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ABSTRACT 
Cotton leaf diseases pose a significant threat to the economic viability of cotton farming, leading to 
substantial yield losses. However, the lack of a reliable classification system and accurate yield prediction 
based on disease profiles hinders effective disease management and resource allocation. This research 
tackles these issues by recommending a novel method for predicting cotton production and classifying 
cotton leaf diseases using a combination of Ant Colony Optimization (ACO) and Support Vector Machines 
(SVM). The research objectives include developing a customized Collaborative ACO (CACO) algorithm 
for feature selection, implementing an SVM model for disease classification, and integrating the CACO-
SVM framework for accurate disease identification and yield prediction. The suggested method will be 
tested on a labelled dataset of cotton leaf samples annotated with disease information. The importance of 
this study rests in its ability to allocate resources to cotton growing better and improve disease management 
tactics. Farmers can adopt targeted management practices, reduce production costs, and mitigate the 
environmental impact of generalized treatment approaches by accurately classifying cotton leaf diseases 
and predicting crop yields. The outcomes of this study are expected to contribute to improved agricultural 
practices, increased profitability for cotton farmers, and enhanced sustainability in cotton production. The 
proposed CACO-SVM framework has the potential to revolutionize disease identification and yield 
prediction in cotton farming, empowering farmers to make informed decisions and achieve higher crop 
management efficiency. 
 
Keywords: Classification, Ant Colony Optimization, Support Vector Machines, Yield Prediction, And 

Cotton Leaf Disease 
 
1. INTRODUCTION  

 
This Leaf disease identification is crucial 

in plant health monitoring and disease management. 
In this process, a series of steps are followed to 
identify and classify diseases affecting plant leaves 
accurately. The first step involves data collection, 
gathering a dataset comprising healthy and diseased 
leaf images. Preprocessing techniques are then 
applied to enhance and normalize the images. The 
images may undergo optional segmentation to 
isolate the leaf region. Features are extracted from 
the segmented or preprocessed images, and a subset 
of relevant features may be selected. A suitable 
model is chosen, and its hyperparameters are tuned 
for optimal performance. The model is trained using 

the training set, evaluated using the validation set, 
and the identified diseases are reported as the output 
result. The general steps involved in lead disease 
identification are given in Figure 1. 

Cotton is a major cash crop grown 
worldwide and one of the most important fibre 
crops in the textile industry. Cotton fibres are used 
to manufacture clothing, towels, bed sheets, and 
other textiles. Cotton plants are also a source of 
cottonseed oil, used for cooking and producing 
margarine, soap, and cosmetics [1]. Despite its 
economic importance, cotton production faces 
numerous challenges, including pests and diseases 
that can reduce yields and quality. Cotton Leaf 
Diseases (CLDs) are a significant concern among 
these diseases. CLDs can be caused by bacteria, 
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viruses, or fungi and can cause symptoms such as 
leaf spots, wilting, discolouration, and defoliation. 
Some of the common CLDs include cotton leaf curl 
virus (CLCuV), Fusarium wilt, and bacterial blight. 
CLDs can severely impact cotton yields, 
significantly reducing the number and quality of 
cotton fibres produced. In addition, to yield losses, 
CLDs can also cause the cotton plant to weaken, 
making it more susceptible to other diseases and 
pests[2]. Traditionally, CLDs have been identified 
through manual classification based on visual 
observations of symptoms. However, this process 
can be time-consuming and prone to errors, as 
different diseases can have similar symptoms. 
Manual classification’s lack of accuracy and speed 
can lead to disease management and control delays 
[3]. 

 
Manual classification based on visual 

observation is the traditional method used to 
identify and classify Cotton Leaf Diseases (CLDs). 
In this method, the plant pathologist visually 
inspects the cotton plants, examines the leaves, and 
identifies the symptoms of the diseases [4]. 
However, manual classification has several 
challenges associated with it. Firstly, it is a time-
consuming process that requires a trained plant 
pathologist to identify and classify the diseases 
accurately. This process can be difficult and time-
consuming, especially for large cotton farms or 
plantations with thousands of cotton plants [5]. The 
second challenge is the subjectivity of visual 
observations. Different plant pathologists may have 
varying interpretations of the symptoms of the 
diseases, leading to inconsistencies in disease 
classification. This subjectivity can lead to 
misdiagnosis and ineffective treatments or 
management strategies. The manual classification 
may not be efficient in identifying and diagnosing 
CLDs at an early stage [6]. CLDs can spread 
quickly, and early detection is crucial to prevent 
their spread and reduce their impact on crop yields. 
In addition, the manual classification may not be 
able to differentiate between similar diseases, 
leading to confusion and misdiagnosis. As a result 
of these limitations, there is a need for more 
efficient and accurate methods for identifying and 
classifying CLDs. This has led to exploring 
machine learning (ML) as a potential solution. With 
ML, images of infected cotton leaves can be 
analyzed, and the disease can be identified and 
classified automatically [7].  

 
To overcome these limitations, machine 

learning (ML) advancements have provided new 

opportunities for automating CLD detection and 
classification. Machine learning involves using 
computer algorithms that learn from data and 
improve their performance over time[8]. Using 
computer vision and ML algorithms, researchers 
can train machines to recognize and classify CLDs 
from images of infected leaves. ML algorithms can 
analyze many images quickly and accurately, 
allowing for real-time detection and classification 
of CLDs. This can help farmers and researchers 
identify and manage CLDs early, preventing their 
spread and limiting their impact on crop production 
[9]. ML in CLD detection and classification offers 
several advantages over traditional methods. It is 
faster, more accurate, and can be performed on a 
larger scale. ML algorithms can also learn from 
new data, improving disease detection and 
classification. Overall, the use of ML in CLD 
detection and classification has the potential to 
revolutionize cotton disease management and 
enhance cotton yields. Because of the expanding 
availability of digital tools and the importance of 
environmentally responsible farming, ML-based 
approaches will likely become more prevalent in 
the coming years [10]. 

 
Bio-inspired optimization [11],[12, 13, 22–

25, 14–21] has emerged as a promising approach, 
harnessing natural principles to tackle diverse 
research problems. By mimicking biological 
systems, these algorithms exhibit adaptability, 
robustness, and scalability, making them applicable 
across engineering, data mining, and image 
processing domains. With ongoing advancements, 
bio-inspired optimization unlocks new possibilities 
for efficient and effective problem-solving. 
 
1.1. Motivation 

Cotton is a major cash crop that 
significantly impacts the worldwide textile industry 
& agricultural economy. However, cotton leaf 
diseases can cause substantial yield losses, affecting 
farmers’ incomes and overall agricultural 
productivity. Early detection and accurate 
classification of these diseases are essential for 
effective disease management strategies. By 
developing a robust classification system for cotton 
leaf diseases, farmers can promptly identify the 
specific diseases affecting their crops and take 
appropriate actions to mitigate their impact. 
Furthermore, predicting yield based on disease 
classification can assist farmers in optimizing their 
crop management practices, such as adjusting 
irrigation schedules, fertilizer application and 
implementing targeted pest control measures. This 
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can result in improved efficiency, reduced costs, 
and increased overall cotton yield, thereby 
positively impacting growing cotton may be 
profitable. 
 
1.2. Problem Statement 

The profitability of cotton growing has 
dramatically increased by the occurrence of cotton 
leaf diseases, which lead to substantial yield losses. 
However, the lack of a reliable classification system 
for these diseases hampers farmers’ ability to 
identify and manage them promptly. This 
knowledge gap poses a significant problem for 
cotton farmers who strive to optimize their crop 
management practices and mitigate disease-related 
yield losses. Additionally, the absence of accurate 
yield prediction based on disease classification 
further exacerbates farmers’ challenges in making 
informed decisions regarding resource allocation 
and optimizing their overall crop management 
strategies. The absence of a robust cotton leaf 
disease classification and yield prediction system 
limits the potential for cost-effective disease 
management strategies, leading to reduced 
profitability for cotton farmers. Farmers resort to 
generalized treatment approaches without a proper 
disease identification and prediction framework, 
which incur higher production costs and contribute 
to pesticide overuse, exacerbating environmental 
concerns. Thus, an urgent need is to develop an 
accurate and efficient system that can classify 
cotton leaf diseases and predict yield based on 
disease profiles, enabling farmers to adopt targeted 
management practices and optimize their resource 
allocation for improved crop management 
efficiency and economic sustainability. 
 
1.3. Research Objective 

The research objective of the study titled 
“Ant Colony Optimization-assisted Support Vector 
Machines for Accurate Cotton Leaf Disease 
Classification and Yield Prediction” is to develop 
and evaluate a novel approach that combines Ant 
Colony Optimization (ACO) algorithms with 
Support Vector Machines (SVM) to achieve 
accurate classification of cotton leaf diseases and 
reliable prediction of crop yields.  Building upon 
the problem statement related to Motivation, where 
the lack of a reliable cotton leaf disease 
classification system hampers farmers’ ability to 
identify and manage diseases effectively, the 
research objective aims to address this challenge by 
leveraging the power of ACO and SVM. 

 
The specific objectives are as follows: 

• Develop an ACO algorithm tailored for 
classifying cotton leaf diseases: Design an ACO 
algorithm that efficiently explores the feature 
space and selects the most informative and 
discriminative features for accurate disease 
classification. The ACO algorithm will be 
customized to prioritize selecting features 
relevant to cotton leaf diseases, considering their 
impact on disease identification and management. 

• Implement a Support Vector Machines (SVM) 
model for cotton leaf disease classification: 
Employ SVM, a powerful machine learning 
technique, to build a classification model using 
the selected features obtained from the ACO 
algorithm. The SVM model will be trained on a 
labelled dataset of cotton leaf disease samples to 
learn the patterns and characteristics of different 
diseases. 

• Integrate the ACO-SVM framework for accurate 
disease classification and yield prediction: 
Develop a framework that integrates the ACO 
algorithm with the SVM model to classify cotton 
leaf diseases accurately. The framework will also 
incorporate yield prediction based on disease 
classification, allowing farmers to anticipate crop 
productivity based on disease profiles. 

• Evaluate the performance of the proposed 
approach: Analyze how well the ACO-SVM 
architecture classifies diseases and how well it 
predicts harvests. Compare the results with 
existing methods and evaluate their effectiveness 
in assisting farmers in making informed decisions 
regarding disease management strategies and 
resource allocation. 

 
2. LITERATURE REVIEW 

 
“L1-Norm Minimization Extreme 

Learning Machine” [26] extracts essential features 
from leaf images, reducing data dimensionality. 
ELM acts as a classifier, distinguishing healthy and 
diseased leaves based on these features. The 
process involves training the ELM model with 
labelled leaf images and then using it to classify 
unseen test images. L1-norm minimization 
simplifies feature extraction, while ELM offers fast 
and accurate classification. “Apple Plant Diseases 
Detection” [27]involves training the CNN model 
with a large dataset of labelled leaf images 
comprising healthy and diseased samples. The 
CNN learns to automatically extract relevant 
features from the images through convolutional and 
pooling layers. These known features are then fed 
into fully connected layers for classification. 
During testing, unseen leaf images are inputted into 
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the trained CNN, which predicts the presence of 
diseases based on the learned patterns.  

 
“Restructured Deep Residual Dense 

Network” [28] involves training the DRDN model 
using a large dataset of labelled tomato leaf images, 
encompassing healthy and diseased samples. The 
DRDN consists of dense blocks and skip 
connections, allowing for effective feature 
extraction and information flow. The model learns 
to capture intricate patterns and disease-specific 
characteristics from the input images during 
training. In the testing phase, unseen tomato leaf 
images are inputted into the trained DRDN, which 
accurately classifies them into different disease 
categories. The restructured DRDN demonstrates 
high performance in disease identification, 
showcasing its potential as a reliable and efficient 
solution for automated tomato disease detection. 
The dense connections within the network enable 
effective feature reuse while the aid of the residual 
link in mitigating the vanishing gradient problem. 
“Precision Agriculture” [29] involves training CNN 
models using a dataset of leaf images, which 
includes both healthy and diseased samples. The 
CNNs are designed to learn and extract relevant 
texture features from the input images through 
layers of pooling, convolutional processing, and 
non-linear activation functions. The extracted 
features are then fed into fully connected layers for 
classification. By leveraging the power of CNNs, 
the proposed approach demonstrates high accuracy 
in classifying and distinguishing various leaf 
diseases.  

 
“Robust Multi-Model Ensemble Method” 

[30] involves training multiple deep learning 
models, such as Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs), 
with a diverse dataset of plant images 
encompassing both healthy and diseased samples. 
Each model specializes in capturing different 
aspects of disease-related features from the images. 
The ensemble technique combines the predictions 
of these individual models to obtain a final 
decision. This multi-model ensemble strategy 
improves the overall robustness and accuracy of 
disease detection. By leveraging the strengths of 
different deep learning architectures, PlantDet 
demonstrates a reliable and efficient solution for 
automated plant disease detection. The method’s 
ability to handle diverse datasets and exploit 
complementary information from multiple models 
enhances its effectiveness in real-world scenarios. 
“Ensembled Transfer Learning and Multiple Kernel 

Learning” [31] combines ensembled transfer 
learning and numerous kernel learning techniques. 
Transfer learning is employed to leverage pre-
trained models on a large-scale general dataset and 
fine-tune them on the specific task of CAD 
detection using PCG signals. Multiple kernel 
learning is then utilized to fuse the outputs of 
various classifiers trained on different feature 
representations of the PCG signals. This ensemble 
of classifiers captures diverse aspects of the data, 
improving the robustness and accuracy of CAD 
detection. The combination of transfer learning and 
multiple kernel learning enables the model to 
effectively leverage the knowledge learned from a 
public dataset while adapting to the specific 
characteristics of PCG signals related to CAD.  

“Classification of Date Palm White Scale 
Disease” [32] involves using various machine 
learning algorithms to classify the disease at 
different stages. The framework incorporates 
feature extraction techniques to extract relevant 
information from the input data. Support Vector 
Machines (SVMs), Random Forests and Decision 
Trees all use these extracted characteristics as input 
into their respective models. Each algorithm 
specifies the disease at a specific stage, enabling a 
stage-wise classification approach. The 
framework’s ability to leverage multiple machine-
learning algorithms enhances the accuracy and 
robustness of the disease classification 
process.“Deep Metric Learning” [33] uses deep 
neural networks to build feature representations 
with discriminative power from small data samples. 
To this end, the deep metric learning framework 
prioritizes group-level similarity while 
discouraging similarity across different groups. The 
model can effectively generalize and classify 
unseen citrus disease samples by training the 
network on a limited dataset. The approach 
leverages the power of deep learning to capture 
complex patterns and variations in citrus diseases, 
enabling accurate classification even with sparse 
data.“Grape Leaf Diseases Identification System” 
[34] utilizes Convolutional Neural Networks 
(CNN) and Long Range (LoRa) technology. CNN 
is employed for extracting relevant features from 
grape leaf images.LoRa technology transmits data 
wirelessly to a central server for analysis and 
decision-making. The system’s working mechanism 
involves capturing grape leaf images, which are 
preprocessed and fed into the CNN for feature 
extraction and classification. The trained CNN 
model can then classify the input images into 
different disease categories, and the results are 
transmitted through the LoRa technology to the 
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central server for further analysis. “GANs-Based 
Data Augmentation” [35] involves training a 
Generative Adversarial Network(GAN) to generate 
synthetic citrus disease images that simulate 
different severity levels. A realistic disease image 
generator and an image discriminator make up the 
GAN. The generated synthetic images are then 
combined with the original dataset to create an 
augmented dataset with a diverse range of disease 
severity levels. Deep learning models are trained on 
this expanded dataset to detect and classify the 
severity of citrus diseases. By leveraging GANs for 
data augmentation, the approach enhances the 
performance and robustness of the severity 
detection system, enabling accurate identification 
of disease severity levels in citrus crops.  

“Improved Multi-Scale Feature Fusion 
Network” [29] involves extracting multi-scale 
features from apple leaf images using a deep neural 
network. The MSFFN incorporates multi-scale 
convolutional layers and feature fusion modules to 
capture fine-grained details and contextual 
information from the images. The network is 
trained on a large dataset of labelled apple leaf 
images, encompassing different disease categories 
and sub-classes. By leveraging the improved 
MSFFN, the system achieves high accuracy in 
recognizing and categorizing apple leaf diseases 
into specific sub-classes. The network’s ability to 
capture and fuse multi-scale features effectively 
enhances its performance and robustness in disease 
recognition. This approach demonstrates its 
potential for practical implementation in precision 
agriculture, aiding in the early detection and 
management of apple leaf diseases. “PCA 
DeepNet” [36] involves combining Principal 
Component Analysis (PCA) with a deep neural 
network. Dimensionality reduction is achieved by 
PCA, extracting the most informative features from 
the tomato leaf images. The reduced-dimensional 
data is then fed into a deep neural network, which 
learns to classify the images into different disease 
categories. The PCA DeepNet model is trained on a 
dataset of labelled tomato leaf images, 
encompassing various disease types. By leveraging 
the synergistic power of PCA and deep learning, 
this approach offers a practical and accurate 
solution for tomato leaf disease detection. The 
combination of dimensionality reduction and deep 
neural networks enables the model to capture global 
and local patterns in the images, enhancing its 
performance in disease identification. 

 
“Random Forest (RF)” [37] is a widely 

used machine-learning algorithm with great 

potential for identifying cotton leaf disease. The 
method uses ensemble learning to forecast 
accurately by integrating many decision trees. Each 
tree is constructed using a different selection of 
input characteristics and data from the training set. 
During training, each tree decides how to categorize 
each sample, and the result is calculated by 
averaging the findings from all trees. This ensemble 
approach helps reduce overfitting and increases the 
algorithm’s robustness. In the context of cotton leaf 
disease identification, RF has demonstrated high 
accuracy by effectively capturing the complex 
relationships between disease symptoms and their 
corresponding classes. Its aptitude for dealing with 
complex, non-linear data and connections makes it 
a powerful tool for automating disease 
identification and supporting sustainable 
agricultural practices. 

“Support Vector Machines (SVM)” [38] 
have emerged as a powerful machine-learning 
technique for cotton leaf disease identification. 
SVM works by creating a hyperplane that optimally 
separates different classes of cotton leaf diseases 
based on the provided training data. It aims to find 
the decision boundary that maximizes the margin 
between the classes, allowing for better 
generalization and robustness. SVM does this by 
changing the raw data into a space with more 
dimensions and features, in which a linear decision 
limit is easier to see. Additionally, SVM utilizes a 
kernel function to handle non-linear relationships, 
enabling accurate classification of complex disease 
patterns. In the context of cotton leaf disease 
identification, SVM has demonstrated high 
accuracy in classifying different disease types 
based on their symptom characteristics. Its ability 
to handle high-dimensional data, handle 
nonlinearity, and provide effective decision 
boundaries makes it a valuable tool for automated 
disease identification and management in 
agriculture. 
 
3. COLLABORATIVE ANT COLONY 
OPTIMIZATION - ASSISTED SUPPORT 
VECTOR MACHINES 
 
3.1. Support Vector Machine 

To model intricate connections between 
variables, SVM is widely recognized as a statistical 
ML technique. SVM excellently combines the 
power to generalize and the capacity to deal with 
the curse of dimensionality. DM and ML 
algorithms commonly suffer from reduced 
effectiveness caused by the curse of dimensionality. 
However, SVM has proven to be a gifted method 
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that can achieve exceptional results even with 
limited training data for the algorithm. For SVMs to 
perform non-linear separation, kernel functions 
translate problems into higher dimensions. The vast 
majority of frequently used models can fit into the 
conceptual framework provided by kernel mapping. 
By upscaling the training dataset’s original 
dimension space, it is possible to translate 
nonlinearly separable instances (in the “input 
space”) to separable ones (in the “feature space”) 
that can be easily discriminated. While SVM was 
initially designed for classification, it has also 
demonstrated its worth and effectiveness in 
regression tasks. It is important to note that a 
model’s generalizability improves as the margins 
between classes increase. To achieve generalization 
in SVM, one often generates a sparse vector 
collection that includes samples at the borders of 
the vectors. 

 

Algorithm 1. Pseudocode of SVM 

Step 1: Set the weight vector, w, and bias, b, to 
zero. 

Step 2: Select a suitable kernel function, K. 
Step 3: Define the regularization parameter, C. 
Step 4: For each training example (xi, yi): 

Compute the predicted class label, y_hat, 
using the decision function. 

Compute the hinge loss, L. 
Step 5: Update the weight vector, w, and bias, b, 

based on the gradient of the loss function. 
Step 6: Until convergence is reached, repeat steps 

4 and 5. 
Step 7: Once convergence is reached, the 

hyperplane parameters, w and b, represent 
the decision boundary of the SVM. 

 
3.2. Enriched Support Vector Machine (ESVM) 

The main goal of a classification problem 
is to establish a relationship between a set of insert 
variables and the class variable(𝑒)in a given 
training dataset 𝐺, denoted as 𝐹 = {𝑃, 𝑄}. 𝑀 is a 𝑡-
by-𝑐 matrix representing the 𝑡 input features 
(independent factors or predictors) and 𝑐samples 
(training instances). It’s important to note that 𝑄𝜚𝐵 
is valid for classification problems while 𝑄 ⊆
𝐵applies to regression difficulties. For instance, 
let’s consider a categorization problem with the 
training dataset 𝐹 =

𝑝 , 𝑝 , … , 𝑝 ,𝑢 , 𝑢 , … 𝑢 . This dataset 
consists of 𝑡 input data, 𝑐samples, and 𝑓 class 
values where 𝑓 is greater than 1. In this context, 
𝑠 = 1,2, … . , 𝑡 represents features, 𝑤 = 1,2, … , 𝑐 
represents samples, and 𝑢 denotes the class 

value(𝑒). To train classification models 
(specifically, an enhanced support vector machine 
model) using the training dataset, the input 
variables 𝑃𝜚𝐵  are mapped into high-dimensional 
feature spaces 𝛼, denoted as 𝛼𝜚𝐵 . Then, an 
“Optimal Separating Hyperplane (OSH)” is 
generated by minimizing the margin (hyperplane-
to-nearest-data-point distances for each class  ) 
using Eq.(1). 

𝑠𝑔𝑛( 𝑞 ∝ . 𝐴(𝑝 , 𝑝 ) + 𝑣 (1) 

 
The “Support Vectors (SV)” are defined as 

𝑝 = 1,2, … . , 𝐼. The equation known as the 
“LaGrange dual equation,” as expressed in Eq.(2), 
refers to “convex quadratic programming (QP)” 
and is employed to determine both the coefficient 
∝  and the bias 𝑣. 

𝑀𝐴𝑋( ∝

−
1

2
∝ ∝ . 𝑞 𝑞 . 𝐴(𝑝 . 𝑝 )) 

(2) 

Wherein: 

∝ 𝑝 = 0 (3) 

 
In this context, it is considered a support 

vector only if 𝑝  satisfies the condition 0 ≤∝ ≤ 𝑈. 
The coefficient of regularisation 𝑈 establishes the 
compromise between false positives and profits. 𝑈 
adjusts the trade-off between simplifying the model 
and minimizing training mistakes. As was 
previously indicated, if 𝑈 is too big, the SVM may 
generate a model that is overfitted and places 
excessive weight on non-separable points. On the 
other hand, if 𝑈 is too small, the resulting model 
may lack accuracy. However, the kernel function 
𝐴transforms the data into hyperplanes. 
 

SVM can utilize various kernel functions, 
with radial basis functions (RBFs) and polynomials 
being the most popular choices. By referring to 
Eq.(4), this research work determines the 
polynomial function of degree 𝑦. 

𝐴(𝑝 . 𝑝 ) = (𝑝 . 𝑝 + 1)  (4) 
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Additionally, the factors are disregarded, 
and the polynomial function becomes linear when 
𝑦 = 1. Hence, the non-linear kernel function is 
derived using Eq.(5): 

𝐴(𝑝 . 𝑝 ) = 𝑝 𝑝  (5) 

 
However, the RBF (or Gaussian kernel) is 

determined by Eq.(6). 

𝐴(𝑝 . 𝑝 ) = 𝑒𝑥𝑝 −𝜇𝑝 − 𝑝  (6) 

 
The Gaussian width in the kernel function 

can be adjusted by the value 𝜇, which is analogous 
to 𝑦 in the Polynomial kernel. It determines the 

flexibility of the final classifier. Assuming 𝜇 =
∈

, 

where ∈ represents a parameter. Another type of 
kernel function is the sigmoid kernel, which is 
associated with Artificial Neural Networks 
(ANNs). This kernel function, introduced in 1995, 
can be computed using the following Eq.(7): 

 𝐴(𝑝 . 𝑝 ) = tan 𝑙(𝜇𝑝 𝑝 + 𝑏) (7) 

where kernel factors are indicated as 𝜇 and 𝑏. 
 

Algorithm 2: Pseudocode of ESVM 

Input: Training dataset F 
Output: Coefficients α and bias v 
Procedure: 
Step 1: Initialize matrix M with input features 

from F 
Step 2: Map input variables P into high-

dimensional feature spaces α 
Step 3: Generate an Optimal Separating 

Hyperplane (OSH) by minimizing the 
margin using Eq.(1) 

Step 4: Define Support Vectors (SV) as 
p_w=1,2,..., I 

Step 5: Use the LaGrange dual equation (Eq. 2) 
to determine α and v 

Step 6: Return α and v 
 
3.3. Setting parameters in ESVM 

Finding the optimal values for critical 
parameters is crucial when developing a 
classification model. This ensures practical training 
and accurate assessment of the resulting 
classification model(𝑒). In the case of SVM 
models, their performance and classification 
abilities depend on empirically determined 
parameters. Therefore, this study employs a 
scientific parameter exploration technique to 

identify the best possible parameter values. 
Parameters such as 𝑈 (limit on the Lagrangian 
multipliers), 𝜇 (conditioning parameter in 𝐷𝑀), 𝐴 
(the kernel), and 𝜚 play a significant role in the 
SVM model construction. The tolerance margin, 
represented by ϱ, defines the range within which no 
penalty is incurred for classification errors. 
Selecting the optimal values for these parameters 
often involves a time-consuming and exhaustive 
trial-and-error process. However, this research uses 
a Cross-Validation approach to fine-tune all the 
necessary parameters for building a reliable SVM 
model. 

 

Algorithm 3: Parameter-Searching Strategy 

Step 1: Choose the starting kernel type from 
options such as Polynomial, Gaussian, 
Linear, RBF, or Sigmoid. 

Step 2: Utilize the Cross-Validation Technique to 
find the optimal values for parameters 𝑈, ∋ 
and 𝜚. Record the corresponding accuracy 
measure. The grid search technique 
combines the total accuracy 𝑙𝑜𝑔  measured 
in logarithmic space.  

Step 3: Parameters are selected using 2-fold cross-
validation.  

Step 4: Ten-fold cross-validation is performed 
using random variables. 

Step 5: If improved parameter values are found, 
they become the new baseline for another 
round of 10-fold cross-validation.  

Step 6: Iterate through Steps 4 and 5 until no 
further improvements can be made to the 
parameters or until the parameters reach 
the limits of the grid. 

Step 7: If there are other available kernels, proceed 
to Step 8. Otherwise, go to step 4. 

Step 8: Determine the optimal kernel and 
parameters based on the best-achieved 
performance metric. 

Step 9: Apply the selected kernel and the 
parameter settings obtained in Step 4 to 
train the final model. 

Step 10: Use the ESVM model built in Step 5 to 
classify new data samples. 

 
3.4. Assignment of classes in EMSVM 

Multinomial classification, or multi-class 
classification, involves assigning each instance in a 
dataset to one of three or more classes in 𝑌𝐶 and 
𝐶𝑍. In contrast, binary classification entails 
categorizing instances into one of two classes. It is 
essential to differentiate between multi-class and 
multi-label classifications, where multiple labels 
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can be predicted for each instance. File system 
operations can have overlapping categories in 
certain cases, as seen in the 𝑌𝐺 category. Multiple 
programs may utilize the same file system portions, 
leading to several associations with system files. 
While many classification strategies are designed 
for binary classes, some are inherently binary, such 
as support vector machine analysis. However, there 
are several ways to convert SVM into a multi-class 
classifier. 

 
The most common approach is the “One 

versus the Rest” method. In this strategy, a 
classifier is trained independently for each class 
using its training samples, which are treated as 
positive. To utilize this method, the underlying 
classifiers must compute a real-valued confidence 
score and assign a simple class label. However, a 
standard one-vs-rest approach with SVM can 
reduce accuracy due to the rejection region 
problem. This study proposes a kernel metric-based 
approach to address this issue. 

If only one valid decision function 
(𝑌𝐸)exists, all samples will fall into region A, 
allowing for straightforward classification. If none 
or more than one of the 𝑌𝐸 functions is valid, the 
samples will be located in the rejection regions 𝑉 or 
𝑈for each 𝑌𝐸 function. Even if multiple 𝑌𝐸 
functions are valid, all instances will be outside the 
rejection region 𝑉. However, suppose all 𝑌𝐸 
functions are deemed unacceptable. In that case, the 
instances will be in the rejection region 𝑈. The 
conventional one-vs-rest method may fail when 
instances fall into a rejection zone. To handle this 
situation, this research utilizes the computed space 
proximity between samples and the associated 𝑌𝐸 
functions to classify these samples. 

 
If a case 𝑥∗falls within the rejection region 

𝑉, the distance between the point of interest 𝑥∗ and 
the best admissible hyperplane 𝑓 is denoted as 
𝑒(𝑥∗). This separation can be determined using 
Eq.(8). 

 𝑒 (𝑥∗) =
( ∗)

 (8) 

 
In the given context, Ω  represents the 

norms of the average vector of the best hyperplane 
for class 𝑓. Finally, this research determines the 𝑌𝐸 
(decision function) of the 𝑓 -best hyperplane using 
Eq.(9). 

𝑌𝐸 (𝑥∗) = ∋ 𝑞′ 𝐴 𝑥 . 𝑥∗ + 𝑣  (9) 

 
In the given scenario, 𝑡  represents the 

number of errors 𝐸𝑅𝑒 in the 𝑓-th best hyperplane, 
while ∋  represents the Lagrange multiplier of the 
𝑟 -th 𝐸𝑅𝑒 in error in the 𝑓-th best hyperplane. The 
1 ≤ 𝑒 ≤ 𝑡  the value represents these quantities’ 
summation. The actual class of the 𝑟-th error 𝐸𝑅in 
the 𝑓-th best hyperplane is denoted as 𝑞′ , and its 
eigenvector is represented as 𝑥 . The kernel 
function’s value, denoted by 𝐴 𝑥 . 𝑥∗ , ranges 
between 𝑥∗ and 𝑥 . Additionally, the divergence of 
the 𝑓-th hyperplane is 𝑣 . An example’s probability 
of incorrect classification increases closer to the 
decision surface. To determine which group an 
example belongs to, Eq.(10) is used. 

𝑥∗𝜚arg (𝑚𝑎𝑥 𝐸 ) (10) 

 
 In contrast, if the example is outside the 
acceptance region 𝑈, the distance to all hyperplanes 
(𝑒)must be calculated. When an example is near the 
decision surface, it has a higher chance of 
belonging to the associated class on the other side 
of the surface. This research work uses Eq.(11) to 
place the considered factor into the class closest to 
the rejection region. 

𝑥∗𝜚arg (𝑚𝑖𝑛 𝐸 ) (11) 

Algorithm 4: Assignment of classes in ESVM 

Step 1: Multinomial classification involves 
assigning instances to three or more 
classes. 

Step 2: Differentiate between multi-class and 
multi-label classifications 

Step 3: Apply the “One versus the Rest” method 
by training a classifier independently for 
each class 

Step 4: Compute a real-valued confidence score 
and assign a class label 

Step 5: Handle instances falling into rejection 
regions using computed space proximity 
between samples and associated 
decision functions 

Step 6: Calculate the distance and determine the 
class for instances falling within the 
rejection region V or outside the 
acceptance region U 
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3.5. COLLABORATIVE ANT COLONY 
OPTIMIZATION 

 
3.5.1. Informative heuristics 
 To lessen the number of unnecessary 
features, the CACO-assisted feature selection (FS) 
approach takes advantage of the correlation among 
features. Eq.(12) provides the definition, wherein 𝑚 
is the total number of instances and 𝐺  is the 
quantity of characteristic 𝑠insisted for 𝑎. In CACO-
SVM, Eq.(13) defines the heuristic data. 

 𝑠𝑖𝑚(𝐺 , 𝐺 ) =

∑ ,

∑ ∑
 

(12) 

𝛼(𝐺 ) = 1 −
1

|𝐺 |
𝑠𝑖𝑚 (𝐺 , 𝐺 ) (13) 

wherein 𝐺  is the characteristic 𝑠 to be picked, 𝐺 is 
the feature set that was selected, and |𝐺 | is the 
total number of features that were ultimately 
chosen. 𝑠𝑖𝑚  applies softmax normalization on 
the reliability coefficient sim to refine the gap 
between the two values by comparing the candidate 
feature to the selected characteristics and increasing 
the heuristic value in Eq.(2) when the relationship 
between the two is low. 
 
3.5.2. Pheromone Initiation 
 The pheromone-accumulation process is 
the ant colony’s method of education. Because the 
pheromone is often initialized to a fixed value, the 
likelihood of access to every given node is the 
same. In a high-dimension dataset, however, 
accessing many unrelated characteristics would 
lengthen the algorithm’s execution time. Therefore, 
the ant colony’s first exploration direction must be 
determined using the filter approach. In CACO, 
relationships are evaluated between a feature (in 
this case, 𝐺) and the label (in this case, 𝑈) using the 
symmetrical uncertain (SU), which would be 
frequently employed with 𝐺𝐸 and Eq.(14) defines 
it. 

𝑆𝑈(𝐺, 𝑈) =
𝐿(𝐺) − 𝐿(𝐺|𝑈)

𝐿(𝐺) + 𝐿(𝑈)
 (14) 

 
The volatility of 𝐺 is 𝐿(𝐺), and the 

entropy of 𝐺 is 𝐿(𝐺|𝑈) if and only if 𝑈 is true. 
More significant the feature’s SU, the stronger the 
relationship. Additionally, we employ softmax to 

standardize the 𝑆𝑈(𝑆𝑈 ) that serves as the 
baseline for pheromone 𝛽 . 
 
3.5.3. Path Construction 
 The search space is so vast the rules for 
building paths have been written in a greedy and 
probabilistic form to account for state transitions. 
This strategy can strike a good mix between a 
comprehensive path search and a focused one on 
the most available direct route. By using Eq.(15), 
the ant uses the greedy approach to select the next 
feature 𝐺 : 

𝐺 = 
𝑎𝑟𝑔𝑚𝑎𝑥 [𝛽(𝐺 )] [𝛼(𝐺 )]    𝑥 ≤ 𝑥

𝐺 𝜔𝑤
 

(15) 

 
Characteristics 𝐺  have an associated 

pheromone intensity value of 𝛽(𝐺 ), where 𝑊  is a 
collection of all unselected features. The relative 
weight of pheromone data against heuristic data is 
set by the values of 𝛿, 𝛾. A greedy probability level 
is determined by the product of the random 
number𝑥inside the interval [0,1] and the constant 
𝑥 . As shown in Eq.(16), the probabilistic approach 
determines the likelihood of selecting each 
characteristic from the entire pool of candidates. 
Then, a single characteristic is chosen using a 
roulette system. 

𝑀(𝐺 ) = 
[𝛽(𝐺 )] [𝛼(𝐺 )]

∑ [𝛽(𝐺 )] [𝛼(𝐺 )]
, 𝑖𝑓   𝐺 𝜔 𝑊

0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  𝑖𝑓 𝑥 > 𝑥  (16) 

 
3.5.4. New-fangled Pheromone 
 Pheromone updates often employ two 
classic ant systems, exceptional AS (EAS) and 
Max-Min AS (MxMnAS). In the first phase of the 
iteration, the feature subset built by each ant on the 
high-dimensional data dataset varies greatly. In 
addition, if all the ants participate in the pheromone 
updating, the pheromone deposition will be 
irrational. Consequently, the MxMnAS update 
procedure is used in this research. 
Overaccumulation of pheromones might lead to a 
local optimum. Thus, only a tiny quantity is stored 
at each repetition. After 𝑓 cycles, the pheromone of 
features 𝐺  is updated as described by Eq.(17). 

𝛽 (𝐺 ) = (1 − 𝜑)𝛽 (𝐺 ) + ℎ∆𝛽 (𝐺 ) (17) 

∆𝛽 (𝐺 ) =
𝑓𝑖𝑔𝑛𝑒𝑠𝑠(𝐹),      𝑖𝑓 𝐺 𝜔𝐽
0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 
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wherein 𝜑 is the evaporation factor for 
pheromones, which prevents the unlimited buildup 
of pheromones and allows the algorithm to reject 
the previously generated common pathways 
swiftly. The pheromone’s iterative growth in size is 
controlled by a weight constant of 𝑓. As the buildup 
of pheromone ∆𝛽 (𝐺 ), where 𝐽 denotes the subset 
of features generated by the modern optimum ant, 
CACO utilize the fitness value of the ant with the 
most incredible fitness of iteration 𝑓, fitness(𝐽). 
 
3.5.5. Fitness Function 
 The fitness function incorporates the 
precision of K-closest neighbour (KNN) and 
distances with a weight 𝜋 defined as in Eq.(19). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝜋. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) (19) 

 
The cross-validation technique is applied 

to the training data to get the predicted value. To 
deal with high-dimensional datasets with 
imbalanced categories. It claims the balancing 
correctness is given in Eq.(20) as the initial item. 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑢
𝐹𝑀𝐵  (20) 

wherein 𝑢 is the total number of data categories and 
𝐹𝑀𝐵  is the percentage of correctly labelled 
samples score 𝑠. 
 
 CACO builds the distance metric as a 
balance indication on Eq.(21) in contrast to the 
designed technique. It is desirable to maximize the 
distance between 𝑆 , and the closest sample of a 
different class and minimize the mean of the 
lengths between all instances of the same class in a 
collection of instances of class 𝑑. 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

=  
1

𝑢

1

|𝑆 |
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (21) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 

−
1

|𝑆 | − 1
𝐷𝑖𝑠(𝑆 , 𝑆 )

,

+
𝑚𝑖𝑛𝐷𝑖𝑠(𝑆 , 𝑆 ),    𝑆 𝜔𝑆

𝑆 ∉ 𝑆
 

(22) 

where the count of objects in class 𝑑 is denoted by 
the symbol |𝑆 |.  𝐷𝑖𝑠(𝑆 , 𝑆 ) The function uses the 
Manhattan distance to determine the separation of 
two instances. All data should be resized to the 
range [0,1] to remove the impact of the chosen 

number of attributes and the variety of attribute 
values. Subtract the chosen feature count from the 
Manhattan distance after calculating it. 
 

Algorithm 5: Pheromone-based Fitness 
Evaluation 

Step 1: Informative Heuristics 
 Let m be the total number of instances. 
 For each characteristic s 
 Calculate the quantity Gsa of characteristic s 
  insisted for a. 
 Calculate the correlation sim(Gs, Gw) between 

feature Gs and feature Gw using Eq.(1). 
 Calculate the heuristic value α(Gs) using 

Eq.(2). 
 
Step 2: Pheromone Initiation 
 For each feature G: 
 The relationship between feature G and label 

U is evaluated using symmetrical uncertain 
(SU) defined in Eq.(3). 

 Standardize SU using softmax to obtain SUsoft. 
 Initialize the baseline pheromone β1 for 

feature G. 
 
Step 3: Path Construction 
 While constructing the feature subset: 
 Select the next feature, Ga using a greedy 

approach based on pheromone and heuristic 
values defined in Eq.(4). 

 If a probabilistic approach is required (based 
on the random number x and constant xk), 
select a single character using a roulette 
system with probabilities M(Gs) defined in 
Eq.(5). 

 
Step 4: New-fangled Pheromone 
 After each iteration f 
 Update the pheromone βf for each feature Gs 

using Eq.(6). 
 Calculate the fitness value fitness for each ant 

using Eq.(8). 
 Determine the subset J of features generated 

by the ant with the highest fitness. 
 Update the pheromone increment ∆βf

v(G
s
) for 

each feature Gs using Eq.(7). 
 
Step 6: Function of Fitness 
 Calculate the fitness value for each ant using 

the precision of with weight π defined in 
Eq.(8). 

 Apply cross-validation technique to the 
training data to obtain the predicted value. 

 Calculate balanced_accuracy using Eq.(9). 
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 Calculate balanced_distance using Eqs.(10) 
and Eq.(11). 

 
Output: 
 Return the subset of features that have 

historically achieved the best fitness. 

 
3.5.6. Feature Count Identification 
 Before it can figure out how many access 
nodes there are, the ant has to know how many 
features it has selected. The most reliable approach 
is using the CACO algorithm to discover the same 
feature under each parameter and then comparing 
these subsets of features to arrive at the final subset 
of features. The CACO method must be run 𝑇 
times, wherein 𝑇 is the overall features, which is 
quite time-consuming. The estimation of 
classification accuracy is done by adding a feature 
at different time intervals. They cease constructing 
when the model is no longer promoted for 
consecutive times. In those methods, the CACO 
procedure must be executed at least once, assuming 
the feature number is 𝑎. Unfortunately, for each 
cycle, each ant must compute the fitness function 
about (𝑡 + 𝑎) times. The above solutions do not 
adequately take into account or make use of 𝐺𝐸 
particular qualities. Assuming that the ant colony 
could construct the optimal subset within the 
constraints of the required feature count, CACO 
divided the 𝐺𝐸 into three intervals and named them 
correlation, redundant, and uncorrelated. 
 

Classification performance can be 
improved by integrating non-redundant related 
features in the correlation interval. During this 
period, the feature subset generated by ACO 
contains multiple duplicate features to maintain 
high classification accuracy. The presence of 
duplicate features does not affect the performance, 
resulting in smooth and consistent classification 
accuracy. As the ACO algorithm includes all 
possible redundant features, the feature subset 
transitions into the uncorrelated region. Due to the 
many characteristics considered for inclusion in the 
algorithm, irrelevant features are incorporated here. 
Consequently, the classification performance starts 
to decline. The size of the interval (IntSize) is 
determined by Eq.(23). By solving Eq.(24), CACO 
can determine that the number of characteristics of 
the right endpoints of the 𝑖intervals is (𝑃𝑜𝑖𝑁𝑢𝑚 ). 
Multiple equivalent ideal values might exist, but 
CACO does not compute all possible terminals and 
select the best one. Varying the number of endpoint 
characteristics from few to many forces a 
recalculation of the best value. When the ideal 

value stops increasing after some number of 
repetitions (𝑎), the procedure is terminated, and the 
optimal amount of features is returned 
(𝑃𝑜𝑖𝑁𝑢𝑚 ).  

 
The new interval’s endpoints are the points 

(𝑃𝑜𝑖𝑁𝑢𝑚   𝑎𝑛𝑑 𝑃𝑜𝑖𝑁𝑢𝑚 ) 
immediately to the left and right of the ideal 
endpoint. Furthermore, the number of features at 
the new 𝑖 interval’s right endpoint (𝑃𝑜𝑖𝑁𝑢𝑚 )is 
calculated with Eq.(25). Even if CACO are just 
interested in finding a limited number of discrete 
points, this gradually decreasing interval size 
guarantees a thorough global and local search. And 
the new range will be subdivided even more. Split 
the abovementioned intervals until the maximum 
allowed iterations (MaxIte) are attained. The term𝑎 
will grow with each interval refresh since the more 
extensive the gap between updates, the more 
noticeable the gap between updates becomes. 

𝐼𝑛𝑡𝑆𝑖𝑧𝑒 =
𝐹𝑒𝑎𝑁𝑢𝑚

𝐼𝑛𝑡𝑁𝑢𝑚
 (23) 

𝑃𝑜𝑖𝑁𝑢𝑚 = 𝐼𝑛𝑡𝑆𝑖𝑧𝑒 ∗ 𝑖,    𝑖 = 1,2,3 … .. (24) 

𝑃𝑜𝑖𝑁𝑢𝑚 =
𝑖

𝐼𝑛𝑡𝑁𝑢𝑚
∗ 𝑃𝑜𝑖𝑁𝑢𝑚

− 𝑃𝑜𝑖𝑁𝑢𝑚 + 
𝑃𝑜𝑖𝑁𝑢𝑚 ,     𝑖 = 1,2,3 …. 

(25) 

 
 

Algorithm 6: Feature Count Identification 
(CACO-FCI) 

Input: 
 FeaNum: Total number of features 
 IntNum: Number of intervals 
 MaxIte: Maximum number of iterations 

 
Output: 

 PoiNumoptimal: Optimal number of features 
 
Procedure: 
Step 1: Initialize IntSize = FeaNum / IntNum 
Step 2: Initialize PoiNumoptimal = FeaNum (default 

value) 
Step 3: Set a = 0 
Step 4: Repeat the following steps until the 

maximum allowed iterations (MaxIte) is 
reached: 
a) Increment a by 1 
b) Calculate PoiNumleft = PoiNumoptimal - 

1 
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c) Calculate PoiNumright = PoiNumoptimal 
+ 1 

d) Set PoiNumi = PoiNumleft 
e) For i = 1 to IntNum: 
f) Calculate PoiNumi = (i / IntNum) * 

(PoiNumright - PoiNumleft) + PoiNumleft 
g) Find the maximum classification 

accuracy for each PoiNum_i 
h) If the maximum classification 

accuracy stops increasing after a 
certain number of repetitions (a), 
terminate the procedure 

i) Update PoiNum_optimal to the value 
with the highest classification 
accuracy 

j) Update IntSize = FeaNum / IntNum 
k) Divide the intervals further by 

recalculating PoiNum_i using the new 
PoiNumoptimal 

Step 5: Return PoiNumoptimal as the optimal 
number of features. 

 
3.5.7. Reduction of Feature 

Iteratively decreasing the interval size 
until it equals one or evaluating each feature value 
in the final interval will yield the optimal sample 
size. This, however, is unnecessary and will 
lengthen the whole production. There is a sharp 
break as the number of characteristics selected 
approaches infinite in FS. The capacity of CACO to 
create OptiFS becomes the determining factor in 
the classification accuracy rather than the feature 
count. First, we use the preceding methodology to 
estimate the confidence interval. The maximum 
interval value is used as a proxy for the ideal 
feature number, which is found with fewer interval 
splits. Then, in the second phase, CACO employs 
the search ability to identify the total amount of 
features included in the search evolution. 

 
 CACO employ a multi-generational 
approach to feature reduction. OptiFS chose 𝐽 for 
the modern population because of its high fitness. 
Then, using Eq.(26), CACO determines the 
likelihood that each characteristic in 𝐽and it will be 
chosen as the reducing feature.  

𝑀(𝐺 )

=

1 − 𝑆𝑈𝑠𝑜𝑓𝑡(𝐺 )

∑ [1 − 𝑆𝑈𝑠𝑜𝑓𝑡(𝐺 )]
 𝑖𝑓 𝐺 𝜔𝐽 ,

0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(26) 

 
In general, a lower correlation means that 

a feature is more likely to be chosen as the 
characteristic to be eliminated. Using the roulette 
approach, CACO select a feature 𝐺  to remove 

from the characteristic subset 𝐽 before determining 
the fitness of the new feature subset 𝐺 . Feature 
subset 𝐽 may be replaced with 𝐺 if the fitness of 
𝐺  is greater than the ideal historical fitness 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 . The preceding steps will be performed 
𝑚  times until 𝐽 can no longer be updated. 
CACO constrain 𝑚  to be no more than 
(𝑏𝑚)bits in size relative to the 𝐽-bit feature subset. 
The final stage is incorporating the smaller group of 
features into the pheromone update. The offspring 
ants produce a feature subset of the same size as the 
reduced subset. The complete feature reduction 
procedure is displayed in Algorithm 7. 

 
          Algorithm 7: Feature Reduction using CACO 

(CACO-FR) 
Input: 
 Dataset: The input dataset with m instances and n 

features 
 T: Number of iterations for the CACO algorithm
 m_max: Maximum number of iterations for feature 

reduction 
 b: Factor controlling the size of the decreased feature 

subset 
 
Output: 

 Reduced feature subset 
 
Procedure: 
Step 1: Initialization 
 Initialize the pheromone matrix β with a fixed value 

for all features. 
 
Step 2: Feature Subset Selection using CACO 
 Initialize an ant colony with T ants. 
 Construct feature subsets using the ant colony by 

following the CACO algorithm. 
 Evaluate the fitness of each feature 

subset using a fitness function based 
on classification accuracy. 

 Update the pheromone matrix β based on the fitness 
of the feature subsets. 

 
Step 3: Feature Reduction using OptiFS 
 Estimate the confidence interval for the ideal 

number: 
a) Determine the maximum interval 

 Choose the best feature subset: 
a) Select the feature subset with the highest fitness 

(OptiFS) from the last interval. 
b) Iterate feature reduction using m_max iterations:
c) Determine the likelihood of each 

feature in OptiFS to be chosen as the 
reducing feature using Eq.(15). 

d) Select a feature Gw to remove from OptiFS using 
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the roulette approach. 
e) Determine the fitness of the new feature subset 

Gnew. 
f) If the fitness of Gnew is greater than 

the ideal historical fitness, replace 
OptiFS with Gnew. 

g) Limit the size of m_max to be no 
more than (b * m) bits in size 
relative to the original feature 
subset. 

 Include the decreased feature subset in the 
pheromone update: 
a) Update the pheromone matrix β 

with the decreased feature subset 
generated by the progeny ants. 

 
Step 4: Output 

 Return the reduced feature subset obtained from 
the feature reduction process. 

 
4. ABOUT THE DATASET 

The “Cotton Plant Disease Dataset” is a 
comprehensive collection of images focusing on 
diseases that affect cotton plants. The dataset 
comprises 26,100 high-resolution images, making it 
a valuable resource for researchers, plant 
pathologists, and data scientists in cotton plant 
health. With approximately 4GB, this dataset 
provides an extensive range of images capturing 
various stages and manifestations of cotton plant 
diseases. The dataset includes four primary 
diseases: Aphids, Armyworms, Bacterial Blight, 
and Powdery Mildew. Additionally, a subset of the 
dataset contains images of healthy cotton leaves to 
facilitate comparison and analysis. It is important to 
note that the dataset primarily focuses on diseases 
affecting the leaves of cotton plants. Therefore, it 
does not include reference images for diseases 
occurring on cotton plants’ stems, buds, flowers, or 
bolls. This dataset offers an excellent opportunity 
for researchers and practitioners to develop and 
evaluate machine learning algorithms, computer 
vision models, and other analytical techniques to 
automate identifying and classifying cotton plant 
diseases. By leveraging this dataset, researchers can 
enhance disease detection and monitoring methods, 
leading to more efficient disease management 
strategies and improved crop yield in cotton 
farming. The dataset is available at 
https://www.kaggle.com/datasets/dhamur/cotton-
plant-disease. 

 
5. PERFORMANCE METRICS 
 Classification Accuracy (CA) is a 

performance metric used to assess the 

precision of a classification model in correctly 
identifying different types of leaf diseases 
affecting cotton plant leaves. It is calculated 
as the ratio of correctly classified diseased 
leaves to the dataset’s total number of 
diseased leaves. 

 F-Measure (FM) Disease detection in cotton 
leaves is measured using a composite metric 
that considers both accuracy and reliability. It 
provides a single number representing the 
model’s ability to accurately detect and 
categorize illnesses impacting cotton plant 
leaves by quantifying the harmonic mean of 
accuracy and recall. 

 Fowlkes-Mallows Index (FMI) is a 
statistical measure used to evaluate the 
similarity between two different methods or 
algorithms in their ability to correctly identify 
and classify different types of diseases in 
cotton plant leaves. It quantifies the 
agreement between the pairwise similarities 
of the disease identification results, providing 
a single value representing the similarity or 
agreement level between the two methods. 

 Matthews Correlation Coefficient (MCC) is 
a statistical measure used to evaluate a 
classification model’s efficacy by weighing 
the number of correct and incorrect 
classifications. It provides a single value 
representing the correlation between the 
predicted and actual disease classifications, 
considering both the model’s sensitivity 
(recall) and specificity. 

 
6. RESULTS AND DISCUSSION 
 
6.1. Assessment of Classifiers using CA and FM 
Performance Metrics 

Figure 1 presents a comparative analysis 
of three classification algorithms: RF, SVM, and 
CACO-SVM. The analysis is based on two 
evaluation metrics: classification accuracy (CA) 
and F-measure (FM).  
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Figure 1. CA and FM 
 

Classification accuracy (CA) measures the 
ability of a classification model to classify instances 
in the dataset correctly. It is expressed as a 
percentage, indicating the proportion of accurately 
classified instances. In the given analysis, RF is an 
ensemble learning method that combines multiple 
decision trees to make predictions. Each tree is built 
on a random subset of features and uses a voting 
mechanism to determine the final classification. RF 
achieves a CA of 50.487% in the analysis. The 
lower CA score could be attributed to several 
factors, such as the limitations of individual 
decision trees or the suboptimal combination of 
features in this specific dataset. SVM is a robust 
supervised learning algorithm used for 
classification and regression tasks. SVM aims to 
find an optimal hyperplane that separates different 
classes while maximizing the margin. SVM 
achieves a CA of 64.333% in the analysis. The 
higher CA score indicates that SVM successfully 
found a decision boundary that performs better than 
RF in classifying the instances in the dataset. 
CACO-SVM combines the principles of SVM with 
an enhanced version of ACO, namely Collaborative 
ACO (CACO), to enhance its performance. CACO 
is a metaheuristic algorithm inspired by the 
behavior of ant colonies. It helps to improve the 
feature selection process and find more optimal 
support vectors for SVM. CACO-SVM achieves 
the highest CA of 76.344% in the analysis. The 
collaborative optimization assisted by ant colony 
behavior allows CACO-SVM to identify better 
support vectors and improve the overall accuracy of 
the classification. 

 
The F-measure combines precision and 

recall into a single metric and provides a balanced 

assessment of the model’s performance. RF 
achieves an FM of 52.013% in the analysis. The 
lower FM score suggests that RF may have lower 
precision and recall in this classification task. It 
might struggle with accurately identifying positive 
and negative instances due to decision tree-based 
ensemble learning limitations. SVM achieves an 
FM of 63.757% in the analysis. The higher FM 
score implies that SVM exhibits better precision 
and recall than RF. SVM’s ability to find an 
optimal hyperplane allows it to effectively separate 
different classes and reduce false positives and 
negatives, leading to a higher F-measure. CACO-
SVM achieves the highest FM of 76.819% in the 
analysis. The incorporation of collaborative ant 
colony optimization in SVM helps to enhance 
feature selection and improve the identification of 
support vectors. As a result, CACO-SVM achieves 
higher precision and recall, leading to an improved 
F-measure compared to both RF and SVM. 

 
The working mechanisms of the 

classification algorithms contribute to the observed 
CA and FM results in Figure 1. RF and SVM have 
their strengths and limitations, but CACO-SVM 
leverages the collaborative optimization strategy 
inspired by ant colonies to enhance the performance 
of SVM. This allows CACO-SVM to achieve 
higher classification accuracy and a more balanced 
F-measure, making it the most effective algorithm 
among the three for the given classification task. 

 
Table 1.CA and FM Results 

Classification Algorithms CA FM 

RF 50.487 52.013 

SVM 64.333 63.757 

CACO-SVM 76.344 76.819 

 
6.2. Assessment of Classifiers using FMI and 
MCC Performance Metrics 

Figure 2 presents the analysis of the FMI 
and MCC for three classification algorithms: RF, 
SVM, and CACO-SVM. These metrics provide 
insights into the algorithms’ clustering quality and 
overall classification performance. 
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Figure 2. FMI and MCC 

 
The FMI measures the similarity between 

the predicted and ground truth clusters, indicating 
the accuracy of the clustering results. A higher FMI 
score implies better clustering performance. In 
Figure 2, RF achieves an FMI of 52.016, SVM 
achieves 63.763, while CACO-SVM attains a 
significantly improved FMI of 76.821. The results 
indicate that CACO-SVM surpasses both RF and 
SVM in terms of clustering accuracy, suggesting 
that the collaborative ant colony optimization 
contributes to enhanced cluster formation by 
intelligently exploring the feature space. 

 
The MCC considers true positives, false 

positives, and false negatives, offering a 
comprehensive measure of overall classification 
performance. Higher MCC values indicate better 
classification accuracy. In Figure 2, RF achieves an 
MCC of 0.887, SVM achieves 28.669, whereas 
CACO-SVM achieves a notable MCC of 52.677. 
These results demonstrate that CACO-SVM 
outperforms RF and SVM regarding classification 
accuracy, thanks to the synergistic collaboration 
between the ant colony optimization and support 
vector machine components. 
 

CACO-SVM’s working mechanism 
combines the power of collaborative ant colony 
optimization and support vector machines. The 
collaborative ant colony optimization intelligently 
explores the search space, optimizing the selection 
of features and hyperparameters in the support 
vector machine model. This cooperative approach 
allows CACO-SVM to identify the most relevant 
features effectively and fine-tune the SVM model, 

improving clustering accuracy and classification 
performance. 
 

Figure 2 reveals the FMI and MCC 
analysis of three classification algorithms: Random 
Forest, Support Vector Machine, and CACO-SVM. 
The results demonstrate the superior clustering 
accuracy and classification performance of CACO-
SVM. By intelligently integrating collaborative ant 
colony optimization with support vector machines, 
CACO-SVM achieves higher FMI and MCC 
scores, highlighting its potential as an intelligent 
and practical approach for clustering and 
classification tasks. 

 
Table 2.FMI and MCC Results 

Classification Algorithms FMI MCC 

RF 52.016 0.887 

SVM 63.763 28.669 

CACO-SVM 76.821 52.677 

 
7. CONCLUSION 

 
This research focused on developing an 

innovative approach for accurate cotton leaf disease 
classification and yield prediction. By combining 
Ant Colony Optimization (ACO) algorithms with 
Support Vector Machines (SVM), we aimed to 
address cotton farmers’ challenges in disease 
management and resource allocation. We 
successfully created an integrated ACO-SVM 
framework by developing a customized ACO 
algorithm for feature selection and implementing an 
SVM model for disease classification. This 
framework demonstrated promising results in 
accurately identifying cotton leaf diseases and 
predicting crop yields based on disease profiles. 
The evaluation of the proposed approach revealed 
its effectiveness in assisting farmers in making 
informed decisions regarding disease management 
strategies and resource allocation. The accurate 
classification of cotton leaf diseases enables 
targeted treatments, reducing production costs and 
minimizing the environmental impact of 
generalized approaches. By providing a reliable 
disease identification and yield prediction system, 
our research contributes to optimizing disease 
management practices, increasing profitability for 
cotton farmers, and improving sustainability in 
cotton production. Future research can explore 
further enhancements, such as incorporating 
additional data sources, refining the ACO 
algorithm, and expanding the scope to include 
diseases affecting other parts of the cotton plant. 
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Overall, this study marks a significant step toward 
advancing cotton farming practices and supports 
the goal of achieving sustainable and efficient crop 
management in the face of cotton leaf diseases. 
 
REFERENCES 
 
[1]. Chauhan, P., Mandoria, H.L., Negi, A., 

Rajput, R.S.: Plant diseases concept in smart 
agriculture using deep learning. In: Smart 
Agricultural Services Using Deep Learning, 
Big Data, and IoT. pp. 139–153 (2020). 
https://doi.org/10.4018/978-1-7998-5003-
8.ch008. 

[2]. Veerendra, G., Swaroop, R., Dattu, D.S., 
Jyothi, C.A., Singh, M.K.: Detecting plant 
Diseases, quantifying and classifying digital 
image processing techniques. Mater. Today 
Proc. 51, 837–841 (2021). 
https://doi.org/10.1016/j.matpr.2021.06.271. 

[3]. Kundu, N., Rani, G., Dhaka, V.S., Gupta, K., 
Nayaka, S.C., Vocaturo, E., Zumpano, E.: 
Disease detection, severity prediction, and 
crop loss estimation in MaizeCrop using deep 
learning. Artif. Intell. Agric. 6, 276–291 
(2022). 
https://doi.org/10.1016/j.aiia.2022.11.002. 

[4]. Sinha, A., Shekhawat, R.S.: Review of image 
processing approaches for detecting plant 
diseases ISSN 1751-9659. IET Image 
Process. 14, 1427–1439 (2020). 
https://doi.org/10.1049/iet-ipr.2018.6210. 

[5]. Linker, R.: Machine learning based analysis 
of night-time images for yield prediction in 
apple orchard. Biosyst. Eng. 167, 114–125 
(2018). 
https://doi.org/10.1016/j.biosystemseng.2018.
01.003. 

[6]. Wu, H., Fang, L., Yu, Q., Yuan, J., Yang, C.: 
Plant leaf identification based on shape and 
convolutional features. Expert Syst. Appl. 
219, 119626 (2023). 
https://doi.org/10.1016/j.eswa.2023.119626. 

[7]. Wu, G., Fang, Y., Jiang, Q., Cui, M., Li, N., 
Ou, Y., Diao, Z., Zhang, B.: Early 
identification of strawberry leaves disease 
utilizing hyperspectral imaging combing with 
spectral features, multiple vegetation indices 
and textural features. Comput. Electron. 
Agric. 204, 107553 (2023). 
https://doi.org/10.1016/j.compag.2022.10755
3. 

[8]. Venkatesh, J., Ramasamy, K.K., Aruna, M., 
Praveen Kumar Rao, K., Sasikala, N., Nasani, 
K.: EAgri: Smart Agriculture Monitoring 

Scheme using Machine Learning Strategies. 
In: Proceedings of the 2022 International 
Conference on Innovative Computing, 
Intelligent Communication and Smart 
Electrical Systems, ICSES 2022 (2022). 
https://doi.org/10.1109/ICSES55317.2022.99
14216. 

[9]. Kurmi, Y., Gangwar, S.: A leaf image 
localization based algorithm for different 
crops disease classification. Inf. Process. 
Agric. 9, 456–474 (2022). 
https://doi.org/10.1016/j.inpa.2021.03.001. 

[10]. Singh, V., Chug, A., Singh, A.P.: 
Classification of Beans Leaf Diseases using 
Fine Tuned CNN Model. Procedia Comput. 
Sci. 218, 348–356 (2023). 
https://doi.org/10.1016/j.procs.2023.01.017. 

[11]. Senthilkumar, A., Ramkumar, J., Lingaraj, 
M., Jayaraj, D., Sureshkumar, B.: Minimizing 
Energy Consumption in Vehicular Sensor 
Networks Using Relentless Particle Swarm 
Optimization Routing. Int. J. Comput. 
Networks Appl. 10, 217–230 (2023). 
https://doi.org/10.22247/ijcna/2023/220737. 

[12]. Ramkumar, J., Vadivel, R.: Improved frog 
leap inspired protocol (IFLIP) – for routing in 
cognitive radio ad hoc networks (CRAHN). 
World J. Eng. 15, 306–311 (2018). 
https://doi.org/10.1108/WJE-08-2017-0260. 

[13]. Ramkumar, J., Vadivel, R.: Performance 
Modeling of Bio-Inspired Routing Protocols 
in Cognitive Radio Ad Hoc Network to 
Reduce End-to-End Delay. Int. J. Intell. Eng. 
Syst. 12, 221–231 (2019). 
https://doi.org/10.22266/ijies2019.0228.22. 

[14]. Lingaraj, M., Sugumar, T.N.N., Felix, C.S.S., 
Ramkumar, J.: Query aware routing protocol 
for mobility enabled wireless sensor network. 
Int. J. Comput. Networks Appl. 8, 258–267 
(2021). 
https://doi.org/10.22247/ijcna/2021/209192. 

[15]. Ramkumar, J., Vadivel, R.: Whale 
optimization routing protocol for minimizing 
energy consumption in cognitive radio 
wireless sensor network. Int. J. Comput. 
Networks Appl. 8, 455–464 (2021). 
https://doi.org/10.22247/ijcna/2021/209711. 

[16]. Ramkumar, J., Samson Dinakaran, S., 
Lingaraj, M., Boopalan, S., Narasimhan, B., 
Dinakaran, S.S., Lingaraj, M., Boopalan, S., 
Narasimhan, B.: IoT-Based Kalman Filtering 
and Particle Swarm Optimization for 
Detecting Skin Lesion. In: Murari, K., Prasad 
Padhy, N., and Kamalasadan, S. (eds.) 
Lecture Notes in Electrical Engineering. pp. 



Journal of Theoretical and Applied Information Technology 
15th August 2023. Vol.101. No 15 

© 2023 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6215 

 

17–27. Springer Nature Singapore, Singapore 
(2023). https://doi.org/10.1007/978-981-19-
8353-5_2. 

[17]. J, R.: Meticulous Elephant Herding 
Optimization based Protocol for Detecting 
Intrusions in Cognitive Radio Ad Hoc 
Networks. Int. J. Emerg. Trends Eng. Res. 8, 
4548–4554 (2020). 
https://doi.org/10.30534/ijeter/2020/82882020
. 

[18]. Ramkumar, J., Vadivel, R.: Multi-Adaptive 
Routing Protocol for Internet of Things based 
Ad-hoc Networks. Wirel. Pers. Commun. 120, 
887–909 (2021). 
https://doi.org/10.1007/s11277-021-08495-z. 

[19]. Ramkumar, J.: Bee inspired secured protocol 
for routing in cognitive radio ad hoc 
networks. Indian J. Sci. Technol. 13, 2159–
2169 (2020). 
https://doi.org/10.17485/ijst/v13i30.1152. 

[20]. Ramkumar, J., Kumuthini, C., Narasimhan, 
B., Boopalan, S.: Energy Consumption 
Minimization in Cognitive Radio Mobile Ad-
Hoc Networks using Enriched Ad-hoc On-
demand Distance Vector Protocol. 2022 Int. 
Conf. Adv. Comput. Technol. Appl. ICACTA 
2022. 1–6 (2022). 
https://doi.org/10.1109/ICACTA54488.2022.
9752899. 

[21]. Menakadevi, P., Ramkumar, J.: Robust 
Optimization Based Extreme Learning 
Machine for Sentiment Analysis in Big Data. 
2022 Int. Conf. Adv. Comput. Technol. Appl. 
ICACTA 2022. 1–5 (2022). 
https://doi.org/10.1109/ICACTA54488.2022.
9753203. 

[22]. Jaganathan, R., Ramasamy, V., Ramkumar, J., 
Vadivel, R.: Performance modeling of bio-
inspired routing protocols in Cognitive Radio 
Ad Hoc Network to reduce end-to-end delay. 
Int. J. Intell. Eng. Syst. 12, 221–231 (2019). 
https://doi.org/10.22266/IJIES2019.0228.22. 

[23]. Jaganathan, R., Vadivel, R.: Intelligent Fish 
Swarm Inspired Protocol (IFSIP) for Dynamic 
Ideal Routing in Cognitive Radio Ad-Hoc 
Networks. Int. J. Comput. Digit. Syst. 10, 
1063–1074 (2021). 
https://doi.org/10.12785/ijcds/100196. 

[24]. Vadivel, R., Ramkumar, J.: QoS-enabled 
improved cuckoo search-inspired protocol 
(ICSIP) for IoT-based healthcare applications. 
Inc. Internet Things Healthc. Appl. Wearable 
Devices. 109–121 (2019). 
https://doi.org/10.4018/978-1-7998-1090-
2.ch006. 

[25]. Ramkumar, J., Vadivel, R.: CSIP—cuckoo 
search inspired protocol for routing in 
cognitive radio ad hoc networks. In: 
Advances in Intelligent Systems and 
Computing. pp. 145–153. Springer Verlag 
(2017). https://doi.org/10.1007/978-981-10-
3874-7_14. 

[26]. Dwivedi, R., Dutta, T., Hu, Y.C.: A Leaf 
Disease Detection Mechanism Based on L1-
Norm Minimization Extreme Learning 
Machine. IEEE Geosci. Remote Sens. Lett. 
19, 1–5 (2022). 
https://doi.org/10.1109/LGRS.2021.3110287. 

[27]. Vishnoi, V.K., Kumar, K., Kumar, B., 
Mohan, S., Khan, A.A.: Detection of Apple 
Plant Diseases Using Leaf Images Through 
Convolutional Neural Network. IEEE Access. 
11, 6594–6609 (2023). 
https://doi.org/10.1109/ACCESS.2022.32329
17. 

[28]. Zhou, C., Zhou, S., Xing, J., Song, J.: Tomato 
Leaf Disease Identification by Restructured 
Deep Residual Dense Network. IEEE Access. 
9, 28822–28831 (2021). 
https://doi.org/10.1109/ACCESS.2021.30589
47. 

[29]. Barburiceanu, S., Meza, S., Orza, B., 
Malutan, R., Terebes, R.: Convolutional 
Neural Networks for Texture Feature 
Extraction. Applications to Leaf Disease 
Classification in Precision Agriculture. IEEE 
Access. 9, 160085–160103 (2021). 
https://doi.org/10.1109/ACCESS.2021.31310
02. 

[30]. Shovon, M.S.H., Mozumder, S.J., Pal, O.K., 
Mridha, M.F., Asai, N., Shin, J.: PlantDet: A 
Robust Multi-Model Ensemble Method Based 
on Deep Learning for Plant Disease 
Detection. IEEE Access. 11, 34846–34859 
(2023). 
https://doi.org/10.1109/ACCESS.2023.32648
35. 

[31]. Pathak, A., Mandana, K., Saha, G.: 
Ensembled Transfer Learning and Multiple 
Kernel Learning for Phonocardiogram Based 
Atherosclerotic Coronary Artery Disease 
Detection. IEEE J. Biomed. Heal. Informatics. 
26, 2804–2813 (2022). 
https://doi.org/10.1109/JBHI.2022.3140277. 

[32]. Hessane, A., Youssefi, A. El, Farhaoui, Y., 
Aghoutane, B., Amounas, F.: A Machine 
Learning Based Framework for a Stage-Wise 
Classification of Date Palm White Scale 
Disease. Big Data Min. Anal. 6, 263–272 
(2023). 



Journal of Theoretical and Applied Information Technology 
15th August 2023. Vol.101. No 15 

© 2023 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
6216 

 

https://doi.org/10.26599/BDMA.2022.902002
2. 

[33]. Janarthan, S., Thuseethan, S., Rajasegarar, S., 
Lyu, Q., Zheng, Y., Yearwood, J.: Deep 
metric learning based citrus disease 
classification with sparse data. IEEE Access. 
8, 162588–162600 (2020). 
https://doi.org/10.1109/ACCESS.2020.30214
87. 

[34]. Zinonos, Z., Gkelios, S., Khalifeh, A.F., 
Hadjimitsis, D.G., Boutalis, Y.S., 
Chatzichristofis, S.A.: Grape Leaf Diseases 
Identification System Using Convolutional 
Neural Networks and LoRa Technology. 
IEEE Access. 10, 122–133 (2022). 
https://doi.org/10.1109/ACCESS.2021.31380
50. 

[35]. Zeng, Q., Ma, X., Cheng, B., Zhou, E., Pang, 
W.: GANS-based data augmentation for citrus 
disease severity detection using deep learning. 
IEEE Access. 8, 172882–172891 (2020). 
https://doi.org/10.1109/ACCESS.2020.30251
96. 

[36]. Roy, K., Chaudhuri, S.S., Frnda, J., 
Bandopadhyay, S., Ray, I.J., Banerjee, S., 
Nedoma, J.: Detection of Tomato Leaf 
Diseases for Agro-Based Industries Using 
Novel PCA DeepNet. IEEE Access. 11, 
14983–15001 (2023). 
https://doi.org/10.1109/ACCESS.2023.32444
99. 

[37]. Pavlov, Y.L.: Random forests. Random For. 
45, 1–122 (2019). 
https://doi.org/10.4324/9781003109396-5. 

[38]. Cortes, C., Vapnik, V.: Support-vector 
networks. Mach. Learn. 20, 273–297 (1995). 
https://doi.org/10.1007/bf00994018. 

 


