

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5161

COMPARATIVE STUDY FOR ANDRIOD MOBILE STATIC
ANALYSIS ALGORITHMS

SARA MAHMOUD SHEHATA1, ISLAM HEGAZY2, EL-SAYED M. EL-HORBATY3

1Demonstrator, Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams
University, Eygpt

2Associate Professor, Computer Science Department, Faculty of Computer and Information Sciences, Ain
Shams University,Egypt

3Professor of Computer Science Department, Faculty of Computer and Information Sciences, Ain Shams
University, Egypt

E-mail: 1sara.shehata@cis.asu.edu.eg, 2islheg@cis.asu.edu.eg, 3sayed.horbaty@outlook.com

ABSTRACT

Recently, there has been a rapid increase in the use of smartphones, several of which are connected to the
internet. Because of the data movement, malware attacks have enormously increased. Malware causes
unexpected behavior in smartphones such as strange charges on your phone bill, invasive adverts, contacts
receiving strange messages, poor performance, appearance of new applications, abnormal data consumption
and noticeable reduction in battery life. Nonetheless, smartphone users remain unprotected from malware
attacks. Thus, mobile antivirus applications have been developed to overcome this issue. Since android has
established itself as the industry's dominant operating system for smartphones, many antivirus applications
are available in the android play store. This paper presents a comparative study of android mobile static
analysis. Static analysis is used to classify malware android Apps through meta data file of APK.
Furthermore, we used TF-IDF feature extractor and investigate algorithms for static analysis, such as
decision tree, naïve bayes, random Forest, K-nearest neighbor, XGB, MLP, support vector machine, logistic
regression, adaboost, ,lasso regression, ride regression , ANN and extra trees. We use two datasets small and
large “Drebin”. The results of small dataset show that Multi-layer perceptron (MLP) gives the best overall
accuracy 98.84% but it takes the biggest execution time around 33.4 seconds and The results of large dataset
show that Extra trees gives the best overall accuracy 99.48%.
Keywords:- Mobile Security; Mobile Antivirus; Malware Analysis; Machine Learning; Classification

1. INTRODUCTION

The use of smartphones is increasing due to their
flexibility while providing as many services as a
laptop. Many users prefer using smartphones and
tablets instead of laptops [1]. The number of
operating systems (OSes) for smartphones has
increased with each mobile OS gaining a significant
market share [2]. The most well-known mobile OSes
are android, iOS, Windows, and Symbian. Some
other mobile OSes are less used (BlackBerry,
Samsung, etc.) [3]. android percent is 72.92% of
devices as proved in the market share of mobile
operating systems worldwide in October 2020, as

shown in Figure 1 [4]. One factor in its success is
how simple it is to create new applications and
services for the android platform and post them to
any android markets that are available: Google play
store, Amazon app store, Samsung galaxy apps, etc
[5].

Security is important because data movement has
increased in the current generation [6]. Malware is
any harmful program used to obstruct machine
operation, collect private information, or get access
to mobile devices used by individuals [7]. It is
distinguished by its malicious aim, which goes
against the requirements of the mobile user and
excludes software that inadvertently harms users due
to a flaw. Both genuine (malicious) malware and

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5162

accidentally destructive software are frequently
referred to as "badware.". The number of mobile
malware is small compared to that of PCs.
Nonetheless, we can expect malware for
smartphones to evolve in the same trend as that of
PCs. Hence, in the coming years, we will be faced
with a large amount of smartphone malware [7].

Here, we investigate data mining, machine learning,
and static analysis classifiers to identify dangerous
android OS apps a priori without the requirement to
download and run the application.

We study machine learning classification algorithms
and compare between them according to overall
accuracy and execution time.

The main contributions of this paper can be
summarized in analyzing the efficiency and
suitability of well-known ML classifiers to classify
android malware.

We used term frequency-inverse document
frequency (TF-IDF) feature extractor and
investigate machine learning classifiers such as
decision tree, naïve bayes, random Forest, K-nearest
neighbor, XGB, MLP, support vector machine,
logistic regression, adaboost, lasso regression, ride
regression , ANN and our proposed solution extra
trees. We use two datasets small and large “Drebin”.
The results of small “Drebin” dataset show that
Multi-layer perceptron (MLP) gives the best overall
accuracy 98.84 but it takes the biggest execution
time around 33.4 seconds.The results of large
“Drebin” show that Extra Trees gives the best overall
accuracy.

The rest of the paper is organized as follows. Section
2 presents mobile malware detection techniques.
Section 3 discuss the background and related works.
Section 4 illustrates malware types and analysis.
comparative of static analysis in Section 5, Section 6
represents experiments, Section 7 summarizes
research issues, Section 8 summarizes the conclusion
and section 9 presents future works.

2. MOBILE MALWARE DETECTION

TECHNIQUES

Smartphones can be scanned and cleaned of
infections with antivirus software. Although there
are numerous antivirus programs, their main
function is to shield cellphones against infections
and eliminate any viruses that are discovered.
Techniques for detecting mobile malware include
signature-based detection, specification-based
malware detection, heuristic-based detection,
anomaly-based detection also known as behavior-
based detection, Sandbox detection, Data Mining
and cloud based malware detection

2.1 Signature based detection: This is frequently
found in old propagation. It is conventional antivirus
software that scans all APK files and verifies them
against the database of known viruses and malware
types. It looks for any unusual behavior in the
executable files that could indicate the presence of
unidentified viruses [8]. Its drawbacks are it needs
to be updated regularly and a sizable database is
required to store it.
2.2 Specification-based malware detection:
employs a rule set to determine how malicious the
program is. The weakness of Specification-based
malware detection was that it is frequently
challenging to completely and accurately specify the
entire set of acceptable behaviors a system should
display.
2.3 Heuristic-based detection: employs heuristics
by running applications or programs with suspect
code within a runtime virtual environment. This
circumvents the drawbacks of signature-based
detection by preventing the vulnerable code from
infecting the real-world setting. Instead of looking
for well-known signatures, this sort of detection
keeps track of keystrokes [8]. Its drawbacks are
compared to signature-based systems, it generates a
lot more false positives and additional code is
required in addition to a third-party component.
2.4 Behavioral-based detection: The best method
for dealing with new and anonymous infections is
behavioral-based detection, which seeks out signs of
compromise rather than the actual attack.
Behavioral approaches identify executable behavior
patterns at a higher degree of abstraction [8]. Its
drawback is production of false positives.
2.5 Sandbox detection: With the usage of
sandboxes, malicious code can be safely executed
without endangering the host device or network.
2.6 Data mining detection: is one of the most
recent trends in malware detection. “Data mining is
the practice of analyzing large databases in order to
generate new information”. Data mining aids in
determining whether or not a program is
malicious [2].
2.7 Cloud-based detection Applications from the
Google Play Store are automatically checked for
malware using a tool provided by Google called
Bouncer. Bouncer inspects applications as soon
as they are uploaded and compares them to known
viruses [2].

3. BACK GROUND AND RELATED WORKS

Authors in [9], [10], [11], [12] approach the study of
the efficacy of machine learning classifiers over a
simple feature type (permission, intents, services).

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5163

Authors in [13] explore adversary models, such as
the android HIV.
Authors in [14], DroidAPIMiner one of the earliest
studies that combines APIs with package level and
APIs information parameters. K-NN, linear SVM,
and DT algorithms like ID3, C4.5 were evaluated on
a dataset of 20,000 and 3,987 goodware and
malware apps, respectively. K-NN performed with
an accuracy of up to 99% while other classifiers
achieved 96%.
In [15], authors coupled APIs with permissions and
evaluated the effectiveness of SVM, artificial neural
networks (ANN), and random forest (RF). They
were using a dataset of 5,000 Goodware and 1,260
malicious programs. The authors assessed their
strategy with up to 96% accuracy.
In [16], authors investigated the effectiveness of
well-known classifiers on a dataset made up of 621
apps of goodware also 175 malicious apps. Results
in this instance showed that combining permissions
and API accuracy can be increased to a level of
about 90.3%.
In [17], authors assessed the effectiveness of Deep
Belief Network (DBN) on a dataset of 4,000
legitimate apps and 1,000 malicious ones. They
showed through their investigation that DBN
outperforms traditional ML classifiers and can
achieve up to 93% F-Measure.The results of several
well-known classifiers were integrated into an
ensemble method to determine whether an app is
malicious or not. The published findings for a
dataset that included 445 goodware and 1,246
malware apps demonstrated a performance accuracy
of up to 99%. The results of several well-known
classifiers were integrated in an ensemble method to
determine whether an app is malicious or not. The
published findings for a data set that included 445
goodware and 1,246 malware apps demonstrated a
performance accuracy of up to 99%.
In [18], authors showed the efficiency of a Bayesian
Network (BN) was assessed using a dataset made up
of 1,846 goodware and 5,560 malware apps. The
results showed a True Positive Rate (TPR) of up to
95%. A very similar strategy was used in [19],
where the authors showed accuracy of up to 99.7%
after merging multiple features.
In [20], authors used a wide range of information as
input to ML classifiers including intents,
permissions, system commands, suspicious API
calls, and other malicious actions (such accessing
IMEI). The authors evaluated various classifiers
(SVM, DT, RF, etc.) using a dataset that included
11,187 goodware and 18,677 malicious
applications. The evaluated algorithms
effectiveness was assessed using an F1-score that

may reach up to 96%. A similar strategy was
employed in [21], where the authors used the mix of
APIs, commands, and permissions as a dataset. An
accuracy of up to 95% was achieved during the
evaluation of this method utilizing a dataset of 2,000
apps and a Bayesian classification system.
In [22], the accuracy of various ML classifiers, such
as SVM, K-NN, Extra Randomized Tree (ERT), etc.
Classifiers were assessed by using equal data
partitions between malware and goodware. The
authors use an extended set of features, such as API
calls, permissions, etc., associated with 11,120 apps
from the Drebin dataset.
A recent study [23] focuses on how factors affect
how well ML classifications are made. Over SVM,
the authors employ a number of feature selection
techniques, including BI-Normal Separation and
Mutual Information. According to the results, BI-
Normal Separation chooses the optimal
characteristics for reaching accuracy levels of up to
99.6%. In [24], authors present a multimodal
malware detection method for android IoT devices
employing a variety of features, with an emphasis
on the optimizations of the NB classifier. The
investigation shows that using such a method,
accuracy can reach up to 98%.
In [25], the majority of methods focus on the
effectiveness of well-known ML classifiers, such as
K-nearest neighbour (K-NN), support vector
machine (SVM), Naive Bayes (NB), decision tree
(DT), etc., and differ on the features taken into
account for classifying an app as malware.
The Drebin data set, which includes 123,453
goodware and 5,560 malware apps, is the basis for
the analysis. Features from the Drebin dataset are
present in the manifest file. Chi-square Test,
Bernoulli Naive Bayes, Random Forest, L1 and L2
regularization, neural network, and Support Vector
Machine were among the algorithms utilized.
In [26], authors determine how quickly classifiers
expire; they examined the effects of idea drift on
malware classifiers for android malware samples.
They used four drift detectors, two representations
(Word2Vec and TF-IDF), two classifiers (Adaptive
Random Forest and Stochastic Gradient Descent
classifier), and two representations (Word2Vec and
TF-IDF) to analyse 480 K sample android apps from
two datasets (DREBIN and AndroZoo) gathered
over nine years (2009–2018). (DDM, EDDM,
ADWIN, and KSWIN). For their best outcomes,
Random Forest has an accuracy rate of 99.23%.

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5164

4. MALWARE TYPES AND ANALYSIS

 4.1 Malware Types
Malware comes in many forms, however a virus is
one of them and is more commonly known.
Malware: malicious code that is specifically
designed to disrupt, damage, or gain unauthorized
access to a smart phone. Since malware can replicate
itself and occasionally start an execution without
any user assistance, its primary means of
transmission is either user interaction or self-
propagation. Malware that targets traditional
workstations is currently more prevalent than
malware that targets mobile devices. The fact that
many businesses now permit employees to access
corporate networks using personal devices presents
an increasing hazard, though. The most prevalent
types of malwares are viruses, trojans, adware,
spyware, ransomware, worms, phishing, and
pharming.

 4.1.1 Virus: is a piece of computer code that can
replicate itself and harm your device by altering
your operating system or erasing data. 97% of
mobile malware is installed on android
devices.

 4.1.2 Trojan: This type of malware joins a
seemingly safe and reliable program or application.
The Trojan is launched and infects the phone after
legitimate the program or app has been installed.
Malicious users may steal sensitive data, including
card accounts or bank login information. In addition,
it can be used to take over the browser, causing a
smartphone to send premium messages without your
permission. Additionally, it has the power to disable
apps and disable your phone. Two of the most well-
known phone Trojans are the Skulls and the
Hummer.
4.1.3 Adware and Spyware: spyware masquerades
as a legitimate program, mobile phone users are not
aware that they have infected their device. This
spyware stealthily gathers personal data, such as
browsing history, messaging preferences, location,
contacts, and downloads. The malware transmits
information to a third party, such as an advertising
or a marketing data company.

 .4.14 Ransomware: This kind of malware locks up
a smartphone and demands a fee from its victims in
order to restore control. More current ransomware
can modify the PIN or security code and get access
to the administrator rights of mobile devices. Users
who access harmful and insecure websites or who
download shady third-party program are more likely
to become infected with this frightening malware.

 4.1.5 Worms: Text messages sent as MMS and
SMS can transmit this malware. Because this
malware can be activated without human

participation, it poses a risk. Worms spread
throughout the devices. It might have hazardous and
deceptive instructions. The Ikee is one of the most
famous worms.
4.1.6 Phishing and Pharming: This malware
switches users to dangerous websites from safe
ones. It mimics a valid login or authentication page.
When users enter their account or login information,
nefarious parties may steal and use those
credentials.
When utilizing an official store, such as Google play
, the percent changes to 0.1. Signs that your mobile
phone has malware include[27]: Unexpected
charges may be a sign of a virus. Strange charges on
your phone account. In order to make money,
malicious programs make expensive phone calls or
text messages. Additionally, since adware affects
your phone with dangerous code, intrusive and
intrusive advertisements are indications that you
might have it installed. Strange text messages sent
to contacts. Malware can infect a contact's device by
using your mobile to send spam SMS. An infection
may be confirmed by poor performance or a
slowdown in performance. New programs. If new
applications suddenly start to appear on your device,
a malicious app can be downloading them. They
might also include malware. Unusual data usage.
Malicious program use the internet to send and
receive information from their developers. A
noticeable decrease in battery life is another sign. If
your battery life is poor, you may be using a
"bugged" or poorly written app. It might also
indicate that your phone has a virus, though. What
to do if you become infected. Put the smartphone in
airplane mode first. This prevents any harmful apps
from sending and receiving data. Check your most
recent app installations next. If any have few
downloads, persistently low ratings, and
unfavorable reviews on the Google Play Store or the
App Store, remove them. Any potentially harmful
applications from your smartphone should be
eliminated by this. Third, best practice advises that
you should install antivirus software.

4.2 Malware Analysis
 4.2.1 Static analysis: Static analysis entails looking

at a program's source or, in certain circumstances,
object codes without running it. In a typical static
analysis approach, the analyzed app code is first
represented as abstract models (such as call graphs,
control-flow graphs, or class/sequence diagrams
from the unified modelling language) for analysis.
Static analysis has several benefits, including:

(a) It contains all of the source code and the
application's manifest file, which is checked for data.
(b) It is faster than dynamic analysis. Compared to

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5165

dynamic analysis, it utilizes less hardware (c).
Numerous vulnerabilities, such as purpose injection,
unauthorized access to private or protected
resources, and private data leakage, can be found via
static analysis. It is also used to detect test
generation, clone detection, energy use, and
permission abuse. The implementation issues with
code verification and cryptography are then
mentioned [28].

Manifest File Analysis: Names of attributes are
matched with vulnerabilities in this phase. The top
characteristics are listed below, along with
indications of when each one is vulnerable.

 Backup Flag: If Backup Flag's value is true, it's
vulnerable. The program data, such as the
application database and files, are copied to the SD
card to create a backup. Application data stored on
an SD card is less secure than data stored on a mobile
device. This is so that written permission can be
granted more easily for SD cards. If the data being
backed up is not regarded as sensitive or hazardous,
the vulnerability risk of enabling backup is evaluated
to be Low.

Debug Flag: If its value is true, it is regarded as
vulnerable. Debug mode is used by Android
application developers to record crucial fields and
check that they are accurate. But failing to switch the
app to release mode makes it simple for hackers to
sniff the app. Enabling a debug mode is thought to
pose a high vulnerability risk because it can reveal a
great deal of data while the application is running in
this mode.

 Exported Components: If (activities and services)
exist, they are regarded as vulnerable. Note that
opening up more components to other services and
apps necessitates adding more interfaces to protect
against attacks.

 4.2.2 Dynamic analysis: Dynamic analysis, as
opposed to static analysis, finds vulnerabilities that
arise while a program is running. Due to the need for
installing the apps and simulating user input, it is
seen as being more complex than static analysis (i.e.,
inputs, touches, and clicks). There are numerous tests
for dynamic analysis. Test generation, test
effectiveness, and vulnerability coverage are some of
their distinctions. Fuzz testing, concolic testing, and
search-based testing are the most popular dynamic
analytic tests. A computer program is subjected to
"fuzz testing," an automated software testing
approach, by being given erroneous, unexpected, or
random data as inputs. When an error occurs, such as
a crash, a failing built-in code assertion, or possibly
a memory leak, the program is then watched for it.

Program variables are treated as symbolic variables
during symbolic execution, whereas during concrete

execution specific input pathways are tested. In
search-based testing, a testing task is automated
using meta-heuristic optimizing search techniques
such simulated annealing and evolutionary
algorithms [28].

 4.2.3 Hybrid Analysis: This analysis combines
static and dynamic features and is more accurate
than either analysis alone [29].

5. COMPARSION OF STATIC ANALYSIS

ALGORITHMS

We compare the same machine learning algorithms
in small and large datasets. Algorithms used here are
decision tree, naïve bayes, random Forest, K-nearest
neighbor, XGB, MLP, support vector machine,
logistic regression, adaboost, ,lasso regression, ride
regression , ANN and our proposed solution extra
trees.

 5.1 Used Feature extraction:
Term Frequency-Inverse Document Frequency (TF-
IDF):
It is widely used for word feature extraction. It can
be summed up as determining how relevant a word
is to a corpus or series of words in a text. The
frequency of a term in the corpus offsets the
meaning increase that occurs when a word appears
more frequently in the text (dataset)

 5.2 Used Algorithms:

5.2.1 Decision Tree: This is a collection of
guidelines for categorizing data. It analyses the
variables in a dataset, chooses the most crucial ones,
and creates a tree of choices that best divides the
data. Start at the root node and work your way up
the classification tree until you reach the leaf
(terminal) node. A DT simulates an if/else block of
code, to put it briefly. Think about the trained DT
shown in the figure (3) as an example.

Figure 3:.How Decision Tree works

 5.2.2 Naive Bayes: The Naive Bayes classifier
operates under the presumption that the effects of
each feature on a class are independent of one

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5166

another. This presumption is known as class
conditional independence[30].

 𝐏(𝐡|𝐃) =
𝑷൫𝑫ห𝒉൯𝑷(𝒉)

𝑷(𝑫)
 (1)

 P(h): the probability of hypothesis h being
true (regardless of the data). This is known
as the prior probability of h.

 P(D): the probability of the data (regardless
of the hypothesis). This is known as the
prior probability.

 P(h|D): the probability of hypothesis h
given the data D. This is known as posterior
probability.

 P(D|h): the probability of data d given that
the hypothesis h was true. This is known as
posterior probability.

 5.2.3 Random Forest: is made up of a collection of
decision trees. A decision tree (DT) divides the
feature space into hyperboxes to solve a
classification or regression problem. A decision
tree's application produces a rough approximation of
the decision boundaries when the decision surface is
nonlinear. The growth of several trees guided by a
variety of variables is a very popular method for
stabilising the findings and enhancing the DT's
forecasting ability. With this strategy, the idea of a
forest of trees is introduced; the ultimate answer
arises from averaging the individual answers. The
Random Forests (RF) technique grows in parallel
base learners, which must be statistically
uncorrelated trees. RF is one of the most effective
ensembles of trees and is based on the principle of
uncorrelated trees. In order to accomplish this,
feature subset selection during the training phase,
which adds additional diversity to the learning of the
decision trees, is a step that must be taken in addition
to bootstrap aggregation (bagging) over the set of
observations. The trees can offer useful information
about the feature relevance because they divide the
original feature space by design. Actually, the
algorithm optimises a purity measure during training
and chooses the feature (cost function) that increases
the measure at each data split. the one that makes the
tree less impure. By averaging the advancements
each feature has made over all the trees in an
ensemble of trees, the feature relevance is
determined. The Gini index is one of the two purity
metrics we examined.

 Gini = 1 − ∑K k=1 P(Y ′ = k), Y ′ ⊆Y (2)

And the Entropy:

Entropy =

∑K k=1 − P(Y ′ = k)log2P(Y ′ = k), Y ′
⊆Y (3)

 5.2.4 K-nearest neighbour (KNN) is the most
straightforward machine learning classifier. In
contrast to other ML techniques, it does not result in
a model.

It is a straightforward algorithm that classifies newly
discovered examples using a similarity metric and
stores all of the existing cases.

Assuming that our dataset has two variables a and b
,

Figure 2: KNN example

KNN works by calculating the distances between a
query and each example in the data, choosing the K
examples that are closest to the query, and then
voting for the label that is used the most frequently.

Advantages of KNN:

The algorithm is straightforward and simple to
use.

There is no need for a model, parameter tuning,
or additional presumptions.

Disadvantages of KNN:

 As the number of cases and/or
predictors/independent variables rises, the
method becomes noticeably slower.

5.2.5 XGB: Extreme Gradient Boosting, often
known as XGBoost, is a boosting technique based on
gradient-boosted decision trees. One way that
XGBoost differs from gradient boosting is by using
a superior regularisation strategy to lessen
overfitting [31].

Step 1: Calculate the similarity scores; this aids in the
tree's growth.

Similarity Score is equal to (Sum of Remainders)2 /
Remainders + Lambda

Step 2: calculate the decide to determine how to split
the data.

Gain = Left tree (similarity score) + Right (similarity
score)- Root (similarity score)

Step 3: Calculate the gain and gamma difference to
prune the tree. (user-defined tree-complexity
parameter)

Gamma gain

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5167

If the outcome is a positive number, do not prune; if
it is a negative number, prune and once more deduct
gamma from the subsequent Gain value up the tree.

Step 4: Calculate output value for the remaining
leaves.

Output value = Sum of residuals / Number of
residuals + lambda

 5.2.6 MLP: A feed-forward neural network
augmentation known as a multi-layer perceptron
(MLP). It is made up of three different types of
layers: the input layer, the output layer, and the
hidden layer. The input layer is where the signal is
received for processing at the input layer. The
necessary tasks, such as classification and prediction,
are finished by the output layer. The input and output
layers are sandwiched between an arbitrary number
of hidden layers that make up the MLP's actual
computational engine [32].

 5.2.7 SVM: This algorithm achieves notable
accuracy while using minimal processing power.
Finding a hyperplane in an N-dimensional space (N
is the number of features) that clearly classifies the
data points is the goal of the SVM method. Due of
its sensitivity to noise, a small number of incorrectly
labelled instances can significantly harm its
performance..

Figure 4: optimal hyperplane in svm.

 8.5.2 Logistic Regression: This approach for
classifying data uses discrete classes to group
observations. Emails (spam or not spam), online
transactions, and other types of data are some
examples of classification issues (fraud or not
fraud).returns a probability value after transforming
its output using the logistic sigmoid function.

 𝒚 ̂ = 𝟏/(𝟏 + 𝒆^(−𝒛)) (4)

 Z=𝑾^𝑻. 𝒙 + 𝒃 (5)

Example: if we choose the threshold as 0.5 the
prediction function (𝑦 ̂) returned a value of 0.7 then
we would classify this observation as Class 1. If our
prediction returned a value of 0.2 then we would
classify the observation as Class 2.

 9.5.2 Adaboost: Boosting techniques combine a
number of low-accuracy classifiers to produce a
classifier that is extremely accurate. Adaboost, a
popular boosting algorithm, is an iterative ensemble
method that creates a strong classifier by combining
several poor classifiers to produce a strong classifier
with high accuracy.

 10.5.2 Lasso: adds a penalty for non-zero
coefficients, but unlike ridge regression, which
applies the so-called L2 penalty to the sum of
squared coefficients, lasso applies the penalty to the
sum of their absolute values (L1 penalty).

11.5.2 Ridge: penalizes the model based on the
weights' sum squared value. Predictors' coefficients
can be thought of as being set to zero when they are
removed from the model. Let's penalize them if they
deviate too much from zero instead of forcing them
to be exactly zero, forcing them to be little
continuously. In this manner, we maintain all of the
model's variables while reducing model complexity.

 25.2.1 Artificial Neural Network: are biologically
inspired computer programs that replicate how the
human brain processes information. Rather than
using programming to learn, ANNs are trained
through experience and learn by spotting patterns
and relationships in data. The layers of the neural
structure, also known as artificial neurons or
processing elements (PE), are connected by
coefficients and comprise hundreds of single units.
(weights). The strength of brain calculations comes
from the network of connections between neurons.

Proposed Solution :
Using extra trees classifier is one of the suggested
solutions in Drebin dataset as no one used it before.

5.2.13 Extra Trees: The extra trees algorithm, like
the random forests algorithm, creates a lot of
decision trees, but the sampling of each tree is
random and without replacement. As a result, a
dataset with unique samples for each tree is
produced. Additionally, a predetermined number of
features from the entire set of features are randomly
selected for each tree. The most important and
distinctive feature of extra trees is the random
selection of a splitting value for a feature. Rather
than calculating a locally optimal split using Gini or
entropy, the algorithm simply selects a split value at
random. The result is a variety of unrelated trees.

 𝑬𝒏𝒕𝒓𝒐𝒑𝒚(𝑺) = ෌ −𝒑𝒊𝑳𝒐𝒈(𝒑𝒊)
𝒄

𝒊ୀ𝟏
 (6)

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5168

where c is the number of unique class labels and pi
is the proportion of rows with output label is i ِ
5.3 Used Evaluation:

Calculate Overall Accuracy :

Overall Accuracy=
𝑻𝑷ା𝑻𝑵

𝑻𝑷ା𝑻𝑵ା𝑭𝑷ା𝑭𝑵
 (7)

• TP: True positives
• TN: True negatives
• FP: False positive
• FN: False negatives
•
Precision: Appropriate when minimizing false
positives is the focus.

 Precision=
𝑻𝑷

𝑻𝑷ା𝑭𝑷
 (8)

Recall: Appropriate when minimizing false
negatives is the focus.

 Recall =
𝑻𝑷

𝑻𝑷ା𝑭𝑵
 (9)

F1 Score:

 F1 Score=2*
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗ 𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧ା 𝐑𝐞𝐜𝐚𝐥𝐥
 (10)

6. EXPERIMENTS

 6.1 Experiment 1: small dataset
android Malware Dataset for Machine Learning
[19]: “Dataset consisting of feature vectors of 215
attributes extracted from 15,036 applications (5,560
malware apps from Drebin dataset and 9,476 benign
apps). The dataset has been used to develop and
evaluate multilevel classifier fusion approach for
android malware detection, published in the IEEE
Transactions on Cybernetics paper 'DroidFusion: A
Novel Multilevel Classifier Fusion Approach for
android Malware Detection. The description of the
feature vectors/attributes obtained via static code
analysis of the android apps.” . Dataset Date is ‘’3-
2021,”
.datasetLink:https://www.kaggle.com/datasets/shas
hwatwork/android-malware-dataset-for-machine-
learning. We separate the data set to train 80% and
test 20%. Used Features are manifest permission
53%, API call signature 33% and Other (30) 14%.

These features have been split in different groups:
“hardware components (S1), requested permissions
(S2), app components ((a) receivers, (b) activities,
(c) content providers) (S3), filtered intents (S4),
restricted API calls (S5), used permissions (S6),
suspicious APIs (S7), and network addresses (S8).”
[19].

Figure 5: B samples of goodware, S samples of malware

Result:

Table 1

Algorithm
Name

Accuracy
%

F1Score Recall Precision Execution
Time
(Seconds)

Decision
Tree

97.54 98.17 98.06 98.27 0.237

Naïve
bayes

70.88 69.52 53.62 98.81 0.235

Random
Forest

98.60 98.99 99.52 98.46 3.935

K
Neighbors

97.87 98.28 98.55 98.02 1.602

XGB 98.73 98.10 98.44 97.76 12.291
MLP 98.84 99.00 99.19 98.82 33.426
SVM 97.74 98.04 98.49 97.60 3.784
Logistic
Regression

97.47 97.97 98.55 97.4 0.730

Adaboost 97.54 97.97 98.55 97.4 7.162
RidgeReg 80.84 81.2 81.68 80.72 0.15
LassReg 69.65 69.93 70.04 69.99 0.71
ANN 97.57 97.96 98.12 98.04 34.022
Extra
Trees

98.80 99.01 99.46 98.56 2.085

After implementing machine learning classifiers on
dataset and calculating the accuracy and execution
time of each classifer.Multi layer perceptron (MLP)
gives the best results but it takes the biggest
execution time. Naive bayes gives the lowest
accuracy.

6.2 Experiment 2: Large dataset
Android Malware Dataset for Machine Learning
contains 123,453 benign and 5,560 malicious
android applications. Dataset date is‘’8-2022” .

0

5000

10000

B S

number of samples

number of samples

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5169

Dataset Link is Fast & Furious: Malware Detection
Data Stream | Kaggle. We separate the data set to
train 80% and test 20%. Used Feature extractor: TF-
IDF (using 120 features for each textual attribute).

Figure 6: B samples of goodware, S samples of malware

Result:

 Table 2

Extra trees gives the best accuracy, F1Score, Recall
and Precision.

Our proposed solution to use extra trees was
effective in large “Drebin” dataset.

6.3 Difference from Prior Research

The best accuracy of the recent research on large
“Drebin” dataset using random forest. Our proposed
classifier extra trees was effective in large “Drebin”
dataset. Extra Trees was better than Random Forest
in large “Drebin” dataset

Advantages of Extra Trees over Random Forest:

Computational Efficiency: Extra Trees can be faster
to train and evaluate compared to Random Forests
since it avoids the computation of optimal splits at
each node. This advantage can be significant,
especially for large datasets or when time constraints
are a concern.

Increased Randomness: Extra Trees introduces more
randomness by randomly selecting feature
thresholds for splitting, which can lead to further
diversification of the trees. This increased
randomness may help reduce overfitting and
improve generalization performance, especially
when dealing with noisy or high-dimensional
datasets.

Robustness to Outliers: The random feature
threshold selection in Extra Trees makes it more
robust to outliers compared to Random Forests, as
outliers are less likely to have a significant impact on
the split decisions.

The following table show the comparison between
our best results and the recent research in this field
[26] best results We have better overall accuracy,
F1Score, Recall, Precision..

Table 3

7. RESEARCH ISSUES

The "Drebin" dataset is a widely used dataset in the
field of Android malware research. It consists of a
large collection of Android applications, both
malicious and benign, and has been instrumental in
developing machine-learning models for malware
detection and classification.

0

50,000

100,000

150,000

B S

number of samples

number of samples

Algorit
hm
Name

OverAll
Accurac
y %

F1Sco
re

Recall Precision Execution
Time

(Seconds)
Decisio
n Tree

99.15 90.59 89.2 90.2 348

Naïve
bayes

25.43 69.5 53.6 98.8 4

Rando
m
Forest

99.46 93.62 90.33 97.16 124

K
Neighb
ors

99.24 91.29 89.89 92.74 210

XGB 99.28 91.62 86.6 95 2732
MLP 99.29 91.8 89.89 93.85 541
SVM 98.76 85.18 80.31 90.67 888

Logistic
Regress
ion

98.8 85.54 80.57 91.15 20

Adaboo
st

98.68 84.11 79.08 89.82 1085

RidgeR
eg

62.8 54.37 51.21 57.94 5

LassRe
g

54.36 47.06 44.33 53.2 11

ANN 99.17 91.55 89.54 90.53 195
Extra
Trees

99.48 93.95 90.77 97.36 295

 Our study The recent
research

Overall
accuracy

99.48 99.23

F1Score 93.95 90.63
Recall 90.77 85.85
Precision 97.36 96.31

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5170

While the "Drebin" dataset has been valuable for
research purposes, it does have some limitations and
potential issues that we should be aware of. Here are
a few key points to consider:
8.1 Data Bias: The Drebin dataset was collected
over a specific period and may not represent the
current Android malware landscape. It might not
include the latest malware variants or evolving
techniques used by attackers.
8.2 Label Accuracy: The labeling process of the
Drebin dataset involved using a combination of
static analysis and manual labeling. Although
efforts were made to ensure accuracy, there is still a
possibility of mislabeled samples.
8.3 Limited Sample Size: While the Drebin dataset
contains a substantial number of samples, it may still
be considered small in comparison to the vast
number of Android applications available. This
limitation could impact the generalizability of
research findings and the effectiveness of models
trained solely on the Drebin dataset.

8. CONCLUSION

Android malware refers to malicious software or
applications specifically designed to target Android
devices. This malware can perform various harmful
activities without the user's knowledge or consent,
posing a threat to data security, privacy, and device
functionality. Android devices account for 97% of
mobile malware carriers. However, the percentage of
malware becomes 0.1% when using an official store,
such as Google play store. Our objective is to find an
accurate and fast way to detect android. Static
analysis has shown its robustness by preventing the
installation of malware apps. Machine learning
classifiers is fast and accurate way to detect malware
from metadata (manifest file) of mobile application.
We used the same feature extractor and classifiers in
two dataset small and large “Drebin”. We concluded
that classifier accuracy increases with the increase of
training data. Our proposed classifier extra trees was
effective in large “Drebin” dataset. Feature extractor
contributes to an increase in accuracy.

9. FUTURE WORK

Future work is based on research issues. Using
different dataset that include :

10.1 The latest malware variants or evolving
techniques used by attackers. We should be cautious
about generalizing findings based solely on the
Drebin dataset.

10.2 Unlabeling Samples: We should exercise
caution when relying solely on the provided labels
and consider additional validation measures.

10.3 Large Number of Samples: cover the vast
number of Android applications available.

REFERENCES

[1] Available online at
https://blog.globalwebindex.com/trends/device-
usage-2019/, “How Device Usage Changed in
2018 and What it Means for 2019,” last seen
28/12/2020.

[2] La Polla M, Martinelli F, and Sgandurra D, “A

Survey on Security for Mobile Devices,” In
IEEE Communications Surveys and Tutorials,
vol. 15, no. 1, pp. 446-471, 2013, DOI:
10.1109/SURV.2012.013012.00028

[3] Hamed T, Dara R, and Kremer SC, “Intrusion
Detection in Contemporary Environments,” In
Computer and Information Security Handbook,
2017

[4] Available online at
https://www.statista.com/statistics/272698/glob
al-market-share-held-by-mobile-operating-
systems-since-
2009/#:~:text=Market%20share%20of%20
mobile%20operating%20systems%20worldwid
e%202012%2D2020&text=Android%20
maintained%20its%20position%20as,of%20the
%20global%20 market%20share, “Market
Share of Mobile Operating Systems Worldwide
2012-2020,” last seen 28/12/2020.

[5] Martín I, Hernández JA, Muñoz A, and Guzmán
A, “Android Malware Characterization Using
Metadata and Machine Learning Techniques,”
Security and Communication Networks, vol.
2018, pp. 1-11, 2018.

[6] Rad BB, Masrom M, and Ibrahim S, “Evolution
of Computer Virus Concealment and Anti-
Virus Techniques: A Short Survey,” IJCSI
International Journal of Computer Science
Issues, vol. 8, no. 1, 2011.

 [7] Talukder S and Talukder Z, “A Survey on
Malware Detection and Analysis Tools,”
International Journal of Network Security and
Its Applications, vol. 12, no. 2, pp. 12. DO -
10.5121/ijnsa.2020.12203.

[8] Riasat R, Sakeena M, Chong WA, Sadiq AH, and
Wang YJ, “A Survey on Android Malware
Detection Techniques,” DEStech Transactions
on Computer Science and Engineering, 2017.

[9] Xiaoyan Z, Juan F, Xiujuan W (2014) Android
malware detection based on permissions. In:
International conference on information and
communications technologies (ICT 2014) .

[10] Liu X, Liu J (2014) A two-layered permission-
based android malware detection scheme. In:
2nd IEEE international conference on mobile

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5171

cloud computing, services, and engineering, pp
142–148 .

[11] Sun L, Li Z, Yan Q, Srisa-An W, Pan Y (2016)
SigPID: significant permission identification for
android malware detection. In: 11th
International conference on malicious and
unwanted software (MALWARE) .

[12]Tchakounté F, Wandala AD, Tiguiane Y (2019)
Detection of android malware based on
sequence alignment of permissions. Int J
Comput (IJC) 35:26–36.

 [13] Hou S, Saas A, Ye Y, Chen L (2016)
DroidDelver: “an android malware detection
system using deep belief network based on API
call blocks”. In: Web-age information
management, WAIM, vol 9998. pp 54–66.

[14] Choi S, Sun K, Eom H ,”Android malware
detection using library API call tracing and
semantic-preserving signal processing
techniques. Report”

[15] Vij D, Balachandran V, Thomas T, Surendran R
(2020) GRAMAC: a graph based android
malware classification mechanism. In:
CODASPY ‘20: proceedings of the tenth ACM
conference on data and application security and
privacy, pp 156–158

[16] Kang B, Yerima SY, Sezer S, McLaughin K
(2016) N-gram opcode analysis for android
malware detection. Int J Cyber Situational
Awareness 1(1):1–24

 [17] Chen YM, Hsu CH, Chung KCK (2019) A
novel preprocessing method for solving long
sequence problem in android malware
detection. In: Twelfth international conference
on ubi-media computing (ubi-media), pp 12–17

[18] Wu S, Wang P, Li X, Zhang Y (2016) Effective
detection of android malware based on the usage
of data flow APIs and machine learning. Inf
Softw Technol

[19] Lou S, Cheng S, Huang J, Jiang F (2019)
TFDroid: android malware detection by topics
and sensitive data flows using machine learning
techniques. In: IEEE 2nd international
conference on information and computer
technologies (ICICT), pp 30–36

[20] Ma Z, Ge H, Liu Y, Zhao M, Ma J (2019) A
combination method for android malware
detection based on control flow graphs and
machine learning algorithms. IEEE Access
7:21235–21245

[21] Shan P, Li Q, Zhang P, Gu Y (2019) Malware
detection method based on control flow
analysis. In: ICIT 2019: proceedings of the 2019
7th international conference on information
technology: IoT and Smart City, pp 158–164

[22] Rana MS, Gudla C, Sung AH. Evaluating
machine learning models for android malware

detection: A comparison study. In: Proceedings
of the 2018 VII International Conference on
Network, Communication and Computing,
ICNCC 2018. New York, NY, USA:
Association for Computing Machinery; 2018. p.
17–21.
https://doi.org/10.1145/3301326.3301390.

[23] Singh AK, Jaidhar CD, Kumara MAA.
Experimental analysis of android malware
detection based on combinations of permissions
and api-calls. Journal of Computer Virology and
Hacking Techniques 2019;15(3):209–18.
https://doi.org/10.1007/ s11416-019-00332-z.

 [24] Kumar R, Zhang X, Wang W, Khan RU,
Kumar J, Sharif A. A multimodal malware
detection technique for android iot devices using
various features. IEEE Access 2019;7:64411–
30.
https://doi.org/10.1109/ACCESS.2019.291688
6.

[25] VasileiosSyrris and DimitrisGeneiatakis ” On
machine learning effectiveness for malware
detection in Android OS using static analysis
data”, Journal of Information Security and
Applications,Volume 59, June 2021, 102794.

[26] Fabrício Ceschin, Marcus Botacin, Heitor
Murilo Gomes, Felipe Pinagé, Luiz S. Oliveira,
André Grégio,,”Fast & Furious: On the
modelling of malware detection” as an evolving
data stream, Expert Systems with
Applications,Volume 212,2023.

[27] Available online at
https://www.pensar.co.uk/blog/signs-your-
phone-has-avirus,” 7 Signs your Phone has a
Virus,” last seen 1/10/2020

[28] Amr Amin 1,†, Amgad Eldessouki 1,†, Menna
Tullah Magdy 1,†, Nouran Abdeen 1,† , Hanan
Hindy 1,2,* and Islam Hegazy,” AndroShield:
Automated Android Applications Vulnerability
Detection, a Hybrid Static and Dynamic
Analysis Approach”, MDPI, Basel,
Switzerland, 2019.

[29] Baskaran B and Ralescu A, “A Study of
Android Malware Detection Techniques and
Machine Learning”, MAICS2016. pp. 15-23,
2016.

[30] available online at Naive Bayes Classifier
Tutorial: with Python Scikit-learn - DataCamp,”
Naive Bayes Classification Tutorial using
Scikit-learn”,last seen 13/4/2022.

[31] available online at “XGBoost for Regression -
GeeksforGeeks” ,last seen 12/4/2022.

[32]available online at Multilayer Perceptron - an
overview | ScienceDirect Topics,” Multilayer
Perceptron”,last seen 10/4/2022.

