the   (3 x 3 x 3), (3 x 3 x 5), and (1 x 1) 
convolution layers, respectively, to obtain additional 
characteristics from the  𝐶ଶଶ,  𝐶ଷଶ,
𝑎𝑛𝑑 𝐶ସଶ convolution layers using filters  𝐾ଶଶ =
64,  𝐾ଷଶ = 16, 𝑎𝑛𝑑 𝐾 = 16.  The characteristics 
retrieved from layers 𝐶ଶଵ,  𝐶ଷଶ,  𝐶ଷଷ, 𝑎𝑛𝑑 𝐶ସଷ are 
combined in a concatenation layer (Concଵ) before 
being supplied to the second Hyb-Inception module. 
The second Hyb-Inception module takes the 

generated (Concଵ) feature map as input and feeds it 
through three (Concଵ) convolution layers using the 
same filters and max pooling layer as in the first Hyb-
Inception module. In the second Hyb-Inception 
module, the same process is repeated with the 
(Concଵ) feature map to build the (Concଶ) feature 
map for extracting more discriminative context 
characteristics. Convolution with a variety of spatial 
context kernel sizes is used to extract features with a 
variety of characteristics. The extracted feature map 
(Concଶ) is flattened and sent to the fully connected 
layers 𝑓𝑐𝑙ଵ, 𝑓𝑐𝑙ଶ, and 𝑓𝑐𝑙ଷ for classification. Each 
neuron's activation function in a fully connected layer 
is calculated using Eq. (1). 

 

𝐴𝑐𝑡௫(𝑓𝑐𝑙) = 𝑔(𝑤௫(𝑓𝑐𝑙) ∗ 𝑎𝑐𝑡௫ିଵ(𝑓𝑐𝑙) + 𝑏௫)    (1) 

 
Where, 𝑤௫(𝑓𝑐𝑙) is the weighted total of all the 

inputs to the precedent layer and 𝑏௫ is the bias. 𝑔(. ) 
is a representation of the ReLU activation. 

Finally, the data is classified using a soft-max 
probabilistic model. 𝐹 = [𝐹௫]x, where x is a positive 
integer between 1 and n, represents the feature 
representations after the entire model has been 
implemented, as in Eq. (2). 

 
 

Smax (𝐹)௫ =
ಷೣ

∑  ೖ
ೣసభ ಷ

 for 𝑥 = 1,2,3, . . , 𝑛      (2) 

 
At last, there is the argmax function (maximum 

arguments). It establishes the location in the region 
of a function where the functional parameters are at 
their highest. Equation (2) can be used to allocate 
classes to a m number of hyperspectral image class 
labels ranging from 𝑄 = {1, 2, 3, 4, .  . , 𝑚}. 

 
Figure. 3: Overview of the Presented Hybrid Inception CNN (Hyb-ICNN) Network. 
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Table 1. Description-Benchmark and Indian HSI datasets. 

Parameters SA PU IP AH-1 AH-2 

Sensor AVIRIS ROSIS AVIRIS AVIRIS-NG AVIRIS-NG 

Wavelength Range 360–2500 µm 0.43–0.86 µm 0.4–2.5µm 0.37–2.5µm 0.37–2.48 µm 

No. of Classes 16 9 16 5 7 

No. of Spectral Bands 200 115 200 351 370 

Spatial Dimension 512 × 217 610 × 340 145 ×145 300 × 200 300 × 200 

 

Table 2. Proposed Model Classification Accuracies (In %) on Benchmark Datasets. 

Model 
SA PU IP 

AA OA Kappa AA OA Kappa AA OA Kappa 

2D-CNN  95.95 95.64 95.25 92.29 92.32 92.12 90.10 88.31 90.61 

3D-CNN  96.98 97.98 97.02 97.02 97.32 96.42 96.24 95.36 94.85 

Hybrid-RI  95.46 95.21 95.53 95.42 95.31 94.98 91.12 91.34 91.31 

SyCNN  99.75 99.52 98.98 99.85 99.02 98.92 97.52 96.75 96.04 

AI-Net  99.71 99.68 99.34 99.28 99.71 99.32 99.51 99.64 99.15 

HybridSN  99.85 99.59 99.52 99.93 99.03 99.81 99.22 98.56 99.12 

3D-ICNN 99.86 99.63 99.57 99.95 99.24 99.85 99.89 99.62 99.82 

Proposed Method 
 

99.99 99.99 99.98 99.98 99.99 99.99 99.95 99.98 99.92 

 

Table 3. Proposed Model Classification Accuracies (In %) with Few Training Data. 

 
Dataset 

5 % Training Samples 10% Training Samples 

AA OA Kappa AA OA Kappa 

IP  96.87  95.37 95.43 98.82 99.34 98.76 

PU  97.98 98.52 97.93 98.84 99.92 98.91 

SA  98.85 98.89 98.62 98.85 99.35 98.81 

AH-1 80.46 80.85 78.57 82.75 82.83 81.62 

AH-2 73.05 72.92 71.84 75.72 75.99 73.92 

 

Table 4. Proposed Model Classification Accuracies (In %) on Indian Datasets. 

Model 
AH-1 AH-2 

AA OA Kappa AA OA Kappa 

3D-CNN  80.99  82.13  78.17  70.06  69.30  67.93 

HybridSN  85.69  85.03  83.79  79.55  76.71  75.82 

AI-Net 85.23 84.72 83.51 79.83 77.53 75.79 

SyCNN  84.72 83.98 83.46 78.62 75.85 74.89 

3D-ICNN  86.25  86.98  84.94  80.30  77.62  76.99 

Proposed Method  87.05 87.86  86.96 80.57 80.24 78.43 
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4. EXPERIMENTAL RESULTS  

This section provides the datasets descriptions, 
experimental setups, and experimental evaluation of 
Hyb-ICNN model. The details are explained in the 
following subsections. 

4.1 Datasets and setup 

An experimental investigation was carried out 
using three publicly available HSI datasets: PU 
(Pavia-University), SA (Salinas), and IP (Indian-
Pines). Furthermore, two new Indian datasets, AH1 
(Ahmedabad-1) and AH2 (Ahmedabad-2), had been 
employed to assess the potency of the presented 
method's performance. These datasets were gathered 
by the ISRO using AVIRIS-NG sensor [43]. The 
details are provided in Table 1. 

The experiments are carried out using a GPU 
with 25-GB RAM on the Google Cloud. The 
established network Hyb-ICNN is evaluated by 
randomly picking 20% of samples as train and 80% 
as test set from every dataset. In the optimization 
process, the Adagrad optimizer is employed, as well 
as a categorical cross-entropy with decay (1e-06) 
and learning rate (0.001). The approach was trained 
for 50 epochs using batch size of 32. On each data 
set, the experiments are recited 8 times and the 
average outcomes were reported.  

4.2 Classification Results and Analysis 

The kappa (K), AA (Average-Accuracy), and 
OA (Overall-Accuracy) had been incorporated to 
assess the efficacy of the provided network. 
Contemporary HSI classification models, like 3D-
CNN, 2D-CNN, HybridSN, Hybrid-RI, AI-Net, 
SyCNN, MS-3DCNN, 3D-ICNN, are compared to 

the results of the presented Hyb-ICNN model. The 
classification accuracy attained by all these 
approaches is displayed in Table 2 and it 
demonstrates that the presented method's 
classification efficiency is superior to that of 
alternative models on the contrast datasets. Table 3 
indicates the efficiency of the presented approach 
based on the amount of the training data. The given 
model outperformed state-of-the-art approaches in 
classification efficacy with less training samples. 

The studies on two new Indian datasets, AH1 
and AH2, are being carried out to ensure that the 
method is efficient and resilient. We used publicly 
available code to compare our method against 
models such as 3D-CNN, HybridSN, HybridCNN, 
MS-3DCNN, and 3D-ICNN. In order to compare 
other methods, their code was unavailable. The 
proposed method achieved better accuracy on new 
dataset and the provided model improved by 2% to 
3%, as shown in Table 4.  

The comparison of various accuracies of 
proposed model with current methods for bench 
mark datasets and Indian datasets are depicted in 
Figure 4. Figure 5 shows the classification maps 
created by the proposed model for all datasets. It's 
easier to compare the proposed method's 
classification maps to those made by other methods. 
Some parts of the presented model's maps are lesser 
noisy. The accuracy and loss progress of the 
proposed technique throughout 100 epochs of 
validation and training samples are presented in 
Figure 6. The method's rapid convergence could be 
identified in fact that the progress occurs in roughly 
50 epochs. 

 

  
(a) (b) 

Figure 4. Comparison of various accuracies of presented model with state-of-art approaches: (a) 
Benchmark datasets (b) Indian datasets. 
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Figure 5. HSI Classification images: (a) AH-1, (b) AH-2, (c) PU, (d) SA, and (e) IP. 
 

  

(a) (b) 
Figure 6. Presented method’s testing and training on Indian Pines: (a) Accuracy, (b) Loss. 
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5. CONCLUSION 
 

A hybrid inception CNN (Hyb-ICNN) model 
for HSI classification is recommended in this paper, 
since it has the ability to perform well even with 
limited training data. The Hyb-ICNN model 
dynamically obtains the features by laying inception 
components in the model which can acquire better 
accurate properties with smaller training samples by 
employing volatile spatial dimension convolutional 
filters and dynamic CNN framework. This model 
learns features quickly by incorporating a range of 
filter types into each layer. It isn't particularly deep; 
therefore, it isn't susceptible to experiencing overfit. 
Experiments on benchmark datasets show that the 
proposed model improves existing methods in terms 
of precision and accuracy. The efficiency of the 
presented model is further evaluated on new 
datasets, and it outperforms the HybridSN, AI-Net, 
and 3D-ICNN models by a significant margin. The 
proposed technique exhibited 2%-3% improvement 
in overall accuracy on benchmark and Indian 
datasets. The purpose of this study is to decrease the 
training time of each inception module in the future, 
resulting in a reduction in the model's overall 
training time. 
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