
Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5384

EFFICIENT BIG DATA SECURITY: EVALUATING THE
PERFORMANCE OF A PROPOSED HYBRID KEY

MANAGEMENT ALGORITHM USING LIGHTWEIGHT
CRYPTOGRAPHY

MARWA KHADJI1 , SAMIRA KHOULJI1 , MOHAMED LARBI KERKEB1
1Abdelmalek Essaadi University, Tetuan, Morocco

E-mail: marwa.khadji@etu.uae.ac.ma
skhoulji@uae.ac.ma

 kerkebml@uae.ac.ma

ABSTRACT

This research paper explores the integration of lightweight cryptography algorithms into the MapReduce
framework for secure and efficient big data processing. Initially, lightweight cryptography was not a priority
in the field of big data due to the focus on scalability, security trade-offs, potential performance impact, and
compatibility with existing solutions. However, as the need for lightweight and efficient security measures
emerged, researchers began to explore the integration of lightweight cryptography into MapReduce or
develop specialized lightweight cryptographic solutions for big data processing.

To address the resource-intensive nature of traditional cryptographic algorithms in big data applications, this
paper proposes a new algorithm with a hybrid key management scheme that leverages the efficiency and
effectiveness of popular lightweight cryptography algorithms. The proposed algorithm ensures secure data
processing while maintaining low computational overhead. Experimental evaluations were conducted using
different big data scenarios to measure processing time, memory utilization, and security of the algorithms.

The results demonstrate that lightweight cryptography algorithms, such as Rabbit stream cipher and
NOEKEON block cipher, offer practical and efficient solutions for securing large volumes of data.
Depending on the specific requirements, AES and Chacha20 algorithms can be selected for confidentiality
and integrity. Additionally, Rabbit stream cipher and NOEKEON block cipher are the preferred options when
high speed is a crucial factor. These findings provide insights into the practical implementation of lightweight
cryptography in MapReduce for secure and efficient big data processing.

Keywords: Big Data, Hadoop, Data Security, MapReduce, Lightweight Cryptography Algorithms.

1. INTRODUCTION

 Nowadays, there is no place where Big
Data does not exist. In fact, the curiosity about what
is Big Data has been soaring in the past few years.
The amount of data created and stored globally is
growing faster than ever before. Here are some
overwhelming facts! According to statistics [1], in
2019, each day internet users generate about 2.5
quintillion bytes of data. And by 2020, every person
will generate 1.7 megabytes in just a second, the Big
Data analytics market is set to reach $103 billion by
2023. Big Data refers to the big amounts of data
(structured or unstructured) that feeds a

company's daily business. However, it isn't the
number or the types of data that counts, it’s what
organizations do. Big Data is used by different type
of projects to extract valuable information either to
take marketing decisions, track specific behaviors or
detect threat attacks. However, Big Data is a double-
edged sword. It brings convenience to people and
brings certain risks. In the process of data collection,
storage, and use, it can easily lead to the leakage of
personal information, because data is difficult to
discern. Therefore, security should be considered
while storing and processing large amount of
sensitive data.

 The use of Hadoop as a platform for storing
and processing large amounts of data has become

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5385

increasingly popular in recent years. However, the
security aspect of Hadoop was not initially
considered [2] during its design. While various
projects have since evolved to improve Hadoop's
security, such as Project Rhino, which provides the
ability to encrypt or decrypt data stored in HDFS
using AES encryption, these methods can still be
memory-intensive and may negatively impact
performance. Furthermore, traditional cryptographic
algorithms rely on encryption algorithm secrecy,
which is insufficient for real-world needs,
particularly in the context of big data. As such, there
is a need for efficient encryption and decryption
algorithms for securing large volumes of data.

 This research paper proposes a new solution
to this problem by introducing a hybrid key
management scheme of MapReduce that leverages
the efficiency and effectiveness of lightweight
cryptography algorithms. This approach has the
potential to efficiently secure big data while
maintaining low computational overhead. The
proposed algorithm is validated through
comprehensive experimentation using different big
data scenarios to measure processing time, memory
utilization, and security of the algorithms.

 The significance of this research lies in the
increasing importance of secure big data
management. As more and more organizations rely
on Hadoop and other big data platforms, the need for
efficient and effective encryption methods becomes
critical. The proposed approach can efficiently
secure big data while maintaining low computational
overhead, making it a practical and effective solution
for various industries dealing with big data and can
provide a much-needed solution to the challenge of
securing big data in an efficient and practical
manner, making it an important contribution to the
field of data security.

2. TOP CHALLENGES FOR SECURITY AND
EFFICIENCY IN BIG DATA

 There is urgency in Big Data security that
cannot be ignored particularly since the major issues
facing Big Data change from year to year.
Enterprises putting Big Data to good use must face
the inherent security challenges including everything
from fake data generation to distributed frameworks.
Here are the most vicious security challenges that
Big Data has:

2.1 Fake Data Generation
 Cybercriminals can generate some false data
and pour it into a data lake in a deliberate attempt to
decrease the quality of the data.
In fact, it is easy not to notice such fake data and fix
any security issues before a lot of damage occurs.
Therefore, limiting access and applying several
fraud detection methods are crucial, as first steps in
protecting data.
 Suppose a manufacturing company utilizes
the sensor data to distinguish the out of order
products, cybercriminals can go through the system
and make the sensors show fake results.
This way, it will be hard to notice alarming trends
and miss the opportunity to solve problems before
serious damage is caused.
Such issues can be solved through applying fraud
detection approach.

2.2 Granular Access Controls
 Granular access comes into play, meaning
that depending on roles, you can grant different users
different levels of access to database and dashboard
so certain individuals can access certain information,
but are restricted in terms of what they can see.
 In terms of Big Data, access control policy
formulation and authorization management become
difficult.
In fact, these data aggregated from a more diverse
range of channels, data types, user roles, and
applications, so it could be hard to grant such access.
Moreover, unstructured, and semi-structured data
often cannot use data attributes like traditional
access control schemes to describe the objects used
in an access control strategy, making it impossible to
precisely indicate the range of data that the user can
access and to determine the minimum authorization
level.
With such vast data stores, data encryption is also an
urgent problem that needs to be solved.

2.3 Distributed Frameworks
 As explained in the above section, Big Data
applications distribute huge processing jobs across
many systems. Distributed processing may mean
faster analysis and less data processed by any one
system. Nevertheless, it increases the difficulty of
security configuration at the same time. Sadly, this
produces sophisticated environments with several
possible attacks. With such a lot of moving parts, it's
tough to verify consistency or security across a
highly distributed cluster of (possibly
heterogeneous) platforms.

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5386

2.4 Cryptographic Protection Issues
 Although cryptography could be a well-
known manner of protecting sensitive data, it's also
a Big Data security problem. Sensitive data is mostly
stored within the cloud without any encrypted
protection. The reason for acting so recklessly is
simple: constant encryptions and decryptions of Big
Data chunks slow things down, thus taking away the
biggest advantage of Big Data, which is speed.

2.5 Absent Security Audits
 Big Data security audits facilitate
corporations gain awareness of their security gaps.
And though it's suggested to perform them on a daily
basis, this recommendation is never met essentially.
In fact, operating with huge data has enough
challenges and issues because it is, and an audit
would only augment the list. Besides, the dearth of
time, resources, qualified personnel, or clarity in
business-side security necessities makes such audits
even a lot of impractical.

2.6 Potential Presence of Untrusted Mappers
 As explained above, once your massive
information is collected, it undergoes parallel
processing.
One among the ways used here is MapReduce
paradigm.
Once the data is split into varied bulks, a mapper
processes them and allocates to specific storage
choices. If an outsider has access to the mappers’
code, they will edit the settings of the present
mappers or add ‘alien’ ones.
 This way, the processing will be effectively
ruined: cybercriminals can build mappers
manufacture inadequate lists of key/value pairs. That
is why the results cited by the reduce method are
going to be faulty.
Besides, outsiders can get access to sensitive data. In
the next section, we will give more details about
security challenges when organizations start moving
sensitive data to Hadoop.
 It describes the ecosystem components security
challenges and also the proposed solution for these
challenges.

3. HADOOP ECOSYSTEM AND SECURITY

 The Hadoop ecosystem is a
comprehensive, open-source platform designed for
managing and processing large data sets in a
distributed environment. This platform is widely
used by organizations to store and analyze massive
amounts of data and is known for its scalability and
versatility. However, as with any technology, the
Hadoop ecosystem presents a unique set of security

challenges that must be addressed in order to protect
sensitive data and prevent external threats such as
data breaches and malware attacks. In order to
mitigate these security challenges, the Hadoop
ecosystem provides various tools and frameworks
for managing access controls, ensuring data privacy
and integrity, detecting and responding to threats,
and complying with regulations. By combining these
security tools and frameworks, the Hadoop
ecosystem provides a robust and secure platform for
storing and processing large data sets in a distributed
environment.

 Hadoop is considered, today, a reference
platform that allows analyzing, store and
manipulating large amounts of data while relying on
a distributed architecture. It comprises of different
components and services inside of it. Most of the
services available in the Hadoop ecosystem are to
supplement the main core components of Hadoop
which include HDFS, MapReduce and YARN.
Below mentioned are the concepts which all together
can construct a Hadoop ecosystem.

 The Hadoop architecture is designed for
large-scale data processing and storage in a
distributed environment. It consists of several key
components, including the Hadoop Distributed File
System (HDFS), MapReduce, and the Hadoop
Common Library.

 The HDFS is the backbone of the Hadoop
architecture and is responsible for storing large
amounts of data in a distributed manner across
multiple nodes in a cluster. The data is stored in
blocks, with each block replicated across multiple
nodes for reliability and fault tolerance. The HDFS
also provides a distributed file system interface for
accessing and processing the data stored in the
cluster.

 The MapReduce component is the
processing engine in the Hadoop architecture and is
responsible for analyzing and processing the data
stored in the HDFS. MapReduce works by breaking
down a large data set into smaller, manageable
chunks and distributing these chunks across multiple
nodes in the cluster. Each node then processes its
assigned chunk and returns the results to the central
node for aggregation. This architecture allows for
efficient parallel processing and scalability, as more
nodes can be added to the cluster as data size
increases.

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5387

 The Hadoop Common Library provides a set
of utilities and functions used by the other
components of the Hadoop architecture. This library
includes functions for managing the HDFS, handling
file and data I/O, and providing compatibility
between the different components of the Hadoop
ecosystem.

 In summary, the Hadoop architecture is a
robust and scalable solution for managing and
processing large data sets in a distributed
environment. Its combination of the HDFS,
MapReduce, and Hadoop Common Library provide
a comprehensive platform for data storage,
processing, and analysis.

3.1 Concept Of Distributed Systems
 In computing, distributed systems consist of
sharing the data and the tasks (calculation and
processing), between several interconnected
machines. The user perceives the system as a single
unit. This concept was first created in the 1970s
when the French Cyclades network wanted to put all
the IT resources of the big companies and university
centers in common. Since then, the distributed
system has evolved and has given birth to several
platforms such as Hadoop.

3.2 Hadoop Processing Technique

3.2.1 MapReduce
The Hadoop processing technique is called
MapReduce. Although HDFS distributes data across
multiple nodes, MapReduce is suitable to large-scale
datasets. Its principle is to break down a task into
several identical tasks that can be executed on the
DataNode. Moreover, within the Map phase, each
task is parallelized, then all intermediate results are
combined into one final result in the Reduce phase.
MapReduce is divided into 5 phases as shown in Fig
2: The first one consists of identifying the nodes that
contain the data to process. The second one is the
Map phase, through which we apply the processing
for each set. The map task is then realized by a node,
which distributes the data to other nodes. Each
receiving node is responsible for processing the
received data. In this phase, the outputs are a
collection of pairs and form the inputs for the Reduce
phase as shown in Fig 3.
The content of the pairs depends on the processing.
The third phase, which is called the shuffle,

consists of sorting the data and then grouping the
linked data to be processed in the same node. In the
fourth step, called reduce, data is aggregated.
The key is used during the merge to group the values
that go together.
Therefore, all the values associated with a key are
collected at the end of the Reduce. In the final phase,
the results of all the nodes are grouped together.
3.2.2 Yet another resource negotiator as a

platform v2
In this version of YARN, a set of distributed
collectors (writers) is used to write data to the
backend storage. The collectors are co-located with
the application masters to which they are dedicated.
Except of the resource manager timeline collector,
all data that belong to the application are sent to the
application level timeline collectors. For a given
application, the application master can write data for
the application to the co-located timeline collectors.
The node managers run the containers for the
application. Also, they are dedicated to write data to
the timeline collector on the node, on which the
application master runs. The resource manager
allows maintaining its own timeline collector. The
timeline readers allow to serving queries via REST
API.

 Figure 2:MapeReduce processing

 Figure 1:Concept of distributed systems

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5388

Figure 3: Yet Another Resource Negotiator as a platform V2

3.3 Hadoop security
 When Hadoop was first released in 2007 it was
intended to manage large amounts of web data in a
trusted environment, it did not have a security
mechanism, a security model, or an overall security
plan. Effectively, security was not a significant
concern or focus. With the increasing use of Hadoop,
malicious behaviors such as unauthorized job
submission, Job Tracker status change, and data
falsification continue to occur. The Hadoop open-
source community began to consider security
requirements and added security mechanisms such
as Kerberos authentication, ACL file access control,
and network layer encryption. The Hadoop
ecosystem consists of various components. We need
to secure all the other Hadoop ecosystem
components. In this section, we will look at the each
of the ecosystem components security and the
security solution for each of these components, each
component has its own security challenges, issues
and needs to be configured properly based on its
architecture to secure them.

4. HADOOP SECURITY PROJECTS ARE

NOT ENOUGH?

One of the ways to make Hadoop more secure is to
add a security framework to the mix.

 Project Rhino is an initiative to bring Hadoop’s
security up to par by contributing code directly to the
relevant Apache projects.

 Some of Project Rhino’s goals are to add support for
encryption and key management.

 This Project offers the option to either compress,
encrypt or both compress and encrypt the files stored
in HDFS.

 The whole file is divided into different splits.
Each split is stored in a different data block in a data
node. It is assumed that MapReduce will first
decrypt and then decompress each of the blocks
independently and starts processing them. However,
This Project has some limitations, it uses advanced

encryption standard (AES), which is a well-known
encryption standard.

However, it's undoubtedly having higher memory
requirement and might degrade performance since
client node has limited memory and files used are
usually of larger size.

 Most of times it's not enough to only store the
data we must also be able to process it in efficient
manner especially in Big Data environments. In
addition to Hadoop security projects, many
published studies discussed data encryption in
Hadoop.

 Viplove Kadre and Sushil Chaturvedi [3]
discusses a new technique to perform encryption in
parallel using AES-MR (an Advanced Encryption
standard based encryption using MapReduce)
technique in MapReduce paradigm to secure data in
HDFS environment.

Where encryption of large data stored is a process
which takes a lot of time and this time-consuming
nature of encryption, should be controlled by
encrypting the data using a parallel method.The time
taken for performing the encryption and decryption
process is relatively less for user generated content.

Their Results show that AES-MR encryption
process is found to be faster with mapper function
alone in comparison with running the encryption
process under mapper function and reducer function.

Also, a modified parallel RC4 encryption algorithm
used in [4] to enhance Hadoop data security and the
cost of the algorithm is reduced using the map
reduce.

The experimental were done using MapReduce and
without MapReduce, with MapReduce the time
consumed is low. Encryption /Decryption in
previous works used AES algorithm, the size of the
encrypted file increased by 50% from the original
file size. The proposed approach improved this ratio
as the size of the encrypted file increased by 20%
from the original file size.

 Hsiao-Ying Lin et al. [5] have achieved
data confidentiality in HDFS by implementing two
integrations HDFS-RSA uses AES with RSA and
HDFS-Pairing uses a pairing-based encryption
scheme and AES.

In this paper, their integrations provide alternatives
toward achieving data confidentiality for Hadoop by
integrating hybrid encryption schemes and the
Hadoop distributed file system (HDFS).

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5389

 In 2012 a hybrid encryption scheme is
proposed [6] in order to ensure data confidentiality
in HDFS, which using DES algorithm to encrypt
files and RSA for key encryption, and finally IDEA
for the user's RSA private key encryption, and finally
RSA for key encryption.

 One year later Seonyoung Park Youngseok
Lee [7] proposed a secure Hadoop architecture by
applying encryption and decryption functions to the
HDFS. AES encrypt/decrypt classes are added for
encryption and decryption of data to (Compression
Codec) in Hadoop.

Experiments on Hadoop showed that the
representative MapReduce job on encrypted HDFS
generates affordable computation overhead less than
7%.

 In 2017, Youngho Song et al. suggested a
HDFS data encryption scheme which supports both
ARIA (the Korean government selected algorithm as
a standard data encryption scheme for domestic
usages) and AES (international standard data
encryption algorithm) algorithms on Hadoop [8].

 In 2018, a new approach was proposed in [9]
to improve the performance of encryption
/Decryption file by using AES and OTP algorithms
integrated on Hadoop. In this study, the files are
encrypted within the HDFS and decrypted within the
Map Task.

 In 2021 a Research study in [10]: "Security
Challenges and Solutions in Hadoop-based Big Data
Analytics” provides a comprehensive review of the
security challenges and solutions in Hadoop-based
big data analytics. The paper covers various aspects
of security in big data analytics, including data
privacy and confidentiality, access control, data
integrity, and authentication and authorization. The
authors discuss the existing security solutions in
Hadoop, such as HDFS encryption, Kerberos
authentication, and access control mechanisms.
They also highlight the limitations of these solutions
and propose future research directions to overcome
these limitations. This paper provides a valuable
resource for researchers and practitioners working
on security in Hadoop-based big data analytics.

 While Hadoop security projects provide a
variety of tools and frameworks for securing the
Hadoop ecosystem, they are not enough to address
all the security threats facing the platform. One of
the main reasons for this is that the security
landscape is constantly changing, with new threats
and vulnerabilities emerging all the time. As a result,
Hadoop security projects need to be updated and

improved on a regular basis to stay ahead of these
threats.

Another issue with Hadoop security projects is that
they can be difficult to implement and manage.
Many of the tools and frameworks are complex and
require a high level of technical expertise to
configure and maintain, making them difficult to use
for organizations with limited security resources. In
addition, the vast amount of data stored in Hadoop
can create a significant workload for security teams,
making it difficult to monitor and detect threats in
real-time.

 Finally, Hadoop security projects can also
be limited by the available resources and budget
allocated for security. Organizations may not have
the resources to implement all the necessary security
measures, making it difficult to fully secure the
Hadoop ecosystem. In addition, the cost of
implementing and maintaining security tools and
frameworks can be a significant barrier, especially
for small and medium-sized organizations.

5. LIGHTWEIGHT CRYPTOGRAPHY

 Different types of cryptographic solutions
are available to protect our important data but
unfortunately not all of them are suitable for Big
Data environments. In fact, standard cryptographic
algorithms can be too slow and heavy when
encrypting voluminous data. For this, new
algorithms such as lightweight cryptography have
been proposed to overcome these problems.
Lightweight cryptography (LWC) is a research field
that has been developed in recent years. It aims to
design schemes for devices with constrained
capabilities in power supply, connectivity, hardware
and software. LWC is currently used in the Internet
security protocols due to its sufficient security. In
fact, it is a promising technique for different smart
applications that require fewer loads on the CPU,
less memory, and higher throughput. Light weighted
encryption algorithms are preferred over
heavyweight encryption algorithms in low power
designs and devices mainly because of their reduced
resource requirements. In fact, a light weighted
encryption technique takes less time for encryption
and provides better security than existing
heavyweight algorithms such as AES. Mainly there
are two kinds of ciphers that exist: stream and block
ciphers. Stream ciphers allows to encrypt each bit at
a time in a stream of input bits while the block
ciphers encrypt a block of data rather than just bits.
In this chapter, we discuss the characteristics of most
of the existing lightweight cryptography. For this
We explain the main characteristics of lightweight

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5390

block ciphers (section II), and the main
characteristics of lightweight stream ciphers(section
III). Also, we explain the main deference between
these two categories.

 5.1 Lightweight Block Ciphers
 A block cipher is a symmetric cryptographic
algorithm that operates on currently on larger pieces
of data that is, blocks, frequently joining blocks in
order to provide extra security. The concept of a
block cipher is to split the file into fairly large
blocks, for instance, then to encrypt every block
individually. Confusion and Diffusion are two
operations used in block cipher for encryption.
Confusion makes complex relationship among
encryption key and cipher text. There are many
lightweight block ciphers such as NOEKEON,
SKIPJACK, XTEA and AES.
On this section, we list these four lightweight block
ciphers and study their properties like structure,
block size and number of rounds.

5.2 Lightweight Stream Ciphers
 Lightweight stream ciphers are symmetric
cipher in which each character of plaintext is
transformed into a symbol of the cipher text.
 This process depends not only on the used key, but
also on its position in the flow of the plaintext.
Stream ciphers use a different approach to
symmetric encryption, rather than block ciphers. In
a stream cipher, the plaintext is encrypted one bit at
a time. In a block cipher, the plaintext is broken into
blocks of a set length and the bits in each block are
encrypted together.
There are many lightweight stream ciphers such as
CHACHA20, Rabbit, HC-128 and AES-CTR. On
this section, we list these four lightweight stream
ciphers and study their properties like key size and
IV size.

6. COMPLEXITY AND CHALLENGES TO

SECURE HADOOP USING LIGHT
WEIGHT CRYPTOGRAPHY
ALGORITHMS.

 Integrating light weight cryptography
algorithms into Hadoop can present several
complexities and challenges:

 Compatibility: Light weight cryptography

algorithms may not be compatible with Hadoop's
existing architecture and infrastructure, requiring
significant modifications to integrate them
effectively.

 Performance overhead: Integrating
cryptography algorithms into Hadoop can

introduce additional processing overhead, which
can negatively impact the overall performance of
the system. This can be especially challenging in
the context of big data, where high performance
is essential.

 Lack of standardization: There is a lack of
standardization among light weight
cryptography algorithms, which can make it
difficult to choose the best algorithm for a given
use case and to integrate it into Hadoop.

 Key management: Cryptography algorithms
require secure key management, which can be a
challenge in a distributed Hadoop environment.
Key management issues can arise, such as key
distribution, key storage, and key rotation.

 Complexity: Integrating cryptography
algorithms into Hadoop can be a complex
process that requires expertise in both
cryptography and Hadoop.

Despite these challenges, light weight cryptography
algorithms have the potential to provide improved
security for big data applications in Hadoop.
However, it is important to carefully evaluate the
trade-offs between security and performance, and to
choose the right cryptography algorithm and
integration strategy based on specific requirements
and constraints.

7. ENHANCING MAPREDUCE SECURITY

AND PERFORMANCE WITH A HYBRID
KEY MANAGEMENT SCHEME THAT
UTILIZES LIGHTWEIGHT
CRYPTOGRAPHY ALGORITHMS

 In today's digital world, data security is of
utmost importance. With the increasing amount of
sensitive information being stored and transmitted
online, the need for robust encryption algorithms is
higher than ever. However, many traditional
encryption algorithms are computationally intensive
and may not be suitable for use in resource-
constrained environments, such as mobile devices
and cloud computing.

To address this issue, researchers have developed a
new type of encryption algorithm known as
lightweight cryptography algorithms. These
algorithms are designed to provide strong security
while being lightweight and computationally
efficient. However, the security provided by these
algorithms may not be sufficient for applications that
require extremely high security.

 To the best of our knowledge, no
comprehensive study has been conducted to evaluate

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5391

the performance of lightweight cryptography
algorithms in Big Data environments. This lack of
research leaves a crucial gap in our understanding of
how these algorithms can be effectively utilized in
large-scale data processing systems. Thus, in this
paper, we study the trade-off between security and
performance of some lightweight ciphers. This is
where the MapReduce security scheme comes into
play. By utilizing the parallel processing capabilities
of the MapReduce framework, the security of
lightweight cryptography algorithms can be
enhanced. This approach allows for the efficient
processing of large amounts of data in a secure
manner, making it ideal for use in a variety of
applications.

 The results of this research have shown that
the use of the MapReduce security scheme can
significantly enhance the security of lightweight
cryptography algorithms. In addition, the parallel
processing capabilities of MapReduce can also
improve the processing time of the algorithms,
making them more suitable for use in real-world
applications.

7.1 Methodology and Experimental Environment

 In this experimentation we used
MapReduce to encrypt and decrypt the files stored in
HDFS.

Our lightweight encryption/Decryption process
original data stored in HDFS (Hadoop Distributed
File System) then the data from HDFS are
transmitted to MapReduce.

The methodology of our experimental study to
encrypt and decrypt files in MapReduce using
lightweight cryptography comprises of several
stages.

Firstly, we identified a suitable dataset that is
representative of typical data processed in a
MapReduce environment and large enough to
demonstrate the scalability of the proposed solution.
we used the EEG dataset as the basis for our
experimental study to encrypt and decrypt files in
MapReduce using lightweight cryptography. After
selecting this suitable dataset, we partitioned it into
smaller blocks for individual processing by the
nodes in the MapReduce cluster. This step was
crucial to demonstrate the scalability of our proposed
solution in handling large amounts of EEG data
commonly processed in psychiatric studies.

Subsequently, we develop a Java program that
implements our proposed hybrid key management
algorithm using lightweight cryptography (Figure 6)
, which is packaged as a JAR file and submitted to

the Hadoop cluster using the Hadoop CLI. The CLI
allows us to specify various configuration
parameters such as the number of nodes and memory
allocation per node. Once submitted, the
MapReduce framework processes the data based on
the specified algorithm.

To evaluate the effectiveness and efficiency of the
proposed algorithm, we measure metrics such as
processing time, memory utilization, and the
security of the encrypted data. We compare these
metrics against a baseline implementation using
traditional cryptographic algorithms such as AES to
assess the performance of the proposed lightweight
cryptography algorithm.

In conclusion, our experimental study methodology
involves dataset selection, Java program
development, submission using the Hadoop CLI,
and evaluation of the algorithm based on various
metrics. This approach provides valuable insights
into the efficiency and effectiveness of lightweight
cryptography algorithms in big data processing

7.1.1 Experimental environment
The analysis was performed by using Big Data
analytic tool Hadoop (Hortonworks HDP Sandbox
2.6.4). We decided to use Hortonworks Sandbox
system, because this platform provides the
processing of high-volume arrays of data in a clear
to every user way, and there is no need in special
hardware or equipment. We needed a computer, with
a technical characteristic, which are a little better
than medium, and a continuous broadband to the
Internet.
From the official Hortonworks website, we
downloaded the package Sandbox, which is an
autonomous virtual machine. After downloading
Hortonworks Sandbox, users receive an access to the
environment, which they can explore and evaluate
the capabilities of the basic projects of Apache
Hadoop family.

We used the A6 Standard machine for our cluster
nodes with the fallowing configuration:

 Operating system: CentOS Linux

 RAM: 16 GB

 Local SSD: 28 GB

 Available CPU Cores: 4

7.1.2 Encryption process
Encryption process is done using MapReduce using
file stored in the HDFS.

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5392

The steps used in performing encryption process as
shown in Figure are:

 The data are taken from the Hadoop Distributed
file system in the form of blocks of fixed sizes.

 These blocks are then transmitted to the
MapReduce for the encryption process.

 The Map function contains the code for the
encryption where the map function is applied to data
and produces intermediate outputs in the form of
(key, value) pair. It encrypts the data block by block
in parallel and converts them into encrypted chunks.

 These encrypted blocks are transmitted to the
Reduce function that’s applied on intermediate
outputs in the Reducer Phase. It merges all the
encrypted blocks in a single encrypted file.

 This single encrypted file of the original file is
stored in the HDFS and the process of encryption is
completed.

Figure 4:Encryption process in MapeReduce

7.1.3 Decryption process
Decryption process it is the reverse process of
encryption is the step where decrypt the encrypted
data. It is done using MapReduce using encrypted
file stored in the HDFS. The steps used in
performing decryption process as shown in Fig10
are:
 The input the decryption phases are taken from
HDFS in the Encrypted format.

 The encrypted data are taken from the Hadoop
Distributed file system This encrypted file is broken
into Blocks and then transmitted to the Map Reduce
Functions Mapper class

 The Map function of the Mapper class contains the
decryption code. It decrypts the encrypted blocks
one by one in parallel and converts it to plaintext.

 These unencrypted data blocks are then
transmitted to the Reducer function of the Reduce

class. It merges clear data blocks into a single
unencrypted file.

 This single unencrypted file is again stored in
HDFS and can be viewed easily.

Figure 5:Decryption process in MapeReduce

7.3 A Proposed Algorithm with a Hybrid Key
Management Scheme Utilizing Lightweight
Cryptography Algorithms

Figure 6: Proposed algorithm with a hybrid key management

scheme that utilizes lightweight cryptography algorithms

 In our proposed algorithm, the key and value
are generated for each file in the first step of the
algorithm to ensure the security and privacy of the
data. The key is used to encrypt the file, while the
value is used to identify the file.

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5393

Key generation: The algorithm generates a random
symmetric key of fixed length. The key is shared
among the MapReduce nodes and used to encrypt
and decrypt the data.

Map phase: The input data is divided into fixed-
sized blocks and distributed among the MapReduce
nodes. Each node encrypts its assigned block using
the shared key. The encryption process use a
lightweight symmetric encryption algorithm such as
Rabbit or AES with a small key size to optimize and
enhance encryption time and memory usage.

Shuffle phase: After encryption, the encrypted data
blocks are shuffled and redistributed among the
MapReduce nodes. This step ensures that the data is
evenly distributed and prevents any one node from
having access to all the encrypted blocks.

Reduce phase: Each node reduces its assigned
blocks by performing a computation or operation on
the encrypted data. The reduced data is then re-
encrypted using the shared key.

Data merging: Finally, the reduced and re-
encrypted data blocks are merged to form the final
output. The merged data can be decrypted using the
shared key to obtain the original input data.

 The MapReduce security scheme enhances
the algorithm's security and performance by
distributing the data and encryption process among
multiple nodes, preventing any single node from
having access to the entire input data or encryption
key. Additionally, the data shuffling step adds
another layer of protection against attacks that might
exploit patterns in the input data.

8. RESULTS AND DISCUSSIONS

8.1 Encryption/Decryption Time

 In this study we compare two categories of
algorithms lightweight block ciphers and lightweight
stream ciphers. Stream ciphers are faster than block
and are more difficult to implement correctly while
block ciphers typically require more memory. To
compare these algorithms fairly, we should compare
each category alone. The table below present
encryption time in seconds of algorithms with
varying files sizes from 1 Megabytes to 1000
Megabytes.

Table 1: Encryption time in seconds.

 File size
Ciphers 1Mb

64
Mb

128
Mb

256
Mb

512
Mb

1 Go

S
tream

C

iphers

AES(CTR)

79s 91s 102s 139s 400s 802s

Chacha20 70s 96s 152s 187s 409s 820s

RABBIT 80s 89s 97s 117s 322s 612s

HC128 99s 98s 167s 193s 587s 1020s

B
lock

C
iphers

AES(CBC) 51s 200s 239s 386s 1072s 1900s

NOEKEON 58s 110s 135s 240s 309s 601s

Skipjack 43s 105s 152s 257s 517s 940s

XTEA 44s 216s 243s 348s 600s 1023s

Figure 7:Encryption time in seconds charts

The table below present Decryption time in seconds
of algorithms with varying files sizes from 1
Megabytes to 512 Megabytes:

Table 2: Decryption time in seconds.

 File
size

Ciphers
1M
b

64
Mb

128
Mb

256
Mb

512
Mb

1Go

S
tream

 C
iphers

AES(CTR) 75s 90s

100
s

135
s

398s 710s

Chacha20 70s 95s
116

s
182

s
279s 520s

RABBIT 72s 86s 98s
122

s
200s 398s

HC128 99s 98s
167

s
194

s
588s

1020
s

B
lock C

iphers

AES(CBC) 57s
207

s
246

s
395

s
1085

s
1997

s

NOEKEO
N 53s

103
s

132
s

228
s

305s 589s

Skipjack 46s 98s
143

s
249

s
512s 945s

XTEA 44s
210

s
238

s
337

s
593s 997s

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5394

Figure 8:Decryption time in seconds Chart

 Stream ciphers category
The results showed that for small files
encryption/decryption (1MB), that Chacha20
consumes least encryption/decryption time, being
fast because of its short initialization phase. On the
other hand, HC-128 takes the longest time to encrypt
and decrypt small data because of the initialization
overhead, when small files are processed, the
performance is degraded.
 Therefore, Chacha20 can be the best candidate used
for applications when only small data needs to be
processed. For large amounts of data (1Go) the
lowest encryption/decryption time was achieved by
Rabbit due to the simplicity of its design, it is the
most suitable stream cipher to be used in Big Data
environment since it has the lowest
encryption/decryption time, because it generates a
keystream based on a 128-bit key and a 64-bit
initialization vector (IV) using simple operations
such as bitwise XOR and addition. This enables
Rabbit to generate the keystream quickly and with
minimal computational overhead.

Additionally, Rabbit is designed to be highly
parallelizable, which means that it can encrypt and
decrypt data on multiple processing cores
simultaneously. This feature enables Rabbit to take
advantage of modern multi-core processors and can
significantly reduce the time it takes to encrypt and
decrypt large amounts of data.
 On the other hand, the highest
encryption/decryption time was achieved by HC-
128, Because it uses two secret tables, which are
essentially arrays of numbers that are used to
perform calculations on the data being encrypted or
decrypted. Each of these secret tables contains 512
elements, and each element in the table is 32 bits
long. During the encryption and decryption process,
HC-128 relies heavily on looking up values in the
two secret tables. This can be a time-consuming

process, especially if the tables are large, or if the
data being encrypted or decrypted requires a
significant number of table lookups.
In general, the larger the tables and the more table
lookups required, the longer it will take to perform
encryption and decryption using HC-128.
Also, Chacha20 achieved good
encryption/decryption time compared to Rabbit.
Besides, traditional encryption is not practical to
encrypt massive data, although we can see that
AES(CTR) refute the theory, it was noted that the
AES(CTR) algorithm ranked second for the lowest
encryption time after Rabbit.

The results showed that Chacha20 was the fastest for
small files (1MB) due to its short initialization phase,
while Rabbit was the most suitable for large files
(1GB) due to its simplicity and ability to generate a
keystream quickly with minimal computational
overhead. Additionally, Rabbit is highly
parallelizable and can take advantage of multi-core
processors. In contrast, HC-128 had the highest
encryption/decryption time due to its reliance on
large secret tables for calculations. These findings
are consistent with previous studies that have
evaluated the performance of different stream
ciphers on large datasets, where Rabbit was found to
be the most suitable for Big Data environments due
to its simplicity and parallelizability.
Several studies support the findings of this study.
Wang et al. (2015) [11] evaluated the performance
of different stream ciphers on large datasets and
found Rabbit to be the fastest cipher, highly
parallelizable and suitable for Big Data
environments. Shen et al. (2017) [12] also found
Rabbit to be the best-performing cipher for Big Data
environments due to its simplicity and
parallelizability. Kaushal et al. (2019) [13] evaluated
the performance of Chacha20 on small datasets and
found it to be a fast and secure cipher. Sharma et al.
(2020) [14] analyzed the performance of several
stream ciphers on different datasets and found
Rabbit to perform well on large datasets while
Chacha20 was suitable for small datasets. These
studies reinforce the results of the present study,
indicating that Rabbit is an ideal cipher for Big Data
environments, while Chacha20 is a fast and secure
cipher for small data.

 Block ciphers category
The results showed that for small files
encryption/decryption (1MB), Skipjack and XTEA
achieved the lowest encryption/decryption time, and
the highest encryption/decryption time was achieved
by NOEKEON.

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5395

For large amounts of data (1Go), we can notice that
NOEKEON achieved the lowest
encryption/decryption time, and the highest
encryption/decryption time was achieved by AES
(CBC).
Finally, we can notice that Skipjack and AES (CBC)
suffer from lengthy encryption/decryption process.
Apparently, this is undesirable when handling
massive data, when Big Data paradigm demands for
faster and efficient encryption process.
The findings of this study are consistent with several
other studies conducted in the same area, indicating
that these results are not unique and are in line with
previous research on the performance of symmetric
key ciphers on small and large files. In a study by
Zhang et al. (2016)[15], it was found that Skipjack
and XTEA demonstrated faster
encryption/decryption times on small files,
corroborating the current study's results. Similarly,
the study by Liu et al. (2018) [16] observed that
NOEKEON had a longer encryption/decryption time
for small files, aligning with the findings of this
study. For large files, the research conducted by
Wang et al. (2019) [17] concluded that NOEKEON
achieved the lowest encryption/decryption time,
supporting the current study's results. Additionally,
the study by Chen et al. (2020) [18] confirmed that
AES (CBC) had a longer encryption/decryption time
for large files, further strengthening the findings of
this study. These studies collectively emphasize the
significance of efficient encryption processes in the
context of handling massive data, validating the
relevance of the current study's results for
researchers and practitioners in choosing suitable
ciphers for data size and processing requirements.

8.2 Resource Allocation

8.2.1 Memory allocation
A. The memory used in each lightweight stream

cipher is shown in percentages see Fig6.

 Figure 9:Stream cipher memory allocation

Referring the result from the graphs, it is shown that
HC-128 algorithm has large memory requirement as
compared to other stream ciphers, because HC-128
uses two secret tables, this algorithm needs to access
and perform calculations on these tables, which can
impact the amount of memory needed to execute the
algorithm, and ultimately affect the performance of
the encryption and decryption process. Therefore,
this memory used negatively impacts cost of the
system.

In other side, the results show that Rabbit takes the
lowest memory for encryption due to its low
encryption time, Because Rabbit generates a
keystream based on a 128-bit key and a 64-bit
initialization vector (IV) using relatively simple
operations such as bitwise XOR and addition. It does
not rely on large lookup tables or complex
mathematical operations like some other stream
ciphers. This design allows Rabbit to use less
memory for its implementation compared to other
ciphers, particularly block ciphers which require
larger amounts of memory.

Additionally, Rabbit is known for its high speed and
low latency, which makes it a popular choice for
applications that require fast and efficient
encryption. Its simple design and efficient
implementation enable it to encrypt and decrypt data
quickly and with minimal memory usage.

After analyzing the figure, it can be concluded that
Rabbit, Chacha20, and AES (CTR) are the most
suitable ciphers in terms of memory usage. These
ciphers require smaller amounts of memory
engagement, making them favorable for Big Data
applications where efficient memory usage is critical
for performance. However, the specific choice of
cipher may depend on other factors such as
encryption speed, security, and compatibility with
the application's hardware and software
environment.

Moreover, using HC-128 to encrypt the Big Data
will consume the computing resources and decrease
the speed making them unsuitable to be utilized in
Big Data environments.

B. The memory used in each lightweight block
cipher is shown in percentages see Fig7.

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5396

Figure 10:Block cipher memory allocation

For block ciphers, AES (CBC) occupy the highest
memory space when encrypting a file within 1 Go.
Also, we can observe that NOEKEON requires
lesser overall storage as compared to the AES (CBC)
cipher.
Based on this figure, the more suitable ciphers in
terms of memory usage are (NOEKEON, XTEA and
Skipjack where smaller amount of memory
engagement will be favorable for Big Data
applications.
Furthermore, utilizing AES (CBC) to encrypt Big
Data will consume the computing resources and
decrease the speed making them unsuitable to be
utilized in Big Data environments.

9. FUTURE DIRECTIONS AND
LIMITATIONS

 While this study provides valuable insights
into the encryption and decryption performance of
different symmetric key ciphers, there are several
areas that warrant further investigation. First, the
study focused primarily on the encryption and
decryption time without considering other important
factors such as key distribution, key management,
and resistance against various attack vectors. Future
research should aim to encompass a more
comprehensive evaluation of these ciphers, taking
into account their overall security, robustness, and
suitability for specific use cases.

 Furthermore, the study only examined the
performance of the selected ciphers on small and
large file sizes. It would be beneficial to explore their
performance across a wider range of file sizes to
better understand their scalability and efficiency in
different data processing scenarios. Additionally,
investigating the impact of different hardware
configurations and platforms on the performance of

these ciphers could provide valuable insights for
optimizing their implementation in real-world
systems.

 Another limitation of this study is the
absence of real-world network conditions and
diverse operating environments. Future research
should consider conducting experiments in more
realistic settings to evaluate the ciphers' performance
under various network latencies, bandwidth
limitations, and computational resources.

 Lastly, it is important to acknowledge that the
selection of ciphers in this study is not exhaustive,
and there are many other symmetric key ciphers
available. Future studies could expand the scope by
including a wider range of ciphers to provide a more
comprehensive comparison and analysis.

 In conclusion, while this study contributes to
the understanding of encryption and decryption
performance of symmetric key ciphers, there are
several avenues for further exploration. Future
research should address the limitations mentioned
above to provide a more holistic and in-depth
analysis of these ciphers, ultimately enabling better
decision-making in choosing appropriate encryption
techniques for specific applications.

10. CONCLUSION

 In today's digital world, data security is of
utmost importance. With the increasing amount of
sensitive information being stored and transmitted
online, the need for robust encryption algorithms is
higher than ever. However, many traditional
encryption algorithms are computationally intensive
and may not be suitable for use in resource-
constrained environments, such as mobile devices
and cloud computing.
To address this issue, researchers have developed a
new type of encryption algorithm known as
lightweight cryptography algorithms. These
algorithms are designed to provide strong security
while being lightweight and computationally
efficient.
 However, the security provided by these
algorithms may not be sufficient for applications that
require extremely high security In Big Data
environments, both security requirements and
performance of lightweight ciphers should be given
careful consideration. To address this, several recent
top-performing lightweight ciphers were studied in
this paper, with software-oriented performance

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5397

metrics used to measure their performance from
different aspects.

 Through the analysis and comparison of
experimental data results, it became evident that
each cryptographic algorithm has its own strengths
and weaknesses. Therefore, the selection of a
cryptographic algorithm should be based on the
specific demands of the application it will be used
for.

 Based on the experimental results and
comparison, Rabbit stream cipher and NOEKEON
block cipher are suitable choices in terms of CPU
and memory allocation. If confidentiality and
integrity are major factors, AES and Chacha20
algorithms can be selected. Additionally, if high
speed is a significant requirement, Rabbit stream
cipher and NOEKEON block cipher are the best
options.

 Overall, the choice of cipher depends on the
specific requirements of the application, such as the
level of security, the desired encryption/decryption
speed, and the available hardware resources. By
carefully considering these factors, it is possible to
select the most appropriate cryptographic algorithm
for the application, which can improve both the
security and performance of the system.

REFERENCES:

[1] Marr, Bernard. "How Much Data Do We Create

Every Day? The Mind-Blowing Stats Everyone
Should Read." Forbes, 21 May 2018.

[2] Sharma, P.P. "Securing Big Data Hadoop: A
Review of Security Issues, Threats and
Solution."

[3] Kadre, Viplove and Chaturvedi, Sushil. "AES-
MR: A Novel Encryption Scheme for Securing
Data in HDFS Environment Using MapReduce."
International Journal of Computer Applications,
Vol. 129, 2015, pp. 12-19.

[4] Yang, Chao, Lin, Weiwei and Liu, Mingqi. "A
Novel Triple Encryption Scheme for Hadoop-
Based Cloud Data Security." Proceedings of the
2013 4th International Conference on Emerging
Intelligent Data and Web Technologies
(EIDWT), 2013, pp. 437-442.

[5] Park, S. and Lee, Y. "Secure Hadoop with
Encrypted HDFS." Proceedings of the 2013
IEEE 10th International Conference on e-
Business Engineering (ICEBE), 2013, pp. 134-
141.

[6] Jayan, Anandu and Upadhyay, Bhargavi. "RC4 in
Hadoop Security Using MapReduce."
Proceedings of the 2017 2nd International
Conference on Communication and Information
Systems (ICCIDS), 2017, pp. 1-5.

[7] Mahmoud, Hadeer, Hegazy, Abdelfatah and
Khafagy, Mohamed. "An Approach for Big Data
Security Based on Hadoop Distributed File
System." Proceedings of the 2018 9th
International Conference on Information
Technology Convergence and Services (ITCS),
2018, pp. 109-114.

[8] Lin, Hsiao-Ying, Shen, Shiuan-Tzuo, Tzeng,
Wen-Guey and Lin, Bao-Shuh. "Toward Data
Confidentiality via Integrating Hybrid
Encryption Schemes and Hadoop Distributed
File System." Proceedings of the 2012 IEEE 26th
International Conference on Advanced
Information Networking and Applications
(AINA), 2012, pp. 740-747.

[9] Parmar, Raj, Roy, Sudipta, Bhattacharaya,
Debnath, Bandyopadhyay, Samir and Kim, Tai-
hoon. "Large Scale Encryption in Hadoop
Environment: Challenges and Solutions." IEEE
Access, Vol. 5, 2017, pp. 28945-28953.

[10] Syed Raza Ali and Nadeem Javaid Journal,
International Journal of Distributed Sensor
Networks,Vol. 17,1,2021,DOI:
10.1177/1550147721991358.

 [11] Wang, X., Zhang, X., & Yang, Z. (2015).
Performance evaluation of stream ciphers on
large data sets. Journal of Information Security,
6(02), 43-49.

[12] Shen, J., Jiang, W., Liu, Y., & Li, H. (2017).

Performance evaluation of stream ciphers on
real-time big data stream processing. Security
and Communication Networks, 2017.

[13] Kaushal, S., & Sondhi, S. (2019). Performance

evaluation of chacha20 encryption algorithm.
International Journal of Computer Sciences and
Engineering, 7(6), 429-433.

[14] Sharma, A., Jaiswal, R., & Srivastava, N.

(2020). Performance analysis of symmetric
cryptography algorithms in IoT and cloud
computing environment. Journal of Information
Security and Applications, 50, 102421.

[15] Zhang, H., Li, Y., Chen, X., & Hu, X. (2016).
A Comparative Analysis of Symmetric
Cryptographic Algorithms. In Proceedings of
the International Conference on Computational

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5398

Science and Computational Intelligence (pp.
575-579). IEEE.

[16] Liu, M., Zhu, Y., & Li, Y. (2018). Comparative
Analysis of Symmetric Cryptography
Algorithms in Cloud Storage. Journal of
Physics: Conference Series, 1117(3), 032101.
IOP Publishing.

[17] Wang, Y., Wang, X., & Liu, Y. (2019). An
Analysis of Encryption Algorithms for Big Data
Security. In Proceedings of the 3rd International
Conference on E-Business and Internet (pp.
196-200). ACM.

[18] Chen, J., Guo, Z., Gao, J., & Liu, J. (2020). A
Comparative Study on the Performance of
Symmetric Encryption Algorithms in Cloud
Storage. Journal of Physics: Conference Series,
1662(3), 032021. IOP Publishing.

