
Journal of Theoretical and Applied Information Technology
15th August 2023. Vol.101. No 15

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6135

 DESIGN OF MUTATION OPERATORS FOR TESTING
USING PARALLEL GENETIC ALGORITHM FOR OPEN-

SOURCE ENVIRONMENTS

SANDDEP KADAM1, T. SRINIVASARAO2
1Department of Computer Engineering Gitam University,Visakhapattnaam, India
2Department of Computer Engineering Gitam University, Visakhapattnaam India

1sukadam.bscoer@gmail.com, 2 sthamada@gitam.edu

ABSTRACT

Specification-based testing approaches create test data without having any prior knowledge of the
program's structure. However, the quality of this test data isn't always reliable enough to catch errors when
non-functional modifications are made to the software. We offer a novel technique that combines formal
requirements and the evolutionary algorithm to successfully produce test data. In this technique, Parallel
Genetic Algorithm (PGA) rewrites formal requirements in order to create input values that kill as many
mutants of the target programmed as feasible. To explain how the approach works, two famous instances
are offered. The results suggest that the proposed technique may successfully produce test cases to
eliminate programmed mutants, resulting in improved software maintenance.

Keywords: Model-Based Testing; Fault Localization; Search-Based Algorithm; Automatic Test-Case
Generation; Mutation-Based Testing;

1. INTRODUCTION

Mutation testing, often known as programme
mutation [39], is a methodology for creating test
cases and assessing the effectiveness of current
testing methods. Small changes are inserted into the
original programme during mutation testing. Each
altered version is referred to as a programme
mutant, and test data is considered excellent if it
kills programme mutants, that is, if it causes
programme mutants to behave differently from the
original programme. Both the programmes and the
specifications are mutated in our method. The
mutant’s programme is used to assess the quality of
altered specifications. We look for excellent
modified specifications that can be used to create
test data that can be utilized to find bugs.

Since characterizing circumstances describe how
output variables relate to input variables, they are
often used to check whether an execution of the
programme is correct or not, rather than being used
to directly generate input values. It's frequently
impossible for a software to create input values that
fulfil a defining condition without first knowing the
output values. For example, if input variable x and
destination variable y both match the defining
condition (x y > x + y), we can't derive input x from
(x y > x + y) since output y is unknown. As a

consequence, (x y > x + y) is normally not used to
assist in the generation of input values, but it may
be used to examine the outcome of running the
programme with input x. Our major focus is on
devising a method for determining optimal correct
output for the specification. These measurement
results are then utilized to create modified
specifications, which are merely input variable
restrictions. The altered specs may then be utilized
directly in testing phase to create input values. To
do this, we use GA to find acceptable output values
from the specifying condition. Furthermore, some
modification is explored for reforming specifying
criteria before using GA to generate modified
requirements which are stronger in bug
identification. In this modification, we make a little
adjustment to the defining conditions in order to
cause the produced test data to fulfil those reformed
ones to cause as many undesirable programme
behaviors as feasible. After implementing GA to the
original specification, we create modified
specifications in our technique. The modified specs
may be acquired more accurately by following two
rules:

1. Reforming the proposed techniques by
introducing regression models into the defining
environments so that test data that meets those
reformed ones can cause the programme to behave

Journal of Theoretical and Applied Information Technology
15th August 2023. Vol.101. No 15

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6136

badly; 1. Reforming the proposed techniques by
introducing regression models into the defining
environments so that test data that meets those
reformed ones can cause the programme to behave
badly;

Our aim is to get a fresh version of the
requirement from which to construct a test data set
that will trigger as many errors in the software as
feasible. The chromosomal forms for the redesigned
requirement, as well as the crossover and mutation
operators, will be defined next. Then we use GA to
find relevant altered specs that may be used for bug
identification.

2. LITERATURE REVIEW

According to [1], The degree to which
presently utilized mutation testing procedures in
DL is by the conventional understanding of
mutation testing might be questioned. We notice
that the creation of machine learning models
parallels the test-driven development (TDD)
method, in which a training algorithm
('programmer') develops a model (software) that fits
data points (test data) to labels (implicit assertions)
up to a particular threshold. However, when using
this TDD paradigm to analyze suggested mutation
testing methodologies for ML systems, production
and test code difference is fuzzy. They might
question the realism of mutation operators. The
competent programmer and coupling effect
hypotheses are discussed as basic ideas
underpinning conventional mutation testing. These
theories do not easily convert to ML system
development, as we shall demonstrate, and more
intentional and explicit scoping and concept
mapping will be required to draw similarities fully.
According to [2] seeking to develop a complete
technique that can (1) discover define-usage issues
and (2) produce test data for UML state machines
automatically (3): modify the states and flows to
get an efficient mutation score by varying the
amount of complexity. (4): offer comprehensive
coverage of the best def-use route (5): This rule
applies to all UML diagrams. This work-in-
progress is the first step in that direction, and we've
verified our approach with a working
implementation that they can use with state
diagrams.

According to [3] a method for detecting
redundancy in mutations by using dynamic
subsumption relations between mutants. The
subsumption relations among modifications of an
expression or statement, referred to as "mutation

target," are the topic of this paper. We create
subsumption relations for hundreds of mutation
targets in which the MUJAVA tool may apply
mutations by concentrating on targets and
depending on automated test generating tools.
Subsequently applied these relationships in
MUJAVA-M, a programme that creates a smaller
collection of mutants for each target, eliminating
duplicate mutants. According to [4] The two
particular div measures (based on accuracy and
Matthew's correlation coefficient, respectively) are
compared to artefact-based diversity (a-div) to
prioritize the test suites of six distinct open-source
projects. In all of the projects we looked at, our b-
div measures outperformed a-div and random
selection. According to [5] a new collection of Java
Scripts mutation operators that address aspects not
addressed by current Java Script mutation
operators. Our suggested operators created a wide
range of flaws that do not overlap with current
operators. We conduct tests on various case studies,
and the findings show that the suggested mutation
operators do not seed duplicate flaws.

According to [6] PRIMA is a
revolutionary test input prioritizing strategy for
DNNs that uses intelligent mutation analysis to
identify more bug-revealing test inputs sooner for a
short duration, allowing DNN testing to be more
efficient. PRIMA is built on the following
important insight: a test input that can kill a lot of
mutated models and provide different prediction
outcomes with a lot of mutated inputs is more likely
to expose DNN problems. Hence they should
prioritize it higher. PRIMA incorporates learning-
to-rank (a type of supervised machine learning for
solving ranking problems) to intelligently combine
these mutation results for effective test input
prioritization after obtaining several mutation
results from a series of our designed model and
input mutation rules for each test input. We
performed a thorough investigation on 36 popular
issues, considering their variety across five
dimensions (i.e., different domains of test inputs,
various DNN tasks, other network structures,
different types of test inputs, and different training
scenarios). According to [7] a scalable approach to
mutation testing depending on the relevant main
ideas: (1) mutation testing is done incrementally,
mutating the changed code during code review
rather than the entire code base; (2) mutants are
filtered, removing mutants that are likely to be
irrelevant to developers and limiting the number of
mutants per line and per code review process; (3)
mutants have been selected based on the historical

Journal of Theoretical and Applied Information Technology
15th August 2023. Vol.101. No 15

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6137

performance of mutation operators, further
eliminating irrelevancy; and (4) mutants are
selected based on the historical performance of
mutation operators, The suggested technique is
experimentally validated in this study by examining
its performance in a code-review-based context,
which over 24,000 engineers utilized on over 1,000
projects. The findings reveal that the suggested
method generates orders of magnitude fewer
mutants and that context-based mutant filtering and
selection improve mutant quality and actionability.
According to [8] It increases the performance of
spectrum-based fault localization; mutation testing
should be used to identify successful test suites
(SBFL). In our tests, we employ two famous SBFL
methodologies, Ochiai and Jaccard, to demonstrate
the influence of test suite efficacy on SBFL
performance. To assess and choose test cases, we
utilized the free PIT as a source mutation testing
tool, and to write and execute the test suites, we
used the unit testing framework JUnit. According to
our experimental data, the suggested technique may
greatly enhance the suspiciousness rating of
incorrect claims.

According to [9] a novel method for
extracting characteristics from mutant programmes
based on mutant death criteria, such as reachability,
need, and sufficiency, as well as the mutant
significance and test suite metrics. A deep learning
Keras model is presented to forecast dead and
living mutants from each programme. First, the
features are retrieved using the Eclipse JDT library
and programme dependency analysis. Second,
preparation methods like Principal Component
Analysis and Synthetic Minority Oversampling are
utilized to minimize data dimensionality and
address the unbalanced class issue, respectively.
Finally, fine-tune parameters such as dropout and
dense layers, activation function, error, and loss
rate are used to improve the deep learning model.
The suggested study analyses five open-source
applications from the GitHub repository containing
thousands of classes and LOCs. According to [10] a
representation technique for static code
characteristics that combines graph and vector-
based representations. Our findings, based on 50
changes in 21 Coreutils applications, show that our
approach has a significant prediction capacity, with
AUC values of 0.80 (ROC) and 0.50 (PR-Curve)
and precision and recall values of 0.63 and 0.32,
respectively. These predictions are significantly
better than random guesses, with AUCs of 0.20
(PR-Curve), precision and recall of 0.21 and 0.21,
respectively. They lead to strong relevant tests that

kill 45% more relevant mutants than randomly
sampled ones (either from those residing on the
changed component(s) or from the changed lines).
According to [11] a mutation-based framework for
testing compliance between virtual/silicon device
implementations and their requirements effectively
and efficiently. Based on our established mutation
operators, device specifications may be
automatically instrumented with mild mutant-
killing restrictions to represent likely erroneous
device behaviours. Our method uses a suitable
symbolic execution technique to quickly automate
test case development and compliance testing for
virtual/silicon devices to exclude all possible
mutations. Our approach correctly measures if the
designs have been appropriately vetted and reports
conflicts between device specifications and
implementations by symbolically executing the
instrumented specifications using virtual/silicon
device traces generated through cooperative
execution.

According to [12] To test network
protocols, they considered fault-based testing
methodologies. The criteria for fault-based testing
are derived from network protocol standards. This
project's major purpose is to see whether fault-
based testing approaches can detect flaws or defects
that traditional network protocol testing techniques
can't. Conformance testing is one of the major
functional testing domains where fault-based
methods might be useful. They may see whether the
network protocol is strong enough to verify test
cases that follow protocol specifications and
invalidate test cases that don't. Several
investigations have shown that fault-based testing
may confirm conformity with less effort than other
testing methods. The network simulator uses the
test scenarios that have been created as input. The
quality of test scenarios is assessed from three
angles: code coverage, (ii) mutation score, and (iii)
testing effort. In NS2, we built the testing
framework. According to [13] a Systematic
Literature Review on AS and CAS testing, one of
the purposes of which was to characterize fault
types for ASs and CASs. We examined 11 key
research that addressed fault types to achieve this
aim. We also provided code samples to show how
different faults might arise. Finally, we looked at
the flaws addressed in the other seven studies on
fault-based testing for ASs and CASs. Results: We
give a list of particular fault types and fault type
categories (6 in whole) for AS and CASs, as well as
a discussion of the fault types' link to existing fault-
based testing methodologies. Conclusion: When

Journal of Theoretical and Applied Information Technology
15th August 2023. Vol.101. No 15

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6138

compared to the state-of-the-art, our findings are
novel since we presented the first classification of
fault types for ASs and Cass.

According to [14] a mutation-analysis-
based benchmarking system that they may use to
assess the recall of clone detection methods for
various sorts of clones and certain types of clone
alterations, all without the need for human labour.
The system uses a clone synthesis editing taxonomy
to generate thousands of fake clones, inject them
into codebases, and analyses the subject clone
detection techniques using a mutation analysis
method. According to the framework's
characteristics, custom clone pairs might also be
utilized in the framework for assessing the subject
tools. There allows for the evaluation of specialized
tools in specialized situations, such as detecting
sophisticated Type-4 clones or real-world clones,
without writing complex mutation operators for
them. The performance of 10 recent clone detection
methods is evaluated over two clone granularities
(function and block) and three programming
languages (Java, C, and C#). According to [15]
MeMu is an innovative methodology for decreasing
the execution time of mutants by memoizing the
system's most costly processes. When repeated
inputs are discovered, memorization is an
optimization approach that permits expensive
processes to be skipped. There may be a user menu
in combination with other methods of acceleration.

According to [16] a unique fault
localization method based on the integration of
spectrum and mutation. The methodology increases
the accuracy of the spectrum-based fault
localization method while also reducing the time
consumption overhead of the mutation-based fault
localization method. In contrast to the spectrum-
based fault localization technique, the experimental
findings suggest that the strategy enhances fault
localization accuracy. According to [17] They can
improve RISC-V compliance testing using a
mutation-based technique by delivering more
detailed data. As a result, we define RISC-V-
specific mutation classes to evaluate the CT's
quality and give a symbolic execution mechanism
to construct additional test cases that kill
undiscovered mutations. The proved the usefulness
of a mutation-based technique to increase RISC-V
compliance testing. Based on our mutation classes,
we detected many severe holes in the Compliance
Test-suite (CT) and created additional tests to
reinforce the CT by filling these gaps. Our method
has also proven successful in locating flaws in

RISC-V simulators. Finally, we had a lengthy
conversation in which we sketched out several
intriguing future research topics. According to [18]
The use of third-party transformations to assess the
efficacy of ATL mutation operators provided in the
literature and additional operators built based on
actual data of real-world developer mistakes.
Similarly, we evaluate the effectiveness of widely
used test model generating strategies. If a test suite
fails to identify an inserted problem, we create test
models to detect it. We provide a framework that
automates this procedure for ATL as a technical
contribution.

According to [19] Aspect preserving
mutation is a novel approach that stochastically
maintains the desired features, termed aspects, that
we wish to be retained throughout mutations. In our
fully-fledged JavaScript fuzzer, DIE, we show
aspect preservation using two mutation techniques,
namely, structure and type preservation. Compared
to state-of-the-art JavaScript fuzzes, DIE's aspect-
preserving mutation successfully detects new
problems and provides legitimate test cases. Core
Java, Java Script, and V8 all have 48 high-impact
issues, according to DIE. According to [20] Used a
random walk mutation-based differential evolution
(DE) with an estimate of distribution algorithm
(EDA) to solve this issue. The following are the
main characteristics: I random walk mutation
preserves population diversity, guiding individuals
to different promising regions; ii) probability
selection is used to provide suitable parent
individuals for evolution, and iii) EDA is used to
accelerate convergence and obtain the roots. They
chose a test set of 30 NESs with various
characteristics to assess the performance of our
technique.

According to [21] The TransRepair is a
completely automated method for checking and
fixing machine translation system consistency.
TransRepair detects inconsistency problems by
combining mutation and metamorphic testing
(without access to human oracles). To resolve the
discrepancies, it uses probability-reference or cross-
reference to post-process the translations in a grey-
box or black-box way. TransRepair is the first
method for automatically testing and improving the
consistency of context-similar translations.
TransRepair uses a context-similar mutation to
create slightly changed (mutated) words that there
may use to evaluate machine translation systems.
Translation and comparison of the original and
altered texts are used for testing. TransRepair

Journal of Theoretical and Applied Information Technology
15th August 2023. Vol.101. No 15

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6139

calculates the similarity of the translation
subsequences to determine consistency.
TransRepair considers it a possible problem when
context-similar mutations cause above-threshold
disruption in the translation of the fundamental
component. According to [22] It is a better
optimization framework that combines the
advantages of many methods, including a multi-
operator differential evolution technique and
evolutionary approach to covariance matrix co.
Reinforcement learning is utilized in the former to
automatically find the optimum differential
evolution operator. Three benchmark sets of bound-
constrained optimization problems (73 problems)
with 10, 30, and 50 dimensions are solved to assess
the proposed framework's performance.
Furthermore, it put the suggested technique to the
test by solving 100-dimensional optimization
problems from the CEC2014 and CEC2017
benchmark problems. A data set from a real-world
application has also been translated. The best
variation is compared against a variety of state-of-
the-art algorithms in a series of tests to examine the
impact of various proposed framework
components.

According to [23] an elitist Genetic
Algorithm (GA) with a better fitness function that
exposes the most errors while reducing the cost of
testing by producing fewer complicated and
asymmetric test cases. It employs a selective
mutation technique to generate low-cost artificial
defects with fewer redundant and comparable
mutations. For evolution, the traces of test
execution and mutant identification natural
reproduction operator selection determine whether
to diversify or strengthen the prior population of
test instances. The size of the test suite is further
reduced by iteratively eliminating redundant test
cases. This research compares the effectiveness of
the suggested technique to Initial Random testing
and a commonly used evolutionary framework in
academia, namely Evosuite, using 14 Java
applications of notable sizes. Our method is proven
to be more stable in practice, with a considerable
increase in the test case efficiency of the optimized
test suite. According to [24] a new algorithm for
creating tests SGO-MT uses the social group
optimization algorithm (SGO) to find as many
flaws in software as possible. SGO is based on
learning the characteristics of a group of persons. It
comprises two phases: acquiring (learning from
society) and developing (learning from the
instructor), aiming to improve each individual's
fitness. Another impacts each test case in learning

from culture, while test data are developed
concerning the fittest test case in the latter situation.
SGO-MT stops working when it fulfils its goal to
discover as many fake problems as feasible.
According to [25] MUTAPI is the first method for
detecting API abuse trends using mutation analysis.
We initially constructed eight effective mutation
operators inspired by the prevalent features of API
misuses to simulate API misuses based on proper
usages successfully. MUTAPI creates mutants by
running these mutation operators on a series of
client projects, then collecting mutant-killing tests
and stack traces. Misuse patterns are detected in the
deceased mutants, which are then prioritized
depending on their potential of producing API
misuses based on the data obtained.

According to [26] is prompted by the fact
that the success of created network protocols is
highly dependent on the beginning circumstances
and assumptions of the testing scenarios in many
situations in the literature. Network services are
deployed in complex contexts. The testing and
simulation results might change from one
environment to the next and even from time to time
within the same environment. Our objective is to
offer mutation-based integration testing for network
protocols used as Built-in Tests (BiT). According to
[27] a mutation-oriented framework for property-
based testing that is entirely automated. Our
programme improves the efficiency of the testing
loop by using unique algorithms and detecting
complicated flaws in seconds. We test MUTAGEN
by producing random WebAssembly applications to
detect faults in a broken validator. According to
[28] a method for detecting redundancy in
mutations by using dynamic subsumption relations
between mutants. The subsumption relations among
modifications of an expression or statement,
referred to as "mutation target," are the topic of this
paper. We create subsumption relations for
hundreds of mutation targets in which the
MUJAVA tool may apply mutations by
concentrating on targets and depending on
automated test generating tools. These relationships
are subsequently used in MUJAVA-M, a
programme that creates a smaller collection of
mutants for each target while eliminating repetitive
mutants. According to [29] From two angles, the
employment of intelligent technology increases the
efficacy and efficiency of mutation testing. A
machine learning approach called fuzzy clustering
is used to classify mutants into distinct groups.
Then, when the issue of test data production is seen
as an optimization problem, a multi-population

Journal of Theoretical and Applied Information Technology
15th August 2023. Vol.101. No 15

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6140

genetic algorithm with individual sharing is used to
create test data for killing mutants in separate
clusters simultaneously. The execute the suggested
strategies, a complete framework called
FUZGENMUT is developed. According to [30]
MutShrink is a mutation-based test data selection
approach for SQL regression testing (Mutation-
based Test Database Shrinking Method). The
objective is to reduce testing costs while
maintaining the same efficacy as the original
database. Tests using a benchmark that included
some difficult SQLs and a huge database are
conducted.

3. PROPOSED SYSTEM IMPLEMENTATION

The proposed system described the
generation of mutation testing using a parallel
genetic algorithm in a real-time source code
environment. In the first phase, we generate some
mutant code from the original programs using third-
party API or tools. The test suite has been
generated by using J-unit testing for all directories
and major classes. The major objective behind the
generation of mutant classes is to validate the test
case with the original and mutant classes. In the
analysis phase, we evaluate both mutant and
original classes using a parallel genetic algorithm.
The fitness score is important to decide whether the
test case is killed or not. In the below section, we
describe in detail the execution process of the
proposed architecture with below figure 1.

The proposed approach begins by
modifying both the source as well as mutant
programmes, allowing each programme to be
regarded as a collection of discrete modules. The
approach does not go through the complete
programme at once. It goes through each mutated
unit and tries to kill them one by one. If the data
states of the mutated object and the original
programme differ, it re-tests with fresh test data
created using genetic algorithms. It provides a
fitness function using the parameter of mutant
declaration expressing the value of the mutant
programme, interpretation value of the original
system, test data, and mutation score in order to
generate fresh test data. We address the cost of
connectivity and required and sufficient conditions
to produce fitness function.

Figure 1 : Proposed System Architecture

The reachability cost comprises two parts:
I the cost of a route difference and ii) the expense
of failing a branch predicate. The required
environment is a condition that must be met on the
modified item or on any expression that contains
the object for the mutant to be destroyed. For
example, if the integer variable x is transformed to
abs(x) in a programme, then x must be negative for
the mutant to be eliminated. Even though there is a
state variance and mutant programmes at the
recombination statement, a mutant may sometimes
survive since the difference is not conveyed to the
output. We follow the execution of a working
example and keep track of the original and mutant
program's data states. The source and mutant
programmes are both instrumented in this technique
so that each unit's input and output behavior can be
tracked. To compare and trace the output of each
unit, we utilize a checker module. If the mutant unit
survives, the checker logs a 1, and if the mutant
unit dies, it logs a 0. We may find the
malfunctioning unit by looking at the location
where one occurs in the actual output sequence of
the complete programme.

Journal of Theoretical and Applied Information Technology
15th August 2023. Vol.101. No 15

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6141

4. ALGORITHM DESIGN

In the implementation of the proposed system,

we utilized a parallel genetic algorithm after the
generation of mutant programs. The extracted
features from both classes are the initial population,
which is fed to 1st step of the genetic algorithm.
After the generation of a random population, the
single-point crossover has been utilized and
generate new chromosomes from to Parent
chromosomes. In the mutation phase, we have
randomly changed the specific value of specific
genes of the chromosome. The fitness function or
generate the similarity score after applying the test
Suite on both classes. According to generated
fitness score finally, we decide, the test case is
killed or not. In the below section, we determine
two sections of proposed parallel genetic algorithm.

1: Parallel Genetic Algorithm
Input: random population from training dataset
C[c[i]….c[n]]
Output: A rule set generation as intrusion pool for
IDS

Step 1: Read each instance form pop

If(k%2==0) then cros[i]
Else cros[i]+1
NewCh[]=crossover(cros[i],cros[i+1])
Step 2:

AftMut[] = Mutate(Nc)
Step 3: Calculate fitness

Step 4: add fitness if list
 F [i] =f(x)/ sum f(x) ….. (4)
Step 5: Apply selection operator on F[n]
 Check if C(x) met
 Sort best F[n]

Algorithm 2 : Sub Function for calculate the
weight for each QoS parameter
Calculate_Weight ()

Input : Statement_policy[], Attribute_val,
Reward_Count, Penalty_Count
Output : Weight for current attribute W.

Step 1: while (event==true)
validate incommining attribute values using desired
policy
 If(Attribute_val .equals(Statement_policy[]))
 Reward_Count = Reward_Count +1
 Total_Events = +1
Step 2: Else Penalty _Count = Penalty _Count +1
 Total_Events = +1
Update in log table penalty values for reward and
penalty
End while
Step 3: Calculate the penalty weight
 W= Reward_Count / Total_Events
Return W

5. RESULTS AND DISCUSSION

The Implementation of the proposed
system has been done with an open-source Java
environment. The initial programs have been
chosen from the Core Java environment which
contains some statistical statements and object-
oriented evaluations. The below Table 1 depicts the
parameter initialization for proposed GA to
evolution the test suite

Operators of GA Input Values Accuracy
Population 100 NA
Crossover Rate 0.40 -0.70 NA
Crossover Type Single point NA
Mutation Rate 0.30-0.60 NA
Fitness Function F=

F(x)/SumF(x)
NA

Selection
Criteria

20%-80% 87.50%

0

0.2

0.4

0.6

0.8

1

WEIGHT

50%

60%

65%

70%

75%

80%

Figure 2 : Similarity Weight Generation From Fitness
Function After Various Percentage Of GA Selection

Criteria

Journal of Theoretical and Applied Information Technology
15th August 2023. Vol.101. No 15

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6142

The above figure 2 demonstrates similarity
score generated by various selection criteria of GA
selection. The parallel mutant has generated in first
phase and evaluate the multiple mutants with
original class with proposed GA. In a result the
50% route let selection criteria gives better
similarity score by using PGA.1.

6. CONCLUSION

Test suite creation has been a prominent
issue in automated testing development to provide
efficient unit tests. This research revealed that the
PGA's testing process showed more defects and ran
more operations in the test class than other
techniques used to produce real automated tests for
Software components and sophisticated
applications. These experimental findings were
achieved by setting all algorithms' constants to the
same value. Furthermore, all algorithms were run
on the same tool and machine to eliminate bias in
the findings. This shows that the PGA is not just a
better GA for routing in a communication network,
but it could also produce whole test suites in
product testing. The same variable adjustment may
restrict the algorithm's performance. Similarly, each
method has optimum parameter values depending
on the issue situation. This investigation's findings
are just an initial effectiveness test towards creating
a full test suite. As a result, proper values for PGA
should be supplied to build test cases that are much
more productive at discovering flaws and
evaluating the source code. Moreover, various
coverage criteria choices and connections with
software system utilization yielded mixed results.
Future research into entire test suite production
using PGA must concentrate on boosting
performance to discover more defects and reach
more assertions in the test class by using
procedures to choose the best chromosomal for the
next iteration or integrate with other approaches.

REFERENCES:
[1] Panichella, Annibale, and Cynthia CS Liem.

"What Are We Really Testing in Mutation
Testing for Machine Learning? A Critical
Reflection." 2021 IEEE/ACM 43rd
International Conference on Software
Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 2021.

[2] Mehboob, Fozia, Abdul Rauf, and Raza Ur
Rehman Qazi. "Evaluating the Optimized
Mutation Analysis Approach in Context of
Model-Based Testing." 2020 International

Conference on Emerging Trends in Smart
Technologies (ICETST). IEEE, 2020.

[3] Guimarães, Marcio Augusto, et al. "Optimizing
mutation testing by discovering dynamic mutant
subsumption relations." 2020 IEEE 13th
International Conference on Software Testing,
Validation and Verification (ICST). IEEE,
2020.

[4] de Oliveira Neto, Francisco Gomes, Felix
Dobslaw, and Robert Feldt. "Using mutation
testing to measure behavioural test diversity."
2020 IEEE International Conference on
Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 2020.

[5] Muzamal, Muneeb, and Aamer Nadeem.
"Improving test adequacy assessment by novel
JavaScript mutation operators." 2019 16th
International Bhurban Conference on Applied
Sciences and Technology (IBCAST). IEEE,
2019.

[6] Wang, Zan, et al. "Prioritizing Test Inputs for
Deep Neural Networks via Mutation Analysis."
2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021.

[7] Petrovic, Goran, et al. "Practical Mutation
Testing at Scale: A view from Google." IEEE
Transactions on Software Engineering (2021).

[8] Saxena, Amol, Roheet Bhatnagar, and Devesh
Kumar Srivastava. "Improving Effectiveness of
Spectrum-based Software Fault Localization
using Mutation Testing." 2021 2nd International
Conference for Emerging Technology (INCET).
IEEE, 2021.

[9] Naeem, Muhammad Rashid, et al. "Scalable
mutation testing using predictive analysis of
deep learning model." IEEE Access 7 (2019):
158264-158283.

[10] Ma, Wei, et al. "MuDelta: Delta-Oriented
Mutation Testing at Commit Time." 2021
IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 2021.

[11] Gu, Haifeng, et al. "Specification-Driven
Conformance Checking for Virtual/Silicon
Devices Using Mutation Testing." IEEE
Transactions on Computers 70.3 (2020): 400-
413.

[12] Zarrad, Anis, Izzat Alsmadi, and Abdulrahmane
Yassine. "Mutation Testing Framework for Ad-
hoc Networks Protocols." 2020 IEEE Wireless
Communications and Networking Conference
(WCNC). IEEE, 2020.

Journal of Theoretical and Applied Information Technology
15th August 2023. Vol.101. No 15

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6143

[13] Siqueira, Bento R., et al. "Fault sTypes of
Adaptive and Context-Aware Systems and
Their Relationship with Fault-based Testing
Approaches." 2020 IEEE International
Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE,
2020.

[14] Svajlenko, Jeffrey, and Chanchal Roy. "The
mutation and injection framework: Evaluating
clone detection tools with mutation analysis."
IEEE Transactions on Software Engineering
(2019).

[15] Ghanbari, Ali, and Andrian Marcus. "Toward
Speeding up Mutation Analysis by Memoizing
Expensive Methods." 2021 IEEE/ACM 43rd
International Conference on Software
Engineering: New Ideas and Emerging Results
(ICSE-NIER). IEEE, 2021.

[16] Jia, Minghua, et al. "SMFL integrating
spectrum and mutation for fault localization."
2019 6th International Conference on
Dependable Systems and Their Applications
(DSA). IEEE, 2020.

[17] Herdt, Vladimir, et al. "Mutation-based
compliance testing for RISC-V." 2021 26th
Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2021.

[18] Guerra, Esther, Jesús Sánchez Cuadrado, and
Juan de Lara. "Towards effective mutation
testing for ATL." 2019 ACM/IEEE 22nd
International Conference on Model Driven
Engineering Languages and Systems
(MODELS). IEEE, 2019.

[19] Park, Soyeon, et al. "Fuzzing javascript engines
with aspect-preserving mutation." 2020 IEEE
Symposium on Security and Privacy (SP).
IEEE, 2020.

[20] Liao, Zuowen, et al. "Random Walk Mutation-
based DE with EDA for Nonlinear Equations
Systems." 2019 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2019.

[21] Sun, Zeyu, et al. "Automatic testing and
improvement of machine translation."
Proceedings of the ACM/IEEE 42nd
International Conference on Software
Engineering. 2020.

[22] Sallam, Karam M., et al. "Evolutionary
framework with reinforcement learning-based
mutation adaptation." IEEE Access 8 (2020):
194045-194071.

[23] Rani, Shweta, Bharti Suri, and Rinkaj Goyal.
"On the effectiveness of using elitist genetic
algorithm in mutation testing." Symmetry 11.9
(2019): 1145.

[24] Rani, Shweta, and Bharti Suri. "Adopting social
group optimization algorithm using mutation
testing for test suite generation: SGO-MT."
International Conference on Computational
Science and Its Applications. Springer, Cham,
2019.

[25] Wen, Ming, et al. "Exposing library API
misuses via mutation analysis." 2019
IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019.

[26] Alsmadi, Izzat, Anis Zarrad, and Abdulrahmane
Yassine. "Mutation Testing to Validate
Networks Protocols." 2020 IEEE International
Systems Conference (SysCon). IEEE, 2020.

[27] Mista, Agustín. "MUTAGEN: Faster Mutation-
Based Random Testing." 2021 IEEE/ACM 43rd
International Conference on Software
Engineering: Companion Proceedings (ICSE-
Companion). IEEE, 2021.

[28] Guimarães, Marcio Augusto, et al. "Optimizing
mutation testing by discovering dynamic mutant
subsumption relations." 2020 IEEE 13th
International Conference on Software Testing,
Validation and Verification (ICST). IEEE,
2020.

[29] Dang, Xiangying, et al. "Enhancement of
Mutation Testing via Fuzzy Clustering and
Multi-population Genetic Algorithm." IEEE
Transactions on Software Engineering (2021).

[30] Toledo, Ludmila I., Celso G. Camilo, and
Cássio Leonardo Rodrigues. "MutShrink: a
Mutation-based Test Database Shrinking
Method." 2020 IEEE International Conference
on Systems, Man, and Cybernetics (SMC).
IEEE, 2020.

