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ABSTRACT 
 
Multi-access Edge Computing (MEC) has recently been suggested as an addition to cloud computing. MEC 
servers are placed close to the network's edge to reduce latency and relieve demand on cloud data centres. 
The cloud is more resourceful than the MEC server, which has less resource. Each MEC server cannot satisfy 
all computational and large data needs from user devices when operating independently. Collaborative edge 
computing (CEC) is a popular new concept in which devices on the edge work together by sharing data and 
computer resources. CEC must determine when and where each task is executed, making task offloading an 
important problem to address. However, it is challenging to solve task offloading in CEC because tasks can 
be offloaded to neighbouring devices, resulting in bandwidth contention among network flows. Most existing 
works do not jointly consider network flow scheduling, which can result in network congestion and 
inefficient completion time performance. This paper suggests a unique approach for planning, executing, and 
clustering MEC servers in a resource allocation model. Belief rule Geo clustering method used to cluster the 
MEC server based on real-time data of intensive tasks. For the simple sake, real-time monitoring application 
based on video surveillance is taken.   The unsupervised cluster algorithm used to distribute the software 
components optimally among mobile devices and reduce cluster traffic in relation to the data center. The 
distributed MEC channel task allocation model is used to share tasks when the MEC server is busy receiving 
data, and a particle swarm-based joint optimization architecture is used to optimize clustered data. Extensive 
experiments have been performed on three datasets concerning energy utilization, delay, computational 
burden, throughput, and network Quality of service (QoS). The proposed technique achieved better results 
than benchmark solutions, which do not make a joint decision. 
 
Keywords: Mobile Edge Computing, Collaborative Tasks Scheduling, Resource Allocation, Geo Clustering,  
                   Particle Swarm Optimization     
 
1. INTRODUCTION 
 
       Traditional specialized systems are 
transforming due to the Industrial Internet of Things 
(IIoT). The IIoT is the way to go today due to the 
proliferation of high-tech devices (adaptable 
machines, sensors) and the diverse range of required 
uses. By 2025, it is anticipated that 31 billion IoT 
devices with varying capacities would have been 
placed to carry out operations that need varying QoS 
standards. The IIoT consists of many industrial 
devices linked together through various 
communication channels [1]. It helps firms to predict 
the occurrence of problems, improve the amount of 
automation used, and speed up manufacturing.  
 

However, because these applications usually 
consume a large amount of data and processing, they 
will rapidly consume the limited computational 
capacity and energy of wireless IIoT devices. New 
business models are being developed that place 
emphasis on both MEC as well as Wireless power 
transfer methods in order to meet new needs as well 
as make the most of the IIoT's potential [2]. 
 

Additionally, it is anticipated that mobile data 
traffic will continue to double annually. Network 
operators must put in a lot of effort to improve the 
user experience while maintaining a healthy revenue 
growth rate to meet these growing demands. The two 
new paradigms have been proposed as a means of 
overcoming the drawbacks of the present RANs: i) 
Cloud Radio Access Network (C-RAN), which 
proposes to empower network edge through 
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virtualization, and ii) MEC, which aims to centralize 
Base Station (BS) functions. Even though two 
methods propose to move computing capabilities in 
two distinct directions cloud and edge they 
complement one another, each playing a distinct role 
in the 5G ecosystem [3]. These kinds of applications 
typically use a lot of computation, are sensitive to 
delays, and use a lot of energy. Nonetheless, because 
of the restricted battery duration and computational 
limit of a mobile device (MD), it is frequently and 
truly challenging for MD to meet necessities as well 
as the Nature of Involvement of these portable 
applications. 

 
Applications like real-time video processing, 

autonomous automobiles, AR/VR etc., have been 
developed as a result of the growth of IoT devices 
with increased computing, communication, and 
storage capacity. These applications have essential 
needs that centralized cloud computing cannot 
satisfy, such as real-time processing, mobility, 
context awareness, etc. By bringing computing into 
the network adjacent to data sources, MEC tries to 
address the demands of these applications. Each 
MEC server cannot satisfy all computational and 
large data needs from user devices when operating 
independently. Collaborative edge computing 
(CEC) is a popular new concept in which devices on 
the edge work together by sharing data and computer 
resources. To enable the coexistence of many 
applications and stakeholders, it is necessary to 
promote collaboration across various types of 
devices as applications develop. The idea of 
collaborative edge computing has lately been 
presented to help applications with these needs. CEC 
must determine when and where each task is 
executed, making task offloading an important 
problem to address. Making decisions about job 
sharing is one of the most important parts of CEC. 
However, it is difficult to solve task offloading in 
CEC because tasks can be offloaded to neighboring 
devices, resulting in bandwidth contention among 
network flows. 

 
MD and MEC servers' limited computation 

resources and a large number of users will also have 
an impact on the task execution time. Optimization 
of either the offloading decision or computation 
resources have partially solved the issue [4]. Each 
task can be divided into local and offload tasks in 
those schemes, with local tasks being processed at 
the MD and offload tasks being carried out on the 
MEC servers. In most MEC networks, there are only 
a limited number of resources for computation and 
communication. A game-based distributed joint 

offloading and resource allocation scheme was 
proposed to help MDs pay less for communication 
and computation resources by balancing the 
overhead associated with those resources and the 
monetary cost of MDs. MIMO, OFDMA, and 
heterogeneous networks are just a few of the 
physical layer techniques that have been used to 
meet the offloading latency while also reducing MD 
energy and computation resource consumption [5]. 
Most current methods for offloading computations 
assume that wireless communications allow for 
directly transferring computations to MEC servers. 
However, a mobile device may be unable to directly 
offload computing tasks to MEC servers because of 
poor or intermittent connectivity. Signal loss may 
affect mobile devices' computation offloading 
performance if computing tasks are forced to offload 
to MEC servers directly. With the assistance of 
nearby nodes, a mobile device must offload 
computing tasks to MEC servers [6]. 
 
1.1 Research Motivation  

 
We concentrate on the IIoT environment due to 

the increasing demand for IoT in industrial sectors. 
The IIoT network consists of numerous end devices 
(i.e., IIoT devices) and an edge server. Therefore, the 
data is collected from the fields or end devices and 
processed by servers close to the periphery. Due to 
the heterogeneous IIoT devices in the network, 
multiple computational operations can be performed 
concurrently with a limited quantity of computing 
power and energy. Therefore, offloading their 
workload to peripheral servers or neighbour nodes 
may increase task processing speed, decreased 
latency, and enhanced energy consumption. In 
addition, the Industry 4.0 revolution necessitates 
increased process flexibility, enhanced 
manufacturing quality, and increased revenue. 
Industry 4.0 includes advanced robotics, the Internet 
of Things, machine learning, augmented and virtual 
reality, big data analytics, and cyber security. 
Industry 4.0 applications requiring high 
computational capacity and low latency (time-
critical) performance include security applications, 
augmented/virtual reality technology, real-time 
cyber-physical systems, and autonomous vehicles. 
Due to the delay in processing, the industry suffers 
significant monetary and human losses.  

 
For instance, the mining industry is classified as 

critical according to its economic impact, time, and 
dangers. Due to infrastructure limitations in 
communication, data administration, storage, and 
information exchange, the mining industry has been 
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slow to adopt IIoT. The IIoT focuses on ventilation 
monitoring, accident analysis, fleet and personnel 
management, tailing dam monitoring, Autonomous 
mining equipment, and pre-alarm systems within the 
mining industry. However, the heterogeneous IIoT 
devices in the network enable them to perform 
multiple computational tasks concurrently while 
consuming limited energy and processing resources 
locally. It is inadequate to meet the current demand, 
so edge computing was implemented. The edge-
computing paradigm employs a high-pressure 
burden in the primary network while executing the 
virtual source with periphery communication 
between data terminals. 

 
Devices on edge cooperate by sharing data and 

processing resources under the emerging idea of 
collaborative edge computing. Promoting 
collaboration across various types of devices is 
crucial as apps expand to allow the coexistence of 
multiple applications and stakeholders. The concept 
of collaborative edge computing has recently been 
put out to assist applications with these objectives. 
Work offloading is a significant issue since CEC 
must decide when and where each work is carried 
out. One of the most crucial aspects of CEC is the 
decision-making process for work sharing. 
However, task offloading in CEC is a problem since 
tasks are transferred to nearby devices, causing 
competition for capacity across network flows. 

 
An intelligent camera-based object detection and 

human motion (ODTHM) system is one of these 
IIoT use cases that require high computing resources 
and low latency for processing data. Object detection 
and motion monitoring of individuals traveling 
through the mining field makes it easier to anticipate 
where an incident may occur. IIoT in the mining 
industry can go beyond merely monitoring their 
environments by adopting a proactive stance. Thus, 
the constant flow of employees on the field, 
industrial apparatus, products, and machines will 
operate in an environment that allows unrestricted 
movement while minimizing unnecessary risks. It is 
also possible to identify missing safety masks or 
other security equipment, such as hard helmets, and 
to send out alerts to prevent accidents. MEC is 
becoming the principal computing and storage 
platform for most of today's applications. Edge 
systems receive numerous daily activities that must 
be concurrently and effectively mapped to edge 
resources, including IIoT and Industry 4.0 
workloads, big data analytics, and decision-making 
responsibilities. It prompted us to contemplate the 
collaborative task execution scenario for resolving 

intensive and delay-sensitive task processing with 
multiple objectives. We considered a real-time 
monitoring application based on video surveillance, 
a typical IoT application for offloading time-
sensitive and intensive tasks. The observed 
outcomes based on the application provide 
additional support for the need for the research 
problem and provide insight into problem 
formulation. 

 
2. RELATED WORKS 
 

The MEC architecture that incorporates security 
service assignment, cooperative task offloading, and 
caching is proposed [7]. For IoT networks with 
multiple cells, architecture is designed to achieve 
energy savings and strict security protection. Cited 
works [8] investigate the issue of dynamic caching, 
taking into account the tasks' varying popularity over 
time. However, these works only consider the MEC 
server's storage capacity and consider that server has 
sufficient computational capacity to support all 
offloaded tasks. MEC servers' limited storage, as 
well as computational capacities, make this 
assumption unworkable. In Refs, constraints on 
computation and storage are considered [9]. 
However, they only offer offline solutions and do not 
take into account time-varying system dynamics. 
The authors of [10] combined 3C to develop a novel 
information-centric heterogeneous network method 
that makes it possible to compute and cache content 
in MEC. They thought about virtualized resources, 
which allow users of various virtual service 
providers to share computing, communication, and 
cache resources [11]. In addition, in [12], the authors 
proposed a framework that uses less energy and 
takes into account joint networking, caching, and 
computing to meet the needs of the next generation 
of green wireless networks. In addition, the 
fundamental trade-offs between caching, computing, 
and communication for VR/AR applications were 
investigated by authors in [13] for MEC 
applications. Work [14] suggests scheduling policies 
for single-user tasks that are delay-optimal. 
However, obtaining the actual transition probability 
matrix is highly challenging. Author [15] proposes a 
deep reinforcement learning strategy for the total 
offloading scheme. However, due to the 
unsupervised nature of reinforcement learning, 
global minima may not be guaranteed. A machine 
learning-based computational offloading strategy is 
proposed in the work [16]. They demonstrate that 
their instance-based online offloading scheduler 
chooses the best scheduling decision. Similarly, in 
[17], they suggest an online-training ML-based 
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mobile offloading scheduler called MALMOS. 
Previous research in this area has assumed infinite 
energy reserves for the mobile user and edge server 
[18]. Performance of conventional shallow learning 
techniques [19] and is now utilized in almost every 
sphere of life [20]. Decision-making applications 
can gain a lot from deep learning for communication 
networks, which has yielded outstanding results for 
runtime scheduling [21]. This is because the network 
is already taught. Because deep learning methods 
can learn complex decision boundaries [22] as well 
as complex data patterns, we are developing one for 
smart offloading decision-making procedures. 

 
The proposed contribution of this research is as 

follows: 
 To propose novel MEC server clustering 

and collaborative tasks scheduling and 
execution in a resource allocation model.  

 The MEC server has been clustered using 
belief rule Geo clustering, where an 
unsupervised cluster algorithm is used to 
distribute the software components 
optimally among mobile devices and 
reduce the traffic inside the cluster 
concerning the data center.  

 When the MEC server is busy receiving 
data, the task sharing is carried out using 
distributed MEC channel task allocation 
model. The network is optimized using 
particle swarm-based joint optimization 
architecture. 

 
3. PROPOSED MODEL 

 
This part examines an original strategy for 

portable edge processing server clustering and 
collaborative task scheduling and execution in IIoT 
application asset distribution model for ongoing 
video reconnaissance information. The video camera 
data was used to cluster the MEC server using the 
belief rule Geo clustering method. The unsupervised 
cluster algorithm was utilized to optimize the 
distribution of the software components among 
mobile devices and minimize cluster traffic in 
relation to the data center. When the MEC server is 
busy receiving data, the distributed MEC channel 
task allocation model is used to share tasks, and a 
particle swarm-based joint optimization architecture 
is used to optimize clustered data. This process is 
given as the proposed distributed MEC architecture 
is shown in Figure 1. 

 
 

Figure 1. Proposed Distributed MEC Architecture with 
Edge Servers 

 
We attach at least one request di, which represents 
amount of data in request, with each vertex (MEC 
server).  As a result, the proposed distributed edge 
server represented as weighted graph Wg = (S, A, C), 
where S denotes edge servers, A represents network 
link between edge servers, and C denotes weight that 
is aggregate capacity of connecting edges. Thus, the 
total number of edges defined in the specified range 
is determined using equation (1). 

         𝑖 − 1 ≤ 𝑎 ≤
௜(௜ିଵ)

ଶ
                         (1) 

Therefore, the capacity C exists at each edge, 
resulting in the equation (2). 

                  𝐶௔ ≥ 0, with 𝑎 ∈ 𝐴                      (2) 
We correlate a traffic demand, designated di, with 
each vertex i∈ X. Let ϕ information from vertex as 
data pass through an edge with k (1 to n) is what we 
refer to as ϕ in our definition. As a result, eq. (3) is 
used to characterize the overall flow of data traveling 
across edge ϕ a: 
                           𝜑௔ = ∑௞ୀଵ

௡  𝜑௔
௞ ≤ 𝐶௔                  (3) 

Then, if by eq(4), we consider no waiting in the 
backlog: current workflow 

                               𝜑௔ ≤ 𝐶௔                         (4) 
Let τa represent edge network communication cost: 

𝜏௔ =
𝑑௔

𝐶௔

, where 𝑑௔ is present data flow in edge 𝑎. 

 
3.1   Belief Rule Geo Clustering (BRGC) 

 
        Belief rule base is an expanded form of the 
conventional IF then rule that incorporates belief 
structure and aids in handling all forms of ambiguity. 
A Belief Rule is represented by Eq. 5. The BRB is 
used to generate results, and ER is employed as the 
inference approach. 
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𝑅௞: ൞

 IF ൫𝐴ଵ is 𝑉ଵ
௞൯ AND / OR ൫𝐴ଶ is 𝑉ଶ

௞൯ AND / OR 

…  AND / OR ൫𝐴்ೖ
 is 𝑉

ೖ

௞ ൯

 THEN (𝐶ଵ, 𝛽ଵ௞), (𝐶ଶ, 𝛽ଶ௞), … , (𝐶ே , 𝛽ே௞)
  (5) 

 
Where 𝛽௝௞ ≥ 0, ∑௝ୀଵ

ே  𝛽௝௞ ≤ 1 with rule weight 𝜃௞, 
and attribute weights 𝛿௞ଵ, 𝛿௞ଶ, … 𝛿௞்௞, 𝑘 ∈
1, … , 𝐿 where 𝐴ଵ, 𝐴ଶ, … , 𝐴்ೖ

 are antecedent 

attributes of 𝑘th  rule. 𝑉௜
௞(𝑖 = 1, … , 𝑇௞ , 𝑘 = 1, … , 𝐿) 

is the referential value of 𝑖 th  antecedent attribute. 𝐶௝ 

is 𝑗th  referential value of the consequent attribute. 
We take into account a MEC deployment shown in 
Figure 2. 
 

 
 

Figure 2. MEC Deployment 
 

The computation identifies MEC groups 
that will typically increase the traffic dealt with 
inside the groups and hence reduce the traffic that 
flows up to the central server farm, given the extreme 
MEC server limit. Iteratively repeated in two 
separate stages. Anticipate that we begin with two 
schematics with similar cluster arrangements. These 
hubs contrast with the region's discretization, where 
MEC correspondence requests are distributed in 
groups. It is marked C. The major graphic Ga = (C, 
Ea) discusses the relationships between the local 
clusters. For instance, a node (a matrix cell) can have 
up to 8 consecutive nodes in a square lattice. The 
associations between the nodes are addressed in the 
second diagram, Gint = (C, Eint). It is crucial to 
remember that a node can connect with itself to form 
a self-loop, as this symbolizes communications 
within the corresponding MEC cluster. As a result, 
there are as many MEC clusters in this initial split as 
there are nodes. 

 
 

Algorithm of BRGC 
Input: Graph of cluster adjacencies and interactions 

𝐺௜௡௧(C,𝐸௜௡௧) : undirected 
𝐸௜௡௧ , 𝑖, 𝑗 ∈ 𝐶 with weight 𝑤௜,௝ ∈ 𝑅 

Edge-weighted graph : 𝐸௔ ⊆ 𝐸௜௡௧  and 𝑒௜,௝ ∈ 

High cluster capacity: 𝑀 𝑖𝑠 𝑤௜,௝ ≤ 𝑀 

Assure: 𝐺௔(𝐶, 𝐸௔) and 𝐺௜௡௧(𝐶, 𝐸௜௡௧) 
1: redo  
2: Choose 2 adjacent clusters are high interactio
n 
 communication weight:  
𝑖, 𝑗 ∈ 𝐶 is:  
max൛௘೔,ೕ∈ாೌൟ   ∣ 𝑤௪೔,೔ା௪೔,ೕା௪ೕ,ೕஸெ𝑤௜,௝ 

3: Merge 𝑗 with 𝑖 in 𝐺௔(𝐶, 𝐸௔)   
4: Combine 𝑗 with 𝑖 in 𝐺௜௡௧(𝐶, 𝐸௜௡௧): 𝑤௜,௜

← 𝑤௜,௜ + 𝑤௜,௝ + 𝑤௝,௝ 

 {Modify 𝐶 and 𝐸௜௡௧  }  
 5: There are no merged adjacent clusters: ∀𝑒௜,௝

∈ 𝐸௔ , 𝑤௜,௜ + 𝑤௜,௝ + 𝑤௝,௝ ≥ 𝑀 

 
3.2 Distributed MEC Channel Task Allocation  
      Model in Task Sharing 

 
        In our method, appropriated MEC network 
comprises interconnected edge nodes that 
communicate with one another in a specially 
appointed way to offer computational types of 
assistance to MDs. The proposed MEC-based 
channel task allocation is shown in figure 3. We 
expect that edge nodes to be associated with an 
essential power matrix so that we can focus on the 
energy utilization of MDs. Additionally, since edge 
nodes are connected to a backend network, we 
anticipate delays in the organization's ability to 
deliver assistance requests inside the MEC network 
would be irrelevant. Administrative demands are 
directed between edge nodes relying on their asset 
accessibility, load on ongoing MEC server, and an 
absolute heap of MEC organization.  

 
 

Figure 3. MEC Based Channel Task Allocation 
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Finally, handled solicitation withdraws 

from the framework, and the outcome can be put 
away to the client or cloud. The event that remains 
balanced at every edge server usage ρj = λj/µj < 1 by 
eq. (6) and eq. (7) 
               𝑄(𝑛ଵ, 𝑛ଶ … , 𝑛ெ) = ∏௝ୀଵ

ெ  𝑄௝൫𝑛௝൯            (6) 
                              
                 𝜆௝

௘ = Λ௝
௘ + ∑௞ୀଵ

ெ  𝑝௞௝𝜆௞                        (7) 
 
The diagram depicts a load-sharing distributed 
network with four edge nodes {𝑒ଵ, 𝑒ଶ, 𝑒ଷ, 𝑒ସ} that 
create an open queuing network. The edge node 
receives {Λଵ

௘ , Λଶ
௘ , Λଷ

௘ , Λସ
௘ } Service requests from MDs, 

and it processes those requests at a pace of 
{𝜇ଵ

௘ , 𝜇ଶ
௘ , 𝜇ଷ

௘ , 𝜇ସ
௘}. In the picture, 

{𝑝ଵଶ, 𝑝ଶଵ, 𝑝ଶଷ, 𝑝ଷଶ, 𝑝ଷସ, 𝑝ସଷ}  are the related routing 
probabilities between edge nodes. As an illustration, 
𝑒ଶ passes its traffic load to 𝑒ଵ and 𝑒ଷ with the 
corresponding routing probabilities of 𝑝ଶଵ and 𝑝ଶଷ. 
Hence, p21 and p23 represent traffic loads that e2 
forwards to 𝑒ଶ to 𝑒ଵ and 𝑒ଷ is 𝑝ଶଵ𝜆ଶ

௘  and 𝑝ଶଷ𝜆ଶ
௘  

represents the local processing of the remaining 
services. The notation (1 − 𝑝ଶଵ − 𝑝ଶଷ)𝜆ଶ

௘  represents 
the entire amount of incoming traffic on 𝑒ଶ As a 
result, we represent the edge nodes utilizing M/M/1 
queue. As a result, (8) can be used to express the 
typical number of jobs 𝑊௝

௘ the jth edge node as: 

                                 𝑊௝
௘ =

ఒೕ
೎

ఓೕ
೐ିఒೕ

೐                         (8) 

 
The service-processing rate 𝜇்

௘ of the M edge nodes 
can be added to get the entire processing capability 
of the MEC network, as illustrated in eq. (9): 
 

                          𝜇்
௘ = ∑௝ୀଵ

ெ  𝜇௝
௘                  (9) 

 
Observe that the MEC network handles all service 
requests if the total load of forwarded task requests. 
𝜆்

௠ is equal to or less than the network's all-
processing capacity 𝜇்

௘ . In such a scenario, eq. (10) 
illustrates that the proportion of requests is equal to 
1: 
 

                        𝜙௘ = 1, if 𝜇்
௘ ≥ 𝜆்

௠                (10) 
 

In line with this, eq. (11) gives the real processing 
load on the MEC network, denoted as 𝜆்

௖ : 
                    𝜆்

௖ = 𝜙௘𝜆்
௠ = 𝜆்

௠ , if 𝜇்
௘ ≥ 𝜆்

௠        (11) 

                           𝑇௘(𝜆்
௖ ) =

∑ೕసభ
ಾ  ௐೕ

೐

ఒ೅
೐                   (12) 

We observe that the user equipment's decision 
regarding offloading and channel share are merged. 
In the event that too many MD repeatedly use the 

same remote channel to forward computation tasks 
to the MEC server, each MD belonging to this 
channel will experience intense obstruction, 
resulting in a lower uplink correspondence rate. In 
this case, no more advantageous to perform the task 
locally. Additionally, wasted are the MEC server's 
registering resources. Therefore, efficient task 
offloading and channel asset assignment are required 
to ensure job completion with little delay and energy 
consumption. The sheer number of small cells and 
MDs makes identifying the ideal job offloading 
option and channel asset allocation strategy 
challenging. 
 
3.3   Particle Swarm Based Joint Optimization  

  Architecture 
 

Particle swarm optimization is a developmental 
registering innovation started from an investigation 
of bird predation conduct. The fundamental thought 
of molecule swarm advancement calculation is to 
find an ideal arrangement through coordinated effort 
and data dividing among people in the gathering. By 
designing a massless molecule, the molecule swarm 
computation simulates birds in a herd of birds. Only 
two attributes apply to molecules: velocity and 
position. Every molecule looks for ideal 
arrangement exclusively in hunt space, records it as 
ongoing individual outrageous worth, and offers 
singular outrageous worth with different particles in 
a whole molecule swarm.  Which expects to find 
ideal individual outrageous worth as ongoing 
worldwide ideal arrangement of whole molecule 
swarm, all particles in molecule swarm change their 
speed as well as the position as per ongoing 
individual outrageous worth they find and ongoing 
worldwide ideal arrangement shared by whole 
molecule swarm. The MEC server’s CPU clock 
frequency represented as ൛𝐶௨,ଵ, 𝐶௨,ଶ, 𝐶௨,ଷ … 𝐶௨,ெൟ. the 
channel advance matrix is described as eq. (13): 

 

        𝐴 = ൦

𝐴ଵ,ଵ 𝐴ଵ,ଶ … 𝐴ଵ,ே

𝐴ଶ,ଵ 𝐴ଶ,ଶ … 𝐴ଶ,ே

… … … …
𝐴ெ,ଵ 𝐴ெ,ଶ … 𝐴ெ,ே

൪            (13) 

A molecular element is comparable to a certain 
number of job sets. As mentioned in the previous 
section, the use of the molecule position vector P = 
{p1, p2,.., pM} to show that all tasks are offloaded to 
the corresponding MEC server, whose aspect is 
equal to the number of jobs to be offloaded and 
whose esteem is added arbitrarily, shows that all 
tasks are offloaded. We should accept the model’s 
current tasks t1 to t5. The Molecule Speed Vector, 
denoted by V = {v1, v2,..., vM}, is used to address a 
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variety of offloading jobs to various servers. Give all 
particles a varying speed as a matter of some 
significance, and update the altered speed value 
before estimating during the emphasis interaction. 
The number of jobs to be offloaded equals one 
element of the molecular speed vector. 
 

4. RESULTS AND DISCUSSION 
 
The main goal of the real-time monitoring tool, 

which is based on video surveillance, is to spot 
anomalies and issue alerts. It is obvious that a system 
prototype like this requires extensive processing 
(like abnormality detection) and enormous data 
transport (like recorded video). Additionally, there is 
a deadline that the jobs must meet. If not, it might 
negatively impact system performance or have dire 
repercussions. As a result, this system prototype 
accurately depicts the essential elements of the 
application scenario in question, making it 
appropriate for use as a case study. In this section, 
using a benchmark dataset with various 
correspondences, we evaluate our MEC clustering 
calculation by comparing technique on minor 
problem occurrences that considers different day 
types and times of the day. After, we assess it based 
on significant issue occurrences. Finally, we analyze 
its results over time. 

 
Dataset: A large part of the advancement in 
reconnaissance has been conceivable and 
attributable to the accessibility of public datasets, for 
example, the Weizmann, VIRAT, and TRECVID 
datasets. Notwithstanding, the present status of of-
the-workmanship reconnaissance frameworks have 
been immersed by these current datasets, where 
activities are in compelled scenes, and some 
unscripted observation film will generally be 
redundant, often overwhelmed by scenes of 
individuals strolling. There is a requirement for 
another video reconnaissance dataset to invigorate 
progress. 
 
VIRAT: The goal of flying recordings is at 640x480 
with a 30Hz framerate. The camera is on a gimbal on 
a monitored airplane where the regular pixel level of 
individuals in assortments is around 20 pixels tall. 
From a sum of 25 hours of unique recordings 
recorded at this site, a subset of the dataset, which 
show generally smooth camera movement and great 
weather patterns (no serious cloud) was physically 
chosen and remembered for this dataset with the 
aggregate sum of 4 hours of recordings. Down-
sampled renditions were not considered on the 

grounds that caught-moving articles are as of now, 
at a genuinely low goal. 
 
TRECVID: At Gatwick Airport in London, UK, 
where there are severe obstacles and persistent 
cooperation, five region’s data sets were captured. 
The dataset included five surveillance systems on ten 
different days, each of which was filmed for around 
2 hours. Each report's area and the offices that 
collected the information were comparable. The 
enhancement set comprises 100 hours of video 
appropriated as MPEG-2 organization, de-joined, 
buddy design, and 720 x 576 resolution at 25 edges 
per second.  
 
In this part, we explore the exhibition of proposed 
engineering by concentrating on the impact of 
various boundaries on offloading goals and playing 
out near examination with current offloading plans. 
For trial assessment, we consider a multi-server 
mobile edge network with enormous smart devices 
conveyed haphazardly in a given region. A nearby 
help rate exists for every SD in the scope of [3.5, 5] 
MIPS. The size of a help demand is haphazardly 
created for every SD by consolidating MATLAB 
rand capability that consistently produces 
solicitation size between [300, 1000] Kb. 
Neighborhood user has a computer processor 
recurrence of up to 1 GHZ. The quantity of diverts 
in full-scale cells is 20.Table 1 shows, Settings of 
principal reenactment boundaries in this research. 
 

Table 1. Simulation Parameter 
 

Simulation Parameter Value 

System total bandwidth 10MHz 

Total number of channels 𝐾 20 

Number of small cell 𝑁 4,6,8,10,12 

Number of MUE 𝑈ெ 15 

Number of SUE in a small cell 𝑈௡ 2,6,10 

Transmission power of MUE 𝑝ெ 27dBm 

Transmission power of SUE 𝑝௡ 23dBm 

CPU frequency of UE 𝑓୳೎

௟  [0.1,1]GHz 

CPU frequency of MEC 𝑓஼
஼  4GHz 

Size of the computation task 𝑠୳೎

௟  [2,10]MB 

CPU cycles required by the task 
𝜔௨೎

௟  [0.5,2.5]GHZ 
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User tolerates maximum delay 
𝑇௨೎

௠௔௫ [1,4]s 

 
 
4.1 Proposed Analysis 
 

The Proposed analysis evaluates various 
parameters based on the number of SD (smart 
devices). Here the parameters analyzed are QoS, 
energy consumption, delay, computational load, and 
throughput.  
 

 
 

Figure 4. Proposed Technique-Based Parametric 
Analysis for Number of SD 

 
From figure 4 above, the parametric analysis has 
been carried out for the proposed technique 
concerning the number of smart devices used. 
Proposed technique attained QoS of 77%, the energy 
consumption of 55%, delay of 41%, a computational 
load of 38%, a throughput of 91% for 20 SD. QoS of 
78%, an energy consumption of 59%, delay of 43%, 
computational load of 39%, throughput of 93% for 
40 SD. QoS of 81%, energy consumption of 61%, 
delay of 45%, computational load of 41%, 
throughput of 95% for 60 SD. QoS of 83%, energy 
consumption of 63%, delay of 48%, computational 
load of 43%, throughput of 96% for 80 SD. QoS of 
85%, energy consumption of 65%, delay of 51%, 
computational load of 45%, throughput of 97% for 
100 SD.  
 
Figure 5 (a)- (e) The parametric analysis for the 
proposed technique concerning the number of 
iterations has been carried out. Proposed technique 
attained QoS of 58%, energy consumption of 45%, 

delay of 35%, computational load of 51%, 
throughput of 81% for 10 iteration. QoS of 63%, 
energy consumption of 51%, delay of 41%, 
computational load of 55%, throughput of 85% for 
30 iteration. QoS of 68%, energy consumption of 
55%, delay of 43%, computational load of 58%, 
throughput of 91% for 50 iteration. QoS of 73%, 
energy consumption of 58%, delay of 48%, 
computational load of 63%, throughput of 95% for 
70 iteration. QoS of 75%, energy consumption of 
61%, delay of 51%, computational load of 65%, 
throughput of 96% for 80 iteration. QoS of 77%, 
energy consumption of 63%, delay of 53%, 
computational load of 65%, throughput of 97% for 
90 iteration.   
 
4.2 Comparative Analysis 
 
      The benchmark dataset analyzed is Weizmann, 
VIRAT, and TRECVID in terms of QoS, energy 
consumption, delay, computational load, and 
throughput with the comparison of proposed and 
existing MEC, OFDMA, and C-RAN techniques. 

 
 

 
Figure 6. Comparison of QoS 

 
The above figure 6 shows an analysis of 

Weizmann, VIRAT, and TRECVID datasets for 
QoS. The proposed technique attained QoS of 62%, 
existing MEC attained 57%, OFDMA attained 58%, 
C-RAN attained 61% for Weizmann dataset. For 
VIRAT dataset, the proposed technique attained 
QoS of 70%, existing MEC attained 63%, OFDMA 
attained 67%, C-RAN attained 69%. The proposed 
technique attained QoS of 76%, existing MEC 
attained 72%, OFDMA attained 71%, C-RAN 
attained 77% for TRECVID dataset. 
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(a) QoS 

 
(b) energy consumption 

 
(c) delay 

 
(d) computational load 

 
(e) throughput 

 
Figure 5. (a) - (e) Proposed technique parametric analysis based on the number of iterations in terms of (a) QoS, 

 (b) Energy consumption, (c) delay, (d) computational load, (e) throughput. 
 

 
     

 
Figure 7. Comparison of Energy Consumption 
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In figure 7, the analysis in terms of Energy 

consumption is presented. The proposed technique 
attained an Energy consumption of 44%, existing 
MEC attained 50%, OFDMA attained 46%, C-RAN 
attained 51% for Weizmann dataset. For VIRAT 
dataset, the proposed technique attained an Energy 
consumption of 52%, existing MEC attained 55%, 
OFDMA attained 54%, C-RAN attained 54%. 
Proposed technique attained Energy consumption of 
57%, existing MEC attained 62%, OFDMA attained 
62%, C-RAN attained 60% for TRECVID dataset. 

 

 
Figure 8. Comparison of Delay 
 

The above figure 8 shows an analysis of 
Weizmann, VIRAT, and TRECVID dataset for 
delay. The proposed technique attained delay of 
34%, existing MEC attained 40%, OFDMA attained 
36%, C-RAN attained 35% for Weizmann dataset. 
For VIRAT dataset, the proposed technique attained 
delay of 41%, existing MEC attained 43%, OFDMA 
attained 42%, C-RAN attained 44%; the proposed 
technique attained delay of 47%, existing MEC 
attained 52%, OFDMA attained 50%, C-RAN 
attained 53% for TRECVID dataset. 

 
Figure 9. Comparison of Computational Load 

 
In figure 9, the analysis in terms of 

Computational load is presented. The proposed 
technique attained a Computational load of 54%, 
existing MEC attained 51%, OFDMA attained 53%, 

C-RAN attained 54% for Weizmann dataset. For 
VIRAT dataset, the proposed technique attained 
computational load of 60%, existing MEC attained 
56%, OFDMA attained 57%, C-RAN attained 58%. 
The proposed technique attained Computational load 
of 71%, existing MEC attained 63%, OFDMA 
attained 65%, C-RAN attained 67% for TRECVID 
dataset. 

 

 
Figure 10. Comparison of Throughput 
 
The above figure 10 shows an analysis of 

Weizmann, VIRAT, and TRECVID dataset for 
throughput. The proposed technique attained 
throughput of 86%, existing MEC attained 82%, 
OFDMA attained 84%, CRAN attained 85% for 
Weizmann dataset; for VIRAT dataset, proposed 
technique attained throughput of 93%, existing MEC 
attained 89%, OFDMA attained 92%, CRAN 
attained 92%. The proposed technique attained 
throughput of 97%, existing MEC attained 95%, 
OFDMA attained 96%, CRAN attained 96.5% for 
TRECVID dataset. 

 
 

4.3 Industrial Significance of Proposed  Model 

 Industrial IoT uses edge computing at the 
network's edge. Industrial IoT devices are wirelessly 
connected to edge servers for Industry 4.0 duties. 
Industry 4.0 requires low latency and high 
computational resources for security applications, 
AR/VR gadgets, real-time cyber-physical systems, 
and autonomous cars. Critical application delays 
cause industry delinquency. More IIoT devices and 
their heterogeneity create increased pressure on 
computing resources.   We presented collaborative 
task execution at distributed edge Based on belief 
rule geo clustering and particle swarm joint 
optimization with the multi-constraint objective 
model for time-critical and resource-intensive IIoT 
tasks. MEC resource allocation reduces processing 
time, energy cost, and load. Critical industrial use 
cases with running applications like AR/VR for field 
workers, real-time predictive maintenance, object 
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recognition and tracking of human movements, 
process monitoring, robotic control, etc., would 
benefit from the suggested model. 

 
5. CONCLUSION 

 
In collaborative edge computing, where 

heterogeneous independent tasks are produced at 
various heterogeneous devices at various release 
times, this work examines the multi-task 
collaborative execution problem with a multi-
constrained objective. The novel strategy for MEC 
server clustering, collaborative task scheduling, and 
execution in the resource allocation model is 
investigated. Belief rule Geo clustering method used 
to cluster the MEC server based on real-time data of 
intensive tasks. For the simple sake, real-time 
monitoring application based on video surveillance 
is taken. When the MEC server is busy receiving 
data, the distributed MEC channel task allocation 
model is utilized to distribute tasks, and a particle 
swarm-based joint optimization architecture is used 
to optimize clustered data. We concentrate on the 
proposed framework by reenactment to grasp its 
adequacy under different boundaries and exhibit its 
viability over accessible MEC offloading plans. We 
have figured out the issue as a joint improvement 
issue that plans to limit a direct mix of data 
transmission consumed and network QoS. We mean 
to incorporate boundaries similar to yield 
transmission postponement and organization delays 
inside the MEC organization. We may likewise 
expand our method for multi-class traffic and 
incorporate steering likelihood improvement for 
better resource usage. Proposed technique attained 
QoS of 77%, energy consumption of 63%, delay of 
53%, computational load of 65%, throughput of 
97%. 
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