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ABSTRACT 
 

Recently, there has been a rapid increase in the use of smartphones, several of which are connected to the 
internet. Because of the data movement, malware attacks have enormously increased. Malware causes 
unexpected behavior in smartphones such as strange charges on your phone bill, invasive adverts, contacts 
receiving strange messages, poor performance, appearance of new applications, abnormal data consumption 
and noticeable reduction in battery life. Nonetheless, smartphone users remain unprotected from malware 
attacks. Thus, mobile antivirus applications have been developed to overcome this issue. Since android has 
established itself as the industry's dominant operating system for smartphones, many antivirus applications 
are available in the android play store. This paper presents a comparative study of android mobile static 
analysis. Static analysis is used to classify malware android Apps through meta data file of APK. 
Furthermore, we used TF-IDF feature extractor  and investigate algorithms for static analysis, such as 
decision tree, naïve bayes, random Forest, K-nearest neighbor, XGB, MLP, support vector machine, logistic 
regression, adaboost, ,lasso regression, ride regression , ANN and extra trees. We use two datasets small and 
large “Drebin”. The results of small dataset show that Multi-layer perceptron (MLP) gives the best overall  
accuracy 98.84% but it takes the biggest execution time around 33.4 seconds and The results of large dataset 
show that Extra trees gives the best overall  accuracy 99.48%. 
Keywords:-  Mobile Security; Mobile Antivirus; Malware Analysis; Machine Learning; Classification 

1. INTRODUCTION  

 

The use of smartphones is increasing due to their 
flexibility while providing as many services as a 
laptop. Many users prefer using smartphones and 
tablets instead of laptops [1]. The number of 
operating systems (OSes) for smartphones has 
increased with each mobile OS gaining a significant 
market share [2]. The most well-known mobile OSes 
are android, iOS, Windows, and Symbian. Some 
other mobile OSes are less used (BlackBerry, 
Samsung, etc.) [3]. android percent is 72.92% of 
devices as proved in the market share of mobile 
operating systems worldwide in October 2020, as 

shown in Figure 1 [4]. One factor in its success is 
how simple it is to create new applications and 
services for the android platform and post them to 
any android markets that are available: Google play 
store, Amazon app store, Samsung galaxy apps, etc 
[5]. 

Security is important because data movement has 
increased in the current generation [6]. Malware is 
any harmful program used to obstruct machine 
operation, collect private information, or get access 
to mobile devices used by individuals [7]. It is 
distinguished by its malicious aim, which goes 
against the requirements of the mobile user and 
excludes software that inadvertently harms users due 
to a flaw. Both genuine (malicious) malware and 
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accidentally destructive software are frequently 
referred to as "badware.". The number of mobile 
malware is small compared to that of PCs. 
Nonetheless, we can expect malware for 
smartphones to evolve in the same trend as that of 
PCs. Hence, in the coming years, we will be faced 
with a large amount of smartphone malware [7].  

Here, we investigate data mining, machine learning, 
and static analysis classifiers to identify dangerous 
android OS apps a priori without the requirement to 
download and run the application. 

We study machine learning classification algorithms 
and compare between them according to overall 
accuracy and execution time.  

The main contributions of this paper can be 
summarized in analyzing the efficiency and 
suitability of well-known ML classifiers to classify 
android malware. 

We used term frequency-inverse document 
frequency (TF-IDF) feature extractor and 
investigate machine learning classifiers such as 
decision tree, naïve bayes, random Forest, K-nearest 
neighbor, XGB, MLP, support vector machine, 
logistic regression, adaboost, lasso regression, ride 
regression , ANN and our proposed solution extra 
trees. We use two datasets small and large “Drebin”.  
The results of small “Drebin” dataset show that 
Multi-layer perceptron (MLP) gives the best overall  
accuracy 98.84 but it takes the biggest execution 
time around 33.4 seconds.The results of large 
“Drebin” show that Extra Trees gives the best overall 
accuracy. 

The rest of the paper is organized as follows. Section 
2 presents mobile malware detection techniques. 
Section 3 discuss the background and related works. 
Section 4 illustrates malware types and analysis. 
comparative of static analysis in Section 5, Section 6 
represents experiments, Section 7 summarizes 
research issues, Section 8 summarizes the conclusion 
and section 9 presents future works. 

2. MOBILE MALWARE  DETECTION 

TECHNIQUES 

Smartphones can be scanned and cleaned of 
infections with antivirus software. Although there 
are numerous antivirus programs, their main 
function is to shield cellphones against infections 
and eliminate any viruses that are discovered. 
Techniques for detecting mobile malware include 
signature-based detection, specification-based 
malware detection, heuristic-based detection, 
anomaly-based detection also known as behavior-
based detection, Sandbox detection, Data Mining 
and cloud based malware detection 

2.1 Signature based detection: This is frequently 
found in old propagation. It is conventional antivirus 
software that scans all APK files and verifies them 
against the database of known viruses and malware 
types. It looks for any unusual behavior in the 
executable files that could indicate the presence of 
unidentified viruses [8].  Its drawbacks are it needs 
to be updated regularly and a sizable database is 
required to store it. 
2.2 Specification-based malware detection: 
employs a rule set to determine how malicious the 
program is. The weakness of Specification-based 
malware detection was that it is frequently 
challenging to completely and accurately specify the 
entire set of acceptable behaviors a system should 
display. 
2.3 Heuristic-based detection: employs heuristics 
by running applications or programs with suspect 
code within a runtime virtual environment. This 
circumvents the drawbacks of signature-based 
detection by preventing the vulnerable code from 
infecting the real-world setting. Instead of looking 
for well-known signatures, this sort of detection 
keeps track of keystrokes [8]. Its drawbacks are 
compared to signature-based systems, it generates a 
lot more false positives and additional code is 
required in addition to a third-party component. 
2.4 Behavioral-based detection: The best method 
for dealing with new and anonymous infections is 
behavioral-based detection, which seeks out signs of 
compromise rather than the actual attack. 
Behavioral approaches identify executable behavior 
patterns at a higher degree of abstraction [8]. Its 
drawback is production of false positives. 
2.5 Sandbox detection: With the usage of 
sandboxes, malicious code can be safely executed 
without endangering the host device or network. 
2.6 Data mining detection: is one of the most 
recent trends in malware detection. “Data mining is 
the practice of analyzing large databases in order to 
generate new information”. Data mining aids in 
determining whether or not a program is 
malicious [2]. 
2.7 Cloud-based detection Applications from the 
Google Play Store are automatically checked for 
malware using a tool provided by Google called 
Bouncer. Bouncer inspects      applications as soon 
as they are uploaded and compares them    to known 
viruses [2]. 
 
3. BACK GROUND AND RELATED WORKS 
 
Authors in [9], [10], [11], [12] approach the study of 
the efficacy of machine learning classifiers over a 
simple feature type (permission, intents, services). 



 
Journal of Theoretical and Applied Information Technology 

15th July 2023. Vol.101. No 13 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5163 

 

Authors in [13] explore adversary models, such as 
the android HIV. 
Authors in [14], DroidAPIMiner one of the earliest 
studies that combines APIs with package level and 
APIs information parameters. K-NN, linear SVM, 
and DT algorithms like ID3, C4.5 were evaluated on 
a dataset of 20,000 and 3,987 goodware and 
malware apps, respectively. K-NN performed with 
an accuracy of up to 99% while other classifiers 
achieved 96%. 
In [15], authors coupled APIs with permissions and 
evaluated the effectiveness of SVM, artificial neural 
networks (ANN), and random forest (RF). They 
were using a dataset of 5,000 Goodware and 1,260 
malicious programs. The authors assessed their 
strategy with up to 96% accuracy. 
In [16], authors investigated the effectiveness of 
well-known classifiers on a dataset made up of 621 
apps of goodware also 175 malicious apps. Results 
in this instance showed that combining permissions 
and API accuracy can be increased to a level of 
about 90.3%. 
In [17], authors assessed the effectiveness of Deep 
Belief Network (DBN) on a dataset of 4,000 
legitimate apps and 1,000 malicious ones. They 
showed through their investigation that DBN 
outperforms traditional ML classifiers and can 
achieve up to 93% F-Measure.The results of several 
well-known classifiers were integrated into an 
ensemble method to determine whether an app is 
malicious or not. The published findings for a 
dataset that included 445 goodware and 1,246 
malware apps demonstrated a performance accuracy 
of up to 99%. The results of several well-known 
classifiers were integrated in an ensemble method to 
determine whether an app is malicious or not. The 
published findings for a data set that included 445 
goodware and 1,246 malware apps demonstrated a 
performance accuracy of up to 99%. 
In [18], authors showed the efficiency of a Bayesian 
Network (BN) was assessed using a dataset made up 
of 1,846 goodware and 5,560 malware apps. The 
results showed a True Positive Rate (TPR) of up to 
95%. A very similar strategy was used in [19], 
where the authors showed accuracy of up to 99.7% 
after merging multiple features. 
In [20], authors used a wide range of information as 
input to ML classifiers including intents, 
permissions, system commands, suspicious API 
calls, and other malicious actions (such accessing 
IMEI). The authors evaluated various classifiers 
(SVM, DT, RF, etc.) using a dataset that included 
11,187 goodware and 18,677 malicious 
applications. The evaluated algorithms 
effectiveness was assessed using an F1-score that 

may reach up to 96%. A similar strategy was 
employed in [21], where the authors used the mix of 
APIs, commands, and permissions as a dataset. An 
accuracy of up to 95% was achieved during the 
evaluation of this method utilizing a dataset of 2,000 
apps and a Bayesian classification system. 
In [22], the accuracy of various ML classifiers, such 
as SVM, K-NN, Extra Randomized Tree (ERT), etc. 
Classifiers were assessed by using equal data 
partitions between malware and goodware. The 
authors use an extended set of features, such as API 
calls, permissions, etc., associated with 11,120 apps 
from the Drebin dataset. 
A recent study [23] focuses on how factors affect 
how well ML classifications are made. Over SVM, 
the authors employ a number of feature selection 
techniques, including BI-Normal Separation and 
Mutual Information. According to the results, BI-
Normal Separation chooses the optimal 
characteristics for reaching accuracy levels of up to 
99.6%. In [24], authors present a multimodal 
malware detection method for android IoT devices 
employing a variety of features, with an emphasis 
on the optimizations of the NB classifier. The 
investigation shows that using such a method, 
accuracy can reach up to 98%. 
In [25],  the majority of methods focus on the 
effectiveness of well-known ML classifiers, such as 
K-nearest neighbour (K-NN), support vector 
machine (SVM), Naive Bayes (NB), decision tree 
(DT), etc., and differ on the features taken into 
account for classifying an app as malware. 
The Drebin data set, which includes 123,453 
goodware and 5,560 malware apps, is the basis for 
the analysis. Features from the Drebin dataset are 
present in the manifest file. Chi-square Test, 
Bernoulli Naive Bayes, Random Forest, L1 and L2 
regularization, neural network, and Support Vector 
Machine were among the algorithms utilized. 
In [26], authors determine how quickly classifiers 
expire; they examined the effects of idea drift on 
malware classifiers for android malware samples. 
They used four drift detectors, two representations 
(Word2Vec and TF-IDF), two classifiers (Adaptive 
Random Forest and Stochastic Gradient Descent 
classifier), and two representations (Word2Vec and 
TF-IDF) to analyse 480 K sample android apps from 
two datasets (DREBIN and AndroZoo) gathered 
over nine years (2009–2018). (DDM, EDDM, 
ADWIN, and KSWIN). For their best outcomes, 
Random Forest has an accuracy rate of 99.23%. 
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4. MALWARE TYPES AND ANALYSIS 

  4.1 Malware Types 
Malware comes in many forms, however a virus is 
one of them and is more commonly known. 
Malware: malicious code that is specifically 
designed to disrupt, damage, or gain unauthorized 
access to a smart phone. Since malware can replicate 
itself and occasionally start an execution without 
any user assistance, its primary means of 
transmission is either user interaction or self-
propagation. Malware that targets traditional 
workstations is currently more prevalent than 
malware that targets mobile devices. The fact that 
many businesses now permit employees to access 
corporate networks using personal devices presents 
an increasing hazard, though. The most prevalent 
types of malwares are viruses, trojans, adware, 
spyware, ransomware, worms, phishing, and 
pharming.  

 4.1.1 Virus: is a piece of computer code that can 
replicate itself and harm your device by altering 
your operating system or erasing data. 97% of 
mobile malware is installed on android 
devices.           

 4.1.2 Trojan: This type of malware joins a 
seemingly safe and reliable program or application. 
The Trojan is launched and infects the phone after 
legitimate the program or app has been installed. 
Malicious users may steal sensitive data, including 
card accounts or bank login information. In addition, 
it can be used to take over the browser, causing a 
smartphone to send premium messages without your 
permission. Additionally, it has the power to disable 
apps and disable your phone. Two of the most well-
known phone Trojans are the Skulls and the 
Hummer.  
4.1.3 Adware and Spyware: spyware masquerades 
as a legitimate program, mobile phone users are not 
aware that they have infected their device. This 
spyware stealthily gathers personal data, such as 
browsing history, messaging preferences, location, 
contacts, and downloads. The malware transmits 
information to a third party, such as an advertising 
or a marketing data company.   

 .4.14 Ransomware: This kind of malware locks up 
a smartphone and demands a fee from its victims in 
order to restore control. More current ransomware 
can modify the PIN or security code and get access 
to the administrator rights of mobile devices. Users 
who access harmful and insecure websites or who 
download shady third-party program are more likely 
to become infected with this frightening malware. 

 4.1.5 Worms: Text messages sent as MMS and 
SMS can transmit this malware. Because this 
malware can be activated without human 

participation, it poses a risk. Worms spread 
throughout the devices. It might have hazardous and 
deceptive instructions. The Ikee is one of the most 
famous worms. 
4.1.6 Phishing and Pharming: This malware 
switches users to dangerous websites from safe 
ones. It mimics a valid login or authentication page. 
When users enter their account or login information, 
nefarious parties may steal and use those 
credentials.  
When utilizing an official store, such as Google play 
, the percent changes to 0.1. Signs that your mobile 
phone has malware include[27]: Unexpected 
charges may be a sign of a virus. Strange charges on 
your phone account. In order to make money, 
malicious programs make expensive phone calls or 
text messages. Additionally, since adware affects 
your phone with dangerous code, intrusive and 
intrusive advertisements are indications that you 
might have it installed. Strange text messages sent 
to contacts. Malware can infect a contact's device by 
using your mobile to send spam SMS. An infection 
may be confirmed by poor performance or a 
slowdown in performance. New programs. If new 
applications suddenly start to appear on your device, 
a malicious app can be downloading them. They 
might also include malware. Unusual data usage. 
Malicious program use the internet to send and 
receive information from their developers. A 
noticeable decrease in battery life is another sign. If 
your battery life is poor, you may be using a 
"bugged" or poorly written app. It might also 
indicate that your phone has a virus, though. What 
to do if you become infected.  Put the smartphone in 
airplane mode first. This prevents any harmful apps 
from sending and receiving data. Check your most 
recent app installations next. If any have few 
downloads, persistently low ratings, and 
unfavorable reviews on the Google Play Store or the 
App Store, remove them. Any potentially harmful 
applications from your smartphone should be 
eliminated by this. Third, best practice advises that 
you should install antivirus software. 

4.2 Malware Analysis 
 4.2.1 Static analysis: Static analysis entails looking 

at a program's source or, in certain circumstances, 
object codes without running it. In a typical static 
analysis approach, the analyzed app code is first 
represented as abstract models (such as call graphs, 
control-flow graphs, or class/sequence diagrams 
from the unified modelling language) for analysis. 
Static analysis has several benefits, including:  

(a) It contains all of the source code and the 
application's manifest file, which is checked for data. 
(b) It is faster than dynamic analysis. Compared to 
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dynamic analysis, it utilizes less hardware (c). 
Numerous vulnerabilities, such as purpose injection, 
unauthorized access to private or protected 
resources, and private data leakage, can be found via 
static analysis. It is also used to detect test 
generation, clone detection, energy use, and 
permission abuse. The implementation issues with 
code verification and cryptography are then 
mentioned [28]. 

Manifest File Analysis: Names of attributes are 
matched with vulnerabilities in this phase. The top 
characteristics are listed below, along with 
indications of when each one is vulnerable. 

 Backup Flag: If  Backup Flag's value is true, it's 
vulnerable. The program data, such as the 
application database and files, are copied to the SD 
card to create a backup. Application data stored on 
an SD card is less secure than data stored on a mobile 
device. This is so that written permission can be 
granted more easily for SD cards. If the data being 
backed up is not regarded as sensitive or hazardous, 
the vulnerability risk of enabling backup is evaluated 
to be Low. 

Debug Flag: If its value is true, it is regarded as 
vulnerable. Debug mode is used by Android 
application developers to record crucial fields and 
check that they are accurate. But failing to switch the 
app to release mode makes it simple for hackers to 
sniff the app. Enabling a debug mode is thought to 
pose a high vulnerability risk because it can reveal a 
great deal of data while the application is running in 
this mode. 

 Exported Components:  If (activities and services) 
exist, they are regarded as vulnerable. Note that 
opening up more components to other services and 
apps necessitates adding more interfaces to protect 
against attacks. 

 4.2.2 Dynamic analysis: Dynamic analysis, as 
opposed to static analysis, finds vulnerabilities that 
arise while a program is running. Due to the need for 
installing the apps and simulating user input, it is 
seen as being more complex than static analysis (i.e., 
inputs, touches, and clicks). There are numerous tests 
for dynamic analysis. Test generation, test 
effectiveness, and vulnerability coverage are some of 
their distinctions. Fuzz testing, concolic testing, and 
search-based testing are the most popular dynamic 
analytic tests. A computer program is subjected to 
"fuzz testing," an automated software testing 
approach, by being given erroneous, unexpected, or 
random data as inputs. When an error occurs, such as 
a crash, a failing built-in code assertion, or possibly 
a memory leak, the program is then watched for it. 

Program variables are treated as symbolic variables 
during symbolic execution, whereas during concrete 

execution specific input pathways are tested. In 
search-based testing, a testing task is automated 
using meta-heuristic optimizing search techniques 
such simulated annealing and evolutionary 
algorithms [28]. 

 4.2.3 Hybrid Analysis: This analysis combines 
static and dynamic features and is more accurate 
than either analysis alone [29]. 

5. COMPARSION OF STATIC ANALYSIS 

ALGORITHMS 

We compare the same machine learning algorithms 
in small and large datasets. Algorithms used here are 
decision tree, naïve bayes, random Forest, K-nearest 
neighbor, XGB, MLP, support vector machine, 
logistic regression, adaboost, ,lasso regression, ride 
regression , ANN and our proposed solution extra 
trees. 

 5.1 Used Feature extraction: 
Term Frequency-Inverse Document Frequency (TF-
IDF): 
It is widely used for word feature extraction. It can 
be summed up as determining how relevant a word 
is to a corpus or series of words in a text. The 
frequency of a term in the corpus offsets the 
meaning increase that occurs when a word appears 
more frequently in the text (dataset) 
 

 5.2 Used Algorithms: 

5.2.1 Decision Tree: This is a collection of 
guidelines for categorizing data. It analyses the 
variables in a dataset, chooses the most crucial ones, 
and creates a tree of choices that best divides the 
data. Start at the root node and work your way up 
the classification tree until you reach the leaf 
(terminal) node. A DT simulates an if/else block of 
code, to put it briefly. Think about the trained DT 
shown in the figure (3) as an example. 

 

Figure 3:.How Decision Tree works 

 

 5.2.2 Naive Bayes: The Naive Bayes classifier 
operates under the presumption that the effects of 
each feature on a class are independent of one 
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another. This presumption is known as class 
conditional independence[30]. 

            𝐏(𝐡|𝐃) =
𝑷൫𝑫ห𝒉൯𝑷(𝒉)

𝑷(𝑫)
                                           (1) 

 P(h): the probability of hypothesis h being 
true (regardless of the data). This is known 
as the prior probability of h. 

 P(D): the probability of the data (regardless 
of the hypothesis). This is known as the 
prior probability. 

 P(h|D): the probability of hypothesis h 
given the data D. This is known as posterior 
probability. 

 P(D|h): the probability of data d given that 
the hypothesis h was true. This is known as 
posterior probability. 

 5.2.3 Random Forest:  is made up of a collection of 
decision trees. A decision tree (DT) divides the 
feature space into hyperboxes to solve a 
classification or regression problem. A decision 
tree's application produces a rough approximation of 
the decision boundaries when the decision surface is 
nonlinear. The growth of several trees guided by a 
variety of variables is a very popular method for 
stabilising the findings and enhancing the DT's 
forecasting ability. With this strategy, the idea of a 
forest of trees is introduced; the ultimate answer 
arises from averaging the individual answers. The 
Random Forests (RF) technique grows in parallel 
base learners, which must be statistically 
uncorrelated trees. RF is one of the most effective 
ensembles of trees and is based on the principle of 
uncorrelated trees. In order to accomplish this, 
feature subset selection during the training phase, 
which adds additional diversity to the learning of the 
decision trees, is a step that must be taken in addition 
to bootstrap aggregation (bagging) over the set of 
observations. The trees can offer useful information 
about the feature relevance because they divide the 
original feature space by design. Actually, the 
algorithm optimises a purity measure during training 
and chooses the feature (cost function) that increases 
the measure at each data split. the one that makes the 
tree less impure. By averaging the advancements 
each feature has made over all the trees in an 
ensemble of trees, the feature relevance is 
determined. The Gini index is one of the two purity 
metrics we examined. 

    Gini = 1 − ∑K k=1 P(Y ′ = k), Y ′ ⊆Y              (2)                             

And the Entropy: 

Entropy =  

∑K k=1 − P(Y ′ = k)log2P(Y ′ = k), Y ′ 
⊆Y                                                              (3) 

 

 5.2.4 K-nearest neighbour (KNN) is the most 
straightforward machine learning classifier. In 
contrast to other ML techniques, it does not result in 
a model. 

It is a straightforward algorithm that classifies newly 
discovered examples using a similarity metric and 
stores all of the existing cases. 

Assuming that our dataset has two variables a and b 
, 

Figure 2: KNN example 

KNN works by calculating the distances between a 
query and each example in the data, choosing the K 
examples that are closest to the query, and then 
voting for the label that is used the most frequently. 

Advantages of KNN: 

The algorithm is straightforward and simple to 
use. 

There is no need for a model, parameter tuning, 
or additional presumptions. 

Disadvantages of KNN: 

 As the number of cases and/or 
predictors/independent variables rises, the 
method becomes noticeably slower. 

5.2.5 XGB:  Extreme Gradient Boosting, often 
known as XGBoost, is a boosting technique based on 
gradient-boosted decision trees. One way that 
XGBoost differs from gradient boosting is by using 
a superior regularisation strategy to lessen 
overfitting [31]. 

Step 1: Calculate the similarity scores; this aids in the 
tree's growth. 

Similarity Score is equal to (Sum of Remainders)2 / 
Remainders + Lambda 

Step 2: calculate the decide to determine how to split 
the data. 

Gain = Left tree (similarity score) + Right (similarity 
score)- Root (similarity score) 

Step 3: Calculate the gain and gamma difference to 
prune the tree. (user-defined tree-complexity 
parameter)  

Gamma gain 
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If the outcome is a positive number, do not prune; if 
it is a negative number, prune and once more deduct 
gamma from the subsequent Gain value up the tree. 

Step 4: Calculate output value for the remaining 
leaves. 

Output value = Sum of residuals / Number of 
residuals + lambda 

 5.2.6 MLP: A feed-forward neural network 
augmentation known as a multi-layer perceptron 
(MLP). It is made up of three different types of 
layers: the input layer, the output layer, and the 
hidden layer. The input layer is where the signal is 
received for processing at the input layer. The 
necessary tasks, such as classification and prediction, 
are finished by the output layer. The input and output 
layers are sandwiched between an arbitrary number 
of hidden layers that make up the MLP's actual 
computational engine [32]. 

  5.2.7 SVM: This algorithm achieves notable 
accuracy while using minimal processing power. 
Finding a hyperplane in an N-dimensional space (N 
is the number of features) that clearly classifies the 
data points is the goal of the SVM method. Due of 
its sensitivity to noise, a small number of incorrectly 
labelled instances can significantly harm its 
performance.. 

 

 

 

 

Figure 4: optimal hyperplane in svm.  

  

 8.5.2  Logistic Regression: This approach for 
classifying data uses discrete classes to group 
observations. Emails (spam or not spam), online 
transactions, and other types of data are some 
examples of classification issues (fraud or not 
fraud).returns a probability value after transforming 
its output using the logistic sigmoid function. 

      𝒚 ̂ = 𝟏/(𝟏 + 𝒆^(−𝒛) )                                    (4) 

     Z=𝑾^𝑻. 𝒙 + 𝒃                                                 (5)                                                           

Example: if we choose the threshold as 0.5 the 
prediction function (𝑦 ̂) returned a value of 0.7 then 
we would classify this observation as Class 1. If our 
prediction returned a value of 0.2 then we would 
classify the observation as Class 2. 
 

 9.5.2 Adaboost: Boosting techniques combine a 
number of low-accuracy classifiers to produce a 
classifier that is extremely accurate. Adaboost, a 
popular boosting algorithm, is an iterative ensemble 
method that creates a strong classifier by combining 
several poor classifiers to produce a strong classifier 
with high accuracy. 

 10.5.2 Lasso: adds a penalty for non-zero 
coefficients, but unlike ridge regression, which 
applies the so-called L2 penalty to the sum of 
squared coefficients, lasso applies the penalty to the 
sum of their absolute values (L1 penalty). 
 

11.5.2  Ridge:  penalizes the model based on the 
weights' sum squared value. Predictors' coefficients 
can be thought of as being set to zero when they are 
removed from the model. Let's penalize them if they 
deviate too much from zero instead of forcing them 
to be exactly zero, forcing them to be little 
continuously. In this manner, we maintain all of the 
model's variables while reducing model complexity. 
 

 25.2.1 Artificial Neural Network: are biologically 
inspired computer programs that replicate how the 
human brain processes information. Rather than 
using programming to learn, ANNs are trained 
through experience and learn by spotting patterns 
and relationships in data. The layers of the neural 
structure, also known as artificial neurons or 
processing elements (PE), are connected by 
coefficients and comprise hundreds of single units. 
(weights). The strength of brain calculations comes 
from the network of connections between neurons. 
 
Proposed Solution : 
Using extra trees classifier is one of the suggested 
solutions in Drebin dataset as no one used it before.  
 
5.2.13 Extra Trees:  The extra trees algorithm, like 
the random forests algorithm, creates a lot of 
decision trees, but the sampling of each tree is 
random and without replacement. As a result, a 
dataset with unique samples for each tree is 
produced. Additionally, a predetermined number of 
features from the entire set of features are randomly 
selected for each tree. The most important and 
distinctive feature of extra trees is the random 
selection of a splitting value for a feature. Rather 
than calculating a locally optimal split using Gini or 
entropy, the algorithm simply selects a split value at 
random. The result is a variety of unrelated trees. 

   𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺) = ෌ −𝒑𝒊𝑳𝒐𝒈(𝒑𝒊)
𝒄

𝒊ୀ𝟏
                    (6) 
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where c is the number of unique class labels and pi 
is the proportion of rows with output label is i ِ        
5.3 Used Evaluation: 

Calculate Overall Accuracy : 

Overall Accuracy=    
𝑻𝑷ା𝑻𝑵

𝑻𝑷ା𝑻𝑵ା𝑭𝑷ା𝑭𝑵
      (7)                  

 
• TP: True positives 
• TN: True negatives 
• FP: False positive 
• FN: False negatives 
•  
Precision:  Appropriate when minimizing false 
positives is the focus. 

          Precision=
𝑻𝑷

𝑻𝑷ା𝑭𝑷
                                      (8) 

 
Recall: Appropriate when minimizing false 
negatives is the focus. 

                    Recall =
𝑻𝑷

𝑻𝑷ା𝑭𝑵
                               (9) 

 
F1 Score: 

       F1 Score=2*
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗ 𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧ା 𝐑𝐞𝐜𝐚𝐥𝐥 
                     (10) 

 

6. EXPERIMENTS 
 

 6.1 Experiment 1: small dataset 
android Malware Dataset for Machine Learning 
[19]: “Dataset consisting of feature vectors of 215 
attributes extracted from 15,036 applications (5,560 
malware apps from Drebin dataset and 9,476 benign 
apps). The dataset has been used to develop and 
evaluate multilevel classifier fusion approach for 
android malware detection, published in the IEEE 
Transactions on Cybernetics paper 'DroidFusion: A 
Novel Multilevel Classifier Fusion Approach for 
android Malware Detection. The description of the 
feature vectors/attributes obtained via static code 
analysis of the android apps.”  . Dataset Date is  ‘’3-
2021,” 
.datasetLink:https://www.kaggle.com/datasets/shas
hwatwork/android-malware-dataset-for-machine-
learning. We separate the data set to train 80% and 
test 20%. Used Features are manifest permission 
53%,  API call signature 33% and Other (30) 14%. 

These features have been split in different groups: 
“hardware components (S1), requested permissions 
(S2), app components ((a) receivers, (b) activities, 
(c) content providers) (S3), filtered intents (S4), 
restricted API calls (S5), used permissions (S6), 
suspicious APIs (S7), and network addresses (S8).” 
[19]. 

 

 
Figure 5: B samples of goodware, S samples of malware 

 
 
 
Result: 

Table 1 
  
Algorithm 
Name 

Accuracy 
% 

F1Score Recall Precision Execution 
Time 
(Seconds) 

Decision 
Tree 

97.54 98.17 98.06 98.27 0.237 

Naïve 
bayes 

70.88 69.52 53.62 98.81 0.235 

Random 
Forest 

98.60 98.99 99.52 98.46 3.935 

K 
Neighbors 

97.87 98.28 98.55 98.02 1.602 

XGB  98.73 98.10 98.44 97.76 12.291 
MLP 98.84 99.00 99.19 98.82 33.426 
SVM 97.74 98.04 98.49 97.60 3.784 
Logistic 
Regression

97.47 97.97 98.55 97.4 0.730 

Adaboost 97.54 97.97 98.55 97.4 7.162 
RidgeReg 80.84 81.2 81.68 80.72 0.15 
LassReg 69.65 69.93 70.04 69.99 0.71 
ANN 97.57 97.96 98.12 98.04 34.022 
Extra 
Trees 

98.80 99.01 99.46 98.56 2.085 

 
After implementing machine learning classifiers on 
dataset and calculating the accuracy and execution 
time of each classifer.Multi layer perceptron (MLP) 
gives the best results but it takes the biggest 
execution time. Naive bayes  gives the lowest 
accuracy. 
 
6.2 Experiment 2: Large dataset 
Android Malware Dataset for Machine Learning 
contains 123,453 benign and 5,560 malicious 
android applications. Dataset date is‘’8-2022” . 

0
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B S

number of samples
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Dataset Link is  Fast & Furious: Malware Detection 
Data Stream | Kaggle. We separate the data set to 
train 80% and test 20%. Used Feature extractor: TF-
IDF (using 120 features for each textual attribute). 

 

 
Figure 6: B samples of goodware, S samples of malware 

 

Result: 

 Table 2 

Extra trees gives the best accuracy, F1Score, Recall 
and Precision. 

Our proposed solution to use extra trees was 
effective in  large “Drebin” dataset. 

6.3 Difference from Prior Research  

The best accuracy of the recent research on large 
“Drebin” dataset using random forest. Our proposed 
classifier extra trees was effective in large “Drebin” 
dataset. Extra Trees was better than Random Forest 
in large “Drebin” dataset 

Advantages of Extra Trees over Random Forest: 

Computational Efficiency: Extra Trees can be faster 
to train and evaluate compared to Random Forests 
since it avoids the computation of optimal splits at 
each node. This advantage can be significant, 
especially for large datasets or when time constraints 
are a concern. 

Increased Randomness: Extra Trees introduces more 
randomness by randomly selecting feature 
thresholds for splitting, which can lead to further 
diversification of the trees. This increased 
randomness may help reduce overfitting and 
improve generalization performance, especially 
when dealing with noisy or high-dimensional 
datasets. 

Robustness to Outliers: The random feature 
threshold selection in Extra Trees makes it more 
robust to outliers compared to Random Forests, as 
outliers are less likely to have a significant impact on 
the split decisions. 

The following table show the comparison between 
our best results  and the recent research in this field 
[26] best results We have better overall accuracy, 
F1Score, Recall, Precision..  

Table 3 

 

7. RESEARCH ISSUES 

The "Drebin" dataset is a widely used dataset in the 
field of Android malware research. It consists of a 
large collection of Android applications, both 
malicious and benign, and has been instrumental in 
developing machine-learning models for malware 
detection and classification. 

0

50,000

100,000

150,000

B S

number of samples

number of samples

Algorit
hm 
Name 

OverAll 
Accurac
y % 

F1Sco
re 

Recall Precision Execution 
Time 

(Seconds)
Decisio
n Tree 

99.15 90.59 89.2 90.2 348 

Naïve 
bayes 

25.43 69.5 53.6 98.8 4 

Rando
m 
Forest 

99.46 93.62 90.33 97.16 124 

K 
Neighb
ors 

99.24 91.29 89.89 92.74 210 

XGB  99.28 91.62 86.6 95 2732 
MLP 99.29 91.8 89.89 93.85 541 
SVM 98.76 85.18 80.31 90.67 888 
      
Logistic 
Regress
ion 

98.8 85.54 80.57 91.15 20 

Adaboo
st 

98.68 84.11 79.08 89.82 1085 

RidgeR
eg 

62.8 54.37 51.21 57.94 5 

LassRe
g 

54.36 47.06 44.33 53.2 11 

ANN 99.17 91.55 89.54 90.53 195 
Extra 
Trees 

99.48 93.95 90.77 97.36 295 
 

 Our study The recent 
research 

Overall 
accuracy 

99.48 99.23 

F1Score 93.95 90.63 
Recall 90.77 85.85 
Precision 97.36 96.31 
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While the "Drebin" dataset has been valuable for 
research purposes, it does have some limitations and 
potential issues that we should be aware of. Here are 
a few key points to consider: 
8.1 Data Bias: The Drebin dataset was collected 
over a specific period and may not represent the 
current Android malware landscape. It might not 
include the latest malware variants or evolving 
techniques used by attackers.  
8.2 Label Accuracy: The labeling process of the 
Drebin dataset involved using a combination of 
static analysis and manual labeling. Although 
efforts were made to ensure accuracy, there is still a 
possibility of mislabeled samples.  
8.3 Limited Sample Size: While the Drebin dataset 
contains a substantial number of samples, it may still 
be considered small in comparison to the vast 
number of Android applications available. This 
limitation could impact the generalizability of 
research findings and the effectiveness of models 
trained solely on the Drebin dataset. 

8. CONCLUSION 

Android malware refers to malicious software or 
applications specifically designed to target Android 
devices. This malware can perform various harmful 
activities without the user's knowledge or consent, 
posing a threat to data security, privacy, and device 
functionality. Android devices account for 97% of 
mobile malware carriers. However, the percentage of 
malware becomes 0.1% when using an official store, 
such as Google play store. Our objective is to find an 
accurate and fast way to detect android. Static 
analysis has shown its robustness by preventing the 
installation of malware apps. Machine learning 
classifiers is fast and accurate way to detect malware 
from metadata (manifest file) of mobile application. 
We used the same feature extractor and classifiers in 
two dataset small and large “Drebin”. We concluded 
that classifier accuracy increases with the increase of 
training data. Our proposed classifier extra trees was 
effective in large “Drebin” dataset. Feature extractor 
contributes to an increase in accuracy. 

9. FUTURE WORK 

Future work is based on research issues. Using 
different dataset that include : 

10.1 The latest malware variants or evolving 
techniques used by attackers. We should be cautious 
about generalizing findings based solely on the 
Drebin dataset. 

10.2 Unlabeling Samples: We should exercise 
caution when relying solely on the provided labels 
and consider additional validation measures. 

10.3 Large Number of Samples: cover the vast 
number of Android applications available.  
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