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ABSTRACT 

The two main components of edge computing are task offloading and resource allocation. System energy 
consumption can be reduced and task processing times increased with a sensible job offloading and 
resource allocation plan. The vast majority of existing research on the task migration of edge computing 
only takes the resource distribution between terminals and edge servers into account, completely excluding 
the enormous computing resources in the cloud centre. Under cloud edge computing, Hybrid Grey Wolf 
Lion Optimization (HGWLO) using job offloading and resource matching method was presented in order 
to adequately utilise cloud and edge server resources. This research study establishes the job offloading 
decision of many end-users as a task scheduling in cloud edge computing with the experimental findings 
showing the that the suggested algorithm outperforms other pre-existing algorithms of dragonfly, grey 
wolf, and lion optimization with regard to Makespan, Energy Latency and Energy Consumption, System 
Utility, Task Completion Time, Execution Delay, and Convergence Rate. 

Keywords: Edge Cloud Computing, Resource Allocation, Task Scheduling, Lion Optimization Algorithm, 
Grey Wolf Optimization.  

 
I. INTRODUCTION  

One of the key components of 5G networks, edge 
computing has drawn a lot of attention in recent 
years. In order to sink cloud computing 
capabilities to the edge of the network, share the 
computing load of nearby mobile users, and 
increase the network's overall computing 
capacity, edge computing deploys servers at the 
edge of the wireless access network (such as 
small base stations, macro base stations, cellular 
base stations, and WiFi access points)[1]. 
Although the edge cloud does not have the 
powerful computing capability of the central 
cloud, it is closer to the terminal device and does 
not need to be transmitted through the backbone 
network, reducing transmission distance 
significantly. The computing capabilities of smart 
devices, however, are typically constrained [2] by 
their physical size and the limitations of their 
underlying hardware and cannot fulfill the 
demands of these applications. As a result, edge 
cloud computing technology [3][4][5] is regarded 
as an effective and promising method of 

addressing the challenges associated with smart 
devices with limited resources and mobile 
applications with high demand. As opposed to 
traditional cloud computing [6][7], For handling 
delicate tasks with minimal latency, edge cloud is 
more appropriate. It can distribute service 
management and calculation in a smart home, 
significantly improving operational efficiency. 
Computers use the concepts of memory and 
cache. Users' frequently used data is placed closer 
to the edge of networks to reduce latency while 
reducing the load on the core network. To address 
the issues of insufficient processing capacity and 
limited resources of smart devices, the industry 
has introduced the concept of offloading in a 
cloud edge computing environment. The current 
edge computing problem's main research 
direction is how to offload the tasks performed 
by the devices to the edge server and make 
efficient and reasonable offloading decisions. 
Another critical aspect of scientific task 
scheduling is the data placement strategy. 
 



Journal of Theoretical and Applied Information Technology 
31st July 2023. Vol.101. No 14 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5630 

 

It can only consider resource allocation between 
terminals and edge servers to mitigate data of 
edge computing, ignoring the massive computing 
resources in the cloud centre. In cloud edge 
environments, transmission and data storage costs 
are incurred. There are many algorithms on how 
to obtain task offloading decision-making in order 
to sufficiently utilize cloud and edge server 
resources in the computational offloading of 
multiple smart devices and multiple edge 
processors [8][9]. This research paper proposed 
an algorithm for hybrid grey wolf lion 
optimization (HGWLO) using task offloading and 
resource matching algorithm under cloud edge 
computing. Many research studies have been 
proposed to investigate the problems associated 
with task offloading. Through the optimization 
of offloading decisions and the associated 
resource allocation, such as the allocation of 
transmit power and computation resource, 
system performance gains, such as reduced 
delay or energy consumption, can be obtained. 
 

Task offload: When using task offloading 
methods in edge-cloud computing, these methods 
do not take into account the task offloading 
decision because they assume that all tasks are 
offloaded to the edges or clouds or that the user 
chooses which tasks to offload. These methods 
are appropriate for task offloading in the scene of 

tasks requested by devices with limited 
processing power, such as sampling sensors [10], 
or for experts. 

Resource allocation challenges: The resource 
allocation mechanisms that determine how and 
where the offloaded tasks will be executed in a 
remote platform have a significant impact on task 
offloading. As a result, task offloading and 
resource allocation decisions are inextricably 
linked and must be addressed together. The 
following are the main issues this issue raises. 
 
Partitioning Decision: The resource allocation 
mechanisms that determine how and where 
offloaded tasks will be executed in a remote 
platform have a significant impact on task 
offloading. As a result, task offloading and 
resource allocation decisions are inextricably 
linked and should be addressed together. The 
following are the main issues this issue raises. A 
poor partitioning decision may result in 
application execution performance bottlenecks. 
As a result, a balance between when and which 
tasks should be offloaded to the Cloud/Edge must 
be sought, taking into account any potential 
transmission costs in terms of energy, delay, and 
resources.. 
 

 
Figure 1: Task Offloading Process 

 
Local computation and task offloading are 
performed by edge users. Local computing is the 
act of directly calculating and processing data on-
site. The process of offloading is computing task 

to an edge server. The calculation operation is 
performed by the edge server, and the result is 
returned to the edge user. The computing task is 
offloaded to the edge server for execution, which 
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can achieve the goal of relieving the local device's 
calculation and storage pressure, thereby 
extending the battery's service life. All task 
programmes are assumed to be partition able 
in this research. Assume that the kth edge user's 
time to unload the task is k, W is the system 
bandwidth, and hk is the channel gain between 
the edge user and the edge server, pk is the kth 
edge user's transmitting power, and 2 is the noise 
power. The total number of bits unloaded by all 
users to the edge server and the number of bits 
unloaded from the kth edge user to the server are 
as shown in, 

2 2
log (1 )o k k

k k

p h
R w


      

0 2 21 1
log (1 )

k ko k k
k kk k

p h
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Task offloading refers to the user equipment 
processing some computationally intensive 
applications and uploading the data processing 
these applications to the edge server through 
wireless transmission under the condition of 
weighing continuous or other indicators. 
Resource allocation refers to the edge server for 
these uploads the processing application allocates 
certain computing resources, in this way to obtain 
continuous or gradual replacement, providing a 
better user experience. The issue to be resolved 
by task offloading is for each user, and 
determines whether the tasks generated by it need 
to be offloaded, while also taking into account the 
dense deployment of edge servers, the constrained 
computational load of distributed servers. 
Therefore, it must be resolved for each offload 
processing the issue of how much computing 
resources are allocated by the application. To 
produce better results, these two issues must be 
addressed concurrently. 
 
2. METAHEURISTIC OPTIMIZATION 

ALGORITHMS 

As previously stated, the meta-heuristic 
optimization algorithms Greywolf, dragonfly, and 
lion optimization algorithms were used as the 
foundation for adapting the scenario of task 
scheduling and offloading in a cloud edge 
successful transformation.. 
2.1. Dragonfly Algorithm 
The Dragonfly Algorithm, a relatively new 
algorithm, is based on the swarming behaviors of 
dragonflies, which include both static and 
dynamic swarming. Dragonflies in the former 
form small groups that hunt in small areas; in the 
latter, many dragonflies move over a long 

distance. These features serve as the foundation 
for exploitation and exploration. Separation to 
avoid a collision, alignment for velocity 
matching, cohesion for moving towards the centre 
of the neighbourhood, attraction to food, and 
distraction away from the predator are some of 
the corrective patterns of dragonflies in a swarm 
[11]. Each fly's position is updated using a step 
vector, which is obtained by combining each of 
the above patterns with the inertial factor as 
follows [12]: 
 Separation refers to the avoidance of static 

collisions between individuals in the 
neighbourhood. 

 Alignment, that is the matching of an user's 
velocity to that of others in the 
neighbourhood. 

 Cohesion, that also describes a community's 
tendency for its residents to gravitate toward 
the centre. 

The separation factor is calculated to avoid a 
static collision between one dragonfly and other 
dragonflies in the vicinity, and it is as follows: 

1

N

i i j
j

s x x


         (1) 

Where Xi represents the current dragonfly's 
position, Xj represents the position of the j-th 
neighbour, and N represents the number of 
neighbouring dragonflies. Following are the 
calculations for the alignment factor, which is 
used to compare one dragonfly's velocity to those 
of nearby dragonflies: 
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In which Vj is the jth neighbor's velocity and N is 
the number of dragonflies in the neighbourhood. 
The following is how cohesion is calculated: 
 

1

N
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In which X represents the present user's position, 
N represents the number of neighbourhoods, and 
Xj represents the position of the j-th neighbouring 
individual. The following formula is used to 
calculate attraction to a food source: 

iF X X      (4) 

Where X represents the current individual's 
position and X+ represents the location of the 
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food source. The following formula is used to 
calculate enemy distraction: 

iE X X    (5) 

In which X represents the current individual's 
position and X-denotes the enemy's position. 
 
Exploration and exploitation can be accomplished 
using the five parameters S, A, C, F, and E given 
in eq.(1) to (5). Proper tuning of these parameters 
aids in the discovery of the best solution. Thus, 
eqs. (6) and (7) are used to compute the step 
vector and position of dragon flies, respectively.  

1 ( )t i i i i ix sS aA cC fF eE          (6) 

1 1t t tX X x         (7) 

In the preceding equation, t represents the number 
of iterations, and I represents the ith fly. If a 
dragon fly has no neighbours, the levy flight is 
used to update its position as shown in 
equation (8).  

1 ( )t t tX X Levy d x       (8) 

Where t is the current iteration number and d is 
the dimension of the position vectors. In each 
iteration, the step vector and position vectors of 
each dragonfly are updated until the end criterion 
is met. Algorithm 1 contains the pseudo code for 
the dragonfly algorithm. 
Algorithm1:Dragonfly algorithm 
Initialize the populations position randomly; 
Initialize the step vectors; 
While end condition do 

Calculate the objective values of all 
drangonflies; 

Update the food source and enemy; 
Update the weights; 
Calculate the factors using(1)-(5); 
Update radius of neighborhoods; 

If dragonfly has one or more neighbors then  
Update step vector using (6); 
Update position vector using (7); 
Else 

 Update position vector using (8); 
End 
Check and correct new position based on 

upper and lower bounds; 
End. 
2.2. Greywolf Optimization 

There is a clear social hierarchy in the grey wolf 
pack. This four-level hierarchy is led by Alpha, 
who is regarded as the wolf at the top of the 
pyramid. It is in charge of making group hunting 
decisions. At the second level, we have the Beta, 
who is the wolf who assists the leader in making 

pack decisions. The Delta is responsible for the 
safety of the pack and is subordinate to the 
wolves above in the hierarchy. The pack's other 
wolves are known as Omegas, and they are at the 
bottom of the pyramid [13]. 

 
Figure 2: Structure Of Grey Wolf 

Hunting: After completing the encirclement of 
the prey, the Grey wolves concentrated on 
hunting the prey, the wolf alpha ( ) usually 

leads the hunt, and the wolf Beta (  ) and delta (

 ) may share in the hunting process in the 
limited search area. It is not possible to know the 
best location (prey). When simulating the hunting 
behavior of Grey wolves, we assume that alpha (
 ) is the best initial solution and that elements 

or wolves beta (  ) and delta ( ) have a better 

knowledge of the potential location of the prey. 

The behavior of Alpha ( ), beta (  ) and delta (

 ) can be simulated by the following equations. 
 
Upon having completed the encirclement of the 
prey, the Grey wolves concentrated on hunting 
the prey; the wolf alpha ( ) usually leads the 

hunt, and the wolves Beta (  ) and delta ( ) 

may participate in the hunt in the limited search 
area. The best location cannot be determined 
(prey). When simulating Grey wolf hunting 
behaviour, we assume that alpha ( ) is the best 
initial solution and that elements or wolves beta (

 ) and delta ( ) have a better understanding of 

the potential prey location. The following 
equations can be used to simulate the behaviour 

of Alpha ( ), Beta ( ), and Delta ( ). 
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The location vector can be calculated from prey in 

relation to wolves Alpha ( ), beta (  ) and 

delta ( ) using the following mathematical 
formulas: 

 

The conceptual formulation for optimization is 
presented while taking into account the grey wolf 
pack's following steps [14]: 

 Choosing and following the target; 
 Surrounding the target; 
 Moving closer to the target; 

As a result, the first step is to determine which 
three best ECs will guide the pack in its search for 
the best Edge to store the resource. The Alpha (α) 
is therefore thought to be the best EC. Then it is 
determined which one is the Beta (β) and which 
one is the Delta (δ). The final EC will be 
designated as Omega. To implement the GWO 
optimization algorithm model, hunting is 
guided by solutions α, β and, δ. The equations 
15 and 16 were proposed by [15] to mold 
mathematically the behavior of wolves while 
chasing their Prey.  

ED = |CV 2 *Pr(x) − P(x)|         (15) 
P(r + 1) = Pr(x) − CV 1 * ED         (16) 

Where x denotes the current iteration, Pr denotes 
the resource's value variable, P denotes the Edge 
Computing values, and CV 1 and CV 2 are the 
coefficients used in the equation for movement. 
As a result, the distance between the prey 
(resource) and the wolf (Edge) is calculated, with 
each iteration decreasing. CV 1 and CV 2 are 
calculated using the equations 17 and 18, 
respectively: 

CV 1 = 2a* t1 − a   (17) 
CV 2 = 2 * t2          (18) 

During the iteration, an is decremented from 2 to 
0, and t1 and t2 are random variables with values 
ranging from 0 to 1. In each iteration, something 
like an is in charge of getting the wolf to 
approach the prey. According to equation 19, the 
best edge computing is updated with the sum of 
the three best positions. 

1 2 3
( 1)

3

x x x
x t

  
  

                  (19) 

GWO Algorithm: 

 
 
2.3. Lion Optimization Algorithm 
The inspiration for the proposed meta-heuristic is 
first discussed in this section. Following that, the 
Lion Optimization Algorithm (LOA) is 
introduced. 
Initialization: The LOA is a population-based 
meta-heuristic algorithm, with the first step being 
to randomly generate the population over the 
solution space. Initially, the population is 
generated arbitrarily across the solution space. 
Every outcome is referred to as a lion (edge 
devices). In a d-dimensional optimization 
dilemma, a lion (edge devices) is denoted as d set 
of key differentiators, as:  

Lion (edge devices) = [l1,,,,,,ld]                                         
(20) 

Every edge device (lion fitness)'s range is 
determined by evaluating the objective function 
given in (16) as: 

f(edge device) = f(l1,,,,,,,,,,ld)                                          
(21) 
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In the first stage, dpop solutions are generated 
arbitrarily in exploring space, and a percentage d 
of completed results is chosen as migrant edge 
devices arbitrarily. The remaining population is 
randomly divided into the prides. Each solution 
had a distinct gender and remained consistent 
throughout the optimization task. While 
searching, each lion looks at its most excellent 
entered site. Each pride's region is built around 
such observed locations. As a result, observed 
sites (the best entered sites) generate that pride's 
region through its representatives for each 
pride[15]. 

Hunting: A certain number of females in each P 
seek prey in a group to feed the members of P. 
These hunter lions use specific tactics to encircle 
and capture their prey. During hunting, the lions 
generally follow a similar pattern. Stander (1992) 
classified lions into seven distinct groups based 
on their roles. While hunting, each lioness adjusts 
its location based on the location of its own or 
other members. As a result, some of the hunter 
lions encircle the prey and attack it from the 
opposite direction; the hunters are divided into 
three "wings." The centre wing has the greatest 
cumulative fitness, while the left and right wings 
are fixed at random. When a hunter improves its 
fitness, the prey flees to a new location, as shown 
in Equation (22). 

' (0,1) 1 ( )PY PY rand py py Hunter    
   (22) 

Where PY denotes the current location of the 
prey, Hunter denotes the new location of the 
hunter, which attacks the prey, and PYI denotes 
the percentage of fitness improvement in the 
hunter. The following is the new location of the 
hunters from the left and right wings. 

       (23) 
The new locations of the center hunters are 
created as defined in the Equation (24). 

( , ),
'

( , ),

rand hunter py hunter py
Hunter

rand py hunter hunter py


 

          (24) 
R and (a, b) generates a number between a and b 
at random. This hunting behaviour has some 
advantages in terms of finding better solutions. 
This mechanism creates a circle-shaped 
neighbourhood around the prey, causing the 
hunters to approach it from different directions. 
Furthermore, because some of the hunters occupy 

opposing locations, this process allows solutions 
to escape from local optima. 
 
Roaming and mating: The system's ability to 
roam improves local search capability and aids in 
the discovery of workable solutions (task 
scheduling solution). Within the pride's territory, 
each resident male lion can be found. If the male 
lion discovers a better location than the current 
one while roaming, it must update the new 
location as the best frequented location [16]. 
Furthermore, Ma% of the female lions in the 
pride P mate with one or more resident male 
lions, resulting in offspring. Using equations (20) 
and (21), the mating procedure yields two 
offspring on average (2). 
Offspringj 1 =β × female Lionj +Σ (1−𝛽) Σ𝑆𝑖 𝑁𝑅 

𝑖=1 × male 𝐿𝑖𝑜𝑛𝑗𝑖 × Si (1) 
Offspring j2 = (1-β) × female Lionj ×female Lionj 

+ Σ (1−𝛽) Σ𝑆𝑖 𝑁𝑅 𝑖=1 × male 𝐿𝑖𝑜𝑛𝑗𝑖 × Si (2). 
 

The number NR, which represents the number of 
resident males in a pride, is a completely random 
number with a standard error of 1 and a mean 
value of 0.1. Si=1 selects a male lion for mating; 
otherwise, Si=0. The mutation is then performed 
on the two additional offspring, one of whom is 
randomly identified as female and the other as 
male. 
 
Movements towards Safety: Only a few female 
lions hunt for prey, while the rest stay in safe 
territory. The best positions for each territory are 
calculated and saved. A high victory rate indicates 
that the lions have deviated from their optimal 
point. Lower values indicate that lions are 
roaming for improvement, and thus competition 
evaluation indicates success. 
 
Mating: Mating is an important procedure that 
ensures the survival of the lions and allows for 
data exchange among members. Female lions 
mate with one of the many resident males in each 
pride. To produce offspring, these males are 
arbitrarily selected from the same pride as the 
female. Nomad lions, on the other hand, only 
mate with one male who is chosen at random. The 
mating operator is a linear combination of parents 
for the purpose of producing two new offspring. 
Defense: Lions value this type of behaviour. 
Mature male lions engage in combat with other 
lions. Losers either become nomads or flee the 
territory. When nomadic lions win a battle, they 
take over the territory of the loser. Thus, LOA 
defends lions in two ways: against newly matured 
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resident males and nomadic males. LOA thus 
finds the strongest lion in the group. 
Equilibrium: The number of live lions must be 
kept under control at the end of each iteration. As 
a result, female nomad lions are classified based 
on their fitness levels. The best females are 
chosen and distributed to prides to fill the 
vacancies left by the migrated females. In relation 
to the maximum number of female nomads, the 
weakest females are removed (1-S). Male nomads 
are also sorted based on their fitness values, and 
the lions with the least fitness will be removed 
with respect to the maximum number of male 
nomads%S. 
 
3. PROBLEM STATEMENT 
 
In edge computing, resource allocation is a 
critical challenge. The efficient allocation of 
constrained resources to competing services with 
various features and requirements, such that the 
edge system obtains maximum resource 
utilisation while also satisfying the services, is 
referred to as resource allocation.  
  For starters, devices differ in terms of 
computing capabilities and the characteristics of 
the computing tasks they generate. The tasks have 
varying delay requirements, input data amounts, 
and computational complexities. 
  Second, it's likely that devices in edge 
computing systems will function independently 
[17, 18]. 
 Third, the edge The Swedish Research 
Council funded part of the research through 
project 621-2014-6. Multiple heterogeneous 
wireless access points and edge clouds may be 
used in computing systems. As a result, device 
offloading decisions should be coordinated so that 
resources are efficiently utilized while 
considering the interests of individual devices, the 
heterogeneity of their tasks, and interactions with 
the resource allocation policies of the edge cloud 
providers. This makes joint management of 
wireless and computing resources for edge 
computing inherently difficult. 
 
Edge cloud computing has undoubtedly provided 
numerous benefits; however, it still faces 
significant challenges that must be addressed. The 
first challenge in such a complex environment 
with a variety of resources is task scheduling. In 
this complex environment, this challenge 
typically considers real-time execution, as well as 
a massive amount of flowing data. As a result, a 
scheduling approach that is effective in 

completing all tasks on time, resulting in real-
time execution, is required. The second challenge 
focuses on processing business workflows with 
the goal of completing task scheduling while 
taking QoS (Quality of Service) requirements into 
account (for example cost and deadline). 
 
However, the task offloading time is in the tens to 
hundreds of milliseconds range. The task 
offloading time for some delay-tolerant services 
can reach a few seconds. Without considering 
time-varying fading, offloading strategies will be 
inaccurate, resource utilisation will be reduced, 
and task delay requirements cannot be 
guaranteed. Furthermore, when time-varying 
channels are considered, the task transmission 
time is related to the vehicle's location and the 
allocated bandwidth. As a result, allocating 
bandwidth for time-varying channels is a critical 
and difficult issue. 
 
3.1. Problem solution: Based on the 
aforementioned issues, this paper investigates the 
Cloud-Edge system, which is motivated by 
minimizing delay, energy consumption, and 
computing cost, and it constitutes the task 
offloading and task scheduling problem for 
multiple end users in order to maximize system 
utility. This paper's contributions are summarized 
below: 
 
1. Task scheduling is a traditional method for 

transferring tasks to external platforms due to 
device limitations in computing power, 
storage, and energy. It can boost computing 
efficiency, shorten task completion times, 
and make better use of other devices' 
resources. Because the edge computing 
network has the characteristics of ultra-dense 
deployment and simultaneous access by a 
large number of users, the selection of user 
computing task mode is critical and directly 
determines the system's computing time and 
cost. This paper proposes a task scheduling 
and task offloading scheme based on Cloud-
Edge, including computational task 
scheduling and task offloading strategy 
optimization, to address the utility 
maximisation problem. 

2. The mixed integer nonlinear programming 
problem is used to describe the joint task 
offloading and task scheduling problem, 
which combines task offloading decisions 
and resource allocation for offloading users 
to maximise system utility. 
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3. For the task offloading and task scheduling 
problem, a Hybrid Greywolf Lion 
Optimization Algorithm based on cloud edge 
computing system was proposed to obtain the 
task offloading strategy that achieves the best 
results in terms of Makespan, Energy latency, 
and CPU utilisation. Energy consumption, 
system utility, task completion time, 
execution delay, and convergence rate are all 
factors to consider. 

4. Different resource allocation and task 
offloading schemes are used as comparison 
schemes for the hybrid greywolf lion 
optimization algorithm, and simulation 
experiments are run with different 
parameters. The results show that the 
offloading scheme proposed in this paper 
significantly improves users' offloading 
utility. 

5.  All computing tasks are offloaded and 
processed at the Edge. Offloading is typically 
translated into a simple resource allocation 
problem, with tasks executed on virtual 
machines or containers at the Edge. 
Energy savings at the end device can be 
maximized, but other sources of energy 
dissipation, such as the device's transmission 
power, must be considered.. 

 
4. PROPOSED ALGORITHM OF HYBRID 

GREYWOLF LION OPTIMIZATION 
(HGWLO): 

 
Figure 3 depicts an emerging technology that 
performs data analytics and storage close to the 
data source (i.e., virtual machine) to reduce 
network latency. Edge computing provides 
computing, storage, and network services from a 
cloud data centre. When compared to cloud 
computing, edge computing enables decentralised 
computation and storage. Devices for real-time 
communication can be supported by resources 
nearby the user. The primary goal of edge 
computing is to process data, reduce latency, and 
provide real-time response. Task scheduling is 
used to connect tasks to computation resources 
and plan their execution while satisfying task 
dependency and meeting resource management 
goals.   
 
The optimizer attempts to group task scheduling 
in order to reduce overall flow task execution 
time while using the fewest number of cores. It is 
worth noting, however, that a core represents a 
VM, with a single core primarily used for 

application benchmarking. The next step in the 
edge cloud computing environment is to allocate 
resources and schedule scheduling tasks. There 
are five steps in resource management 
scheduling: a resource optimizer, a task 
scheduling plan generator, a task queue builder, 
a task execution time generator, and a cost 
estimator. The amount of resources and time 
required to run the task scheduling are estimated 
during the resource estimation stage based on task 
execution constraints such as deadline, 
throughput, and waiting time. As a result, tasks 
for scheduling are organised into execution 
groups. Next, the required task offloads for the 
group-based technique can simplify task 
scheduling in an edge cloud environment, using 
task offloading, it becomes clear that the 
network's Edge infrastructure creates an 
additional resource layer between the virtual and 
the external platform. This layer is capable of 
reducing energy consumption, transport, and 
cloud networks, thereby reducing communication 
delays, improving energy efficiency, and, as a 
result, extending the battery-powered device's 
lifetime. Given this, it is critical to schedule these 
data and large applications in these systems. 
Scheduling is an important aspect of task control 
in the cloud. The Scheduling process estimates 
the amount of resources required to complete the 
task and decides which tasks should be assigned 
to which computing component. Before 
processing the subtasks in parallel, they can be 
broken down into smaller subtasks. The overall 
advantage of the implementation is increased by 
breaking a computation into smaller subtasks and 
implementing these subtasks on different 
processors. Furthermore, the goal of the task 
scheduling algorithm is not to schedule the entire 
task into the available processor in order to 
increase profit (profit here refers to the 
combination of low cost, low memory utilisation, 
and energy conservation) without affecting the 
primary requirements. It makes task scheduling 
difficult. The next step in task offloading is to 
optimize the offloading of computation-intensive 
tasks from the end user device to a remote site 
while keeping various computational, 
communication, and mobility constraints in mind. 
This procedure entails application partitioning, 
offloading decision making, and distributed task 
execution. 
 
The powerful processing power of the edge server 
can accelerate task computing, reduce task 
completion time, and save energy for devices. 
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Devices that use task offloading do not need to 
have a lot of computing power or storage space. 
As a result, even in the presence of limited 
computing power and other hardware constraints, 
edge users can complete computing tasks.  
 
Because the cloud provider must maintain a large 
number of users, the scheduling technique 
alleviates the cloud provider's burden. This study 
proposed a new algorithm based on greywolf and 
Lion Optimizer to schedule tasks and offload in 
cloud edge computing. The proposed HGWLO 
algorithm assists in locating the best VM for 
task allocation. The HGWLO algorithm 
generates the evaluation of fitness values for each 
wolf. HGWLO-based approaches assume the 
random deployment of a number of wolves 
(search agents) with a random initial position and 
the ability to change their positions. The three 
best candidate solutions are considered as alpha, 
beta, and delta wolves in each iteration based on 
the predefined number of iterations. To find better 
solutions, the omega wolves had to encircle the 
alpha, beta, and delta wolves. 
 
Begin populating our goal in this investigation is 
to determine the assignment planning for 

distributed computing and to limit the make span 
of the arrangement, which is the longest 
consummation time for all projects. In this 
manner, we should outline a basic answer for a 
lion. A lion communicates with a project planning 
arrangement and schedules the task in cloud edge 
by mapping cloud tasks (cloudlets) to cloud assets 
(virtual machines (VMs)). The object that 
provides the requested services and is closest to 
the best search optimal position is the final 
solution. 
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Figure 3: Proposed Model Hybrid Grey Wolf Lion Optimizer (HGWLO) 
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The proposed algorithm's details are provided 
below. Figure 3 depicts the general framework for 
this proposed model. This is a process that occurs 
when using a constrained task based on the 
operation that the virtual machines are to perform. 
The scheduler collects data from the Cloud User 
and edge server and then computes it to make a 
decision that assigns each task to its respective 
virtual machine.  We use makespan, system 

utility, energy consumption, execution delay, 
energy latency, and task completion time among 
VMs as performance metrics in this research 
proposed method to optimise task and resource, 
using a Hybrid grey wolf lion optimizer 
(HGWLO) algorithm based on the proposed 
model is scheduling the task and offload in cloud 
edge computing. 

Proposed algorithm 

To schedule task offloading environments, the 
proposed task offloading framework employs a 
hybrid Grey Wolf Optimizer (GWO) and Lion 
Optimization algorithm. The current system 
addresses competing goals, namely make span. 
As a result, the task offloading model is intended 
to schedule tasks in the cloudedge computing 
environment. The manufacturer claims that the 
makespan improves user satisfaction by 
maximising resource utilisation via the 
minimization function. 
Input:  
Requirement of HGWLO algorithm  
Specification of Task Scheduling & task 
allocation.  
Tasks T1, T2,.…….TN and Resources R1, 
R2,…….RM and Maxitr  
Output: Set of tasks allocate to vms, decrease the 
makespan of total scheduled tasks 
 
Procedure: HGWLO 
Initialize the number of task , number of 
resources , Set the initial values and the maximum 
number of iterations Maxitr  
Step1:Set t = 0 {counter initialization}. 
//population initialization 
Step2: n= 1 . Number of task 
Step 3: while n< Max do . Executes within the 
maximum number of task 
 Step4:  Bring about an initial population  
randomly.  
 
Step 5: Calculate the each wolf agent I and 
initialize the lion optimization pheromone matrix 
Step 6 : for i = 1, 2, . . . ,m do 
Step 7 : for j = 1, 2, . . . ,m do 
Step 8:Estimate objective function(makespan) 
Makespan Consider p(i,j) as the offloading task 
execution time on ith VM of jth cloudlet task and 
the completion time of offloading task is 
represented as L(i) = Σp(i,j) for ith VM. The 
objective function for scheduling is regarded as 
Lmax= max(Li), which is the cloud- 

Let VM makespan. The proposed method 
schedules the n tasks on m cloudlets VMs such 
that n > m and the makespan minimization 
problem is considered. The upper limit for the 
minimization function is defined as m × Lmax. 
Consider G as the scheduling makespan, where m 
× Lmax> G, where execution time of assigned 
task takes a time of Lmax to each cloudlet VMs. 
The relation m × Lmax> G holds true for all 
scheduling makespan and thus optimal makespan 
(O) is formulated by modifying the relation based 
on m × O > G. The task offloading execution time 
t ∈ T is considered as the longest time required 
for input data reception, which is represented as 
Tw in Eq. (1) with the processing time of t 
represented by Te in Eq. (2). maxi( t) expressed in 
Eq. (3) is regarded as the largest data received at 
task offloading t from its subtasks and ̄B is 
regarded as the execution delay of cloudlet VMs, 
which is calculated in Ms. 
The MI in Eq. (2)  
The cost is also computed based on cost per 
process, storage and transfer based on MIPS 
processing, per second hosting time and mbps 
data transfer between the cloudlet VMs is the task 
size expressed in MIPS and it is the cloudlet 
processing power. The offloading task completion 
time is the sum of Tw + Te and the cloudlet VMs 
completion time is given as VMi (i = 1.m with m 
as the total cloudlet VM availability), which is 
expressed in Eq. (3) and it is the sum of 
offloading task completion time. The maximum 
completion time for a offloading task in cloudlet 
VMs is regarded as the makespan, which is 
expressed in Eq. (4).offloading calculation 
selection 
problems in the edge cloud server calculation 
offloading decision. 
 

max ( )i
w

i
T

B
                                             (1) 

 
 ( )e

MI t
T

MIPS vm i
                                     (2) 

( )t w e
t T

T T T


                                          (3) 
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1 , 2max( ,...., )t t t t t mtmakespan T T T                 (4) 

Step 9: Calculate the probability of selecting the 
remaining points when the lion optimization 
departs from point i. Select the departure 
alternative with the highest probability ki, and 
update the next city selection for lion i as ki 
Step 10:Move Towards Safer Place 
position for female lion (FL) is expressed as 
         

2 (0,1){ 1} ( 1,1) tan( )

(0,10{ 2}

{ 1}.{ 2} 0,|| 2 || 1

FL FL D random R U D

random R

R R R

       

 
 
where FL is the current place of FL, D provides 
the distance among the FL's position as well as 
chosen point selected by the tournament chosen in 
the pride region. {R1} is a vector that indicates 
the primary point is the earlier place of the FL, 
and it is focused on the elected position. {R2} is 
perpendicular to {R1}. 
Step 11:For each Nomad lion  
Both male and female move randomly in the 
search space Identify their new position as,  

𝐿𝑖𝑜𝑛={𝐿𝑖𝑜𝑛,𝑖𝑓 𝑟𝑎𝑛𝑑>𝑝𝑟𝑅𝐴𝑁𝐷, 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

𝑝𝑟=0.1+𝑚(0.5𝑁𝑜𝑚𝑎𝑑−𝐵𝑒𝑠𝑡𝑁𝑜𝑚𝑎𝑑𝐵𝑒𝑠
𝑡𝑁𝑜𝑚𝑎𝑑)   
Where, rand is a random number between 0 and 
1, pr is a probability, Nomad is the fitness value 
of the current nomad, and BestNomad is the best 
fitness value of the nomad lions. %M of females 
mate with only one male Nomad males attack 
prides 
Step 12:  For each pride,  
Nomads are %I of the pride that is immigrated.  
Do 

(i)Every male and female lions under 
nomad category are sorted according to their 
fitness score. 

(ii) Female lions faring above fitness 
score are selected and disseminated to prides, 
filling out the empty positions. 

(iii) Lions faring below fitness score are 
taken out in accordance to maximum permissible 
count under each gender 
Step 13:Set t=t+1 (iteration counter increasing)  
Step 14: Termination criteria  
Step 15: until (t<Maxitr). (Termination criteria 
satisfied)  
 Step 16: Otherwise go to step2 
Step 17:  Produce the optimum solution  
 

5. EXPERIMENTAL RESULTS 

The algorithm is simulated in this experiment 
using CloudEdgeSim. Assume that device 
generation follows the Poisson distribution. H= 
50 M is the expected number of CPU cycles 
required for each task. The expected task 
transmission delay for a typical 100 Mb Fast 
Ethernet LAN is 100 ms. In this paper, we 
evaluate four Dragonfly algorithm algorithms. 
Grey wolf optimization, lion optimization, and 
our proposed HGWLO are all options. It is 
assumed in the simulation experiment that both 
devices and cloud edge servers can handle tasks. 
Additionally, it is assumed that no task queues 
will exist to cause time delays and that each task 
will be completed immediately upon arrival. 

Table1: Simulation Parameters 
Parameters Values 

Number of Hosts 3 
Number of cloudlets 10-15 
Number of cloud edge 
server 

1-10 

Number of vms 5-15 
Number of Users 10-90 
Number of Nodes 10,20,30,40,50,60,70 
Storage 1 TB 
RAM 2 GB 
Processing Speed 50-300 MIPS (Millions 

of Instruction Per 
Second) 

The input data size of 
the  tasks 

[600, 1200] KB 

The number of CPU 
cycles  

Cm = [500, 1000] 
Megacycles 

The Bandwidth 
resources 

[180, 230] KB 

 

A).Makespan: Makespan calculates the 
maximum completion time by indicating the last 
task's completion time. The most popular 
optimization criterion for task scheduling in cloud 
edge computing is to minimise the makespan. It 
can be calculated using the equation below: 

Makespan=maxtask i (Fntime) 
In which case, Fn Time indicates the completion 
time of task i. The HGWLO algorithm is 
compared to Greywolf, Dragonfly, and Lion 
Optimization algorithms for computing and 
minimizing make span in this section. The total 
time elapsed from beginning to end is known as 
the make span. In the context of scheduling, the 
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term is frequently used. A large project has been 
broken down into several sub-tasks.  
To begin, the proposed algorithm assigns tasks to 
cloudlets that are only one hop away from the 
user, resulting in a shorter makespan than when 
tasks are assigned to VMs on cloud servers. In 
comparison to existing methods Greywolf, 
Dragonfly, and Lion Optimization, the proposed 
algorithm assigns tasks to the VM with a lower 
value of load and execution time, resulting in a 
shorter makespan. The make span is the total 
amount of time required by the tasks to complete 
the execution. Makespan is assessed and analyzed 
by varying the task and resource values. The 
proposed HGWLO algorithm produces the lowest 
makespan values when compared to Greywolf, 
Dragonfly, and Lion Optimization. In Figure 4, 
the HGWLO method achieves the shortest 
make span time. 

 

 

Figure 4: Make span 

B) Comparison of System Utility and Number 
of Users:  The overall utility of the system 
decreases as the total number of user equipment 
increases, because as user equipment increases, 
more and more tasks must be uninstalled. On the 
one hand, as user count rises, each user uses 
fewer and fewer communication resources; as a 
result, offload rate falls and offload delay rises, 
reducing system utility. However, as the number 
of users grows, so do the computing resources 
that each user can allocate, resulting in increased 
latency and, as a result, a decrease in overall 
system utility. Figure 5 shows that the overall 
system utility of the resource scheduling scheme 
based on is greater when compared to pre-
existing Greywolf, Dragonfly, and Lion 
Optimization algorithms with our proposed 
HGWLO, indicating the algorithm's superiority. 

 

Figure 5: System utility 
 

C) Convergence Analysis: Figure 6 depicts how 
the number of iterations decreased the make span. 
It demonstrates that the quality of task scheduling 
improved with each iteration. However, previous 
schemes dragonfly, greywolf, and lion 
optimization were found to have premature 
convergence, whereas HGWLO provided faster 
convergence as well as a reduction in makespan 
than dragonfly, greywolf, and lion optimization. 
The preceding demonstrates that the proposed 
HGWLO is appropriate for handling task 
scheduling and offloading in a cloud edge 
environment.  

 

Figure 6: Convergence Analysis 

D) Energy Consumption: Figure 7 depicts the 
results of comparing the number of tasks under 
various energy consumption constraints. M is the 
number of devices, and N is the number of cloud 
edge servers. The total system cost of offloading 
decreases as energy consumption constraints 
increase. Dragonfly performs significantly worse 
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than the other greywolf, lion optimization, and 
proposed HGWLO when the energy consumption 
constraint is 10J/ms. When the energy 
consumption constraint is set to 40J/ms, the cost 
of dragonfly optimization begins to be lower than 
that of lion optimization, owing to the increase in 
energy consumption constraints and the model's 
decreased sensitivity to energy consumption 
constraints. As a result, suitable energy 
consumption constraints must be chosen. Under 
all energy consumption constraints, the proposed 
HGWLO algorithm outperforms the existing 
greywolf, lion optimization, and dragonfly 
algorithms. When the energy consumption 
constraint is near 70J/ms, the effects of dragonfly, 
greywolf, and lion optimization differ 
significantly. In contrast to the HGWLO. When 
compared to other algorithms, the proposed 
HGWLO algorithm significantly reduces network 
energy consumption, according to the findings. 
Only a subset of tasks is responsible for achieving 
balanced energy consumption. 
 

 

Figure 7: Energy consumption 

E) Execution delay: Figure 8 compares the 
execution delay in the number of devices when 
the number of devices is different. When the 
number of devices is 10, there is no discernible 
difference in the execution delays of HGWLO 
and Lion Optimization. Because the number of 
devices increases and the amount of data to be 
processed increases, so does the execution delay. 
The extension will grow in length. When the 
number of devices is less than 50, the algorithm 
execution delays are comparable. HGWLO, on 
the other hand, has a slightly lower execution 
delay than the other two algorithms. When the 
number of devices exceeds 60, the execution 
delay of dragonfly begins to increase sharply, 

which is much greater than the execution delay of 
greywolf and lion optimization, HGWLO. When 
the number of devices is 70, the proposed 
HGWLO outperforms previous methods 
greywolf, lion optimization, and Dragon fly 
algorithms in terms of execution delay. 
Furthermore, testing to see if the proposed 
HGWLO algorithm can solve the scheduling and 
offloading problem in the cloud edge 
environment. 

 

Figure 8: Execution Delay 

F) Energy Latency: When all subtasks are 
processed at edge servers, latency is significantly 
reduced when compared to sending them to cloud 
servers for execution. However, sending all 
subtasks to the cloud can cause both computing 
resources and network bandwidth to become 
congested, resulting in increased queuing latency 
and, eventually, total latency. To reduce total 
latency, offload workloads that do not need to be 
executed locally on devices to edge servers with 
sufficient computing power, which are closer to 
the local device than the remote cloud. Figure 9 
depicts the energy latency of the proposed 
HGWLO algorithm in comparison to other pre-
existing greywolf, lion optimization, and 
dragonfly algorithms. According to the results, as 
the number of tasks increases, so does the 
scheduling latency in both the proposed and other 
algorithms. The proposed algorithm's dynamic 
task allocation helps to minimise latency more 
than other algorithms. The results demonstrate 
that the proposed HGWLO algorithm has lower 
latency than other algorithms. For various 
offloading tasks, say70, the latency is considered 
to be the highest in all existing algorithms, and it 
is higher in greywolf, lion optimization, and 
dragonfly algorithms than in the proposed 
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HGWLO. The same can be said for other 
offloading tasks ranging from 10 to 70. 

 
 

 
Figure 9: Energy Latency 

G) Task Completion Time: The completion time 
is the time elapsed between the beginning and 
ending times. Figure 10 depicts the iterative 
process of combining Dragonfly, grey wolf, and 
lion optimization, as well as the proposed 
HGWLO, to achieve the best total time and make 
span. The proposed HGWLO algorithm 
outperforms the Dragonfly, grey wolf, and lion 
optimizations in terms of completion time. Each 
algorithm's completion time increased as the task 
volume increased. The completion time for each 
algorithm varies between 10 and 70 tasks. Based 
on this observation, the proposed HGWLO 
algorithm completes the process in less time. 
Furthermore, they precisely allocated resources 
on the cloud edge server to offload a better 
scheduling operation. 

 

 
Figure 10: Task Completion time 

 

6. CONCLUSION 

The goal of task allocation problems in a multi-
user network under cloud edge computing is to 
optimize makepan and system utility. Because the 
optimal solution to these problems is difficult to 
obtain. However, according to the experimental 
results, our proposed scheme Hybrid Grey Wolf 
Lion Optimization (HGWLO) effectively solves 
computational resource and task offloading and 
computational resource allocation problems. 
When compared to previous algorithms such as 
dragonfly, grey wolf, and lion optimization, the 
proposed method reduces makespan, energy 
latency, energy consumption, system utility, task 
completion time, execution delay, and 
convergence rate while ensuring better 
performance. 
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