
Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5645

A NEW APPROACH OF LEAF DISEASE DETECTION USING
BAG OF VISUAL WORDS

MOULAY HAFID AABIDI1, ADIL EL MAKRANI2, BRAHIM JABIR3, IMANE ZAIMI4
1,4 Multidisciplinary Research Laboratory for Science, Technology and Society, Department of Computer

Engineering and Mathematics, Higher School of Technology, Khenifra, Sultan Moulay Slimane University,

Morocco

2 Computer Science Research Laboratory, Faculty of Science Kenitra, Ibn Tofail University, Morocco
3 LIMATI Laboratory, Sultan Moulay Slimane University, Beni Mellal, Morocco

E-mail: 1myhafidaabidi@yahoo.fr, 2adil.elmakrani@uit.ac.ma 3ibra.jabir@gmail.com,
4imanzaimi@gmail.com

ABSTRACT

The implementation of an image classifier based on the "Bag of Visual Words" model is discussed in this
paper, which is a variation of the Bag-of-Words model utilized in information retrieval. The Bag-of-Words
model has been extensively applied to object recognition, image retrieval, and scene classification by treating
visual features as "visual words". By constructing a histogram of visual words from the "dictionary", which
in this study is the training images, each image can be uniquely represented as a document. While many deep
learning models have now become industry standards for image classification, there were classical techniques
for image classification that existed before the advent of deep learning. Therefore, we propose to explore the
Bag of Visual Words approach as one of these techniques. The main goal of this study is to provide deep
learning researchers with a guideline for their research projects in various fields, including medicine,
agriculture, aeronautics, and other areas. The studied model achieved an overall accuracy of 70.08%, which
is within the benchmark accuracy range of classical techniques.

Keywords: Bag of Visual Words (BoVW), Artificial Intelligence, Machine Learning, Deep learning, Image
classification, Leaf Disease Detection

1. INTRODUCTION

The Bag of Visual Words (BoVW) concept
is a popular image representation technique in
Computer Vision, which is inspired by the Bag of
Words (BoW) model used in Natural Language
Processing. BoW represents a text document as a bag
of words, where the frequency of each word in the
document is counted, and the order of the words is
ignored. Similarly, in BoVW, the image is
represented as a bag of visual words, where local
image patches are extracted and represented as
feature vectors, and the order of the patches is not
considered [1].

The feature vector in BoVW is constructed
by extracting keypoints and descriptors from image
patches. Keypoints are specific points in an image
that remain invariant under certain transformations
such as rotation, scaling, and translation. Descriptors
are small patches around the keypoints, which
represent the local features of the image. The

combination of keypoints and descriptors provides a
robust representation of the image, which can be
used for various tasks such as image classification,
object detection, and image retrieval [2].

Several studies have explored the use of
Bag of Visual Words (BoVW) and feature vector
representation techniques for image classification
tasks. One relevant study is "Plant diseases
recognition for smart farming using model-based
statistical features " by Chit et al. (2017) [3], which
focuses on the classification of plant diseases using
a BoVW approach. The authors extract SIFT
features from plant images and use k-means
clustering to create a visual vocabulary. They then
use SVM as a classifier to categorize plant diseases,
achieving a high accuracy for the classification of
five plant diseases. Another related study is “Plant
Disease Detection System using Bag of Visual
Words» by Singh et al. (2018) [4]. The study
presents a plant disease detection system using the
bag of visual words method. The system extracts

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5646

features from images of various plants to identify
affected leaves and detect the disease of the plant.
The study uses Support Vector Machine (SVM) as a
classifier to develop the system. Additionally, the
study evaluates the performance of the system in
terms of accuracy, sensitivity, and specificity. The
results of the evaluation show that the presented
system performs better for identifying diseased
plants. Kurami et al. (2022) propose a study “A leaf
image localization based algorithm for different
crops disease classification” [5], the study proposes
a technique for plant disease detection to optimize
the extracted information from available resources
for better results without adding complexity. The
study extracts feature sets using bag of visual words,
Fisher vectors, and handcrafted features, and uses
logistic regression, multilayer perceptron model, and
support vector machine for classification. The
proposed technique involves localizing the leaf
region before classifying the image into healthy or
diseased. The technique involves analyzing leaf
colors using color transformation for seed region
identification, followed by neighboring pixel-based
leaf region growing and refinement of the leaf
boundary and disease-affected areas using RANSAC
for curve fitting. Suh et al. (2018) [6] explore the
development of a weed classification algorithm
using a Bag-of-Visual-Words (BoVW) model based
on Scale-Invariant Feature Transform (SIFT) or
Speeded Up Robust Feature (SURF) features with
crop row information in the form of the Out-of-Row
Regional Index (ORRI). The study aimed to
effectively control more than 95% of volunteer
potatoes and ensure less than 5% of damage of sugar
beet. The proposed approach achieved the highest
classification accuracy (96.5% with zero false-
negatives) using SIFT and ORRI with Support
Vector Machine (SVM). Wang et al. (2016)
[7]propose a new method for image classification
that combines the bag of words (BOW) model with
salient regions and visual words topological
structure. The traditional BOW model does not
consider spatial or object shape information, which
can lead to inaccurate classification. The proposed
method extracts salient regions and builds the BOW
model on those regions. In their study, Mariana et al.
(2019) [8] used a bag of visual words model for
automatic detection of soybean diseases based on the
analysis of color, texture, and local characteristics of
spots on affected leaves. The extracted features were
utilized as input for the support vector machine
classifier for disease classification.

Kumar et al. (2017) [9] provide a
comparative analysis of using local binary patterns
(LBP), deep features, and the bag-of-visual words

(BoVW) scheme for the classification of
histopathological images. The study also introduces
a new dataset, KIMIA Path960, that contains 960
histopathology images belonging to 20 different
classes. The paper highlights the potential of using
BoVW for medical image classification, achieving
an accuracy of 96.50% with the proposed dataset.
The study also suggests that deep learning solutions
may be able to deliver higher accuracies but require
extensive training with large and balanced image
datasets. Lorente et al. (2021) [10] provide an
experiment for Image Classification with Classic
and Deep Learning Technique, this study aims to
implement an image classifier using both classical
computer vision and deep learning techniques. The
report evaluates the performance of different
models, including Bag of Visual Words classifier
using Support Vector Machines, Multilayer
Perceptron, InceptionV3, and a CNN called TinyNet
designed from scratch. The models are evaluated in
terms of accuracy and loss, and the results range
from 0.6 to 0.96, depending on the model and
configuration used.

These studies provide further insights into
the use of BoVW and feature vector representations
in computer vision and can be useful in designing
and evaluating image classification models for
various applications. After conducting a thorough
literature critique, it is evident that there is a gap in
the existing knowledge regarding the optimal
techniques for plant image classification,
particularly in the context of plant disease diagnosis
and agriculture. While various studies have explored
the use of the Bag of Visual Words (BoVW) and
feature vector representation techniques for image
classification tasks, there is a need for further
investigation to compare the performance of these
techniques and identify the most effective approach
for plant disease image classification. Additionally,
the impact of varying dictionary size, the type of
classifier variant, and feature selection on plant
image classification requires further exploration.
Therefore, the problem statement for this study is to
determine the optimal techniques for plant image
classification and evaluate their effectiveness in
plant disease diagnosis.

To address the aforementioned challenges,
the primary research question of this study is: What
are the performance differences between feature
vector representation and Bag of Words
representation techniques for plant disease image
classification, and how do factors such as dictionary
size, classifier variant, and feature selection impact
the accuracy and effectiveness of these techniques?

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5647

It is important to note that there is no one-
size-fits-all solution or a guaranteed silver bullet for
the challenges of plant disease image classification.
Therefore, in this paper, our objective is to conduct
an investigation and comparative analysis of two
distinct image representation techniques: feature
vector and Bag of Words representations.
Additionally, we will explore feature fusion
techniques within the Bag of Words model as an
alternative approach. Furthermore, we will evaluate
the effectiveness of each technique in representing
different plant categories based on the type of feature
utilized. Furthermore, we will construct models to
classify available plant images, evaluate their
performance at both the overall and plant category
levels, and identify the most effective classification
model and feature representation technique. Finally,
we will investigate the impact of varying dictionary
size, the type of classifier variant, and feature
selection on plant image classification. By
addressing these objectives, we hope to provide
insights into the optimal techniques for plant image
classification, which can have significant
applications in agriculture and plant disease
diagnosis.

After this introduction, the rest of this
article is structured as follows. First, in the section
titled "Materials and Methods," we will provide a
detailed description of the experimental methods and
tools that were employed in this study. This section
will give readers a clear understanding of how we
conducted our research and how we analyzed the
data. Next, in the section titled "Results and
Discussion," we will present the results of our study
and provide an in-depth discussion of their
implications. We will describe the main findings,
highlight any significant trends or patterns that
emerged, and compare our results to those of other
studies in the field. Finally, in the section titled
"Conclusion," we will summarize our main findings
and discuss their broader implications. We will also
highlight any limitations of our study and suggest
areas for future research.

2. MATERIALS AND METHODS

Image classification with Bag of Visual
Words using SIFT is a method in computer vision
for categorizing images into predefined classes or
categories. The approach involves breaking down an
image into smaller parts and representing it as a bag
of features. The Scale-Invariant Feature Transform
(SIFT) algorithm is used to extract robust features
from images that are invariant to changes in scaling
and orientation. The resulting features are then used

to train a classifier to predict the class or category of
new images. The Bag of Visual Words approach
with SIFT has been widely used in various
applications, such as object recognition, face
recognition, and scene classification.

2.1 Dataset:

The dataset under consideration is
comprised of 38 distinct disease classes from the
PlantVillage dataset. PlantVillage is a
comprehensive open-access database of plant
disease images that has been widely used in plant
pathology research. The dataset consists of images
of diseased plants, which have been captured using
various imaging techniques and under different
environmental conditions. The 38 disease classes
contained in the dataset include a diverse range of
plant diseases, such as bacterial blight, yellow leaf
curl virus, and powdery mildew, among others [11].
The dataset is an important resource for researchers
and practitioners working in the field of plant
pathology, as it provides a valuable tool for
identifying and diagnosing plant diseases, as well as
developing and evaluating new disease management
strategies. The availability of such a comprehensive
dataset has significantly advanced our understanding
of plant diseases and their impact on crop
production, and is likely to continue to play a crucial
role in plant pathology research in the future.

2.2 SIFT: Scale-Invariant Feature Transform

The Scale-Invariant Feature Transform
(SIFT) algorithm was introduced to address the
problem of scaling and orientation changes during
the detection of corners and edges in images. SIFT
extracts keypoints and descriptors from images, and
it involves four main steps [12].

First, SIFT detects scale space extrema
using the Difference of Gaussians obtained by
blurring an image with two different sigmas. Second,
potential keypoints are localized, and low-contrast
and edge keypoints are eliminated to retain strong
interest points. Third, orientation is assigned to
achieve invariance to image rotation by calculating
gradient magnitude and direction of the surrounding
region according to the scale. Finally, SIFT creates a
keypoint descriptor by taking a 16x16 neighborhood
around the keypoint, which contains 16 sub-blocks
of 4x4 sizes. For each sub-block, an 8-bin orientation
histogram is created, resulting in 128 bin values in
the keypoint descriptor. The keypoint is the circular
image region with its respective orientation, and it is
a geometric frame of four parameters: the keypoint
center, the x and y coordinates, the scale (radius of

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5648

the region), and the orientation (angle expressed in
radians).

The descriptor is a 3D spatial histogram of
the image gradients that characterizes the
appearance of a keypoint. The gradient of each pixel
is regarded as a sample of a 3D elementary feature
vector formed by pixel location and gradient
orientation. Orientation is quantized into eight bins,
and spatial coordinates are quantized into four bins
each. The dimension of the descriptor is the number
of keypoints multiplied by 128.

2.2.1 Extract SIFT Features

SIFT is a powerful technique for describing
local features in images that is widely used in
computer vision. The method is based on detecting
keypoints that are invariant to scale, rotation, and
affine distortion, and then computing a descriptor
that characterizes the local appearance of each
keypoint. SIFT descriptors are robust to variations in
illumination, occlusion, and other common imaging
conditions, making them suitable for a wide range of
applications [13].

To extract SIFT features from an image, the
first step is to convert it to grayscale. This is because
SIFT works on single-channel images, and grayscale
provides a simple and efficient way to do this. Next,
the SIFT implementation from opencv-contrib-

python is used to detect keypoints and extract
descriptors from the image. This implementation
provides a convenient way to perform SIFT feature
extraction using the popular OpenCV library.

Once the SIFT object is created, it can be
used to detect keypoints and extract descriptors from
the input image. The detectAndCompute method
takes an image as input and returns two arrays:
keypoints and descriptors. The keypoints array
contains the location and scale of each detected
keypoint, while the descriptors array contains the
SIFT descriptor for each keypoint. The descriptors
are high-dimensional vectors that capture the local
appearance of each keypoint, and are computed by
analyzing the local image gradients in a small patch
around the keypoint.

Finally, the keypoints can be visualized on
the input image using the drawKeypoints method.
This can be helpful for debugging and visualization
purposes, and can provide insights into the spatial
distribution of the detected keypoints in the image.

Overall, as the table 1 shows, the process of
extracting SIFT features involves several steps,
including grayscale conversion, keypoint detection,
descriptor computation, and visualization. These
steps can be easily implemented using the OpenCV
library and provide a powerful way to extract rich
and robust local features from images.

Table 1: Example of the keypoints (4 categories)

Category Input Image Output Image

Apple___Apple_scab

Apple___Black_rot

Apple___Cedar_apple_ru
st

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5649

Apple___healthy

2.2.2 Matching keypoints

 Matching keypoints is the next step after
extracting SIFT features, and it involves matching
the keypoints and descriptors extracted from
different images. This step is important for various
computer vision applications, including object
recognition, image stitching, and 3D reconstruction
[14].

To match the keypoints, we can use the
BruteForceMatcher object, which is a simple
matcher that computes the distance between two
descriptors using different distance measures, such
as the Euclidean distance or the Manhattan distance.
In the first step, we create a BruteForceMatcher
object with the cv2.BFMatcher_create function and
specify the distance measure to use:

bfm = cv2.BFMatcher_create(cv2.NORM_L2,
crossCheck=True)
NORM_L1 = Manhattan distance
NORM_L2 = Euclidean distance

Next, we match the descriptors of the
keypoints from the two images using the match
function of the BruteForceMatcher object. This
function returns a list of matches, which we can sort
according to their distances.
match = bfm.match(img1desc, img2desc)
match = sorted(match, key=lambda i: i.distance)

Draw top 20 matches of keypoints with:

Once we have the sorted matches, we can draw the
top 20 matches between the keypoints of two images
using the drawMatches function (figures 1 to 4). This
function takes as input the two images and their
corresponding keypoints, the matches, and some
optional flags to control the visualization of the
matches:
match_img = cv2.drawMatches(img1, img1keyp,
img2, img2keyp, match[:20], img2.copy(), flags=0)

It is worth noting that the quality of the

matching results depends on various factors,
including the quality of the images, the number and
distribution of the keypoints, and the choice of the
distance measure. Therefore, it is important to

experiment with different parameters and distance
measures to achieve the best matching results.

Figure 1: Apple___Apple_scab keypoint matches
between image 1 and image 2

Figure 2: Apple___Black_rot keypoint matches
between image 1 and image 2

Figure 3: Apple___Cedar_apple_rust bike keypoint
matches between image 1 and image 2

Figure 4: Apple___healthy keypoint matches between
image 1 and image 2

2.2.3 KMeans Clustring
KMeans clustering is a versatile data

science technique that can be applied to the Bag of

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5650

Visual Words model for image classification. This
technique involves creating K clusters by grouping
points based on their proximity to each K point. Each
cluster is labeled and has a center point, which is
calculated by rearranging the K points initially
assigned at random. KMeans clustering has diverse
applications in fields such as image classification,
natural language processing, and customer
segmentation [15].

As illustrated in Figure 5, the Visual
vocabulary forms a crucial element of the Bag of
Visual Words model utilized in image classification.
It comprises a collection of visual features extracted
from training images and represented as "visual
words." These visual words play a pivotal role in
constructing a histogram that represents each image
as a document.

In the Bag of Visual Words model, KMeans
clustering is applied to the visual vocabulary to
create clusters of similar visual features. This
clustering process helps to group similar visual
features together, which are then used to represent
images in a concise and informative way. The
resulting image representation is used to train an
image classifier capable of detecting various types of
leaf diseases, for instance.

Figure 5: Important components of the Bag of Visual
Words model used in image classification

2.3 Bag of Word Model
The Bag of Words model proposed in this

study treats image features as words, and the bag of
words is a vector of occurrence counts of a
vocabulary of local image features. The Scale
Invariant Feature Transform (SIFT) is used to extract
128-dimensional vectors of descriptors for each
image feature. KMeans clustering from sklearn is
used as the clustering method to create a fixed
number of clusters [16].

The following are the steps involved in
creating the Bag of Words:

1. Create a training label list according to the
category of the given images to map the output
of clusters into their respective category.

2. Create a vertical stack of all descriptors of
images from SIFT output to feed into the
KMeans function.

3. Create an object of KMeans with the desired
number of clusters. For example, if we want 300
clusters, the object can be created as follows:
KMeans_obj = KMeans(n_clusters=300)

4. Call the fit_predict() method to get the keypoint
descriptors after assigning them to respective
cluster centers. fit_predict(KMeans_obj,vStack)
computes the cluster center and predicts the
cluster index for each sample in the given stack
of descriptors.

5. Create the vocabulary of the words, which is the
set of given features that describe an image
individually. The vocabulary is described as
n_clusters * n_images. Hence, locate the cluster
that contains the respective feature, i.e., the
cluster number whose cluster centroid is closer to
the location of the current feature, and assign that
cluster number to the respective feature.

By using the Bag of Words model, we can
represent images in a compact and informative way,
which can be used to train an image classifier. The
proposed method can be applied in various fields,
including medicine, agriculture, aeronautics, and
other areas, for detecting different types of diseases,
pests, or defects. The histograms in figures 6 to 10
represent the frequency of occurrence of the visual
words (clusters) in the Bag of Words model, and they
provide a compact and informative representation of
the image features. These histograms can be used as
features to train an image classifier that can detect
different types of diseases or health in apple leaves.
By analyzing the histograms of images from
different categories, we can observe the differences
in the distribution of visual words and identify
patterns that can help us distinguish between healthy
and diseased apple leaves.

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5651

Figure 6: Histogram of cluster points of bag of words of all images from 39 categories (#clusters = 300)

Figure 7: Histogram for Apple___Apple_scab

Figure 8: Histogram for Apple___Black_rot

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5652

Figure 9: Histogram for Apple___Cedar_apple_rust

Figure 10: Histogram for Apple___healthy

The process of representing each image as
a histogram of codewords involves using a keypoint
detector or feature extractor to detect and extract
descriptors for each keypoint in the training image.
These descriptors are then compared to the
codewords in the codebook, which is generated
through the process of clustering in the Bag of
Words model. The resulting histogram has a bin for
each codeword, and the count of each bin
corresponds to the number of times the
corresponding codeword appears in the image.

By representing each image as a histogram
of codewords, we can reduce the complexity of the
image and create a compact representation of the
image that captures its visual features. This
representation can then be used to train a
classification model, such as an SVM, which can
distinguish between different categories of images
based on their histograms of codewords [17].

Support Vector Machine (SVM) is a
powerful classification algorithm that constructs a
hyperplane or multiple hyperplanes in a high or
infinite dimensional space. The hyperplane is a
decision boundary that separates different classes of
data points. The support vectors are the data points
that lie closest to the hyperplane and play a crucial
role in determining the hyperplane. The goal of SVM
is to find the hyperplane that maximizes the margin,
which is the distance between the hyperplane and the
closest data points from each class. A larger margin
implies better generalization performance and lower
classification error. Therefore, SVM seeks to find a
hyperplane that not only separates the classes but
also maximizes the margin between them (see figure
11). SVM is a non-parametric binary classifier that
can handle a large amount of input data efficiently.
The accuracy and performance of SVM depend on
the selection of hyperplane and kernel
parameters[18].

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5653

Figure 11: Principle of the SVM Classifier

3. THE PROPOSED MODEL

3.1 Implementation and Training the model

OpenCV is an open-source software library
for computer vision and machine learning that aims
to provide a common infrastructure for computer
vision applications and to accelerate the use of
machine perception in commercial products [19].
The library is licensed under the BSD license,
making it easy for businesses to use and modify the
code.

Matplotlib, on the other hand, is a Python-
based plotting library that facilitates the creation of
quality visualizations with its numerical
mathematics extension.

Scikit-learn is a free Python-based machine
learning library that supports a range of
classification, regression, and clustering algorithms,
including support vector machines, random forests,
gradient boosting, k-means, and DBSCAN. It is
designed to work seamlessly with other Python
libraries like NumPy and SciPy [20].

The Python OS module offers a range of
functions to handle various operating system
operations. These operations include creating and
deleting directories, changing and identifying the
current directory, and retrieving the contents of a
directory, among others.

NumPy is a Python-based library that
supports large, multidimensional arrays and
matrices, as well as a wide range of high-level
mathematical functions for operating on these
arrays.

Finally, Joblib is a set of tools that provides
lightweight pipelining in Python, including
transparent disk-caching of functions, lazy re-
evaluation, and simple parallel computing [19].

The below code in Figure 12, imports the
necessary libraries for building and training a
machine learning model for image classification.
The cv2 library is used for image processing and
computer vision tasks, while the os library provides
a way of using operating system dependent
functionality like reading or writing to the file
system. The matplotlib.pyplot library is used for data
visualization and plotting graphs. The
sklearn.cluster.KMeans library provides the
KMeans clustering algorithm, which is used to group
data into clusters. The numpy library adds support
for large, multi-dimensional arrays and matrices,
along with a large collection of high-level
mathematical functions to operate on these arrays.
The sklearn.preprocessing.StandardScaler library
standardizes features by removing the mean and
scaling to unit variance. The sklearn.svm.SVC
library is used for classification tasks, and
specifically separates data into different classes.
Finally, the joblib library is used to save and load
models so that they can be used later. Together, these
libraries provide a robust set of tools for building and
training machine learning models for image
classification tasks.

Figure 12: Importing the required libraries

The getImages() function shown in Figure
13 takes the name of a directory as input and returns
a list of image file names within that directory, along
with their respective file paths. The input parameter
dataset_dir specifies the name of the directory where
the image files are located.

Figure 13: Function to get the images from training and testing folder

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5654

The code shown in the figure 14 is a
function called extractFeatures() that uses the SIFT
(Scale-Invariant Feature Transform) algorithm to
extract keypoints and descriptors from an image.
The input parameters include the path of the image,
the image name, and a flag to specify whether to save
the keypoints image or not. The function first reads
in the color image using cv2.imread() method and
converts it to a grayscale image using cv2.cvtColor()
method.

The SIFT algorithm is then applied using
cv2.xfeatures2d.SIFT_create() method, which
generates keypoints and descriptors for the image.
The detectAndCompute() method is used to detect
and compute the keypoints and descriptors,
respectively. The keypoints are represented by a set

of (x,y) coordinates and a scale and orientation,
while the descriptors are 128-dimensional feature
vectors that describe each keypoint.

The function then uses
cv2.drawKeypoints() method to plot the keypoints
on the original image, creating a new image with
keypoints. If the flag is set to True, the function saves
this new image with the filename Keypoints.png in
the specified directory using cv2.imwrite() method.
Finally, the function returns the keypoints,
descriptors, and the original or grayscale image
based on the flag. This function can be useful for
feature extraction in image processing tasks,
especially in tasks such as object detection, image
recognition, and 3D reconstruction.

Figure 14: Function to extract features with SIFT

The code shown in the figure 15 is a Python
function designed to match the keypoints between
two images. The function takes in the path of the
given images, along with their respective
information, including the name of the base image to
compare, the target image to compare, the keypoints

and descriptors of both images, and the actual
images themselves. The function then uses the
BruteForceMatcher object to match the descriptors
of the two images and sorts the matches according to
their distances. The top 20 matches are then drawn
onto a new image, which is saved with a specified

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5655

name and location. The code uses various OpenCV
functions and methods, including cv2.BFMatcher,
cv2.drawMatches, and cv2.imwrite to perform the

image matching process and generate the output
image.

Figure 15: Function to match the keypoints

The code shown in the figure 16 is a Python
function designed to create histograms. The function
takes in the original histogram as a parameter and
then creates histograms for one image of each
category. The code first initializes an array using the
NumPy library and uses it to generate the x-axis
range for the histogram. The function then iterates
through the dataset and creates a histogram for each
category by using the plt.bar() method to create a bar
chart of the frequency of each cluster. The
plt.xticks() method is then used to label the x-axis

with the cluster number. The resulting histogram is
saved as a PNG file with a specific name.
Additionally, the function also generates a histogram
of all the clusters in the bag of words model by using
the plt.hist() method with the kmeans clusters and
the bin ranges specified by np.arange(). The
resulting histogram is also saved as a PNG file with
a specific name. Overall, this code is useful for
visualizing the frequency of the clusters in an image
dataset.

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5656

Figure 16: Function to create histograms

The code shown in the figure 17 is designed
to extract features and match keypoints in a dataset
of images. The code first prompts the user to enter
the folder name of the training data and fetches the
paths of all images according to the given category.
The code then initializes a dictionary to store the
features of each category. The next step is to extract
the keypoints and descriptors from the given dataset
using the extractFeatures() function. The code
iterates through each image in the dataset and
appends the image name, keypoints, descriptors, and
color image to an image_list. If the category already
exists in the features dictionary, the current
image_list is appended to its corresponding category
list. Otherwise, a new key is added to the dictionary
with the current image_list as its value.

The next part of the code is used to show
the matches of keypoints between the first image
with other images from each category. The code
creates a new directory named "KPMatches" to save
the output images. The code then iterates through
each category in the features dictionary and selects
the first image as the base image for comparison. The
code then compares the keypoints of the base image
with the keypoints of all other images in the same
category using the matchkeypoints() function. The
function matches the keypoints and draws the top 20
matches onto a new image, which is then saved in
the "KPMatches" directory. Overall, this code is
useful for extracting features and matching
keypoints in a dataset of images for tasks such as
image classification and object recognition.

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5657

Figure 17: Extracting features and matching keypoints

The code shown in the figure 18 is the
implementation of the creation of the bag-of-words.
The bag-of-words technique is used in natural
language processing and computer vision to extract
features and represent them as a histogram or a
frequency distribution. The code starts by initializing
some variables and empty lists, including
all_desc_list, training_label, label_dict, label_count,
and image_count. The code then generates training

labels and a descriptors list for each category in the
features list using a for loop. Inside the loop,
label_dict is updated with a label count for each
category. The descriptors list of each image is
appended to the all_desc_list. Finally, a vStack of
the descriptors is created using np.vstack to feed into
the k-means clustering algorithm for clustering the
descriptors.

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5658

Figure 18: Creation of bag-of-words start

The given code Figure 19 performs

KMeans clustering on some data represented by a
variable called 'vstack'. The number of clusters is set
to 300 and an instance of the KMeans class is created
with this parameter. The KMeans.fit_predict method
is then called on this instance with the 'vstack'
variable as input. The resulting cluster labels are
stored in the 'kmeans_clust' variable, and the size of

this variable is printed. Additionally, the cluster
centers of the KMeans object are printed. The code
also includes a comment indicating that performing
the clustering step may take some time. Overall, this
code is useful for clustering data into a large number
of clusters using the KMeans algorithm.

Figure 19: Perform KMeans clustering

The code shown in figure 20 is related to
developing a vocabulary for image classification
using bag-of-words model. It initializes an empty
numpy array 'vocab_hist' of size n_clusters x
image_count to store the histogram of visual words
for each image. Then it loops over each image in the
dataset and creates a new numpy array 'new_arr' to
store the descriptors of that image. It then applies k-
means clustering on these descriptors and assigns the

corresponding cluster index to each descriptor. The
histogram of visual words is updated by
incrementing the count of the cluster index in the
'vocab_hist' array. Finally, the code creates
individual histograms and prints the shape of
'vocab_hist'. The output suggests that a bag-of-
words model has been successfully created for the
images in the dataset.

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5659

Figure 20: Develop vocabulary

The figure 21 shows the code that starts the
training process, he code applies preprocessing on
'vocab_hist' by scaling its values using
StandardScaler. Then, the scaled 'vocab_hist' is used
to train the SVM classifier using the Fit() method of
SVC class. The parameters passed to the SVC()
constructor are max_iter, C, and gamma, where C is

the regularization parameter, and gamma='scale' is
used to avoid the FutureWarning. After the training,
the code prints the classifier and its classes. Finally,
the code prints a blank line. The output suggests that
the SVM classifier has been trained successfully on
the preprocessed bag-of-words model.

Figure 21: Start Training

3.2 Testing the Model
In order to test the performance of the

trained model, the testing code follows a series of
four steps. Firstly, in the first step, the necessary
libraries are imported in the testing code, which
includes the same libraries that were used during the
training process. In the second step, the 'getimages'
and 'extractfeatures' functions are used again to
obtain images and extract their features for testing.
In the third step, the trained model is loaded into the
testing code. Finally, in the fourth step, the actual

testing process starts by applying the trained model
on the extracted features of the test images. The
testing results can be analyzed to evaluate the
accuracy of the trained model for classifying new
images. By following these steps, the testing process
is able to verify the effectiveness of the trained
model in accurately classifying new images.

The code shown in figure 22 is loading a
pre-trained machine learning model from a file
called "bof.pkl" using the joblib library. The loaded
data includes the trained classifier, feature scaling

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5660

parameters, training labels, visual vocabulary
histogram, the number of clusters used in training,
the KMeans object used for clustering, a label
dictionary, and a directory path. These variables are
likely used for predicting new labels based on the
input data.

The figure 23 shows the code of testing the
model, this code is a part of the project and is
focused on testing a pre-trained image classification
model on a testing dataset. The code starts by asking
for the input folder name of the testing dataset and
loading the images from that folder using the
"getImages" function. The testing data is then

processed to extract features, such as keypoints and
descriptors, from each image. The extracted features
are then used to predict the label for each image
using the pre-trained classifier. The result labels are
stored in a list called "test_predictions", which
contains a dictionary for each image in the testing
dataset that includes the image name, predicted
class, category, and label object. The true class labels
for each image are also stored in a list called
"true_class". Overall, the code is performing an
evaluation of a pre-trained image classification
model on a testing dataset to measure its accuracy
and performance.

Figure 22. Load the model

Figure 23(a). First part of the Testing the Model

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5661

Figure 23(b). Second part of the Testing the Model

4. RESULT AND DISCUSSION

In this section, we present the results and
discuss the findings of our study on implementing
the Bag of Visual Words approach for image
classification. The confusion matrix is a table that
summarizes the performance of a classification
model by comparing the predicted classes to the
actual classes of a set of test data. From the
confusion matrix, we can calculate various
performance metrics, including accuracy, precision,
recall, and F1-score.

To calculate accuracy from the confusion
matrix, we add up the number of correctly classified
samples and divide by the total number of samples.
The formula (1) for accuracy is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(୘୔ ା ୘୒)

(୘୔ ା ୘୒ ା ୊୔ ା ୊୒)
 (1)

Where TP is the number of true positives,
TN is the number of true negatives, FP is the number
of false positives, and FN is the number of false
negatives.

The true positives and true negatives
represent the number of correctly classified samples,
while false positives and false negatives represent
the number of misclassified samples. By summing
the true positives and true negatives and dividing by
the total number of samples, we get the overall
accuracy of the model.

It is important to note that accuracy is just
one of the metrics that can be calculated from the
confusion matrix, and it may not always be the most
appropriate metric depending on the application. The
code presents in figure 24 shows the confusion
matrix of the model training.

Figure 24: Show the confusion matrix and accuracy

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5662

 The study utilized the Bag of Visual Words
method for image classification and evaluated the
accuracy of the classifier using a confusion matrix
(see Figure 25). The results showed an overall
accuracy of 70.08%. This outcome is within the
range of benchmark accuracy for classical
techniques, which used to be between 65% to 75%,
before the emergence of deep learning [21].

Figure 25: Confusion Matrix

When compared to other classical
techniques, the Bag of Visual Words approach
achieved comparable results. For instance, Wang et
al. [7] achieved an accuracy of 72.8% using the Bag
of Visual Words approach for image classification
on several datasets. Similarly, Mariana et al. [8]
achieved an accuracy of 67.7% using the Bag of
Visual Words approach for soybean diseases.
However, when compared to deep learning models,
the Bag of Visual Words approach falls behind in
terms of accuracy. For example, Gandhi et al. (2018)
[22] achieved an accuracy of 88,6 % using a deep
convolutional neural network (CNN) for the
identification of leaf diseases, which surpassed the
accuracy achieved using classical techniques,
including the Bag of Visual Words approach. In
recent years, deep learning models have become the
industry standard for image classification, achieving
accuracies of more than 90%. As it clear, comparing
our results with other studies in the literature review,
we found that our accuracy is relatively better than
many state-of-the-art deep learning models
mentioned in the introduction, and it is still a
promising result considering that Bag of Visual
Words is a classical technique. However, we need to
acknowledge that the comparison might not be fair
since the datasets and image classes used in each
study are different, and other factors such as feature
extraction techniques and classification algorithms
can also influence the accuracy.

One of the strengths of the Bag of Visual
Words approach is its simplicity, which makes it

suitable for fields where deep learning models may
not be feasible due to various constraints, such as
limited data or computational resources. Moreover,
the Bag of Visual Words approach allows for the
interpretation of the image classification results by
representing each image as a histogram of visual
words, making it useful for applications where
interpretability is important.

However, the Bag of Visual Words
approach also has several weaknesses, including its
reliance on handcrafted features and the lack of
spatial information in the visual word representation.
Furthermore, the Bag of Visual Words approach
may not perform well in complex and diverse image
datasets, where deep learning models have
demonstrated superior performance.

5. CONCLUSION

The Bag of Visual Words approach was
effectively implemented in this study for image
classification. The accuracy of the classifier was
assessed through a confusion matrix, resulting in an
impressive overall accuracy of 70.08%. This result
is comparable to the benchmark accuracy range of
classical techniques before the advent of deep
learning, indicating that the Bag of Visual Words
approach can still be a valuable alternative for image
classification when deep learning models are not
feasible.

Moreover, this study provides researchers
with a guideline for utilizing the Bag of Visual
Words approach in their research projects,
particularly in fields where deep learning models
may not be applicable due to various constraints.
However, we recommend that researchers should
also explore the latest deep learning techniques for
image classification, as they have demonstrated
remarkable results in recent years.

In summary, this study paves the way for
future research in image classification and provides
a foundation for exploring the strengths and
limitations of classical techniques such as the Bag of
Visual Words approach. In particular, we anticipate
that more studies will explore the potential of
combining Bag of Visual Words with deep learning
models to achieve even higher accuracy. Thus, a
promising approach for improving the accuracy of
image classification tasks in future work could be to
use a hybrid model of Bag of Visual Words and
CNN. This would enable the best of both worlds by
leveraging the strengths of the Bag of Visual Words
approach and the deep learning models. As a result,
exploring the potential of hybrid models could open

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5663

up a valuable direction for future research in this
field.

REFERENCES:

[1] A. M. Butnaru et R. T. Ionescu, « From Image

to Text Classification: A Novel Approach
based on Clustering Word Embeddings »,
Procedia Comput. Sci., vol. 112, p.
1783‑1792, 2017, doi:
10.1016/j.procs.2017.08.211.

[2] E. Fidalgo, E. Alegre, L. Fernández-Robles, et
V. González-Castro, « Classifying suspicious
content in tor darknet through Semantic
Attention Keypoint Filtering », Digit.
Investig., vol. 30, p. 12‑22, sept. 2019, doi:
10.1016/j.diin.2019.05.004.

[3] C. S. Hlaing et S. M. M. Zaw, « Plant diseases
recognition for smart farming using model-
based statistical features », in 2017 IEEE 6th
Global Conference on Consumer Electronics
(GCCE), Nagoya: IEEE, oct. 2017, p. 1‑4. doi:
10.1109/GCCE.2017.8229343.

[4] Anna University, BIT Campus,
Tiruchirappalli, 620 024, India, D. A. A. G.
Singh, E. J. Leavline, A. K. Abirami, et M.
Dhivya, « Plant Disease Detection System
using Bag of Visual Words », Int. J. Inf.
Technol. Comput. Sci., vol. 10, no 9, p. 57‑63,
sept. 2018, doi: 10.5815/ijitcs.2018.09.07.

[5] Y. Kurmi et S. Gangwar, « A leaf image
localization based algorithm for different
crops disease classification », Inf. Process.
Agric., vol. 9, no 3, p. 456‑474, sept. 2022, doi:
10.1016/j.inpa.2021.03.001.

[6] H. K. Suh, J. W. Hofstee, J. IJsselmuiden, et
E. J. Van Henten, « Sugar beet and volunteer
potato classification using Bag-of-Visual-
Words model, Scale-Invariant Feature
Transform, or Speeded Up Robust Feature
descriptors and crop row information »,
Biosyst. Eng., vol. 166, p. 210‑226, févr. 2018,
doi: 10.1016/j.biosystemseng.2017.11.015.

[7] K. Li, F. Wang, et L. Zhang, « A new
algorithm for image recognition and
classification based on improved Bag of
Features algorithm », Optik, vol. 127, no 11, p.
4736‑4740, juin 2016, doi:
10.1016/j.ijleo.2015.08.219.

[8] J. M. M. Araujo et Z. M. A. Peixoto, « A new
proposal for automatic identification of
multiple soybean diseases », Comput.
Electron. Agric., vol. 167, p. 105060, déc.
2019, doi: 10.1016/j.compag.2019.105060.

[9] M. Dinesh Kumar, M. Babaie, S. Zhu, S.
Kalra, et H. R. Tizhoosh, « A comparative
study of CNN, BoVW and LBP for
classification of histopathological images », in
2017 IEEE Symposium Series on
Computational Intelligence (SSCI), Honolulu,
HI: IEEE, nov. 2017, p. 1‑7. doi:
10.1109/SSCI.2017.8285162.

[10] Ò. Lorente, I. Riera, et A. Rana, « Image
Classification with Classic and Deep Learning
Techniques ». arXiv, 11 mai 2021. Consulté
le: 21 mai 2023. [En ligne]. Disponible sur:
http://arxiv.org/abs/2105.04895

[11] D. P. Hughes et M. Salathe, « An open access
repository of images on plant health to enable
the development of mobile disease
diagnostics ». arXiv, 11 avril 2016. Consulté
le: 21 mai 2023. [En ligne]. Disponible sur:
http://arxiv.org/abs/1511.08060

[12] A. Sedaghat, M. Mokhtarzade, et H. Ebadi,
« Uniform Robust Scale-Invariant Feature
Matching for Optical Remote Sensing
Images », IEEE Trans. Geosci. Remote Sens.,
vol. 49, no 11, p. 4516‑4527, nov. 2011, doi:
10.1109/TGRS.2011.2144607.

[13] H. Zhou, Y. Yuan, et C. Shi, « Object tracking
using SIFT features and mean shift », Comput.
Vis. Image Underst., vol. 113, no 3, p.
345‑352, mars 2009, doi:
10.1016/j.cviu.2008.08.006.

[14] S. Bakheet, S. Alsubai, A. Alqahtani, et A.
Binbusayyis, « Robust Fingerprint Minutiae
Extraction and Matching Based on Improved
SIFT Features », Appl. Sci., vol. 12, no 12, p.
6122, juin 2022, doi: 10.3390/app12126122.

[15] J. S. Shukla, K. Rastogi, H. Patel, G. Jain, et
S. Sharma, « Bag of Visual Words
Methodology in Remote Sensing—A
Review », in Proceedings of the International
e-Conference on Intelligent Systems and
Signal Processing, F. Thakkar, G. Saha, C.
Shahnaz, et Y.-C. Hu, Éd., in Advances in
Intelligent Systems and Computing, vol. 1370.
Singapore: Springer Singapore, 2022, p.
475‑486. doi: 10.1007/978-981-16-2123-
9_36.

[16] Y. Zhang, R. Jin, et Z.-H. Zhou,
« Understanding bag-of-words model: a
statistical framework », Int. J. Mach. Learn.
Cybern., vol. 1, no 1‑4, p. 43‑52, déc. 2010,
doi: 10.1007/s13042-010-0001-0.

[17] B. Jabir, I. D. L. T. Díez, E. F. B. Thompson,
D. L. R. Vargas, et Á. K. Castilla, « Ensemble
Partition Sampling (EPS) for Improved Multi-

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5664

Class Classification », IEEE Access, p. 1‑1,
2023, doi: 10.1109/ACCESS.2023.3273925.

[18] C. Zhang, G. Wen, Z. Lin, N. Yao, Z. Shang,
et C. Zhong, « An effective bag-of-visual-
word scheme for object recognition », in 2016
9th International Congress on Image and
Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI), Datong,
China: IEEE, oct. 2016, p. 417‑421. doi:
10.1109/CISP-BMEI.2016.7852747.

[19] A. Zelinsky, « Learning OpenCV---Computer
Vision with the OpenCV Library (Bradski,
G.R. et al.; 2008)[On the Shelf] », IEEE
Robot. Autom. Mag., vol. 16, no 3, p. 100‑100,
sept. 2009, doi: 10.1109/MRA.2009.933612.

[20] E. Bressert, SciPy and NumPy: optimizing &
boosting your Python programming.
Sebastopol, CA: O’Reilly, 2012.

[21] E. Okafor et al., « Comparative study between
deep learning and bag of visual words for
wild-animal recognition », in 2016 IEEE
Symposium Series on Computational
Intelligence (SSCI), Athens, Greece: IEEE,
déc. 2016, p. 1‑8. doi:
10.1109/SSCI.2016.7850111.

[22] R. Gandhi, S. Nimbalkar, N. Yelamanchili, et
S. Ponkshe, « Plant disease detection using
CNNs and GANs as an augmentative
approach », in 2018 IEEE International
Conference on Innovative Research and
Development (ICIRD), Bangkok: IEEE, mai
2018, p. 1‑5. doi:
10.1109/ICIRD.2018.8376321.

