
Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5629

INVESTIGATION OF OPTIMAL TASK OFFLOADING AND
RESOURCE ALLOCATION USING HYBRID GREY WOLF

LION OPTIMIZATION (HGWLO) IN CLOUD–EDGE
COMPUTING

K.VINOTHKUMAR1, DR. D. MARUTHANAYAGAM2

1Research Scholar, Periyar University, Sri Vijay Vidyalaya College of Arts & Science, Dharmapuri,
Tamilnadu, India

2 Head/Professor, PG and Research Department of Computer Science, Sri Vijay Vidyalaya College of Arts
& Science, Dharmapuri, Tamilnadu, India.

E-mail:1vinothkumarphd2022@gmail.com,2kesimaruthu@gmail.com

ABSTRACT

The two main components of edge computing are task offloading and resource allocation. System energy
consumption can be reduced and task processing times increased with a sensible job offloading and
resource allocation plan. The vast majority of existing research on the task migration of edge computing
only takes the resource distribution between terminals and edge servers into account, completely excluding
the enormous computing resources in the cloud centre. Under cloud edge computing, Hybrid Grey Wolf
Lion Optimization (HGWLO) using job offloading and resource matching method was presented in order
to adequately utilise cloud and edge server resources. This research study establishes the job offloading
decision of many end-users as a task scheduling in cloud edge computing with the experimental findings
showing the that the suggested algorithm outperforms other pre-existing algorithms of dragonfly, grey
wolf, and lion optimization with regard to Makespan, Energy Latency and Energy Consumption, System
Utility, Task Completion Time, Execution Delay, and Convergence Rate.

Keywords: Edge Cloud Computing, Resource Allocation, Task Scheduling, Lion Optimization Algorithm,
Grey Wolf Optimization.

I. INTRODUCTION

One of the key components of 5G networks, edge
computing has drawn a lot of attention in recent
years. In order to sink cloud computing
capabilities to the edge of the network, share the
computing load of nearby mobile users, and
increase the network's overall computing
capacity, edge computing deploys servers at the
edge of the wireless access network (such as
small base stations, macro base stations, cellular
base stations, and WiFi access points)[1].
Although the edge cloud does not have the
powerful computing capability of the central
cloud, it is closer to the terminal device and does
not need to be transmitted through the backbone
network, reducing transmission distance
significantly. The computing capabilities of smart
devices, however, are typically constrained [2] by
their physical size and the limitations of their
underlying hardware and cannot fulfill the
demands of these applications. As a result, edge
cloud computing technology [3][4][5] is regarded
as an effective and promising method of

addressing the challenges associated with smart
devices with limited resources and mobile
applications with high demand. As opposed to
traditional cloud computing [6][7], For handling
delicate tasks with minimal latency, edge cloud is
more appropriate. It can distribute service
management and calculation in a smart home,
significantly improving operational efficiency.
Computers use the concepts of memory and
cache. Users' frequently used data is placed closer
to the edge of networks to reduce latency while
reducing the load on the core network. To address
the issues of insufficient processing capacity and
limited resources of smart devices, the industry
has introduced the concept of offloading in a
cloud edge computing environment. The current
edge computing problem's main research
direction is how to offload the tasks performed
by the devices to the edge server and make
efficient and reasonable offloading decisions.
Another critical aspect of scientific task
scheduling is the data placement strategy.

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5630

It can only consider resource allocation between
terminals and edge servers to mitigate data of
edge computing, ignoring the massive computing
resources in the cloud centre. In cloud edge
environments, transmission and data storage costs
are incurred. There are many algorithms on how
to obtain task offloading decision-making in order
to sufficiently utilize cloud and edge server
resources in the computational offloading of
multiple smart devices and multiple edge
processors [8][9]. This research paper proposed
an algorithm for hybrid grey wolf lion
optimization (HGWLO) using task offloading and
resource matching algorithm under cloud edge
computing. Many research studies have been
proposed to investigate the problems associated
with task offloading. Through the optimization
of offloading decisions and the associated
resource allocation, such as the allocation of
transmit power and computation resource,
system performance gains, such as reduced
delay or energy consumption, can be obtained.

Task offload: When using task offloading
methods in edge-cloud computing, these methods
do not take into account the task offloading
decision because they assume that all tasks are
offloaded to the edges or clouds or that the user
chooses which tasks to offload. These methods
are appropriate for task offloading in the scene of

tasks requested by devices with limited
processing power, such as sampling sensors [10],
or for experts.

Resource allocation challenges: The resource
allocation mechanisms that determine how and
where the offloaded tasks will be executed in a
remote platform have a significant impact on task
offloading. As a result, task offloading and
resource allocation decisions are inextricably
linked and must be addressed together. The
following are the main issues this issue raises.

Partitioning Decision: The resource allocation
mechanisms that determine how and where
offloaded tasks will be executed in a remote
platform have a significant impact on task
offloading. As a result, task offloading and
resource allocation decisions are inextricably
linked and should be addressed together. The
following are the main issues this issue raises. A
poor partitioning decision may result in
application execution performance bottlenecks.
As a result, a balance between when and which
tasks should be offloaded to the Cloud/Edge must
be sought, taking into account any potential
transmission costs in terms of energy, delay, and
resources..

Figure 1: Task Offloading Process

Local computation and task offloading are
performed by edge users. Local computing is the
act of directly calculating and processing data on-
site. The process of offloading is computing task

to an edge server. The calculation operation is
performed by the edge server, and the result is
returned to the edge user. The computing task is
offloaded to the edge server for execution, which

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5631

can achieve the goal of relieving the local device's
calculation and storage pressure, thereby
extending the battery's service life. All task
programmes are assumed to be partition able
in this research. Assume that the kth edge user's
time to unload the task is k, W is the system
bandwidth, and hk is the channel gain between
the edge user and the edge server, pk is the kth
edge user's transmitting power, and 2 is the noise
power. The total number of bits unloaded by all
users to the edge server and the number of bits
unloaded from the kth edge user to the server are
as shown in,

2 2
log (1)o k k

k k

p h
R w


 

0 2 21 1
log (1)

k ko k k
k kk k

p h
R R w

 
   

Task offloading refers to the user equipment
processing some computationally intensive
applications and uploading the data processing
these applications to the edge server through
wireless transmission under the condition of
weighing continuous or other indicators.
Resource allocation refers to the edge server for
these uploads the processing application allocates
certain computing resources, in this way to obtain
continuous or gradual replacement, providing a
better user experience. The issue to be resolved
by task offloading is for each user, and
determines whether the tasks generated by it need
to be offloaded, while also taking into account the
dense deployment of edge servers, the constrained
computational load of distributed servers.
Therefore, it must be resolved for each offload
processing the issue of how much computing
resources are allocated by the application. To
produce better results, these two issues must be
addressed concurrently.

2. METAHEURISTIC OPTIMIZATION

ALGORITHMS

As previously stated, the meta-heuristic
optimization algorithms Greywolf, dragonfly, and
lion optimization algorithms were used as the
foundation for adapting the scenario of task
scheduling and offloading in a cloud edge
successful transformation..
2.1. Dragonfly Algorithm
The Dragonfly Algorithm, a relatively new
algorithm, is based on the swarming behaviors of
dragonflies, which include both static and
dynamic swarming. Dragonflies in the former
form small groups that hunt in small areas; in the
latter, many dragonflies move over a long

distance. These features serve as the foundation
for exploitation and exploration. Separation to
avoid a collision, alignment for velocity
matching, cohesion for moving towards the centre
of the neighbourhood, attraction to food, and
distraction away from the predator are some of
the corrective patterns of dragonflies in a swarm
[11]. Each fly's position is updated using a step
vector, which is obtained by combining each of
the above patterns with the inertial factor as
follows [12]:
 Separation refers to the avoidance of static

collisions between individuals in the
neighbourhood.

 Alignment, that is the matching of an user's
velocity to that of others in the
neighbourhood.

 Cohesion, that also describes a community's
tendency for its residents to gravitate toward
the centre.

The separation factor is calculated to avoid a
static collision between one dragonfly and other
dragonflies in the vicinity, and it is as follows:

1

N

i i j
j

s x x


   (1)

Where Xi represents the current dragonfly's
position, Xj represents the position of the j-th
neighbour, and N represents the number of
neighbouring dragonflies. Following are the
calculations for the alignment factor, which is
used to compare one dragonfly's velocity to those
of nearby dragonflies:

1

N

j
j

i

v

A
N



 (2)

In which Vj is the jth neighbor's velocity and N is
the number of dragonflies in the neighbourhood.
The following is how cohesion is calculated:

1

N

jj
i

X
C X

N
 


 (3)

In which X represents the present user's position,
N represents the number of neighbourhoods, and
Xj represents the position of the j-th neighbouring
individual. The following formula is used to
calculate attraction to a food source:

iF X X  (4)

Where X represents the current individual's
position and X+ represents the location of the

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5632

food source. The following formula is used to
calculate enemy distraction:

iE X X  (5)

In which X represents the current individual's
position and X-denotes the enemy's position.

Exploration and exploitation can be accomplished
using the five parameters S, A, C, F, and E given
in eq.(1) to (5). Proper tuning of these parameters
aids in the discovery of the best solution. Thus,
eqs. (6) and (7) are used to compute the step
vector and position of dragon flies, respectively.

1 ()t i i i i ix sS aA cC fF eE      (6)

1 1t t tX X x    (7)

In the preceding equation, t represents the number
of iterations, and I represents the ith fly. If a
dragon fly has no neighbours, the levy flight is
used to update its position as shown in
equation (8).

1 ()t t tX X Levy d x    (8)

Where t is the current iteration number and d is
the dimension of the position vectors. In each
iteration, the step vector and position vectors of
each dragonfly are updated until the end criterion
is met. Algorithm 1 contains the pseudo code for
the dragonfly algorithm.
Algorithm1:Dragonfly algorithm
Initialize the populations position randomly;
Initialize the step vectors;
While end condition do

Calculate the objective values of all
drangonflies;

Update the food source and enemy;
Update the weights;
Calculate the factors using(1)-(5);
Update radius of neighborhoods;

If dragonfly has one or more neighbors then
Update step vector using (6);
Update position vector using (7);
Else

 Update position vector using (8);
End
Check and correct new position based on

upper and lower bounds;
End.
2.2. Greywolf Optimization

There is a clear social hierarchy in the grey wolf
pack. This four-level hierarchy is led by Alpha,
who is regarded as the wolf at the top of the
pyramid. It is in charge of making group hunting
decisions. At the second level, we have the Beta,
who is the wolf who assists the leader in making

pack decisions. The Delta is responsible for the
safety of the pack and is subordinate to the
wolves above in the hierarchy. The pack's other
wolves are known as Omegas, and they are at the
bottom of the pyramid [13].

Figure 2: Structure Of Grey Wolf

Hunting: After completing the encirclement of
the prey, the Grey wolves concentrated on
hunting the prey, the wolf alpha () usually

leads the hunt, and the wolf Beta () and delta (

) may share in the hunting process in the
limited search area. It is not possible to know the
best location (prey). When simulating the hunting
behavior of Grey wolves, we assume that alpha (
) is the best initial solution and that elements

or wolves beta () and delta () have a better

knowledge of the potential location of the prey.

The behavior of Alpha (), beta () and delta (

) can be simulated by the following equations.

Upon having completed the encirclement of the
prey, the Grey wolves concentrated on hunting
the prey; the wolf alpha () usually leads the

hunt, and the wolves Beta () and delta ()

may participate in the hunt in the limited search
area. The best location cannot be determined
(prey). When simulating Grey wolf hunting
behaviour, we assume that alpha () is the best
initial solution and that elements or wolves beta (

) and delta () have a better understanding of

the potential prey location. The following
equations can be used to simulate the behaviour

of Alpha (), Beta (), and Delta ().

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5633

The location vector can be calculated from prey in

relation to wolves Alpha (), beta () and

delta () using the following mathematical
formulas:

The conceptual formulation for optimization is
presented while taking into account the grey wolf
pack's following steps [14]:

 Choosing and following the target;
 Surrounding the target;
 Moving closer to the target;

As a result, the first step is to determine which
three best ECs will guide the pack in its search for
the best Edge to store the resource. The Alpha (α)
is therefore thought to be the best EC. Then it is
determined which one is the Beta (β) and which
one is the Delta (δ). The final EC will be
designated as Omega. To implement the GWO
optimization algorithm model, hunting is
guided by solutions α, β and, δ. The equations
15 and 16 were proposed by [15] to mold
mathematically the behavior of wolves while
chasing their Prey.

ED = |CV 2 *Pr(x) − P(x)| (15)
P(r + 1) = Pr(x) − CV 1 * ED (16)

Where x denotes the current iteration, Pr denotes
the resource's value variable, P denotes the Edge
Computing values, and CV 1 and CV 2 are the
coefficients used in the equation for movement.
As a result, the distance between the prey
(resource) and the wolf (Edge) is calculated, with
each iteration decreasing. CV 1 and CV 2 are
calculated using the equations 17 and 18,
respectively:

CV 1 = 2a* t1 − a (17)
CV 2 = 2 * t2 (18)

During the iteration, an is decremented from 2 to
0, and t1 and t2 are random variables with values
ranging from 0 to 1. In each iteration, something
like an is in charge of getting the wolf to
approach the prey. According to equation 19, the
best edge computing is updated with the sum of
the three best positions.

1 2 3
(1)

3

x x x
x t

  
  

  (19)

GWO Algorithm:

2.3. Lion Optimization Algorithm
The inspiration for the proposed meta-heuristic is
first discussed in this section. Following that, the
Lion Optimization Algorithm (LOA) is
introduced.
Initialization: The LOA is a population-based
meta-heuristic algorithm, with the first step being
to randomly generate the population over the
solution space. Initially, the population is
generated arbitrarily across the solution space.
Every outcome is referred to as a lion (edge
devices). In a d-dimensional optimization
dilemma, a lion (edge devices) is denoted as d set
of key differentiators, as:

Lion (edge devices) = [l1,,,,,,ld]
(20)

Every edge device (lion fitness)'s range is
determined by evaluating the objective function
given in (16) as:

f(edge device) = f(l1,,,,,,,,,,ld)
(21)

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5634

In the first stage, dpop solutions are generated
arbitrarily in exploring space, and a percentage d
of completed results is chosen as migrant edge
devices arbitrarily. The remaining population is
randomly divided into the prides. Each solution
had a distinct gender and remained consistent
throughout the optimization task. While
searching, each lion looks at its most excellent
entered site. Each pride's region is built around
such observed locations. As a result, observed
sites (the best entered sites) generate that pride's
region through its representatives for each
pride[15].

Hunting: A certain number of females in each P
seek prey in a group to feed the members of P.
These hunter lions use specific tactics to encircle
and capture their prey. During hunting, the lions
generally follow a similar pattern. Stander (1992)
classified lions into seven distinct groups based
on their roles. While hunting, each lioness adjusts
its location based on the location of its own or
other members. As a result, some of the hunter
lions encircle the prey and attack it from the
opposite direction; the hunters are divided into
three "wings." The centre wing has the greatest
cumulative fitness, while the left and right wings
are fixed at random. When a hunter improves its
fitness, the prey flees to a new location, as shown
in Equation (22).

' (0,1) 1 ()PY PY rand py py Hunter    
 (22)

Where PY denotes the current location of the
prey, Hunter denotes the new location of the
hunter, which attacks the prey, and PYI denotes
the percentage of fitness improvement in the
hunter. The following is the new location of the
hunters from the left and right wings.

 (23)
The new locations of the center hunters are
created as defined in the Equation (24).

(,),
'

(,),

rand hunter py hunter py
Hunter

rand py hunter hunter py


 

 (24)
R and (a, b) generates a number between a and b
at random. This hunting behaviour has some
advantages in terms of finding better solutions.
This mechanism creates a circle-shaped
neighbourhood around the prey, causing the
hunters to approach it from different directions.
Furthermore, because some of the hunters occupy

opposing locations, this process allows solutions
to escape from local optima.

Roaming and mating: The system's ability to
roam improves local search capability and aids in
the discovery of workable solutions (task
scheduling solution). Within the pride's territory,
each resident male lion can be found. If the male
lion discovers a better location than the current
one while roaming, it must update the new
location as the best frequented location [16].
Furthermore, Ma% of the female lions in the
pride P mate with one or more resident male
lions, resulting in offspring. Using equations (20)
and (21), the mating procedure yields two
offspring on average (2).
Offspringj 1 =β × female Lionj +Σ (1−𝛽) Σ𝑆𝑖 𝑁𝑅

𝑖=1 × male 𝐿𝑖𝑜𝑛𝑗𝑖 × Si (1)
Offspring j2 = (1-β) × female Lionj ×female Lionj

+ Σ (1−𝛽) Σ𝑆𝑖 𝑁𝑅 𝑖=1 × male 𝐿𝑖𝑜𝑛𝑗𝑖 × Si (2).

The number NR, which represents the number of
resident males in a pride, is a completely random
number with a standard error of 1 and a mean
value of 0.1. Si=1 selects a male lion for mating;
otherwise, Si=0. The mutation is then performed
on the two additional offspring, one of whom is
randomly identified as female and the other as
male.

Movements towards Safety: Only a few female
lions hunt for prey, while the rest stay in safe
territory. The best positions for each territory are
calculated and saved. A high victory rate indicates
that the lions have deviated from their optimal
point. Lower values indicate that lions are
roaming for improvement, and thus competition
evaluation indicates success.

Mating: Mating is an important procedure that
ensures the survival of the lions and allows for
data exchange among members. Female lions
mate with one of the many resident males in each
pride. To produce offspring, these males are
arbitrarily selected from the same pride as the
female. Nomad lions, on the other hand, only
mate with one male who is chosen at random. The
mating operator is a linear combination of parents
for the purpose of producing two new offspring.
Defense: Lions value this type of behaviour.
Mature male lions engage in combat with other
lions. Losers either become nomads or flee the
territory. When nomadic lions win a battle, they
take over the territory of the loser. Thus, LOA
defends lions in two ways: against newly matured

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5635

resident males and nomadic males. LOA thus
finds the strongest lion in the group.
Equilibrium: The number of live lions must be
kept under control at the end of each iteration. As
a result, female nomad lions are classified based
on their fitness levels. The best females are
chosen and distributed to prides to fill the
vacancies left by the migrated females. In relation
to the maximum number of female nomads, the
weakest females are removed (1-S). Male nomads
are also sorted based on their fitness values, and
the lions with the least fitness will be removed
with respect to the maximum number of male
nomads%S.

3. PROBLEM STATEMENT

In edge computing, resource allocation is a
critical challenge. The efficient allocation of
constrained resources to competing services with
various features and requirements, such that the
edge system obtains maximum resource
utilisation while also satisfying the services, is
referred to as resource allocation.
 For starters, devices differ in terms of
computing capabilities and the characteristics of
the computing tasks they generate. The tasks have
varying delay requirements, input data amounts,
and computational complexities.
 Second, it's likely that devices in edge
computing systems will function independently
[17, 18].
 Third, the edge The Swedish Research
Council funded part of the research through
project 621-2014-6. Multiple heterogeneous
wireless access points and edge clouds may be
used in computing systems. As a result, device
offloading decisions should be coordinated so that
resources are efficiently utilized while
considering the interests of individual devices, the
heterogeneity of their tasks, and interactions with
the resource allocation policies of the edge cloud
providers. This makes joint management of
wireless and computing resources for edge
computing inherently difficult.

Edge cloud computing has undoubtedly provided
numerous benefits; however, it still faces
significant challenges that must be addressed. The
first challenge in such a complex environment
with a variety of resources is task scheduling. In
this complex environment, this challenge
typically considers real-time execution, as well as
a massive amount of flowing data. As a result, a
scheduling approach that is effective in

completing all tasks on time, resulting in real-
time execution, is required. The second challenge
focuses on processing business workflows with
the goal of completing task scheduling while
taking QoS (Quality of Service) requirements into
account (for example cost and deadline).

However, the task offloading time is in the tens to
hundreds of milliseconds range. The task
offloading time for some delay-tolerant services
can reach a few seconds. Without considering
time-varying fading, offloading strategies will be
inaccurate, resource utilisation will be reduced,
and task delay requirements cannot be
guaranteed. Furthermore, when time-varying
channels are considered, the task transmission
time is related to the vehicle's location and the
allocated bandwidth. As a result, allocating
bandwidth for time-varying channels is a critical
and difficult issue.

3.1. Problem solution: Based on the
aforementioned issues, this paper investigates the
Cloud-Edge system, which is motivated by
minimizing delay, energy consumption, and
computing cost, and it constitutes the task
offloading and task scheduling problem for
multiple end users in order to maximize system
utility. This paper's contributions are summarized
below:

1. Task scheduling is a traditional method for

transferring tasks to external platforms due to
device limitations in computing power,
storage, and energy. It can boost computing
efficiency, shorten task completion times,
and make better use of other devices'
resources. Because the edge computing
network has the characteristics of ultra-dense
deployment and simultaneous access by a
large number of users, the selection of user
computing task mode is critical and directly
determines the system's computing time and
cost. This paper proposes a task scheduling
and task offloading scheme based on Cloud-
Edge, including computational task
scheduling and task offloading strategy
optimization, to address the utility
maximisation problem.

2. The mixed integer nonlinear programming
problem is used to describe the joint task
offloading and task scheduling problem,
which combines task offloading decisions
and resource allocation for offloading users
to maximise system utility.

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5636

3. For the task offloading and task scheduling
problem, a Hybrid Greywolf Lion
Optimization Algorithm based on cloud edge
computing system was proposed to obtain the
task offloading strategy that achieves the best
results in terms of Makespan, Energy latency,
and CPU utilisation. Energy consumption,
system utility, task completion time,
execution delay, and convergence rate are all
factors to consider.

4. Different resource allocation and task
offloading schemes are used as comparison
schemes for the hybrid greywolf lion
optimization algorithm, and simulation
experiments are run with different
parameters. The results show that the
offloading scheme proposed in this paper
significantly improves users' offloading
utility.

5. All computing tasks are offloaded and
processed at the Edge. Offloading is typically
translated into a simple resource allocation
problem, with tasks executed on virtual
machines or containers at the Edge.
Energy savings at the end device can be
maximized, but other sources of energy
dissipation, such as the device's transmission
power, must be considered..

4. PROPOSED ALGORITHM OF HYBRID

GREYWOLF LION OPTIMIZATION
(HGWLO):

Figure 3 depicts an emerging technology that
performs data analytics and storage close to the
data source (i.e., virtual machine) to reduce
network latency. Edge computing provides
computing, storage, and network services from a
cloud data centre. When compared to cloud
computing, edge computing enables decentralised
computation and storage. Devices for real-time
communication can be supported by resources
nearby the user. The primary goal of edge
computing is to process data, reduce latency, and
provide real-time response. Task scheduling is
used to connect tasks to computation resources
and plan their execution while satisfying task
dependency and meeting resource management
goals.

The optimizer attempts to group task scheduling
in order to reduce overall flow task execution
time while using the fewest number of cores. It is
worth noting, however, that a core represents a
VM, with a single core primarily used for

application benchmarking. The next step in the
edge cloud computing environment is to allocate
resources and schedule scheduling tasks. There
are five steps in resource management
scheduling: a resource optimizer, a task
scheduling plan generator, a task queue builder,
a task execution time generator, and a cost
estimator. The amount of resources and time
required to run the task scheduling are estimated
during the resource estimation stage based on task
execution constraints such as deadline,
throughput, and waiting time. As a result, tasks
for scheduling are organised into execution
groups. Next, the required task offloads for the
group-based technique can simplify task
scheduling in an edge cloud environment, using
task offloading, it becomes clear that the
network's Edge infrastructure creates an
additional resource layer between the virtual and
the external platform. This layer is capable of
reducing energy consumption, transport, and
cloud networks, thereby reducing communication
delays, improving energy efficiency, and, as a
result, extending the battery-powered device's
lifetime. Given this, it is critical to schedule these
data and large applications in these systems.
Scheduling is an important aspect of task control
in the cloud. The Scheduling process estimates
the amount of resources required to complete the
task and decides which tasks should be assigned
to which computing component. Before
processing the subtasks in parallel, they can be
broken down into smaller subtasks. The overall
advantage of the implementation is increased by
breaking a computation into smaller subtasks and
implementing these subtasks on different
processors. Furthermore, the goal of the task
scheduling algorithm is not to schedule the entire
task into the available processor in order to
increase profit (profit here refers to the
combination of low cost, low memory utilisation,
and energy conservation) without affecting the
primary requirements. It makes task scheduling
difficult. The next step in task offloading is to
optimize the offloading of computation-intensive
tasks from the end user device to a remote site
while keeping various computational,
communication, and mobility constraints in mind.
This procedure entails application partitioning,
offloading decision making, and distributed task
execution.

The powerful processing power of the edge server
can accelerate task computing, reduce task
completion time, and save energy for devices.

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5637

Devices that use task offloading do not need to
have a lot of computing power or storage space.
As a result, even in the presence of limited
computing power and other hardware constraints,
edge users can complete computing tasks.

Because the cloud provider must maintain a large
number of users, the scheduling technique
alleviates the cloud provider's burden. This study
proposed a new algorithm based on greywolf and
Lion Optimizer to schedule tasks and offload in
cloud edge computing. The proposed HGWLO
algorithm assists in locating the best VM for
task allocation. The HGWLO algorithm
generates the evaluation of fitness values for each
wolf. HGWLO-based approaches assume the
random deployment of a number of wolves
(search agents) with a random initial position and
the ability to change their positions. The three
best candidate solutions are considered as alpha,
beta, and delta wolves in each iteration based on
the predefined number of iterations. To find better
solutions, the omega wolves had to encircle the
alpha, beta, and delta wolves.

Begin populating our goal in this investigation is
to determine the assignment planning for

distributed computing and to limit the make span
of the arrangement, which is the longest
consummation time for all projects. In this
manner, we should outline a basic answer for a
lion. A lion communicates with a project planning
arrangement and schedules the task in cloud edge
by mapping cloud tasks (cloudlets) to cloud assets
(virtual machines (VMs)). The object that
provides the requested services and is closest to
the best search optimal position is the final
solution.

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5638

Figure 3: Proposed Model Hybrid Grey Wolf Lion Optimizer (HGWLO)

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5639

The proposed algorithm's details are provided
below. Figure 3 depicts the general framework for
this proposed model. This is a process that occurs
when using a constrained task based on the
operation that the virtual machines are to perform.
The scheduler collects data from the Cloud User
and edge server and then computes it to make a
decision that assigns each task to its respective
virtual machine. We use makespan, system

utility, energy consumption, execution delay,
energy latency, and task completion time among
VMs as performance metrics in this research
proposed method to optimise task and resource,
using a Hybrid grey wolf lion optimizer
(HGWLO) algorithm based on the proposed
model is scheduling the task and offload in cloud
edge computing.

Proposed algorithm

To schedule task offloading environments, the
proposed task offloading framework employs a
hybrid Grey Wolf Optimizer (GWO) and Lion
Optimization algorithm. The current system
addresses competing goals, namely make span.
As a result, the task offloading model is intended
to schedule tasks in the cloudedge computing
environment. The manufacturer claims that the
makespan improves user satisfaction by
maximising resource utilisation via the
minimization function.
Input:
Requirement of HGWLO algorithm
Specification of Task Scheduling & task
allocation.
Tasks T1, T2,.…….TN and Resources R1,
R2,…….RM and Maxitr
Output: Set of tasks allocate to vms, decrease the
makespan of total scheduled tasks

Procedure: HGWLO
Initialize the number of task , number of
resources , Set the initial values and the maximum
number of iterations Maxitr
Step1:Set t = 0 {counter initialization}.
//population initialization
Step2: n= 1 . Number of task
Step 3: while n< Max do . Executes within the
maximum number of task
 Step4: Bring about an initial population
randomly.

Step 5: Calculate the each wolf agent I and
initialize the lion optimization pheromone matrix
Step 6 : for i = 1, 2, . . . ,m do
Step 7 : for j = 1, 2, . . . ,m do
Step 8:Estimate objective function(makespan)
Makespan Consider p(i,j) as the offloading task
execution time on ith VM of jth cloudlet task and
the completion time of offloading task is
represented as L(i) = Σp(i,j) for ith VM. The
objective function for scheduling is regarded as
Lmax= max(Li), which is the cloud-

Let VM makespan. The proposed method
schedules the n tasks on m cloudlets VMs such
that n > m and the makespan minimization
problem is considered. The upper limit for the
minimization function is defined as m × Lmax.
Consider G as the scheduling makespan, where m
× Lmax> G, where execution time of assigned
task takes a time of Lmax to each cloudlet VMs.
The relation m × Lmax> G holds true for all
scheduling makespan and thus optimal makespan
(O) is formulated by modifying the relation based
on m × O > G. The task offloading execution time
t ∈ T is considered as the longest time required
for input data reception, which is represented as
Tw in Eq. (1) with the processing time of t
represented by Te in Eq. (2). maxi(t) expressed in
Eq. (3) is regarded as the largest data received at
task offloading t from its subtasks and ̄B is
regarded as the execution delay of cloudlet VMs,
which is calculated in Ms.
The MI in Eq. (2)
The cost is also computed based on cost per
process, storage and transfer based on MIPS
processing, per second hosting time and mbps
data transfer between the cloudlet VMs is the task
size expressed in MIPS and it is the cloudlet
processing power. The offloading task completion
time is the sum of Tw + Te and the cloudlet VMs
completion time is given as VMi (i = 1.m with m
as the total cloudlet VM availability), which is
expressed in Eq. (3) and it is the sum of
offloading task completion time. The maximum
completion time for a offloading task in cloudlet
VMs is regarded as the makespan, which is
expressed in Eq. (4).offloading calculation
selection
problems in the edge cloud server calculation
offloading decision.

max ()i
w

i
T

B
 (1)

 
 ()e

MI t
T

MIPS vm i
 (2)

()t w e
t T

T T T


  (3)

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5640

1 , 2max(,....,)t t t t t mtmakespan T T T   (4)

Step 9: Calculate the probability of selecting the
remaining points when the lion optimization
departs from point i. Select the departure
alternative with the highest probability ki, and
update the next city selection for lion i as ki
Step 10:Move Towards Safer Place
position for female lion (FL) is expressed as

2 (0,1){ 1} (1,1) tan()

(0,10{ 2}

{ 1}.{ 2} 0,|| 2 || 1

FL FL D random R U D

random R

R R R

       

 

where FL is the current place of FL, D provides
the distance among the FL's position as well as
chosen point selected by the tournament chosen in
the pride region. {R1} is a vector that indicates
the primary point is the earlier place of the FL,
and it is focused on the elected position. {R2} is
perpendicular to {R1}.
Step 11:For each Nomad lion
Both male and female move randomly in the
search space Identify their new position as,

𝐿𝑖𝑜𝑛={𝐿𝑖𝑜𝑛,𝑖𝑓 𝑟𝑎𝑛𝑑>𝑝𝑟𝑅𝐴𝑁𝐷,
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑝𝑟=0.1+𝑚(0.5𝑁𝑜𝑚𝑎𝑑−𝐵𝑒𝑠𝑡𝑁𝑜𝑚𝑎𝑑𝐵𝑒𝑠
𝑡𝑁𝑜𝑚𝑎𝑑)
Where, rand is a random number between 0 and
1, pr is a probability, Nomad is the fitness value
of the current nomad, and BestNomad is the best
fitness value of the nomad lions. %M of females
mate with only one male Nomad males attack
prides
Step 12: For each pride,
Nomads are %I of the pride that is immigrated.
Do

(i)Every male and female lions under
nomad category are sorted according to their
fitness score.

(ii) Female lions faring above fitness
score are selected and disseminated to prides,
filling out the empty positions.

(iii) Lions faring below fitness score are
taken out in accordance to maximum permissible
count under each gender
Step 13:Set t=t+1 (iteration counter increasing)
Step 14: Termination criteria
Step 15: until (t<Maxitr). (Termination criteria
satisfied)
 Step 16: Otherwise go to step2
Step 17: Produce the optimum solution

5. EXPERIMENTAL RESULTS

The algorithm is simulated in this experiment
using CloudEdgeSim. Assume that device
generation follows the Poisson distribution. H=
50 M is the expected number of CPU cycles
required for each task. The expected task
transmission delay for a typical 100 Mb Fast
Ethernet LAN is 100 ms. In this paper, we
evaluate four Dragonfly algorithm algorithms.
Grey wolf optimization, lion optimization, and
our proposed HGWLO are all options. It is
assumed in the simulation experiment that both
devices and cloud edge servers can handle tasks.
Additionally, it is assumed that no task queues
will exist to cause time delays and that each task
will be completed immediately upon arrival.

Table1: Simulation Parameters
Parameters Values

Number of Hosts 3
Number of cloudlets 10-15
Number of cloud edge
server

1-10

Number of vms 5-15
Number of Users 10-90
Number of Nodes 10,20,30,40,50,60,70
Storage 1 TB
RAM 2 GB
Processing Speed 50-300 MIPS (Millions

of Instruction Per
Second)

The input data size of
the tasks

[600, 1200] KB

The number of CPU
cycles

Cm = [500, 1000]
Megacycles

The Bandwidth
resources

[180, 230] KB

A).Makespan: Makespan calculates the
maximum completion time by indicating the last
task's completion time. The most popular
optimization criterion for task scheduling in cloud
edge computing is to minimise the makespan. It
can be calculated using the equation below:

Makespan=maxtask i (Fntime)
In which case, Fn Time indicates the completion
time of task i. The HGWLO algorithm is
compared to Greywolf, Dragonfly, and Lion
Optimization algorithms for computing and
minimizing make span in this section. The total
time elapsed from beginning to end is known as
the make span. In the context of scheduling, the

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5641

term is frequently used. A large project has been
broken down into several sub-tasks.
To begin, the proposed algorithm assigns tasks to
cloudlets that are only one hop away from the
user, resulting in a shorter makespan than when
tasks are assigned to VMs on cloud servers. In
comparison to existing methods Greywolf,
Dragonfly, and Lion Optimization, the proposed
algorithm assigns tasks to the VM with a lower
value of load and execution time, resulting in a
shorter makespan. The make span is the total
amount of time required by the tasks to complete
the execution. Makespan is assessed and analyzed
by varying the task and resource values. The
proposed HGWLO algorithm produces the lowest
makespan values when compared to Greywolf,
Dragonfly, and Lion Optimization. In Figure 4,
the HGWLO method achieves the shortest
make span time.

Figure 4: Make span

B) Comparison of System Utility and Number
of Users: The overall utility of the system
decreases as the total number of user equipment
increases, because as user equipment increases,
more and more tasks must be uninstalled. On the
one hand, as user count rises, each user uses
fewer and fewer communication resources; as a
result, offload rate falls and offload delay rises,
reducing system utility. However, as the number
of users grows, so do the computing resources
that each user can allocate, resulting in increased
latency and, as a result, a decrease in overall
system utility. Figure 5 shows that the overall
system utility of the resource scheduling scheme
based on is greater when compared to pre-
existing Greywolf, Dragonfly, and Lion
Optimization algorithms with our proposed
HGWLO, indicating the algorithm's superiority.

Figure 5: System utility

C) Convergence Analysis: Figure 6 depicts how
the number of iterations decreased the make span.
It demonstrates that the quality of task scheduling
improved with each iteration. However, previous
schemes dragonfly, greywolf, and lion
optimization were found to have premature
convergence, whereas HGWLO provided faster
convergence as well as a reduction in makespan
than dragonfly, greywolf, and lion optimization.
The preceding demonstrates that the proposed
HGWLO is appropriate for handling task
scheduling and offloading in a cloud edge
environment.

Figure 6: Convergence Analysis

D) Energy Consumption: Figure 7 depicts the
results of comparing the number of tasks under
various energy consumption constraints. M is the
number of devices, and N is the number of cloud
edge servers. The total system cost of offloading
decreases as energy consumption constraints
increase. Dragonfly performs significantly worse

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5642

than the other greywolf, lion optimization, and
proposed HGWLO when the energy consumption
constraint is 10J/ms. When the energy
consumption constraint is set to 40J/ms, the cost
of dragonfly optimization begins to be lower than
that of lion optimization, owing to the increase in
energy consumption constraints and the model's
decreased sensitivity to energy consumption
constraints. As a result, suitable energy
consumption constraints must be chosen. Under
all energy consumption constraints, the proposed
HGWLO algorithm outperforms the existing
greywolf, lion optimization, and dragonfly
algorithms. When the energy consumption
constraint is near 70J/ms, the effects of dragonfly,
greywolf, and lion optimization differ
significantly. In contrast to the HGWLO. When
compared to other algorithms, the proposed
HGWLO algorithm significantly reduces network
energy consumption, according to the findings.
Only a subset of tasks is responsible for achieving
balanced energy consumption.

Figure 7: Energy consumption

E) Execution delay: Figure 8 compares the
execution delay in the number of devices when
the number of devices is different. When the
number of devices is 10, there is no discernible
difference in the execution delays of HGWLO
and Lion Optimization. Because the number of
devices increases and the amount of data to be
processed increases, so does the execution delay.
The extension will grow in length. When the
number of devices is less than 50, the algorithm
execution delays are comparable. HGWLO, on
the other hand, has a slightly lower execution
delay than the other two algorithms. When the
number of devices exceeds 60, the execution
delay of dragonfly begins to increase sharply,

which is much greater than the execution delay of
greywolf and lion optimization, HGWLO. When
the number of devices is 70, the proposed
HGWLO outperforms previous methods
greywolf, lion optimization, and Dragon fly
algorithms in terms of execution delay.
Furthermore, testing to see if the proposed
HGWLO algorithm can solve the scheduling and
offloading problem in the cloud edge
environment.

Figure 8: Execution Delay

F) Energy Latency: When all subtasks are
processed at edge servers, latency is significantly
reduced when compared to sending them to cloud
servers for execution. However, sending all
subtasks to the cloud can cause both computing
resources and network bandwidth to become
congested, resulting in increased queuing latency
and, eventually, total latency. To reduce total
latency, offload workloads that do not need to be
executed locally on devices to edge servers with
sufficient computing power, which are closer to
the local device than the remote cloud. Figure 9
depicts the energy latency of the proposed
HGWLO algorithm in comparison to other pre-
existing greywolf, lion optimization, and
dragonfly algorithms. According to the results, as
the number of tasks increases, so does the
scheduling latency in both the proposed and other
algorithms. The proposed algorithm's dynamic
task allocation helps to minimise latency more
than other algorithms. The results demonstrate
that the proposed HGWLO algorithm has lower
latency than other algorithms. For various
offloading tasks, say70, the latency is considered
to be the highest in all existing algorithms, and it
is higher in greywolf, lion optimization, and
dragonfly algorithms than in the proposed

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5643

HGWLO. The same can be said for other
offloading tasks ranging from 10 to 70.

Figure 9: Energy Latency

G) Task Completion Time: The completion time
is the time elapsed between the beginning and
ending times. Figure 10 depicts the iterative
process of combining Dragonfly, grey wolf, and
lion optimization, as well as the proposed
HGWLO, to achieve the best total time and make
span. The proposed HGWLO algorithm
outperforms the Dragonfly, grey wolf, and lion
optimizations in terms of completion time. Each
algorithm's completion time increased as the task
volume increased. The completion time for each
algorithm varies between 10 and 70 tasks. Based
on this observation, the proposed HGWLO
algorithm completes the process in less time.
Furthermore, they precisely allocated resources
on the cloud edge server to offload a better
scheduling operation.

Figure 10: Task Completion time

6. CONCLUSION

The goal of task allocation problems in a multi-
user network under cloud edge computing is to
optimize makepan and system utility. Because the
optimal solution to these problems is difficult to
obtain. However, according to the experimental
results, our proposed scheme Hybrid Grey Wolf
Lion Optimization (HGWLO) effectively solves
computational resource and task offloading and
computational resource allocation problems.
When compared to previous algorithms such as
dragonfly, grey wolf, and lion optimization, the
proposed method reduces makespan, energy
latency, energy consumption, system utility, task
completion time, execution delay, and
convergence rate while ensuring better
performance.

REFERENCES

[1] . Suzhi Bi and Ying Jun Zhang. 2018.
Computation Rate Maximization for
Wireless Powered Mobile-Edge
Computing With Binary Computation
Offloading. IEEE Transactions on Wireless
Communications 17, 6 (2018), 4177–4190.
https://doi.
org/10.1109/TWC.2018.2821664

[2] . Shi, W.; Zhang, X. Edge Computing:
State-of-the-Art and Future Directions.
IEEE J. Comput. Res. Dev. 2019, 56, 69–
89.

[3] . Cheng, N.; Xu, W.; Shi, W.; Zhou, Y.; Lu,
N.; Zhou, H.; Shen, X. Air-ground
integrated mobile edge networks:
architecture, challenges and opportunities.
IEEE Commun. Mag. 2018, 56, 26–32.

[4] . Bagchi, S.; Siddiqui, M.B.;Wood, P.
Dependability in edge computing.
Commun. ACM 2020, 63, 58–66.

[5] . Bokhari, M.U.; Shallal, Q.; Tamandani,
Y.K. Cloud computing service models: A
comparative study. In Proceedings of the
IEEE International Conference on
Computing for Sustainable Global
Development, New Delhi, India, 16–18
March 2016.

[6] . Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.;
Merle, P. Elasticity in cloud computing:
state of the art and research challenges.
IEEE Trans. Serv. Comput. 2018, 11, 430–
447.

[7] . M. Satyanarayanan, P. Bahl, R. Caceres,
and N. Davies, “The case for vm-based

Journal of Theoretical and Applied Information Technology
31st July 2023. Vol.101. No 14
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5644

cloudlets in mobile computing,” IEEE
Pervasive Computing, vol. 8, no. 4, pp. 14–
23, Oct 2009.

[8] . Zhang, M.; Zhou, Y.; Quan,W.; Zhu, J.;
Zheng, R.;Wu, Q. Online Learning for IoT
Optimization: A Frank-Wolfe Adam-Based
Algorithm. IEEE Internet Things J. 2020,
7, 8228–8237. [CrossRef]

[9] . Cui, X.; Shan, N.; Li, Y. A Multilevel
Optimization Framework for Computation
Offloading in Mobile Edge Computing.
IEEE/ACMTrans. Netw. 2020, 2020,
4124791.

[10] . M. Z. A. Bhuiyan, J. Wu, G. Wang, T.
Wang, and M. M. Hassan, ``E-sampling:
Event sensitive autonomous adaptive
sensing and low-cost monitoring in
networked sensing systems,'' ACM Trans.
Auton. Adapt. Syst., vol. 12, no. 1, pp.
1_29, Mar. 2017.

[11] . Wikelski M, Moskowitz D, Adelman JS,
Cochran J, Wilcove DS, May ML (2006)
Simple rules guide dragonfly migration.
Biol Lett 2:325–329

[12] . Russell RW, May ML, Soltesz KL,
Fitzpatrick JW (1998) Massive swarm
migrations of dragonflies (Odonata) in
eastern North America. Am Midl Nat
140:325–342

[13] . S. Mirjalili, S. M. Mirjalili, and A. Lewis,
“Grey wolf optimizer,” Advances in
Engineering Software, vol. 69, pp. 46 – 61,
2014. [Online].
Available:http://www.sciencedirect.com/sc
ience/article/pii/S0965997813001853

[14] . Mirjalili, S., Mirjalili, S.M., Lewis, A.:
Grey wolf optimizer. Advances in
engineering software 69, 46–61 (2014)

[15] . S. Saranya and 2N. Sabiyath Fatima
,”Efficient Handling of Medical Data
Classification in Cloud-Edge Network
using Optimization Algorithm”, Journal of
Computer Science, 2021, 17 (11):
1116.1127

[16] . A.Tamilarasi, A.Abarna, K.Chitra,
K.Nagendhiran,R.Aarthi, “ Effective Data
Clustering Using K Means Along with
Lion Optimization Algorithm” ISSN:
2005-4238 IJAST, Copyright, 2020
SERSC

[17] . L. M. Vaquero and L. Rodero-Merino,
“Finding your way in the fog: Towards a
comprehensive definition of fog
computing,” ACM SIGCOMM CCR, vol.
44, no. 5, pp. 27–32, 2014.

[18] . P. Garcia Lopez, A. Montresor, D. Epema,
A. Datta, T. Higashino, A. Iamnitchi, M.
Barcellos, P. Felber, and E. Riviere,
“Edge-centric computing: Vision and
challenges,” ACM SIGCOMM CCR, vol.
45, no. 5, pp. 37–42, 2015.

