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ABSTRACT 
 
Protein Remote Homology Detection and Fold Identification (PRHI) are the two most crucial steps in 
predicting protein structure. Even though many computational techniques like Multiple Sequence 
Alignments (MSAs) have been designed, those techniques were not able to create proper alignments due to 
the varying dimensions of a protein sequence. So, this paper presents a new progressive deep MSA 
technique to create a more suitable decision-making system for MSA of low similarity protein families. In 
this technique, a decision-making system is initially trained by the Hierarchical Attention-based 
Convolutional Neural Network (CNN) with Bidirectional Long Short-Term Memory (BLSTM) named 
HACBLalign to progressively align the given protein sequences by determining various posterior 
probability matrices. This model progressively builds a global alignment by aggregating essential 
subsequences alignment into sequence alignment. The attention level allows the model to choose 
qualitatively informative subsequences and sequences. As a result, high-quality MSA is obtained. Then, the 
top-N-gram and Auto-Cross-Covariance (ACC) features are extracted based on the Position-Specific 
Scoring Matrix (PSSM) from aligned protein sequences. Further, such features are fed into the CNN with a 
Softmax classifier to recognize protein homologies and folds. At last, the experimental results illustrate that 
the HACBLalign accomplishes a 92.4%, 92.5% and 92.1% accuracy on SCOP 1.53, SCOP 1.67 and 
superfamily databases respectively in recognizing protein homologies and folds compared to the 
conventional MSA techniques. 
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1. INTRODUCTION 
 

The categorization of proteins into structural 
and functional groups based on their amino acid 
sequences, particularly with low sequence 
identities, is known as protein remote homology 
detection in bioinformatics. For both fundamental 
studies and clinical practice, protein remote 
homology detection is a crucial step that may be 
used to anticipate the 3D structure and function of 
proteins [1, 2]. Since protein structures are more 
conserved than protein sequences, distant 
homology proteins have comparable structures and 
activities but lack readily observable sequence 
similarities. The alignment score often enters a 
twilight zone when the amino acid level protein 
sequence similarity is less than 35% [3, 4]. As a 

result, computational methods that solely rely on 
the properties of the protein sequence frequently 
fail to discover protein-distant homology. Also, 
protein sequence analysis has difficulty in 
detecting remote homologies and folds of proteins 
due to the low similarity of protein sequences. The 
classical predictors are majorly split into sequence-
based, ranking-based, and discriminative-based 
techniques. 

 
Protein similarity may be measured using 

sequence-based alignment techniques. But, these 
techniques are unable to produce appropriate 
alignment calculations when the sequence 
similarity is smaller [3]. Besides, certain profile-
based alignment techniques combine the 
evolutionary data for proteins using MSAs. In 
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contrast to PSI-BLAST (Position-Specific Iterative 
Basic Local Alignment Search Tool), Hidden 
Markov Model (HMM)-based techniques like 
HMMER, Sequence Alignment and Modeling 
(SAM), HHblits (HMM-HMM-based lightning-
fast iterative sequence search), etc., may increase 
the efficiency of similarity prediction. High-speed 
protein sequence similarity prediction using a 
probabilistic approach is possible with HMMER 
[5]. 

 
The homologous affinity between the 

sequences is measured by ranking algorithms 
using similarity scores [6]. In comparison to 
features based on sequence, features based on 
profiles can more accurately express protein 
properties [7]. The popular ranking techniques are 
ProtEmbed [8], RankProp [9], and so on. To 
measure the similarity scores, motifs are crucial to 
the protein structures and processes [10]. The 
protein fragments known as motifs have specific 
spatial and functional conformations. In protein 
structures, structural motifs are patterns. Classical 
motif-based feature mining methods are 
MotifCNN and MotifDCNN [11]. 

 
The supervised learning framework used by the 

discriminative techniques may be converted into a 
binary classification based on the label data of the 
protein families. Protein primary sequences are 
used in several discriminative approaches to 
extract features. Profile-based features, such as 
profile kernel, All Fixed-width subsequences 
(AF)-PSSM, and Smith-Waterman (SW)-PSSM, 
increase detection sensitivity since they include 
evolutionary information. Amongst, SW-PSSM 
based on profiles contains two kernel functions 
made up of profile-profile similarity and scores for 
sequence-sequence similarity. Nowadays, 
discriminative techniques deliver cutting-edge 
results compared to the other techniques [12-15]. 

 
Discriminative approaches, as opposed to 

paired algorithms and generative methods, may 
quickly incorporate different protein sequence 
properties and learn the information from both 
positive and negative samples in a given 
benchmark dataset. The requirement for feature 
vectors with constant lengths as input is a critical 
characteristic of discriminative techniques. From 
these perspectives, a novel discriminative 
technique named ReFold-MAP [16] has been 
developed, which obtains comprehensive 
characteristics according to the three distinct 
profile-based characteristics: motif-PSSM [12], 

ACC-PSSM [17] and PDT-profile [18] for MSAs. 
Those characteristics termed MAP characteristics 
include the structural motif kernel data, the 
evolutionary data, and the sequence data. Then, 
this characteristic vector was learned by the 
Support Vector Machine (SVM) classifier to 
recognize the protein remote homologies and 
folds. On the other hand, the classical MSA-based 
models cannot be sufficiently obtained accurate 
alignments because the quality of the sequence 
alignment is varied. So, completely automated 
methods are still needed to get precise protein 
sequence alignments. 

 
In this article, a novel progressive deep MSA 

technique is proposed to create a more proper 
decision-making model for MSA of low-similarity 
protein families and handle a huge database. In 
this technique, a decision-making model is trained 
using the Hierarchical Attention-based CNN-
BLSTM called HACBLalign to progressively 
align the given protein sequences by determining 
various posterior probability matrices. This model 
progressively builds a global alignment by 
aggregating essential subsequences alignment into 
sequence alignment. Attention level supports the 
model for choosing qualitatively informative 
subsequences and sequences. The high quality of 
MSA is obtained due to the greater coverage and 
alignment depth resulting from the combination of 
a diverse source of sequence databases. After 
completing this new MSA process, the top-N-gram 
and ACC features are extracted based on the 
PSSM from aligned protein sequences. Moreover, 
those features are learned by the CNN with 
Softmax classifier to recognize protein homologies 
and folds. So, it can get better accuracy on the 
alignment of protein families, particularly on low 
similarity families. 

 
The remaining sections of this article are 

written as follows: Section II provides an overview 
of current studies related to the PRHI. The 
HACBLalign model is described in Section 3, and 
its effectiveness is analyzed in Section 4. The 
conclusion of this work and potential 
improvements are presented in Section 5. 

 
2. LITERATURE SURVEY 
 

An improved artificial neural network was 
proposed by Sudha et al. (2018) [19] for 
identifying protein folds and forecasting the 
structural label. Conversely, as the number of 
neurons increased, its complexity also increased. 
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In addition, its accuracy was not effective as it 
requires more characteristics. By incorporating 
three contour-based variables into the training 
model, Liu and Li (2018) [20] developed a novel 
technique named ProtDet-CCH, which integrates 
CNN-BLSTM-PSSM and a ranking scheme 
HHblits for PRHI. However, its computational 
efficiency was not high. 

 
Mensi et al. (2010) [21] investigated the issue 

of PRHI, which examines the functional similarity 
of proteins and modeled it as a binary Multiple-
Instance Learning (MIL) dilemma to discern 
similar and non-similar proteins. This MIL method 
depends on the dissimilarity interpretation that 
involves the mixture of N-gram interpretations. 
However, it needs more features to further increase 
recognition performance. Adhikari et al. (2020) 
[22] presented the protein contact prediction with 
the help of dilated CNNs with a dropout called the 
DEEPCON scheme. This scheme learns two 
distinct types of characteristics, such as covariance 
characteristics from the MSAs and sequence-based 
characteristics, to predict the protein contacts. But, 
it needs other characteristics and large-scale 
databases to improve the predictive performance. 

 
Fukuda and Tomii (2020) [23] designed a new 

model using a Deep Neural Network (DNN) with 
Evolutionary Coupling Analysis (ECA) called 
DeepECA to predict protein contact according to 
the data obtained from either deep or shallow 
MSAs. In this model, the noisy sequences were 
removed by using the weightage of a particular 
character in the sequences in MSA. But, it 
analyzes the accuracy of every domain, not a 
complete protein sequence. An end-to-end DNN 
called the CopulaNet model [24] was developed to 
predict residue co-evolution from the MSA. The 
major units of this model are i) an encoder to 
perform context-related mutation for all residues 
and ii) an aggregator to define the residue co-
evolution. This residue co-evolution was 
considered to train the 2D residual network and 
predict the inter-residue distances for any residue 
pairs. But, the efficiency was degraded while the 
receptive field dimension was high. 

 
Gao et al. (2021) [25] designed a CONVERT 

method to recognize the protein homology by 
discovering the multiple-to-single correlation 
between proteins and agent proteins using the 
seq2seq model. Additionally, scoring was 
performed to discover the sorted list and align the 
protein sequence. On the other hand, the runtime 

was high if the number of proteins was high. 
Rashed et al. (2021) [26] developed FPGA and a 
modified CNN to accelerate DNA pairwise 
sequence alignment. It was based on the creation 
of a truth table of a look-up table of each possible 
mixture of the DNA strings after transforming the 
DNA string from alphabets to binary 
interpretations. But, the CNN performance was 
degraded due to the more labels and needed to 
adjust their hyper-parameters. 

 
Jin et al. (2021) [27] developed a Supervised-

Manner-based Iterative BLAST (SMI-BLAST) 
depending on PSI-BLAST for PRHI. But, its 
complexity was high while increasing the number 
of protein sequences.  Routray and Vipsita (2021) 
[28] developed the Principal Component Analysis 
(PCA) and multi-objective optimization tools for 
PRHI. First, various physicochemical properties 
from the AAIndex corpus were obtained and 
considered to obtain a group of representative 
characteristics by the PCA. Then, NSGA-II and 
NSGA-III optimization algorithms were utilized to 
search the non-zero Eigen space and retrieve 
differentiable eigenvectors. But, its complexity 
was high for a large-scale protein sequence. 

 
From the literature, it is seen that the earlier 

studies focused on developing machine learning 
and deep learning techniques for PRHI. Even 
though these techniques provide good outcomes 
for PRHI, the research gap exists in PRHI since 
those techniques are most applicable to the limited 
number of protein sequences. Also, they need 
more significant features for achieving better 
prediction accuracy. In contrast with those 
techniques, the HACBLalign is a novel technique, 
which is suitable for aligning a large number of 
protein sequences and choosing the most 
significant features to predict protein homologies 
with a less computational burden. 

 
3.  PROPOSED METHODOLOGY 

3.1. Objectives of this work 

3.1.1 General objective 

The objective of this work is to propose a new 
progressive deep Multiple Sequence Alignment 
(MSA) technique, HACBLalign, for Protein 
Remote Homology Detection and Fold 
Identification (PRHI).  

3. 1.2 Specific objectives 
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The specific objective of this work is to 
develop a highly accurate protein homology and 
fold identification technique using a Hierarchical 
Attention-based Convolutional Neural Network 
(CNN) with Bidirectional Long Short-Term 
Memory (BLSTM). The goal is to achieve a 
minimum accuracy of 90% in protein homology 
and fold identification. 

3.2. Steps in HACBLALIGN Techniques 

The HACBLalign technique is described in this 
section. An outline of the presented PRHI system 
is given in Figure 1. 

3.2.1 Protein Sequence Acquisition 

In this work, three benchmark databases, 
including the SCOP v1.53, SCOP v1.67, and the 
superfamily database, are considered to analyze 
the efficiency of various MSA techniques. The 
SCOP v1.53 database has 4532 sequences from 54 
families, whereas the SCOP v1.67 has 11037 
sequences from 102 families. The superfamily 
database has 1195 folds of 1962 superfamilies. A 
database of structural and functional labels for 
every protein sequence is called Superfamily. It is 
constructed based on a set of HMMs that reflect 
structural protein domains at the level of the SCOP 
superfamily. By comparing protein sequences 
from over 2478 completely sequenced genomes to 
HMMs, the labels are generated. 

 

 
Figure 1: Framework of PRHI System 

 

3.2.2 Generation of MSA to create a Decision-
Making System 

In this HACBLalign technique, a new 
automated alignment system is developed for a 
large-scale protein sequence. For a protein 
sequence𝒬, this HACBL model (as demonstrated 
in Figure 2) constructs many MSAs precisely. This 
HACBL comprises of five major levels: word 
embedding, convolution, BLSTM, attention and 
Fully Connected (FC) levels. 

 

 
Figure 2: Structure of HACBL-based Decision-Making 

System 

(i) Architecture of HACBL Model 

Primarily, a given 𝒬 is transformed into the 
512 × 8 matrix at the word embedding level. The 
obtained matrix is fed to the two convolution 
levels having kernel sizes of 6 and 3, respectively 
(both convolution levels are followed by the max-
pooling of size 2). 

 
Then, the outcome of the second convolution 

level is given to the BLSTM level having a hidden 
size of 64 for determining the correlation among 
all characters in a protein sequence pair. After that, 
the attention level is applied to capture more 
relevant alignments of protein sequences, which 
are passed to the two FC levels, whereas a dropout 
rate of 0.5 is added to the primary FC level. 
Finally, the outcome of the second FC level 
represents the accurate alignments for a given 
protein sequence. 
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(ii) HACBLalign: Decision-making system-based 
novel progressive alignment technique 

The decision-making system, i.e., 
HA+CNN+BLSTM model, is incorporated with 
the standard MSA based on the progressive 
mechanism to create a novel alignment technique 
for MSAs called HACBLalign. For a protein 
family 𝐹 , HACBLalign generates the MSA 
according to the below processes: 

 
 Decision-making for determining the Posterior 

Probability Matrix (PPM) 

 All pairs 𝑎, 𝑏 from 𝐹  is added to this 
technique to provide a tag label൫𝑡𝑎𝑔௔,௕൯. Those 
tags define the certain determination technique of 
PPM applied for 𝐹 based on the dominant fraction 
of tags, which every of its pair acquires after being 
fed into the decision-making system. As the 
fraction of all accurate tags of categorizing 𝐹via 
MSAs, the dominant fraction of estimated tags is 
computed as: 

dominate fraction = argmax
୶

ቀ
୊୘୉౮

ୖ୘୊౮
ቁ     (1) 

 
In Eq. (1), 𝐹𝑇𝐸௫stands for the fraction of 𝑥௧௛ 

estimated tag and 𝑅𝑇𝐹௫ stands for the fraction of 
𝑥௧௛real tag where 𝑥 indicates the positive integer 
not greater than 𝑛tags. This task is portrayed in Fig 
3, which defines the partitioning 𝐹  into pairs by 
the decision-making system to predict the tag for 
all pairs and determine the dominant fraction of 
tags for finding the tag of 𝐹. 

 

 
Figure 3: Task of Separating 𝐹 into Pairs by Decision-

Making System 

According to the resulting tag of 𝐹 , the Pair 
HMM (P-HMM), the division operation, the Root 
Mean Square (RMS) of P-HMM, and the division 
operation or the RMS of P-HMM, the division 
operation and arbitrary HMM are performed to 
determine the PPM. 

 
 Computation of distance matrix and formation 

of guidance tree 

A pairwise alignment is calculated on each pair 
𝑎, 𝑏 in 𝐹 by obtaining the highest weight route via 

the PPM and the highest sum is denoted 
by 𝒫(𝑎, 𝑏) . The distance between 𝑎  and 𝑏  is 
calculated as: 

 

Distance[a][b] = 1 −
𝒫(ୟ,ୠ)

୫୧୬(୐౗,୐ౘ)
       (2) 

 
In Eq. (2), 𝐿௔ and 𝐿௕Indicate 𝑎 and 𝑏’s length, 

correspondingly. 

A guidance tree calculates the association (a) 
sequence and sequence, (b) sequence and profile 
and (c) profile and profile. Characterizing two sets 
𝐼and 𝐽, the distance (𝐷)Between their union and 
the other set 𝐾 is described as: 

 

D[I ∪ J] ∪ [K] =
|୍|×ୈ[୍][୎]ା|୎|×ୈ[୍][୏]

|୍|ା|୎|
    (3) 

 
In Eq. (3), |𝐼|, |𝐽| and |𝐾|Represent the weights 

of sets 𝐼, 𝐽 and 𝐾 . Depending on this distance 
matrix, the process is started from the sequences of 
the least distance and a binary tree called the 
guidance tree is regularly constructed. 

 
 Alteration of uniformity 

In this stage, another sequence is considered 
for relaxing the PPM of all pairs 𝑎 and 𝑏൫𝑃௔,௕൯ to 
calculate the substitution scores. This reduction 
task is defined as: 

 

𝑃௔,௕
ᇱ =

ଵ

|ௌ|
൫2 × 𝑃௔,௕ + ∑ 𝑃௔,௭ × 𝑃௭,௕௭∈ௌ ൯      (4) 

 
In Eq. (4), 𝑆 is the sequences collection in 𝐹 

and 𝑃௔,௕
ᇱ denotes the new converted PPM of 

pair〈𝑎, 𝑏〉. 
 
 Alignment improvement 

Two child nodes, or sequences, are merged 
from the real node to generate a profile and these 
are fused to the root node of the tree to obtain a 
complete MSA incorporating all sequences based 
on the guidance tree and the relaxed PPM. 

 
 Standardization 

It aims to minimize any potential errors in the 
placement of earlier sequences. Every aligned 
sequence is separated into two sets at random 
intervals using the iterative fine-tuning procedure 
and then they are realigned using a profile-profile 
arrangement. Only when the maximum total is 
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bigger than it was previously are any fine-tunings 
valid. 
 
3.2.3 Feature Selection Process 

Once the MSAs are obtained, two feature 
selection techniques are applied: top-N-gram and 
ACC-PSSM. 

 Top-N-Gram features: 

A novel feature selection technique was 
developed by Liu et al. (2014) [29], which 
determines the frequency distribution of 20 general 
amino acids in the considered protein sequence, 
sorts them in descending order, and chooses N 
amino acids occurring most frequently based on 
the mixture of frequency values. The mixture of N 
amino acid characters is top-N-gram and 
characteristics of the protein sequence are acquired 
based on the frequency of occurrence of all top-N-
grams. Also, this fundamental component of the 
protein includes evolutionary data. The feature 
mining technique is described by considering the 
distance 𝑑 between top-N-grams as: 

 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ௗୀ଴(𝑆ᇱ) =

൛𝑇௜భ

଴ (𝑆ᇱ), 𝑇௜మ

଴ (𝑆ᇱ), … , 𝑇௜మబ

଴ (𝑆ᇱ)ൟ  (5) 
 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ଵஸௗஸௗ೘ೌೣ

(𝑆ᇱ) =

  ቄ𝑇௜భ௜భ

଴ (𝑆ᇱ), 𝑇௜మ௜మ

଴ (𝑆ᇱ), … , 𝑇௜మబ೔మబ

଴ (𝑆ᇱ)ቅ (6) 

 
In Equations (5) and (6), 𝑖ଵ, 𝑖ଶ, … , 𝑖ଶ଴  are 20 

amino acids, their frequencies of occurrence are in 
descending order, 𝑆ᇱ refers to the sequence having 
top-1-grams and 𝑇௜భ

଴  denotes the frequency of 
occurrence of top-1-gram having 𝑖ଵ  with distance 
is 0 in 𝑇௜భ

଴ . To avoid additional dimensionalities 
from impacting efficiency, N is assigned to 1. But, 
feature mining techniques are similar if the 
distance is higher than 1. So, the highest 𝑑 must be 
assigned to the value higher than 2 to precisely 
find the impact of the feature mining technique. 
Accordingly, 𝑑 is assigned to 3 so that 20 + 20 ×
20 × 3 dimensional characteristics are determined. 

 
 ACC-PSSM features: 

The ACC-PSSM depends on the PSSM and 
defines the correlation between 2 amino acids. 
ACC features have Auto-Covariance (ACov) and 
Cross-Covariance (CCov), which are determined 
as: 

𝐴𝐶𝑜𝑣(𝑖, 𝑑) = ∑
൫௦೔,ೕି௦ഢഥ ൯൫௦೔,ೕశ೏ି௦ഢഥ ൯

௅ିௗ

௅ିௗ
௝ୀଵ  (7) 

𝐶𝐶𝑜𝑣(𝑖ଵ, 𝑖ଶ, 𝑑) = ∑
൫௦೔భ,ೕି௦ഢభതതതത൯൫௦೔మ,ೕశ೏ି௦ഢమതതതത൯

௅ିௗ

௅ିௗ
௝ୀଵ  (8) 

 
In Eqns. (7) and (8), 𝑖 denotes the residue (𝑖 ∈

[1,20] ), 𝑑  is the distance between 2 distinct 
residues, 𝑠௜,௝  is the score of 𝑖  at location𝑗  in the 
PSSM, 𝑠పഥ  is the mean scoreand 𝐿 is length of the 
protein sequence. The sizes of ACov-PSSM and 
CCov-PSSM are 20 × 𝛼 and 380 × 𝛼 , 
correspondingly, whereas 𝛼  is assigned to 7 for 
determining the impact of the significance between 
2 residues. After obtaining both feature vectors, 
those are linearly merged depending on PSSMs to 
get a complete feature set called TAF. 
 
3.2.4 CNN-based Protein Homology 
Recognition 

In the final stage, CNN with softmax function 
is performed, which involves training and test 
processes. During the training process, the feature 
vectors and tags from the training sequences to 
train the CNN with softmax model. During the test 
process, the test sequences are transformed into the 
TAF vectors following a similar procedure as the 
training sequences and then they are recognized by 
the training model. The structure of CNN with the 
softmax function is depicted in Figure 4. 

 
Figure 4: Structure of CNN with Softmax for PRHI 

 
4. EXPERIMENTAL RESULTS 

 
In this section, the effectiveness of this 

HACBLalign-TAF technique is analyzed by 
implementing it in MATLAB 2019b using three 
benchmark databases discussed in Section 3.1. 
From these databases, 70% of the sequences are 
considered for the training process and 30% of the 
sequences are considered for the testing process. 
Also, the observed efficiencies are evaluated with 
the existing techniques viz., ReFold-MAP [16], 
motif-PSSM [12], ACC-PSSM [17], PDT-profile 
[18], ProtDet-CCH [20], DeepECA [23], 
CopulaNet [24], SMI-BLAST [27] and PCA-
NSGA-III [28] in terms of precision, recall, 
accuracy, Receiver Operating Characteristics 
(ROC) and ROC50. 
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 Accuracy: It defines the fraction of properly 
recognized protein homologies to the sum 
number of protein sequences tested. 
 

𝐴ccuracy =
True Positive (TP) + True Negative (TN)

TP + TN + False Positive (FP) + False Negative (FN)
 

(9) 
 Precision: It defines the fraction of aligned 

positions, which are accurately aligned. 
Precision =

୘୔

୘୔ା୊୔    
      (10) 

 Recall: It defines the fraction of aligned 
residues that are accurately aligned. 

Recall =
୘୔

୘୔ା୘୒
      (11) 

 F-Measure: It defines the f-measure of 
proposed and existing PRHI techniques 

F measure =
ଶ ଡ଼ ୮୰ୣୡ୧ୱ୧୭୬ ଡ଼ ୰ୣୡୟ୪୪

୮୰ୣୡ୧ୱ୧୭୬ା୰
     (12) 

 ROC and ROC50 curve: The ROC value 
determines the balance between specificity 
and sensitivity. It plots TPs against FPs in the 
normalized Area Under the Curve (AUC). 
Similarly, ROC50 value is the Area under the 
ROC curve up to the 50 false positives. The 
ROC curve is drawn by measuring TP rate and 
FP rate as: 

 𝑇𝑃 𝑟𝑎𝑡𝑒 =
்௉

்௉ାிே
     (13) 

  𝐹𝑃 𝑟𝑎𝑡𝑒 =
ி௉

ி௉ା்ே
                  (14)        

 

 
Figure 5: Comparison of Accuracy for Proposed and 

Existing Frameworks 

Figure 5displays the accuracy of proposed and 
existing PRHI techniques executed on three 
distinct benchmark databases. For SCOP 1.53 
database, the accuracy of HACBLalign-TAF is 
23.2% higher than the Motif-PSSM, 21.3% higher 
than the PDT-Profile, 19.2% higher than the ACC-
PSSM, 17.4% higher than the PCA-NSGA-III, 
15.5% higher than the SMI-BLAST, 13.9% higher 
than the ProtDet-CCH, 12.7% higher than the 
DeepECA, 10.1% higher than the CopulaNet and 
9.1% higher than the ReFold-MAP techniques. For 
SCOP 1.67 database, the accuracy of 
HACBLalign-TAF is 24.3% higher than the Motif-

PSSM, 22.4% higher than the PDT-Profile, 20.1% 
higher than the ACC-PSSM, 17.2% higher than 
the PCA-NSGA-III, 14.9% higher than the SMI-
BLAST, 12.8% higher than the ProtDet-CCH, 
10.9% higher than the DeepECA, 10.3% higher 
than the CopulaNet and 9.6% higher than the 
ReFold-MAP techniques.  

Additionally, the accuracy of HACBLalign-
TAF for the superfamily database is 22% higher 
than the Motif-PSSM, 19.8% higher than the PDT-
Profile, 17.9% higher than the ACC-PSSM, 15.7% 
higher than the PCA-NSGA-III, 13.7% higher than 
the SMI-BLAST, 11.9% higher than the ProtDet-
CCH, 10% higher than the DeepECA, 9.6% higher 
than the CopulaNet and 9.1% higher than the 
ReFold-MAP techniques. 

 

 
Figure 6: Comparison of Precision for Proposed and 

Existing Frameworks 

Figure 6 portrays the precision of proposed and 
existing PRHI techniques applied to the 3 distinct 
benchmark databases. For SCOP 1.53 database, 
the precision of HACBLalign-TAF is 23.4% 
greater than the Motif-PSSM, 21.2% greater than 
the PDT-Profile, 19.4% greater than the ACC-
PSSM, 17.5% greater than the PCA-NSGA-III, 
15.6% greater than the SMI-BLAST, 13.7% 
greater than the ProtDet-CCH, 12.6% greater than 
the DeepECA, 10.7% greater than the CopulaNet 
and 9.5% greater than the ReFold-MAP 
techniques. For SCOP 1.67 database, the precision 
of HACBLalign-TAF is 24.3% greater than the 
Motif-PSSM, 22.3% greater than the PDT-Profile, 
20.3% greater than the ACC-PSSM, 19% greater 
than the PCA-NSGA-III, 17.8% greater than the 
SMI-BLAST, 15.9% greater than the ProtDet-
CCH, 13.9% greater than the DeepECA, 12.2% 
greater than the CopulaNet and 9.8% greater than 
the ReFold-MAP techniques. 

 
Additionally, the precision of HACBLalign-

TAF for the superfamily database is 23.1% greater 
than the Motif-PSSM, 20.8% greater than the 
PDT-Profile, 18.9% greater than the ACC-PSSM, 
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17.3% greater than the PCA-NSGA-III, 15.5% 
greater than the SMI-BLAST, 14% greater than 
the ProtDet-CCH, 12.2% greater than the 
DeepECA, 11.2% greater than the CopulaNet and 
9.9% greater than the ReFold-MAP techniques. 

Figure 7 depicts the recall of proposed and 
existing PRHI techniques applied to the three 
distinct benchmark databases. For SCOP 1.53 
database, the recall of HACBLalign-TAF is 22.2% 
greater than the Motif-PSSM, 20.5% greater than 
the PDT-Profile, 18% greater than the ACC-
PSSM, 15.5% greater than the PCA-NSGA-III, 
14.2% greater than the SMI-BLAST, 12.9% 
greater than the ProtDet-CCH, 11.3% greater than 
the  DeepECA, 10.6% greater than the CopulaNet 
and 9.4% greater than the ReFold-MAP 
techniques. 

 

 
Figure 7: Comparison of Recall for Proposed and 

Existing Frameworks 

 
For SCOP 1.67 database, the recall of 

HACBLalign-TAF is 23.5% greater than the 
Motif-PSSM, 21.1% greater than the PDT-Profile, 
19.2% greater than the ACC-PSSM, 17.3% greater 
than the PCA-NSGA-III, 16.5% greater than the 
SMI-BLAST, 14.3% greater than the ProtDet-
CCH, 12.6% greater than the DeepECA, 10.8% 
greater than the CopulaNet and 9.5% greater than 
the ReFold-MAP techniques. Additionally, the 
recall of HACBLalign-TAF for the superfamily 
database is 22.2% greater than the Motif-PSSM, 
20% greater than the PDT-Profile, 17.7% greater 
than the ACC-PSSM, 15.9% greater than the PCA-
NSGA-III, 14.1% greater than the SMI-BLAST, 
12.3% greater than the ProtDet-CCH, 11.9% 
greater than the DeepECA, 11.3% greater than the 
CopulaNet and 10.3% greater than the ReFold-
MAP techniques. 

 
Figure 8: Comparison of F-measure for Proposed and 

Existing Frameworks 

Figure 8illustrates the f-measure of proposed 
and existing PRHI techniques applied to the three 
distinct benchmark databases. For SCOP 1.53 
database, the f-measure of HACBLalign-TAF is 
22.9% larger than the Motif-PSSM, 20.9% larger 
than the PDT-Profile, 18.7% larger than the ACC-
PSSM, 16.5% larger than the PCA-NSGA-III, 
14.9% larger than the SMI-BLAST, 13.3% larger 
than the ProtDet-CCH, 11.9% larger than the 
DeepECA, 10.7% larger than the CopulaNet and 
9.5% larger than the ReFold-MAP techniques. For 
SCOP 1.67 database, the f-measure of 
HACBLalign-TAF is 23.8% larger than the Motif-
PSSM, 21.7% larger than the PDT-Profile, 19.6% 
larger than the ACC-PSSM, 18.1% larger than the 
PCA-NSGA-III, 17% larger than the SMI-BLAST, 
15% larger than the ProtDet-CCH, 13.2% larger 
than the DeepECA, 10.8% larger than the 
CopulaNet and 9.7% larger than the ReFold-MAP 
techniques. Additionally, the f-measure of 
HACBLalign-TAF for superfamily database is 
22.7% larger than the Motif-PSSM, 20.5% larger 
than the PDT-Profile, 18.3% larger than the ACC-
PSSM, 16.7% larger than the PCA-NSGA-III, 
14.8% larger than the SMI-BLAST, 13.1% larger 
than the ProtDet-CCH, 11.5% larger than the 
DeepECA, 11.3% larger than the CopulaNet and 
10.1% larger than the ReFold-MAP techniques. 

 
Figure 9 portrays the ROC and ROC50 values 

obtained for the proposed and existing PRHI 
techniques applied to the SCOP 1.53 database. 
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Figure 9: Comparison of ROC & ROC50 for Proposed 

and Existing Techniques on SCOP 1.53 Database 

It observes that the ROC of HACBLalign-TAF 
is 29% larger than the Motif-PSSM, 26.7% larger 
than the PDT-Profile, 24.8% larger than the ACC-
PSSM, 23.5% larger than the PCA-NSGA-III, 
22.6% larger than the SMI-BLAST, 21.1% larger 
than the ProtDet-CCH, 19.8% larger than the 
DeepECA, 17.2% larger than the CopulaNet and 
9.7% larger than the ReFold-MAP techniques. 
Similarly, the ROC50 of HACBLalign-TAF is 
54.7% larger than the Motif-PSSM, 51.8% larger 
than the PDT-Profile, 49.9% larger than the ACC-
PSSM, 48.2% larger than the PCA-NSGA-III, 
46.4% larger than the SMI-BLAST, 44.5% larger 
than the ProtDet-CCH, 43.2% larger than the 
DeepECA, 41% larger than the CopulaNet and 
36.8% larger than the ReFold-MAP techniques. 

 
Figure 10: Comparison of ROC and ROC50 for 

Proposed and Existing Techniques on SCOP 1.67 
Database 

Figure 10 depicts the ROC and ROC50 values 
obtained for the proposed and existing PRHI 
techniques applied to the SCOP 1.67 database. It 
observes that the ROC of HACBLalign-TAF is 
21.1% larger than the Motif-PSSM, 19.7% larger 
than the PDT-Profile, 18% larger than the ACC-
PSSM, 16.2% larger than the PCA-NSGA-III, 
14.3% larger than the SMI-BLAST, 13.4% larger 
than the ProtDet-CCH, 12.5% larger than the 
DeepECA, 12% larger than the CopulaNet and 
9.7% larger than the ReFold-MAP techniques. 
Similarly, the ROC50 of HACBLalign-TAF is 
52.6% larger than the Motif-PSSM, 42.4% larger 

than the PDT-Profile, 48.7% larger than the ACC-
PSSM, 46.1% larger than the PCA-NSGA-III, 
43.7% larger than the SMI-BLAST, 42.4% larger 
than the ProtDet-CCH, 40.7% larger than the 
DeepECA, 38.5% larger than the CopulaNet and 
36.6% larger than the ReFold-MAP techniques. 

 
Figure 11: Comparison of ROC and ROC50 for 

Proposed and Existing Techniques on Superfamily 
Database 

Figure 11 demonstrates the ROC and ROC50 
values obtained for the proposed and existing 
PRHI techniques applied to the superfamily 
database. It observes that the ROC of 
HACBLalign-TAF is 59.8% larger than the Motif-
PSSM, 42.6% larger than the PDT-Profile, 30.9% 
larger than the ACC-PSSM, 21.4% larger than the 
PCA-NSGA-III, 20.7% larger than the SMI-
BLAST, 12.4% larger than the ProtDet-CCH, 
11.3% larger than the DeepECA, 10.7% larger 
than the CopulaNet and 9.5% larger than the 
ReFold-MAP techniques. Similarly, the ROC50 of 
HACBLalign-TAF is 85.2% larger than the Motif-
PSSM, 73.5% larger than the PDT-Profile, 67.7% 
larger than the ACC-PSSM, 59.9% larger than the 
PCA-NSGA-III, 57.5% larger than the SMI-
BLAST, 51.1% larger than the ProtDet-CCH, 
44.3% larger than the DeepECA, 38.6% larger 
than the CopulaNet and 36.5% larger than the 
ReFold-MAP techniques. 

 
In summary, the accuracy is utilized to analyze 

how many correct predictions are achieved by the 
new HACBLalign-TAF technique on three distinct 
datasets. Guo et al. [16] achieved 84.7%, 84.4%, 
and 84.4% accuracy in their ReFold-MAP using 
SCOP 1.53, SCOP1.67, and superfamily datasets 
respectively; the difference in accuracy value from 
the proposed technique is 9.1%, 9.6%, and 9.1% 
respectively. Jin et al. [27] achieved 80%, 80.5%, 
and 81% accuracy in their SMI-BLAST technique 
using SCOP 1.53, SCOP1.67, and superfamily 
datasets respectively; the difference in accuracy 
value from the proposed technique is 15.5%, 
14.9%, and 13.7% respectively. In addition to that, 
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the proposed technique is compared with the 
existing techniques in terms of precision, recall, f-
measure, and ROC, as shown in Figure 6 – Figure 
11. The precision, recall, and f-measure values of 
the proposed technique on SCOP 1.53 are 91.9%, 
91.8%, and 91.9% which are greater than the 
existing techniques such as ReFold-MAP, SMI-
BLAST, etc. Similarly, the precision, recall, and f-
measure values of the proposed technique on 
SCOP 1.67 and superfamily datasets are higher 
than the existing techniques listed above. 

 
5. CONCLUSION AND FUTURE WORK 
 
      Open research issues in the field of protein 
predictions are protein - protein interaction, 
functional characterization of uncharacterized 
proteins, post transitional modification and Protein 
remote homology detection and fold identification. 
In this work, a novel technique named 
HACBLalign was developed for progressively 
aligning a huge number of protein sequences 
according to their distinct PPMs.  

The HACBLalign played a vital role in 
aligning protein sequences and selecting the most 
relevant features (i.e., TAF), so the CNN with a 
softmax classifier achieved the best accuracy and 
sensitivity values when compared to the other 
techniques. By doing effective alignment on the 
protein sequence datasets, the computational 
complexity has been reduced, and the technique 
has not faced any complexity in aligning the 
protein sequences, particularly on low similarity 
families. 

The objective of this work has been met and it 
can be concluded that the HACBLalign technique 
achieved good performance compared to the other 
existing techniques.  

In future work, the proposed technique can be 
integrated with the advanced pattern search 
algorithms to increase the efficiency of the 
decision-making model while using a vast amount 
of sequences. 
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