
Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5695 

 

A PARALLEL SPARSE DATA COMPRESSION (PSDC) 
METHOD FOR FILE STORAGE OPTIMIZATION USING 

CLOUD ENVIRONMENT 

N.SRIKANTH, T.PREM JACOB 2 
1 Research Scholar, Sathyabama Institute of Science and Technology, Department of CSE, Chennai, India 

2 Professor, Sathyabama Institute of Science and Technology, Department of CSE, Chennai, India 
1srinekkalapu51@gmail.com, 2premjac@yahoo.com  

 
 

ABSTRACT 
 

Huge, distributed data-intensive applications consume data at fast speeds, causing adverse I/O effect on 
storage services while managing data. Cloud computing is the future of data storage, communication, and 
resource sharing. Cloud computing makes data-intensive applications appealing to a wider public who cannot 
afford pricey large-scale distributed infrastructures. Compressing large amounts of intense application data 
for internet transmission saves time and storage capacity. This study proposes Sparse Data Compression 
Algorithm (SDC) to reduce memory entries and reduce storage space. Conventional compression technology 
cannot process big data with a high compression rate and low energy cost. Using the Cloud framework, this 
study implements Parallel Sparse Data Compression (PSDC), a high-speed lossless data compression 
algorithm. The PSDC algorithm chunks data compression data and submits to cloud virtual cores to reduce 
computational complexity. PSDC in the cloud environment speeds up compression and improves ratio. 
Eventually, the proposed method outperforms standard compression algorithms in compression ratio, 
compression size, and compression time. 

Keywords: Data-intensive applications, Cloud Computing, Data Compression, Parallel Computing, and 
Sparse Representation. 

 
1. INTRODUCTION  
 

"Big Data" has emerged as a buzzword in both the 
business world and the academic world due to the 
proliferation of many large-scale applications that 
are data intensive. Not only do these data-rich 
applications have a very big data volume, but they 
also potentially have complicated data structures and 
high update rates. Existing data management 
systems have major lapses in performance, 
scalability, and programmability. Users that require 
processing massive volumes of data but lack the 
financial resources to maintain their own large-scale 
infrastructure can rent the resources they need to 
operate their applications by paying only for the 
resources used throughout the course of the 
application's execution. Users who lease these 
resources can lease other key resources for running 
applications. Due to the fact that the expanding cloud 
computing model offers a new framework for 
operating computer resources, it is attracting 
significant interest from both industry and 
academics. Users rent virtual computers and storage 
space from the cloud provider rather than just buying 
and operating hardware [1]. 

 

 

Figure.1. Cloud Model for Data Management 

Data compression techniques serve a variety of 
purposes, including lowering disc space 
requirements, communication, or data transmission 
times, and more. The quantity of information that 
must be managed by software and exchanged 
between systems has been expanding along with the 
quantity of data that must be processed. Data 
compression technology is seen as a crucial 
component in these situations to maintain the 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5696 

 

information infrastructure. Although there are many 
other devices besides PCs that use data compression 
technology, such as modems, routers, digital 
cameras, facsimiles, CDs, MDs (Mini discs), video 
on demand (VOD), TV conference systems, DVDs, 
digital telephones, and other devices, the term "data 
compression" is typically used to describe 
information that's kept in files and transferred over 
phone lines. To compress anything means to express 
it in a form that takes up less space than the original, 
uncompressed version [2]. There are two distinct 
types of compression methods in terms of being able 
to recover the original data. The two kinds of 
compression are referred to as lossless and lossy, 
respectively. The decompressed data 
exactly  mimics the original when employing a 
lossless approach. cloud data compression, in 
essence, entails discussing a stream of symbols and 
turning it into codes [3]. the final stream of codes 
will be less than the original symbols if the 
compression was successful. a model is used to 
determine the code to output for a given symbol or 
group of symbols. modeling and coding are the two 
parts that constitute data compression. cloud 
computing is the newest big thing, as per advanced 
developments[4] 

 
Figure.2. Data Compression Techniques Classification 

Limpel and Ziv (L Z) codes [5], Huffman codes [6], 
Adaptive Huffman [7], Run-length encoding [7], 
Arithmetic coding [8], Multigroup compression 
method [8], Shannon-Fano code [9], and dictionary-
based approaches [9] are just few of the lossless 
compression algorithms that have been suggested in 
the past. If you choose a lossy compression method, 
the decompressed data won't be an exact replica of 
the original. Huffman coding and arithmetic coding 
both suffer from the need for a double scan, the first 
to determine probability and the second to encode 
the text. Static or dynamic dictionary encoding is 
possible. It's more troublesome to use static 

dictionary coding since the dictionary must be 
transmitted with the compressed data to the receiver. 
LZ77 [5], LZ78 [5], and LZW [5] are examples of 
adaptive dictionary data compression methods. All 
of the aforementioned algorithms, however, are 
sequential, with the result that the i-th block can only 
be programmed once the i-1-th block has finished. 
Lossless methods can be parallelized to bypass this 
restriction (i.e., Parallel Sparse Data Compression ). 
This paper's primary contribution is a very efficient 
compression method that may be used by cloud-
based applications to improve their download speeds 
and reduce their space requirements. 
 The rest of the present paper is structured as 
described below. In Section 2, we will talk about the 
research that has been done on compression 
strategies. In Section 3, we describe the various 
known compression strategies, which serve as a 
foundation for the work that we present in this study. 
Following that, Section 4 comprehensively analyzes 
the proposed compression algorithms. The findings 
are discussed in detail in Section 5. The conversation 
is brought to a close with the presentation of Section 
6. 

2. RELATED WORK 

Compression is one of the effective methods that can 
be used to enhance the storage of data. A number of 
different methods have been investigated for 
effective storage, and this section describes them in 
depth. This paper, which introduced a method that is 
known as CULZSS[10], LZSS lossless data 
compression on CUDA, presents how LZSS lossless 
data compression algorithm is applied on CUDA, 
before analyzing its performance using 5 different 
datasets. [11] Compressing files with the LZO 
technique on NVIDIA CUDA architecture is a topic 
of discussion here, as are the various ways in which 
LZO could be implemented on GPUs using the 
Fermi architecture. For compressing an unstructured 
data stream with double precision, FPC makes use of 
a pair of value predictors that are based on hash 
tables. It provides an adjustable parameter, in which 
compression efficiency is traded for processing 
speed. The chunked processing of incoming data that 
is enabled by the thread-parallel variation of the 
pFPC algorithm [12] enables higher prioritization of 
compression throughput. SPDP [13] links one-
dimensional prediction to a variation of LZ77 for 
compressing data without specialization for either 
the single- or double-precision formats. This allows 
the data to be compressed more efficiently. MPC is 
a quick compression method for GPUs that was 
developed by Microsoft. A new algorithm that maps 
very well to the hardware that is being targeted is 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5697 

 

created by combining a straightforward one-
dimensional value predictor to a bit-regrouping 
strategy for zero-bit elimination in the remaining 
results. For delinking data points in an n-
dimensional grid and the neighbours that have 
previously been processed, the APE and ACE 
compressors make an intelligent selection from a 
pool of various value predictors. A modification of 
the Golomb coding algorithm is used to condense the 
residuals demonstrate two distinct parallel 
implementations of lossless data compression 
algorithms based on BWT, one of which is data 
parallel, and the other of which is task parallel. To 
compress parallel data, total data file gets broken as 
minute parts with every cluster undergoing unique 
compression before being written to the disc in the 
correct order. The compression algorithm responds 
variedly to several threads or processes so that task 
parallel compression is properly implemented. The 
results of the experiments reveal that the parallel data 
technique offers a significant increase in speed. [14] 
demonstrate a parallel implementation of a lossless 
data compression algorithm similar to bzip2 that 
runs on the GPU. They do this by parallelizing 
Burrows-Wheeler transform (BWT), Move-to-front 
transform (MTF), and the Huffman coding phases of 
compression pipeline. According to the findings of 
the experiments, their implementation is noticeably 
more time-consuming than bzip2's. 

3. COMPRESSION METHODS  

Data compression can be understood as the process 
of taking a stream of data in X and converting it into 
data that takes up less space. If the compression was 
successful, the resulting stream of data, denoted by 
the letter D, will be less extensive than the initial 
data, denoted by the letter X. A model serves as the 
foundation for making the decision to produce an 
output of specific compact data that combines data 
rules that are applied in processing input symbols. 
These rules indicate which code is going to be 
modified. For the purpose of the efficient 
optimization of the data, the number of approaches 
is provided[15]. 
3.1.Huffman encoding 
The Huffman encoding [7] system works like this: 
the symbol that occurs with a higher frequency is 
given a shorter code, while the symbol that occurs 
with a lower frequency is given a longer code. 
Longer codes are built in such a way that they cannot 
be used as prefixes by lesser codes. This is an 
important aspect of the construction of longer codes. 
This piece of coding creates what is known as a 
Huffman tree, just a binary tree. In a binary tree, the 

left branch stands for the number zero, and the right 
branch stands for the number one. 
3.2.Arithmetic Encoding 
Similar to how the Huffman encoding works, this 
method uses a varying number of bits for each 
symbol. Contrary, Arithmetic coding follows a 
different technique []. The output is saved as a single 
floating-point value that is higher than or equal to 0 
but is less than 1. This method is far more adaptable 
than the Huffman encoding. 
3. 3. LZ77 
Dictionary work is performed in LZ77 method as 
component of sequences that were encoded earlier. 
The encoder performs an analysis on the input 
sequence by activating the sliding window, which is 
made up of two distinct components known as 
Search and Look-ahead buffer that hold sections of 
the latest encoded sequences. However, Look-ahead 
buffer holds sequence parts for encoding later. LZ77 
does not have its own external dictionary, which can 
create issues when decompressing files on a different 
system. In this particular approach, whenever there 
is no match of any strings, that string is encoded as a 
length and offset, which will take up additional 
space. This extra step also increases the amount of 
time that the algorithm needs to complete its 
task[10]. 
3. 4. LZ78 
An explicit dictionary is kept up to date with 
dictionary-based compression method like LZ78 
compression technique. The encoded output is 
comprised of two components: an index that points 
to the dictionary item with the longest matching 
string, as well as the first symbol that does not match. 
In addition to this, the index and symbol pair are 
added to the dictionary by the algorithm. Before a 
symbol shows up in a dictionary, the codeword 
receives index value 0, which is included in 
dictionary as well. This occurs when the symbol is 
not yet known. The algorithm builds the dictionary 
with this approach. LZ78, much like LZ77, has a 
compression rate that is low but a decompression 
speed that is high. Although LZ78 is faster than 
LZ77, it may not always produce a compression ratio 
that is as high as that of LZ77. The greatest benefit 
that the LZ78 algorithm has over the LZ77 method 
is that it performs fewer string comparisons 
throughout each phase of the encoding process [10]. 
 
3. 5. LZW 
The sequential LZW algorithm begins by initializing 
the dictionary to contain all strings of length one. 
This is done so that the dictionary is ready for use. 
After that, it goes through the dictionary and finds 
the longest string that corresponds to the current 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5698 

 

input. It then generates the code for that string. The 
matched string, along with the character that comes 
after it, is added to the dictionary by this function. 
This process will continue until all of the characters 
in the input have been dealt with[16]. 

 
Figure.3. LZW Algorithm 

3.6. PLZW 
If we had N processors, the simplest technique to 
parallelize LZW would be to partition the data into 
N chunks and assign a CPU to compress each chunk 
in turn (PLZW). As a result, the amount of time spent 
computing will be cut down due to the fact that each 
processor will operate on a chunk independently. 
This method does have some drawbacks, one of 
which is that it can lead to an increase in the number 
of redundant entries in the dictionaries of the 
processors (due to the fact that the identical items 
might be placed in many dictionaries), which will 
result in a lower compression ratio[19] 
4. PROPOSED METHOD: SPARSE DATA 
COMPRESSION ALGORITHM (SDCA) 
Data compression offers a lot of promise in the form 
of huge storage capacity as well compatibility with 
varied network’s bandwidth. These days, data 
compression has gained much traction as it has the 
inherent capacity to reduce bandwidth and storage 
need, entailing encoding lesser bits, apart from 
consuming less time for transmission. 

 
Figure.4.Parallelize LZW Algorithm 

In the current research, a unique model consisting of 
compression algorithm with cryptographic method is 
proposed. By examining existing compression 
techniques, including arithmetic coding, Huffman 
coding, LZ78, and LZW, a new approach called the 
sparse data compression algorithm is proposed 
(SDCA). By removing memory entries with values 
of "0," it gives the substantial benefit of conserving 
more store space by preventing the waste of storage 
places. Thus, like a special provision, "0" gets saved 
if "1" goes beyond a given limit. The basic principle 
behind this algorithm is based on the sparse matrix 
representation. It is illustrated in the following 
matrix shown in eq(1).                                                                                           

                   
c

SD

 
 
 
  

0 0 0

1 0 1

0 0 0

                              (1) 

In general, the storage is required 3X3 =9 for 
accommodate given values on server storage .The 
entries for the position (1,1),(1,2),(1,3), 
(2,2),(3,1),(3,2),(3,3) contain the value “0” . If the 
actual storage location contains the value “0” 
repeatedly, the storage locations become waste for 
many applications resides on cloud servers. The 
sparse data compression algorithm working principle 
has two major components such as Data (the original 
data bit), header (total number of required storage) 
and link (if the continuation of data bit). It stores the 
position bits having the values 1 except all zero 
entries, in the given input representations. The 
detailed explanation for the sparse data compression 
algorithm is described in the Algorithm. 
 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5699 

 

 Algorithm: Sparse Data Compression Algorithm SDCA  

Input :S = Afilecontain a data  

SOutput :C = A Compressed File  

Begin  

Divide the entire data into n blocks i 1 2 3 nS {S ,S ,S , ...,S }  where each iS = 6  character length 

{ 
      If  block size=6 then 
      { 

           Rotate the iS string and sort in lexicographic order (i.e iM is a Matrix) 

      } 
      else 
      { 

Add a special character to iM sort in lexicographic order  to make the block of sizes six and 

rotate the string and sort in lexicographic order 
       } 

     Calculate < L , x > where L  is the last column of the matrix iM row number in the matrix    

     iM and x is the correct string row number in the matrix iM . 

     Convert L  into Binary data using Hash tables (Given) and store number of bits in K . 

    if K % 8 = 0  

    { 
Add mbits to K bits by considering the following condition: 
If last bit in L is 1 then 0 bits are added or If last bit in L is 0 then l are added 
until it satisfies the condition (K+m) % 8 = 0 . 

       } 
    else 
    { 
    Store L in Sparse Matrix   /* only sets of 1’s stored and x value for decompression*/ 
     } 

 

4.1. Data sharing in cloud using SDCA and 
encryption  

A scalable, dependable, and quickly developing 
technology is cloud computing that  provides a 
variety of pay-per-use services to its subscribers. 
Such services consist of compute, storage, and many 
applications, among other things. The emphasis in 
this case is on cloud computing storage security. 
Data that has been encrypted gets loaded onto cloud 
storage services, allowing key to be safely stored on 
local server to do further decryption. However, this 
study focused on the efficient compression 

algorithm for optimizing the file storage prior to the 
encryption. Figure 5, describe about data sharing in 
cloud in different stages, initially data is checked, 
and it converted into binary form. Later applied 
SDCA, for efficient compression to the data. At last 
stage compressed data is encrypted and uploaded 
into the cloud storage 
 

 

 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5700 

 

Figure 5. The Secure Data Sharing Over Cloud Using Compression and Encryption 

4.2. Parallelized Sparse Data Compression 
(PSDC) Algorithm 
While performing repetitive calculations on large 
amounts of data, parallel processing 
offers significantly quicker options over sequential 
processing due the capacity of parallel processors 
to handle many data streams at once on its inherent 
multithreading prowess. The parallelized 
mechanism of the Sparse Data Compression 
algorithm where the divided blocks are distributed 
onto different cores, on each core the SDCA method 
will be executed individually, and final results are 
collected to form compressed data. The detailed 
algorithm is given below. The Figure. states the 
parallelized mechanism of the Sparse Data 
Compression algorithm, wherein the divided blocks 
are distributed into different cores, while on each 
core, the SDCA method is executed individually, 
and the final results are collected to form a 
compressed data. The detailed algorithm is given 
below: 
5. EXPERIMENTAL RESULTS  
5.1. Performance measure: 
The performance metrics often establish whether a 
compression approach is effective or not, besides its 
compatibility with specific criterion.  The data 
compression ratio is defined in the same way as the 

physical compression ratio, and it is utilized to assess 
how much a substance has been physically 
compressed much like the ratio between compressed 
size and uncompressed size. 

R
Sizeafter compression(D)

Compression_Ration(C ) =
Size beforecompression(X)

The ratio between source file size and compressed 
file size is known as compression factor, 
just opposite of compression ratio: 

F

Size before compression(X)
Compression_Factor(C ) =

Size after compression(D)

Saving Percentage:  The shrinking of the source file 
calculated as a percentage. 

P

Size beforecompression(X) -Sizeafter compression(D)
Saving_Percentage(S ) =

Size before compression(X)

 

The performance and efficiency of compression are 
computed using the three criteria mentioned. The 
performance of the compression algorithm improves 
with a decreased compression ratio. Also, a high 
compression factor is necessary for improved 
compression techniques. Here, the saved percentage 
provides us the clue about the actual percentage of 
compression attained. 
 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5701 

 

Parallelized Sparse Data Compression (PSDC) Algorithm 

Input :S = Afilecontain a data  

SOutput :C = A Compressed File  

Divide the entire data into n blocks i 1 2 3 nS {S ,S ,S , ...,S }  where each iS = 6  character length 

Initialize the Cores/Workers as i 1 2 3 nC ={C ,C ,C , ...,C } ; 

Assign each block iS ; 

i iS = M ; 

if block size=6 then 
{ 

Rotate the iS string and sort in lexicographic order (i.e iM is a Matrix) 

Add a special character to iM sort in lexicographic order 

} 

Calculate < L , x > where L  is the last column of the matrix iM row number in the matrix    

iM and x is the correct string row number in the matrix iM . 

Convert L  into Binary data using Hash tables (Given) and store number of bits in K . 

    if K % 8 = 0  

    { 

Add mbits to K bits by considering the following condition: 

If last bit in L is 1 then 0 bits are added or If last bit in L is 0 then l are added 

until it satisfies the condition (K+m) % 8 = 0 . 
       } 
    else 
    { 

    Store L in Sparse Matrix   /* only sets of 1’s stored and x value for decompression*/ 

   } 
 

 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5702 

 

Figure.6. Parallelized Sparse Data Compression (PSDC) Algorithm 

5.2. Results of SDCA 
The possibility for reducing access times between 
cloud clients and cloud servers, as well as the 
possibility for using less cloud storage due to 
"NULL" value waste, are two significant benefits of 
the designed system. The effectiveness of cloud 
storage, the quality of the data that can be retrieved, 

and the speed of execution are all taken into 
consideration in the relative efficiency study. The 
comparison of several compression methods, 
including Arithmetic Coding, Huffman Coding, 
LZ78, LZW, and SDCA, is shown in the following 
graph. 

                                   Table.1. Performance Comparisons with SDCA 

Input Characters 
Storage Efficiency 

(KB) 
Retrieval Efficiency 

Time of  Execution 
Efficiency(Sec) 

Arithmetic Coding 13.7 83 16.05 
Huffman Coding 17.3 73 11.05 

LZ78Coding 13.5 65 10.08 
LZW Coding 18.2 70 13.01 

SDCA 11.4 87 8.82 
 

Table 1 illustrates comparison between original size 
and post-compression text file sizes. It further 
makes a compares the compression ratio of the 
existing algorithms vis-a-vis suggested algorithm. 
For the purpose of analysis, we have included 
Arithmetic Coding,  Huffman Encoding LZ78 
Coding and LZW encoding Algorithms. The overall 
observed the storage efficiency is less i.e., 11.4(KB) 
in proposed method compared to all the standard 
methods. Also, it is shown results from the table 1, 

the Retrieval Efficiency is also improved and 
produces least time for execution i.e, 8.82 in SDCA. 
Figure 7 illustrates the compression ratio between 
proposed method and standard methods, which is 
obtained from compressed file: original file sizes as 
depicted in the plot. A brief analysis of the result 
yielded by the SDCA demonstrates the possibility of 
achieving constant compression ratio, 
notwithstanding file sizes or their contents. 
 

 
Figure.7.Performance of Compression Methods with Compression Ratio 

Table 2. File Size: Original vs. Compressed  
 

 
File 

Name 

 

Original 
File Size 
(in KB) 

 

Compressed Size 
using SDCA 

(in KB) 

 

Compressed Size 
using WinRAR  

(in KB) 

Compressed Size 

Using Arithmetic 
Compression 

(inKB) 
File1 828 158 223 315 
File2 1091 212 265 387 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5703 

 

File3 978 176 254 371 
File4 867 165 234 321 

 

 

Figure.8. File Size: Original Vs. Compressed  & Performance of Various Compression Methods 

Figure.8 illustrates the plot depicting original 
file size to compressed file size ratio. Results 
yielded by the SDCA demonstrates the 
possibility of achieving compression file with 
minimum size in all the four different files. File 
1 produces least size 158 whereas its original 
size are 828 and reduced to 19%. However, in 
other mechanisms produced higher sizes with 
proportion of 26% and 39%.  
 

5.2. Results of PSDCA 
This work is implemented on the latest version 
Hadoop’s 2.7.1on Ubuntu14.10. In all, many 
nodes are included in the test cluster wherein 
one is master, while out of 10 data nodes, 7 are 
similar and 3 disparate, creating 4 mixed 
systems. Table.3 shows the configuration of 
the cluster used in this study. 

 

Table.3.Configuration of the Cluster 

Type 
(Number) 

Processor Model 
Internal 

Memory(RAM) 
External 

Memory(RAM) 
A(7) 2.5GHzInteli5Processor 4GB 500GB 
B (1) 3.2GHzInteli5Processor 16GB 500GB 
C(1) 3.6GHzInteli5Processor 8GB 320GB 
D(1) 3.6GHzInteli5Processor 32GB 1TB 

Table. 4. Comparisons of Compression Performance 

File Name File Size 
File 
Type 

Parallel 
Arithmetic 

Coding 

Parallel 
Huffman 
Coding 

Parallel 
LZW 

Coding 

Purposed 
PSDAC 

ERR009295 470811430 PDF 217694610 217694610 224274069 199908837 
ERR092485 611354745 PNG 585467042 585467042 588234117 585467042 
SRR628456 1075151912 BMP 633317808 633317843 692954495 633317776 
SRR624457 603227492 MP3 153113767 156648643 157349618 133078188 
SRR624558 217514321 WAV 23062960 26059923 20853461 19259273 
SRR624659 1608147955 DLL 774870508 766382271 686669775 679072189 
SRR624850 4985746 C++ 1052673 1216547 1100900 1014600 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5704 

 

 
Figure.9.Comparisons of Compression Performance 

Table 5 Comparisons of Compression Ratio of Parallel Compression Algorithm 
Original Data Compressed Ratio 

File Name File Size 
File 
Type 

Parallel 
Arithmetic 

Coding 

Parallel 
Huffman 
Coding 

Parallel 
LZW 

Coding 

Purposed 
PSDAC 

ERR003495 1899995323 PDF 100.547 78.763 74.766 68.786 
ERR227988 569784647 PNG 98.748 72.594 68.574 62.676 
ERR009295 470811430 BMP 88.675 69.134 66.432 60.458 
ERR092485 611354745 MP3 88.964 69.264 62.273 59.278 
SRR628456 1075151912 WAV 100.333 70.382 68.487 65.487 
SRR624457 603227492 DLL 96.045 67.324 62.345 58.367 
SRR624558 217514321 C++ 99.456 67.345 61.246 57.548 
SRR624659 1608147955 Stream 99.849 74.843 72.873 62.875 
SRR624850 4985746 TXT 99.467 63.145 60.239 57.235 
SRR624951 5045745 TXT 99.873 63.348 60.046 57.143 

 

The proposed work PSDAC is tested with various 
algorithms like Parallel Arithmetic Coding Parallel 
Huffman Coding, Parallel LZW Coding and the 
results is shown in Table 4 and Figure 9. A total of 8 
files of different types include BMP, MP3, WAV, 
DLL,C++,Stream, and TXT and each of different 
sizes is tested with all parallel compression 
algorithms. It is observed from the results that 
overall compression performance of all parallel 
algorithms proposed produces better results 

compared to others. In terms of the file size reduction 
proposed produced better in a way, in case of the file 
name SRR624659, the original size is reduced from 
470811430 to 199908837. However, the other 
methods reduced to file sizes 
217694610,217694610, and 224274069 
respectively. These file sizes are high compared to 
the file size produced by the proposed method 
PSADC. Similar kind of performance is observed in 
the other files also. 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5705 

 

 
Figure.10. Comparisons of Compression Ratio of Parallel Compression Algorithms 

Figure 10 and Table 5, illustrates the compression 
ratio against among parallel proposed method 
PSDCA to standard parallel methods Parallel 
Arithmetic Coding, Parallel Huffman Coding, 
Parallel LZW Coding respectively. Figure 10 
depicts compressed file size: original file size ratio, 
which is compression ratio. A brief analysis of the 
result yielded by the PSDCA demonstrates the 
possibility of achieving better compression ratio in 

all respective files with different types. The lowest 
compression ratio 57.143 is produced in the file 
name SRR624951 of type TXT and in standard 
parallel methods its ratio to be  
99.873,63.348,60.046 respectively. The highest 
compression ratio 68.786 is produced in the  file 
name ERR003495 of type PDF and in standard 
parallel methods it ration to be  100.547, 
78.763,74.766 respectively.  

 

 
Figure.11. Comparisons of Compression Time of Parallel Compression Algorithms 

 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5706 

 

 
 

Figure.11illustrates the compression time against 
among parallel proposed method PSDCA to 
standard parallel methods Parallel Arithmetic 
Coding, Parallel Huffman Coding ,Parallel LZW 
Coding respectively . A brief analysis of the result 
yielded by the PSDCA demonstrates the possibility 
of achieving least compression time in all respective 
files with different types. In general, the minimum 

compression time plays a major role for large data 
compression methods. Amongst the known parallel 
compression tools, not too many algorithms can be 
applied to huge data sizes. However, only PSDCA 
offers matching performance in terms of 
compression time speed, variable throughput, and 
compression ratios.  

 
Figure.12. Compression of algorithm performance: Compression Time & File size and No.of Cores 

Table 6. Ccompression Of Algorithm Performance: Compression Time  & File Size And No.of Cores 

 
Name 

 
Size 

 Processing Units 
2 4 8 16 32 64 

File1 10MB 36.43 71.37 84.73 89.89 92.49 93.47 
File2 100MB 55.34 76.83 88.24 93.44 96.56 98.23 
File3 1GB 46.20 76.75 88.23 94.22 97.12 98.46 
File4 2GB 45.46 79.83 89.65 94.59 97.39 98.56 
File5 3GB 43.67 77.84 87.88 94.45 97.09 98.67 
File6 5GB 46.79 70.98 78.57 79.65 84.63 87.77 

 
In Table 6 and Fig. 12, we exhibit reduction in 
compression time percentage as generated by 
PSDCA, with nearly 90% reduction in 
compression time while compressing 
10MB,100MB,1GB,2GB,3GB, and5GB data 
through 64 processes. Furthermore, compression 
time was reduced by nearly half while 
compressing 100MB data to 5GB on 2 processes. 
It is observed that percentage of compression time 
was reduced with changes quantity of processing 
units, approximately1/p where p is no. of 
processors. 
6. Conclusion 
Cloud computing is the future of data storage, 
communication, and resource sharing. Cloud 

computing makes applications efficient in data 
handling functions, quite affordable to many who 
cannot afford costly large-scale distributed 
infrastructure. Compressing large amounts of 
intense application data for internet transmission 
saves time and disc space. This study proposed 
Sparse Data Compression Algorithm (SDCA) and 
Parallel SDCA, which eliminate memory entries to 
conserve storage space. The suggested architecture 
can reduce cloud client access time via cloud 
servers and cloud storage wastage by using 
"NULL" values. Due to poor communication 
channels, matching missing storage values in their 
production portion may take longer than expected. 
 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5707 

 

REFERENCES:  
[1] J. Shen, T. Zhou, D. He, Y. Zhang, X. Sun and 

Y. Xiang, "Block Design-Based Key 
Agreement for Group Data Sharing in Cloud 
Computing," in IEEE Transactions on 
Dependable and Secure Computing, vol. 16, no. 
6, pp. 996-1010, 1 Nov.- Dec. 2019. 

[2] J. Shen, T. Zhou, D. He, Y. Zhang, X. Sun and 
Y. Xiang, "Block Design-Based Key 
Agreement for Group Data Sharing in Cloud 
Computing," in IEEE Transactions on 
Dependable and Secure Computing, vol. 16, no. 
6, pp. 996-1010, 1 Nov.- Dec. 2019. 

[3] L. Qing, Z. Boyu, W. Jinhua and L. Qinqian, 
"Research on key technology of network 
security situation awareness of private cloud in 
enterprises," 2018 IEEE 3rd International 
Conference on Cloud Computing and Big Data 
Analysis (ICCCBDA), Chengdu, 2018, pp. 462-
466. 

[4] J. Shen, T. Zhou, D. He, Y. Zhang, X. Sun and 
Y. Xiang, "Block Design-Based Key 
Agreement for Group Data Sharing in Cloud 
Computing," in IEEE Transactions on 
Dependable and Secure Computing, vol. 16, no. 
6, pp. 996-1010, 1 Nov.- Dec. 2019. 

[5] Thabit, F., Alhomdy, S., Al-Ahdal, A. H., & 
Jagtap, S. (2021). A new lightweight 
cryptographic algorithm for enhancing data 
security in cloud computing. Global Transitions 
Proceedings., 2, 91–99. 

[6] Yang, P., Xiong, N., & Ren, J. (2020). Data 
security and privacy protection for cloud 
storage: a survey. IEEE Access, 8, 131723–
131740. special section on emerging 
approaches to cyber security. 

[7] Kanatt, S., Jadhav, A., & Talwar, P. (2020). 
Review of secure file storage on cloud using 
hybrid cryptography. International Journal of 
Engineering Research & Technology (IJERT), 
9(2), 16–20. 

[8] Poduval, V., Koul, A., Rebello, D., Bhat, K., & 
Wahul, R. M. (2020). Cloud based secure 
storage of fles using hybrid cryptography and 
image steganography. International Journal of 
Recent Technology and Engineering (IJRTE), 
8(6), 665–667. 

[9] Ibrahim, D. S. (2019). Enhancing cloud 
computing security using cryptography & 
steganography. Iraqi Journal of Information 
Technology, 9(3), 191–224. 

[10] Fateh, M., Rezvani, M., & Irani, Y. (2021). A 
new method of coding for steganography based 
on lsb matching revisited. Hindawi Security and 
Communication Networks, 2021(6610678), 1–
15. 

[11] Albalawi, A., & Hamza, N. (2020). A survey on 
cloud data security using image steganography. 
International Journal of Advanced Computer 
Science and Applications, 11(1), 645–649. 

[12] Kumar, U., & Prakash, J. (2020). Secure fle 
storage on cloud using hybrid cryptography 
algorithm. International Journal of Creative 
Research Thoughts, 8(7), 334–340. 

[13] Gabriel, A.J., Adetunmbi, A.O., & Obaila, P. 
(2020). A two-layer image-steganography 
systemfor covert communication over 
enterprise network. Proceedings of ICCSA 
2020, LNCS 12254 (pp. 459–470), Springer 
Nature. 

[14] Sivan, R., & Zukerman, Z. A. (2021). Security 
and privacy in cloud-based E-health system. 
Symmetry, 13, 742. 

[15] Reddy, P. M. (2019). Hybrid crypto system for 
cloud storage security using MECC and Native 
bayes classifer A review. International Journal 
of Computer Sciences and Engineering, 7(6), 
87–90. 

[16] Akeel, W., & Hashim, A. (2017). Using 
steganography for secure data storage in cloud 
computing. International Research Journal of 
Engineering and Technology, 4(4), 3668–3672.  

[17] Singh, A. K., Singh, J., & Singh, H. V. (2015). 
Steganography in images using LSB technique. 
International Journal of Latest Trends in 
Engineering and Technology, 5(1), 426–430.  

[18] Karuna Jyothi, K., & Indira Reddy, B. (2018). 
Study on virtual private network (VPN), VPN’s 
protocols and security. International Journal of 
Scientifc Research in Computer Science, 
Engineering and Information Technology, 3(5), 
919–932.  

[19] Zhang, Z., Chandel, S., Sun, J., Yan, S., Yu, Y., 
& Zang, J. (2018). VPN: a boon or trap? A 
comparative study of MPLs, IPSec, and SSL 
virtual private networks. In Proceedings of the 
2018 2nd international conference on 
computing methodologies and communication 
(ICCMC), (IEEE), Erode, India (pp. 510–515).  

[20] Ikram, M., Vallina-Rodriguez, N., Seneviratne, 
S., Kaafar, M. A., & Paxson, V. (2016). An 
analysis of the privacy and security risks of 
android VPN permission-enabled apps. In 
Proceedings of the 2016 internet measurement 
conference, Santa Monica, CA, USA, (ACM) 
(pp. 349–364).  

[21] Mukhopadhyay, B., Bose, R., & Roy, S. (2020). 
A novel approach to load balancing and cloud 
computing security using SSL in IaaS 
environment. International Journal of Advanced 
Trends in Computer Science and Engineering,  

 


