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ABSTRACT 
 

The implementation of an image classifier based on the "Bag of Visual Words" model is discussed in this 
paper, which is a variation of the Bag-of-Words model utilized in information retrieval. The Bag-of-Words 
model has been extensively applied to object recognition, image retrieval, and scene classification by treating 
visual features as "visual words". By constructing a histogram of visual words from the "dictionary", which 
in this study is the training images, each image can be uniquely represented as a document. While many deep 
learning models have now become industry standards for image classification, there were classical techniques 
for image classification that existed before the advent of deep learning. Therefore, we propose to explore the 
Bag of Visual Words approach as one of these techniques. The main goal of this study is to provide deep 
learning researchers with a guideline for their research projects in various fields, including medicine, 
agriculture, aeronautics, and other areas. The studied model achieved an overall accuracy of 70.08%, which 
is within the benchmark accuracy range of classical techniques. 

Keywords: Bag of Visual Words (BoVW), Artificial Intelligence, Machine Learning, Deep learning, Image 
classification, Leaf Disease Detection 

 
1. INTRODUCTION  
 

The Bag of Visual Words (BoVW) concept 
is a popular image representation technique in 
Computer Vision, which is inspired by the Bag of 
Words (BoW) model used in Natural Language 
Processing. BoW represents a text document as a bag 
of words, where the frequency of each word in the 
document is counted, and the order of the words is 
ignored. Similarly, in BoVW, the image is 
represented as a bag of visual words, where local 
image patches are extracted and represented as 
feature vectors, and the order of the patches is not 
considered [1]. 

The feature vector in BoVW is constructed 
by extracting keypoints and descriptors from image 
patches. Keypoints are specific points in an image 
that remain invariant under certain transformations 
such as rotation, scaling, and translation. Descriptors 
are small patches around the keypoints, which 
represent the local features of the image. The 

combination of keypoints and descriptors provides a 
robust representation of the image, which can be 
used for various tasks such as image classification, 
object detection, and image retrieval [2]. 

Several studies have explored the use of 
Bag of Visual Words (BoVW) and feature vector 
representation techniques for image classification 
tasks. One relevant study is "Plant diseases 
recognition for smart farming using model-based 
statistical features " by Chit et al. (2017) [3], which 
focuses on the classification of plant diseases using 
a BoVW approach. The authors extract SIFT 
features from plant images and use k-means 
clustering to create a visual vocabulary. They then 
use SVM as a classifier to categorize plant diseases, 
achieving a high accuracy for the classification of 
five plant diseases. Another related study is “Plant 
Disease Detection System using Bag of Visual 
Words» by Singh et al. (2018) [4]. The study 
presents a plant disease detection system using the 
bag of visual words method. The system extracts 
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features from images of various plants to identify 
affected leaves and detect the disease of the plant. 
The study uses Support Vector Machine (SVM) as a 
classifier to develop the system. Additionally, the 
study evaluates the performance of the system in 
terms of accuracy, sensitivity, and specificity. The 
results of the evaluation show that the presented 
system performs better for identifying diseased 
plants. Kurami et al. (2022) propose a study “A leaf 
image localization based algorithm for different 
crops disease classification” [5], the study proposes 
a technique for plant disease detection to optimize 
the extracted information from available resources 
for better results without adding complexity. The 
study extracts feature sets using bag of visual words, 
Fisher vectors, and handcrafted features, and uses 
logistic regression, multilayer perceptron model, and 
support vector machine for classification. The 
proposed technique involves localizing the leaf 
region before classifying the image into healthy or 
diseased. The technique involves analyzing leaf 
colors using color transformation for seed region 
identification, followed by neighboring pixel-based 
leaf region growing and refinement of the leaf 
boundary and disease-affected areas using RANSAC 
for curve fitting. Suh et al. (2018) [6] explore the 
development of a weed classification algorithm 
using a Bag-of-Visual-Words (BoVW) model based 
on Scale-Invariant Feature Transform (SIFT) or 
Speeded Up Robust Feature (SURF) features with 
crop row information in the form of the Out-of-Row 
Regional Index (ORRI). The study aimed to 
effectively control more than 95% of volunteer 
potatoes and ensure less than 5% of damage of sugar 
beet. The proposed approach achieved the highest 
classification accuracy (96.5% with zero false-
negatives) using SIFT and ORRI with Support 
Vector Machine (SVM). Wang et al. (2016) 
[7]propose a new method for image classification 
that combines the bag of words (BOW) model with 
salient regions and visual words topological 
structure. The traditional BOW model does not 
consider spatial or object shape information, which 
can lead to inaccurate classification. The proposed 
method extracts salient regions and builds the BOW 
model on those regions. In their study, Mariana et al. 
(2019) [8] used a bag of visual words model for 
automatic detection of soybean diseases based on the 
analysis of color, texture, and local characteristics of 
spots on affected leaves. The extracted features were 
utilized as input for the support vector machine 
classifier for disease classification.  

Kumar et al. (2017) [9] provide a 
comparative analysis of using local binary patterns 
(LBP), deep features, and the bag-of-visual words 

(BoVW) scheme for the classification of 
histopathological images. The study also introduces 
a new dataset, KIMIA Path960, that contains 960 
histopathology images belonging to 20 different 
classes. The paper highlights the potential of using 
BoVW for medical image classification, achieving 
an accuracy of 96.50% with the proposed dataset. 
The study also suggests that deep learning solutions 
may be able to deliver higher accuracies but require 
extensive training with large and balanced image 
datasets. Lorente et al. (2021) [10] provide an 
experiment for Image Classification with Classic 
and Deep Learning Technique, this study aims to 
implement an image classifier using both classical 
computer vision and deep learning techniques. The 
report evaluates the performance of different 
models, including Bag of Visual Words classifier 
using Support Vector Machines, Multilayer 
Perceptron, InceptionV3, and a CNN called TinyNet 
designed from scratch. The models are evaluated in 
terms of accuracy and loss, and the results range 
from 0.6 to 0.96, depending on the model and 
configuration used.  

These studies provide further insights into 
the use of BoVW and feature vector representations 
in computer vision and can be useful in designing 
and evaluating image classification models for 
various applications. After conducting a thorough 
literature critique, it is evident that there is a gap in 
the existing knowledge regarding the optimal 
techniques for plant image classification, 
particularly in the context of plant disease diagnosis 
and agriculture. While various studies have explored 
the use of the Bag of Visual Words (BoVW) and 
feature vector representation techniques for image 
classification tasks, there is a need for further 
investigation to compare the performance of these 
techniques and identify the most effective approach 
for plant disease image classification. Additionally, 
the impact of varying dictionary size, the type of 
classifier variant, and feature selection on plant 
image classification requires further exploration. 
Therefore, the problem statement for this study is to 
determine the optimal techniques for plant image 
classification and evaluate their effectiveness in 
plant disease diagnosis. 

To address the aforementioned challenges, 
the primary research question of this study is: What 
are the performance differences between feature 
vector representation and Bag of Words 
representation techniques for plant disease image 
classification, and how do factors such as dictionary 
size, classifier variant, and feature selection impact 
the accuracy and effectiveness of these techniques? 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5647 

 

It is important to note that there is no one-
size-fits-all solution or a guaranteed silver bullet for 
the challenges of plant disease image classification. 
Therefore, in this paper, our objective is to conduct 
an investigation and comparative analysis of two 
distinct image representation techniques: feature 
vector and Bag of Words representations. 
Additionally, we will explore feature fusion 
techniques within the Bag of Words model as an 
alternative approach. Furthermore, we will evaluate 
the effectiveness of each technique in representing 
different plant categories based on the type of feature 
utilized. Furthermore, we will construct models to 
classify available plant images, evaluate their 
performance at both the overall and plant category 
levels, and identify the most effective classification 
model and feature representation technique. Finally, 
we will investigate the impact of varying dictionary 
size, the type of classifier variant, and feature 
selection on plant image classification. By 
addressing these objectives, we hope to provide 
insights into the optimal techniques for plant image 
classification, which can have significant 
applications in agriculture and plant disease 
diagnosis. 

After this introduction, the rest of this 
article is structured as follows. First, in the section 
titled "Materials and Methods," we will provide a 
detailed description of the experimental methods and 
tools that were employed in this study. This section 
will give readers a clear understanding of how we 
conducted our research and how we analyzed the 
data. Next, in the section titled "Results and 
Discussion," we will present the results of our study 
and provide an in-depth discussion of their 
implications. We will describe the main findings, 
highlight any significant trends or patterns that 
emerged, and compare our results to those of other 
studies in the field. Finally, in the section titled 
"Conclusion," we will summarize our main findings 
and discuss their broader implications. We will also 
highlight any limitations of our study and suggest 
areas for future research. 

 
2. MATERIALS AND METHODS 
 

Image classification with Bag of Visual 
Words using SIFT is a method in computer vision 
for categorizing images into predefined classes or 
categories. The approach involves breaking down an 
image into smaller parts and representing it as a bag 
of features. The Scale-Invariant Feature Transform 
(SIFT) algorithm is used to extract robust features 
from images that are invariant to changes in scaling 
and orientation. The resulting features are then used 

to train a classifier to predict the class or category of 
new images. The Bag of Visual Words approach 
with SIFT has been widely used in various 
applications, such as object recognition, face 
recognition, and scene classification. 

 
2.1 Dataset: 

The dataset under consideration is 
comprised of 38 distinct disease classes from the 
PlantVillage dataset. PlantVillage is a 
comprehensive open-access database of plant 
disease images that has been widely used in plant 
pathology research. The dataset consists of images 
of diseased plants, which have been captured using 
various imaging techniques and under different 
environmental conditions. The 38 disease classes 
contained in the dataset include a diverse range of 
plant diseases, such as bacterial blight, yellow leaf 
curl virus, and powdery mildew, among others [11]. 
The dataset is an important resource for researchers 
and practitioners working in the field of plant 
pathology, as it provides a valuable tool for 
identifying and diagnosing plant diseases, as well as 
developing and evaluating new disease management 
strategies. The availability of such a comprehensive 
dataset has significantly advanced our understanding 
of plant diseases and their impact on crop 
production, and is likely to continue to play a crucial 
role in plant pathology research in the future. 
 
2.2 SIFT: Scale-Invariant Feature Transform 

The Scale-Invariant Feature Transform 
(SIFT) algorithm was introduced to address the 
problem of scaling and orientation changes during 
the detection of corners and edges in images. SIFT 
extracts keypoints and descriptors from images, and 
it involves four main steps [12]. 

First, SIFT detects scale space extrema 
using the Difference of Gaussians obtained by 
blurring an image with two different sigmas. Second, 
potential keypoints are localized, and low-contrast 
and edge keypoints are eliminated to retain strong 
interest points. Third, orientation is assigned to 
achieve invariance to image rotation by calculating 
gradient magnitude and direction of the surrounding 
region according to the scale. Finally, SIFT creates a 
keypoint descriptor by taking a 16x16 neighborhood 
around the keypoint, which contains 16 sub-blocks 
of 4x4 sizes. For each sub-block, an 8-bin orientation 
histogram is created, resulting in 128 bin values in 
the keypoint descriptor. The keypoint is the circular 
image region with its respective orientation, and it is 
a geometric frame of four parameters: the keypoint 
center, the x and y coordinates, the scale (radius of 
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the region), and the orientation (angle expressed in 
radians). 

The descriptor is a 3D spatial histogram of 
the image gradients that characterizes the 
appearance of a keypoint. The gradient of each pixel 
is regarded as a sample of a 3D elementary feature 
vector formed by pixel location and gradient 
orientation. Orientation is quantized into eight bins, 
and spatial coordinates are quantized into four bins 
each. The dimension of the descriptor is the number 
of keypoints multiplied by 128. 

 
2.2.1 Extract SIFT Features 

SIFT is a powerful technique for describing 
local features in images that is widely used in 
computer vision. The method is based on detecting 
keypoints that are invariant to scale, rotation, and 
affine distortion, and then computing a descriptor 
that characterizes the local appearance of each 
keypoint. SIFT descriptors are robust to variations in 
illumination, occlusion, and other common imaging 
conditions, making them suitable for a wide range of 
applications [13]. 

To extract SIFT features from an image, the 
first step is to convert it to grayscale. This is because 
SIFT works on single-channel images, and grayscale 
provides a simple and efficient way to do this. Next, 
the SIFT implementation from opencv-contrib-

python is used to detect keypoints and extract 
descriptors from the image. This implementation 
provides a convenient way to perform SIFT feature 
extraction using the popular OpenCV library. 

Once the SIFT object is created, it can be 
used to detect keypoints and extract descriptors from 
the input image. The detectAndCompute method 
takes an image as input and returns two arrays: 
keypoints and descriptors. The keypoints array 
contains the location and scale of each detected 
keypoint, while the descriptors array contains the 
SIFT descriptor for each keypoint. The descriptors 
are high-dimensional vectors that capture the local 
appearance of each keypoint, and are computed by 
analyzing the local image gradients in a small patch 
around the keypoint. 

Finally, the keypoints can be visualized on 
the input image using the drawKeypoints method. 
This can be helpful for debugging and visualization 
purposes, and can provide insights into the spatial 
distribution of the detected keypoints in the image. 

Overall, as the table 1 shows, the process of 
extracting SIFT features involves several steps, 
including grayscale conversion, keypoint detection, 
descriptor computation, and visualization. These 
steps can be easily implemented using the OpenCV 
library and provide a powerful way to extract rich 
and robust local features from images. 

Table 1: Example of the keypoints (4 categories) 

Category Input Image Output Image 

Apple___Apple_scab 

Apple___Black_rot 

Apple___Cedar_apple_ru
st 
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Apple___healthy 

 
2.2.2 Matching keypoints 

 Matching keypoints is the next step after 
extracting SIFT features, and it involves matching 
the keypoints and descriptors extracted from 
different images. This step is important for various 
computer vision applications, including object 
recognition, image stitching, and 3D reconstruction 
[14]. 

To match the keypoints, we can use the 
BruteForceMatcher object, which is a simple 
matcher that computes the distance between two 
descriptors using different distance measures, such 
as the Euclidean distance or the Manhattan distance. 
In the first step, we create a BruteForceMatcher 
object with the cv2.BFMatcher_create function and 
specify the distance measure to use: 

 
bfm = cv2.BFMatcher_create(cv2.NORM_L2, 
crossCheck=True)  
# NORM_L1 = Manhattan distance 
# NORM_L2 = Euclidean distance  
 

Next, we match the descriptors of the 
keypoints from the two images using the match 
function of the BruteForceMatcher object. This 
function returns a list of matches, which we can sort 
according to their distances. 
match = bfm.match(img1desc, img2desc)  
match = sorted(match, key=lambda i: i.distance) 

 
Draw top 20 matches of keypoints with: 

Once we have the sorted matches, we can draw the 
top 20 matches between the keypoints of two images 
using the drawMatches function (figures 1 to 4). This 
function takes as input the two images and their 
corresponding keypoints, the matches, and some 
optional flags to control the visualization of the 
matches: 
match_img = cv2.drawMatches(img1, img1keyp, 
img2, img2keyp, match[:20], img2.copy(), flags=0) 

 
It is worth noting that the quality of the 

matching results depends on various factors, 
including the quality of the images, the number and 
distribution of the keypoints, and the choice of the 
distance measure. Therefore, it is important to 

experiment with different parameters and distance 
measures to achieve the best matching results.  

Figure 1: Apple___Apple_scab keypoint matches 
between image 1 and image 2 

Figure 2: Apple___Black_rot keypoint matches 
between image 1 and image 2 

Figure 3: Apple___Cedar_apple_rust bike keypoint 
matches between image 1 and image 2 

Figure 4: Apple___healthy keypoint matches between 
image 1 and image 2 

2.2.3 KMeans Clustring 
KMeans clustering is a versatile data 

science technique that can be applied to the Bag of 
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Visual Words model for image classification. This 
technique involves creating K clusters by grouping 
points based on their proximity to each K point. Each 
cluster is labeled and has a center point, which is 
calculated by rearranging the K points initially 
assigned at random. KMeans clustering has diverse 
applications in fields such as image classification, 
natural language processing, and customer 
segmentation [15]. 

As illustrated in Figure 5, the Visual 
vocabulary forms a crucial element of the Bag of 
Visual Words model utilized in image classification. 
It comprises a collection of visual features extracted 
from training images and represented as "visual 
words." These visual words play a pivotal role in 
constructing a histogram that represents each image 
as a document. 

In the Bag of Visual Words model, KMeans 
clustering is applied to the visual vocabulary to 
create clusters of similar visual features. This 
clustering process helps to group similar visual 
features together, which are then used to represent 
images in a concise and informative way. The 
resulting image representation is used to train an 
image classifier capable of detecting various types of 
leaf diseases, for instance. 

Figure 5: Important components of the Bag of Visual 
Words model used in image classification 

2.3 Bag of Word Model 
The Bag of Words model proposed in this 

study treats image features as words, and the bag of 
words is a vector of occurrence counts of a 
vocabulary of local image features. The Scale 
Invariant Feature Transform (SIFT) is used to extract 
128-dimensional vectors of descriptors for each 
image feature. KMeans clustering from sklearn is 
used as the clustering method to create a fixed 
number of clusters [16]. 

The following are the steps involved in 
creating the Bag of Words: 

1. Create a training label list according to the 
category of the given images to map the output 
of clusters into their respective category. 

2. Create a vertical stack of all descriptors of 
images from SIFT output to feed into the 
KMeans function. 

3. Create an object of KMeans with the desired 
number of clusters. For example, if we want 300 
clusters, the object can be created as follows: 
KMeans_obj = KMeans(n_clusters=300) 

4. Call the fit_predict() method to get the keypoint 
descriptors after assigning them to respective 
cluster centers. fit_predict(KMeans_obj,vStack) 
computes the cluster center and predicts the 
cluster index for each sample in the given stack 
of descriptors. 

5. Create the vocabulary of the words, which is the 
set of given features that describe an image 
individually. The vocabulary is described as 
n_clusters * n_images. Hence, locate the cluster 
that contains the respective feature, i.e., the 
cluster number whose cluster centroid is closer to 
the location of the current feature, and assign that 
cluster number to the respective feature. 

By using the Bag of Words model, we can 
represent images in a compact and informative way, 
which can be used to train an image classifier. The 
proposed method can be applied in various fields, 
including medicine, agriculture, aeronautics, and 
other areas, for detecting different types of diseases, 
pests, or defects. The histograms in figures 6 to 10 
represent the frequency of occurrence of the visual 
words (clusters) in the Bag of Words model, and they 
provide a compact and informative representation of 
the image features. These histograms can be used as 
features to train an image classifier that can detect 
different types of diseases or health in apple leaves. 
By analyzing the histograms of images from 
different categories, we can observe the differences 
in the distribution of visual words and identify 
patterns that can help us distinguish between healthy 
and diseased apple leaves. 
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Figure 6: Histogram of cluster points of bag of words of all images from 39 categories (#clusters = 300) 

Figure 7: Histogram for Apple___Apple_scab 

Figure 8: Histogram for Apple___Black_rot 

  



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5652 

 

 

Figure 9: Histogram for Apple___Cedar_apple_rust 

 

Figure 10: Histogram for Apple___healthy 

 

The process of representing each image as 
a histogram of codewords involves using a keypoint 
detector or feature extractor to detect and extract 
descriptors for each keypoint in the training image. 
These descriptors are then compared to the 
codewords in the codebook, which is generated 
through the process of clustering in the Bag of 
Words model. The resulting histogram has a bin for 
each codeword, and the count of each bin 
corresponds to the number of times the 
corresponding codeword appears in the image. 

By representing each image as a histogram 
of codewords, we can reduce the complexity of the 
image and create a compact representation of the 
image that captures its visual features. This 
representation can then be used to train a 
classification model, such as an SVM, which can 
distinguish between different categories of images 
based on their histograms of codewords [17]. 

Support Vector Machine (SVM) is a 
powerful classification algorithm that constructs a 
hyperplane or multiple hyperplanes in a high or 
infinite dimensional space. The hyperplane is a 
decision boundary that separates different classes of 
data points. The support vectors are the data points 
that lie closest to the hyperplane and play a crucial 
role in determining the hyperplane. The goal of SVM 
is to find the hyperplane that maximizes the margin, 
which is the distance between the hyperplane and the 
closest data points from each class. A larger margin 
implies better generalization performance and lower 
classification error. Therefore, SVM seeks to find a 
hyperplane that not only separates the classes but 
also maximizes the margin between them (see figure 
11). SVM is a non-parametric binary classifier that 
can handle a large amount of input data efficiently. 
The accuracy and performance of SVM depend on 
the selection of hyperplane and kernel 
parameters[18]. 
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Figure 11: Principle of the SVM Classifier 

3. THE PROPOSED MODEL 

3.1 Implementation and Training the model 
 

OpenCV is an open-source software library 
for computer vision and machine learning that aims 
to provide a common infrastructure for computer 
vision applications and to accelerate the use of 
machine perception in commercial products [19]. 
The library is licensed under the BSD license, 
making it easy for businesses to use and modify the 
code. 

Matplotlib, on the other hand, is a Python-
based plotting library that facilitates the creation of 
quality visualizations with its numerical 
mathematics extension. 

Scikit-learn is a free Python-based machine 
learning library that supports a range of 
classification, regression, and clustering algorithms, 
including support vector machines, random forests, 
gradient boosting, k-means, and DBSCAN. It is 
designed to work seamlessly with other Python 
libraries like NumPy and SciPy [20]. 

The Python OS module offers a range of 
functions to handle various operating system 
operations. These operations include creating and 
deleting directories, changing and identifying the 
current directory, and retrieving the contents of a 
directory, among others. 

NumPy is a Python-based library that 
supports large, multidimensional arrays and 
matrices, as well as a wide range of high-level 
mathematical functions for operating on these 
arrays. 

Finally, Joblib is a set of tools that provides 
lightweight pipelining in Python, including 
transparent disk-caching of functions, lazy re-
evaluation, and simple parallel computing [19]. 

The below code in Figure 12, imports the 
necessary libraries for building and training a 
machine learning model for image classification. 
The cv2 library is used for image processing and 
computer vision tasks, while the os library provides 
a way of using operating system dependent 
functionality like reading or writing to the file 
system. The matplotlib.pyplot library is used for data 
visualization and plotting graphs. The 
sklearn.cluster.KMeans library provides the 
KMeans clustering algorithm, which is used to group 
data into clusters. The numpy library adds support 
for large, multi-dimensional arrays and matrices, 
along with a large collection of high-level 
mathematical functions to operate on these arrays. 
The sklearn.preprocessing.StandardScaler library 
standardizes features by removing the mean and 
scaling to unit variance. The sklearn.svm.SVC 
library is used for classification tasks, and 
specifically separates data into different classes. 
Finally, the joblib library is used to save and load 
models so that they can be used later. Together, these 
libraries provide a robust set of tools for building and 
training machine learning models for image 
classification tasks. 

Figure 12: Importing the required libraries 

The getImages() function shown in Figure 
13 takes the name of a directory as input and returns 
a list of image file names within that directory, along 
with their respective file paths. The input parameter 
dataset_dir specifies the name of the directory where 
the image files are located. 

Figure 13: Function to get the images from training and testing folder 

 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5654 

 

The code shown in the figure 14 is a 
function called extractFeatures() that uses the SIFT 
(Scale-Invariant Feature Transform) algorithm to 
extract keypoints and descriptors from an image. 
The input parameters include the path of the image, 
the image name, and a flag to specify whether to save 
the keypoints image or not. The function first reads 
in the color image using cv2.imread() method and 
converts it to a grayscale image using cv2.cvtColor() 
method. 

The SIFT algorithm is then applied using 
cv2.xfeatures2d.SIFT_create() method, which 
generates keypoints and descriptors for the image. 
The detectAndCompute() method is used to detect 
and compute the keypoints and descriptors, 
respectively. The keypoints are represented by a set 

of (x,y) coordinates and a scale and orientation, 
while the descriptors are 128-dimensional feature 
vectors that describe each keypoint. 

The function then uses 
cv2.drawKeypoints() method to plot the keypoints 
on the original image, creating a new image with 
keypoints. If the flag is set to True, the function saves 
this new image with the filename Keypoints.png in 
the specified directory using cv2.imwrite() method. 
Finally, the function returns the keypoints, 
descriptors, and the original or grayscale image 
based on the flag. This function can be useful for 
feature extraction in image processing tasks, 
especially in tasks such as object detection, image 
recognition, and 3D reconstruction. 

 

 

Figure 14: Function to extract features with SIFT 

 

The code shown in the figure 15 is a Python 
function designed to match the keypoints between 
two images. The function takes in the path of the 
given images, along with their respective 
information, including the name of the base image to 
compare, the target image to compare, the keypoints 

and descriptors of both images, and the actual 
images themselves. The function then uses the 
BruteForceMatcher object to match the descriptors 
of the two images and sorts the matches according to 
their distances. The top 20 matches are then drawn 
onto a new image, which is saved with a specified 
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name and location. The code uses various OpenCV 
functions and methods, including cv2.BFMatcher, 
cv2.drawMatches, and cv2.imwrite to perform the 

image matching process and generate the output 
image. 

 

Figure 15: Function to match the keypoints 

 

The code shown in the figure 16 is a Python 
function designed to create histograms. The function 
takes in the original histogram as a parameter and 
then creates histograms for one image of each 
category. The code first initializes an array using the 
NumPy library and uses it to generate the x-axis 
range for the histogram. The function then iterates 
through the dataset and creates a histogram for each 
category by using the plt.bar() method to create a bar 
chart of the frequency of each cluster. The 
plt.xticks() method is then used to label the x-axis 

with the cluster number. The resulting histogram is 
saved as a PNG file with a specific name. 
Additionally, the function also generates a histogram 
of all the clusters in the bag of words model by using 
the plt.hist() method with the kmeans clusters and 
the bin ranges specified by np.arange(). The 
resulting histogram is also saved as a PNG file with 
a specific name. Overall, this code is useful for 
visualizing the frequency of the clusters in an image 
dataset. 
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Figure 16: Function to create histograms 

 

The code shown in the figure 17 is designed 
to extract features and match keypoints in a dataset 
of images. The code first prompts the user to enter 
the folder name of the training data and fetches the 
paths of all images according to the given category. 
The code then initializes a dictionary to store the 
features of each category. The next step is to extract 
the keypoints and descriptors from the given dataset 
using the extractFeatures() function. The code 
iterates through each image in the dataset and 
appends the image name, keypoints, descriptors, and 
color image to an image_list. If the category already 
exists in the features dictionary, the current 
image_list is appended to its corresponding category 
list. Otherwise, a new key is added to the dictionary 
with the current image_list as its value. 

The next part of the code is used to show 
the matches of keypoints between the first image 
with other images from each category. The code 
creates a new directory named "KPMatches" to save 
the output images. The code then iterates through 
each category in the features dictionary and selects 
the first image as the base image for comparison. The 
code then compares the keypoints of the base image 
with the keypoints of all other images in the same 
category using the matchkeypoints() function. The 
function matches the keypoints and draws the top 20 
matches onto a new image, which is then saved in 
the "KPMatches" directory. Overall, this code is 
useful for extracting features and matching 
keypoints in a dataset of images for tasks such as 
image classification and object recognition. 
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Figure 17: Extracting features and matching keypoints 

 

 

The code shown in the figure 18 is the 
implementation of the creation of the bag-of-words. 
The bag-of-words technique is used in natural 
language processing and computer vision to extract 
features and represent them as a histogram or a 
frequency distribution. The code starts by initializing 
some variables and empty lists, including 
all_desc_list, training_label, label_dict, label_count, 
and image_count. The code then generates training 

labels and a descriptors list for each category in the 
features list using a for loop. Inside the loop, 
label_dict is updated with a label count for each 
category. The descriptors list of each image is 
appended to the all_desc_list. Finally, a vStack of 
the descriptors is created using np.vstack to feed into 
the k-means clustering algorithm for clustering the 
descriptors. 
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Figure 18: Creation of bag-of-words start 

 
The given code Figure 19 performs 

KMeans clustering on some data represented by a 
variable called 'vstack'. The number of clusters is set 
to 300 and an instance of the KMeans class is created 
with this parameter. The KMeans.fit_predict method 
is then called on this instance with the 'vstack' 
variable as input. The resulting cluster labels are 
stored in the 'kmeans_clust' variable, and the size of 

this variable is printed. Additionally, the cluster 
centers of the KMeans object are printed. The code 
also includes a comment indicating that performing 
the clustering step may take some time. Overall, this 
code is useful for clustering data into a large number 
of clusters using the KMeans algorithm. 

 

 

 

Figure 19: Perform KMeans clustering 

 

The code shown in figure 20 is related to 
developing a vocabulary for image classification 
using bag-of-words model. It initializes an empty 
numpy array 'vocab_hist' of size n_clusters x 
image_count to store the histogram of visual words 
for each image. Then it loops over each image in the 
dataset and creates a new numpy array 'new_arr' to 
store the descriptors of that image. It then applies k-
means clustering on these descriptors and assigns the 

corresponding cluster index to each descriptor. The 
histogram of visual words is updated by 
incrementing the count of the cluster index in the 
'vocab_hist' array. Finally, the code creates 
individual histograms and prints the shape of 
'vocab_hist'. The output suggests that a bag-of-
words model has been successfully created for the 
images in the dataset.
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Figure 20: Develop vocabulary 

 
 

The figure 21 shows the code that starts the 
training process, he code applies preprocessing on 
'vocab_hist' by scaling its values using 
StandardScaler. Then, the scaled 'vocab_hist' is used 
to train the SVM classifier using the Fit() method of 
SVC class. The parameters passed to the SVC() 
constructor are max_iter, C, and gamma, where C is 

the regularization parameter, and gamma='scale' is 
used to avoid the FutureWarning. After the training, 
the code prints the classifier and its classes. Finally, 
the code prints a blank line. The output suggests that 
the SVM classifier has been trained successfully on 
the preprocessed bag-of-words model. 

 

 
Figure 21: Start Training 

 
 

3.2 Testing the Model 
In order to test the performance of the 

trained model, the testing code follows a series of 
four steps. Firstly, in the first step, the necessary 
libraries are imported in the testing code, which 
includes the same libraries that were used during the 
training process. In the second step, the 'getimages' 
and 'extractfeatures' functions are used again to 
obtain images and extract their features for testing. 
In the third step, the trained model is loaded into the 
testing code. Finally, in the fourth step, the actual 

testing process starts by applying the trained model 
on the extracted features of the test images. The 
testing results can be analyzed to evaluate the 
accuracy of the trained model for classifying new 
images. By following these steps, the testing process 
is able to verify the effectiveness of the trained 
model in accurately classifying new images. 

The code shown in figure 22 is loading a 
pre-trained machine learning model from a file 
called "bof.pkl" using the joblib library. The loaded 
data includes the trained classifier, feature scaling 
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parameters, training labels, visual vocabulary 
histogram, the number of clusters used in training, 
the KMeans object used for clustering, a label 
dictionary, and a directory path. These variables are 
likely used for predicting new labels based on the 
input data. 

The figure 23 shows the code of testing the 
model, this code is a  part of the project and is 
focused on testing a pre-trained image classification 
model on a testing dataset. The code starts by asking 
for the input folder name of the testing dataset and 
loading the images from that folder using the 
"getImages" function. The testing data is then 

processed to extract features, such as keypoints and 
descriptors, from each image. The extracted features 
are then used to predict the label for each image 
using the pre-trained classifier. The result labels are 
stored in a list called "test_predictions", which 
contains a dictionary for each image in the testing 
dataset that includes the image name, predicted 
class, category, and label object. The true class labels 
for each image are also stored in a list called 
"true_class". Overall, the code is performing an 
evaluation of a pre-trained image classification 
model on a testing dataset to measure its accuracy 
and performance. 

 

 
Figure 22. Load the model 

 

 
Figure 23(a). First part of the Testing the Model 
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Figure 23(b). Second part of the Testing the Model 

 
 

4. RESULT AND DISCUSSION 

In this section, we present the results and 
discuss the findings of our study on implementing 
the Bag of Visual Words approach for image 
classification. The confusion matrix is a table that 
summarizes the performance of a classification 
model by comparing the predicted classes to the 
actual classes of a set of test data. From the 
confusion matrix, we can calculate various 
performance metrics, including accuracy, precision, 
recall, and F1-score. 

To calculate accuracy from the confusion 
matrix, we add up the number of correctly classified 
samples and divide by the total number of samples. 
The formula (1) for accuracy is: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(୘୔ ା ୘୒) 

(୘୔ ା ୘୒ ା ୊୔ ା ୊୒)
   (1) 

Where TP is the number of true positives, 
TN is the number of true negatives, FP is the number 
of false positives, and FN is the number of false 
negatives. 

The true positives and true negatives 
represent the number of correctly classified samples, 
while false positives and false negatives represent 
the number of misclassified samples. By summing 
the true positives and true negatives and dividing by 
the total number of samples, we get the overall 
accuracy of the model. 

It is important to note that accuracy is just 
one of the metrics that can be calculated from the 
confusion matrix, and it may not always be the most 
appropriate metric depending on the application. The 
code presents in figure 24 shows the confusion 
matrix of the model training. 

 

Figure 24: Show the confusion matrix and accuracy 
 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5662 

 

 The study utilized the Bag of Visual Words 
method for image classification and evaluated the 
accuracy of the classifier using a confusion matrix 
(see Figure 25). The results showed an overall 
accuracy of 70.08%. This outcome is within the 
range of benchmark accuracy for classical 
techniques, which used to be between 65% to 75%, 
before the emergence of deep learning [21]. 

Figure 25: Confusion Matrix 
 

When compared to other classical 
techniques, the Bag of Visual Words approach 
achieved comparable results. For instance, Wang et 
al. [7] achieved an accuracy of 72.8% using the Bag 
of Visual Words approach for image classification 
on several datasets. Similarly, Mariana et al. [8] 
achieved an accuracy of 67.7% using the Bag of 
Visual Words approach for soybean diseases. 
However, when compared to deep learning models, 
the Bag of Visual Words approach falls behind in 
terms of accuracy. For example, Gandhi et al. (2018) 
[22] achieved an accuracy of 88,6 % using a deep 
convolutional neural network (CNN) for the 
identification of leaf diseases, which surpassed the 
accuracy achieved using classical techniques, 
including the Bag of Visual Words approach. In 
recent years, deep learning models have become the 
industry standard for image classification, achieving 
accuracies of more than 90%. As it clear, comparing 
our results with other studies in the literature review, 
we found that our accuracy is relatively better than 
many state-of-the-art deep learning models 
mentioned in the introduction, and it is still a 
promising result considering that Bag of Visual 
Words is a classical technique. However, we need to 
acknowledge that the comparison might not be fair 
since the datasets and image classes used in each 
study are different, and other factors such as feature 
extraction techniques and classification algorithms 
can also influence the accuracy. 

One of the strengths of the Bag of Visual 
Words approach is its simplicity, which makes it 

suitable for fields where deep learning models may 
not be feasible due to various constraints, such as 
limited data or computational resources. Moreover, 
the Bag of Visual Words approach allows for the 
interpretation of the image classification results by 
representing each image as a histogram of visual 
words, making it useful for applications where 
interpretability is important. 

However, the Bag of Visual Words 
approach also has several weaknesses, including its 
reliance on handcrafted features and the lack of 
spatial information in the visual word representation. 
Furthermore, the Bag of Visual Words approach 
may not perform well in complex and diverse image 
datasets, where deep learning models have 
demonstrated superior performance. 

 
5. CONCLUSION 
 

The Bag of Visual Words approach was 
effectively implemented in this study for image 
classification. The accuracy of the classifier was 
assessed through a confusion matrix, resulting in an 
impressive overall accuracy of 70.08%. This result 
is comparable to the benchmark accuracy range of 
classical techniques before the advent of deep 
learning, indicating that the Bag of Visual Words 
approach can still be a valuable alternative for image 
classification when deep learning models are not 
feasible. 

Moreover, this study provides researchers 
with a guideline for utilizing the Bag of Visual 
Words approach in their research projects, 
particularly in fields where deep learning models 
may not be applicable due to various constraints. 
However, we recommend that researchers should 
also explore the latest deep learning techniques for 
image classification, as they have demonstrated 
remarkable results in recent years. 

In summary, this study paves the way for 
future research in image classification and provides 
a foundation for exploring the strengths and 
limitations of classical techniques such as the Bag of 
Visual Words approach. In particular, we anticipate 
that more studies will explore the potential of 
combining Bag of Visual Words with deep learning 
models to achieve even higher accuracy. Thus, a 
promising approach for improving the accuracy of 
image classification tasks in future work could be to 
use a hybrid model of Bag of Visual Words and 
CNN. This would enable the best of both worlds by 
leveraging the strengths of the Bag of Visual Words 
approach and the deep learning models. As a result, 
exploring the potential of hybrid models could open 
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up a valuable direction for future research in this 
field. 
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