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ABSTRACT 
 

Big data are vectored, high dimensional and voluminous. Sampling such data is daunting task. Progressive 
sampling is the solution for such data. However initial sample size of the progressive sampling technique 
plays a vital role in the overall computational time and convergence time of any classifier. In Progressive 
Sampling Algorithm (PSA) a number of times iterative computation runs will be accountable for the total 
time cost of the sampling and indirectly to the time required for convergence of the classifier to learn a 
hypothesis. All existing works on minimal sample size estimation are not appropriate to carry out in the 
Distributed File system like Hadoop. In this work we present a novel statistically optimal sample size 
technique and its analysis, to estimate the initial minimal sample size for big data in an HDFS environment. 
Heterogeneous big data datasets were experimentally used to estimate initial sample size in a Hadoop 
environment with the analysis of computational time and space complexity in all degrees of freedom along 
with the convergence of the learning algorithm. If the initial sample size were accurately estimated, then there 
will be a substantial reduction in PSA. Thus providing a proper initial sample size for PSA will ensure 
optimally fast learning of the classifier in Information Technology applications for substantial prediction and 
assessments thus leading to robust software performance. 

Keywords: Progressive Sampling Algorithm (PSA), PAC Framework, Big Data, Sample Size, Initial Sample 
Size 

 
1. INTRODUCTION  
 

Sampling in Big data with various parameters and 
metrics is tedious task. Training a classifier for entire 
big data is a daunting task. The solution would be to 
train the classifier to samples selected out of big data. 
The quantity of samples selected will always be a 
problem that yields only optimal solutions and so is 
the task of training a classifier to samples of large 
data, with expected empirical results [8]. Whether 
the generated samples would be sufficient enough to 
train is a problem addressed in past times. The 
quality of samples selected via approximation 
techniques has various statistical approaches [7]. To 
provide efficient strategies to train a classifier with 
possibly fewer numbers of samples yet keep its 
classifying correctness within probably approximate 
correct framework progressive sampling 
methodology was resulted. A progressive sampling 
methodology is an iterative approach where each 
iterative step is designed to increment the sample 

size for the next iterative step depending on whether 
the convergence of the classifier is met for the given 
problem. [5][6]. All previous work related to PSA 
computation time was not tested upon a dataset with 
millions of instances and high dimensional. The 
initial sample size for the first iteration of PSA plays 
a significant role reduction the computational time 
for progressive sampling and also in turn overall run 
time [5][6][8][1]. The total number of iterations of 
PSA will be greatly reduced if the starting sample 
size or the initial sample size is very much minimal. 
Previous works concerned with minimal initial 
samples have not experimented on Big data sets.  

Although there are few works on Statistical 
estimation of minimal starting sample size, none was 
concerned with the computational time of 
progressive sampling methodology for Big Data in a 
distributed file system environment. 

To the best of our knowledge, our approach 
presented in this work efficiently determines a 
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minimal initial sample size for big data in a Hadoop 
environment with a concern for computational time 
and overall runtime of progressive sampling 
methodology. In recent advancements to progressive 
sampling methodology, Rademacher Averages are 
tested to provide the utmost bound for the sample 
size of a given problem and a given dataset 
[3][4][7][8]. Though the utmost bound proved to 
provide the maximum bound for the sample required 
to train a classifier and keep its performance within 
the PAC framework, there is no such profound work 
concerned overall run time of the algorithm. 

The overall runtime of such a progressive 
sampling algorithm will be proportional to the 
number of iterations the PSA executes which 
incorporates time expenses in upgrading the sample 
size at each iteration and the amount of time training 
the classifier until the stopping criterion is met 
[9][10]. The stopping criterion in the context refers 
to the convergence of the classifier ensuring it is 
within the PAC framework. The total time required 
for progressive sampling computation can be 
expressed as Big-Oh (Sample size + computation 
time for sample schedule + run time of training 
classifier and testing). Thus, incorporating 
progressive sampling techniques for big data based 
information technology application, enhances fast 
and efficient learning and scalability, thereby leading 
to a new dimension in training and classification of 
big data. 

In Section one defines the motivation of PS in Big 
data, initial sample size sampling problems in 
Progressive Sampling in big data, problem 
formulation, and outcome of PS in Big data. Section 
two studies the background. Section three covers the 
modeling of PS in the Big Data Hadoop 
Environment. Section Four provides the proposed 
methodology. Section five provides validation of the 
dataset with experimental setup and compares results 
obtained with the existing state. 

2. RELATED WORK 

In this section, the essentials of sampling in big 
data and data mining with the need for progressive 
sampling, optimized Convergence and divergence of 
learning algorithms for optimal training datasets, 
apply of discussed issues in big data parallel 
computing environment-related issues are discussed 
as follows: 

The sampling of large data has proved versatile in 
solving many data mining tasks in addition to its 
primary usage in training classifiers. For example, in 
the paper [10] proved that sample set cardinality 
derived using Chernoff bounds can reduce the time 

consumed to mine association rules. However, such 
size bounds were found to be too conservative in 
practice. In the paper [12] [8] provided a VC-
dimension-based sample bound on Big Data sets for 
the randomized algorithm PARMA which extracts 
frequent item sets and associations. In the paper [12] 
provided Rademacher Averages-based sample 
bound on Big Data sets for the randomized algorithm 
PARMA which extracts frequent item sets and 
association rules.  

Sampling data Methodologies on progressive 
sampling discussed by Bradley et al proposed and 
proved that existing clustering algorithms can be 
scaled up to large databases by a repeated updating 
of the current model with randomly drawn samples 
[13]. Sampling is also widely adopted in database 
retrieval methodologies. For instance, according to 
the self-tuning samples presented by Ganti et al., the 
probability that a tuple will be chosen is proportional 
to how frequently it must respond to inquiries. 
(Exactly) [14]. However, in both [12] and [13], It is 
not indicated how to select the appropriate sample 
size. Although Ganti et al. also offered a metric to 
quantify the difference between two data sets in 
terms of the models constructed by a certain data 
mining technique [11], which might address the 
issue of generating models using random samples, it 
did not address how to choose the appropriate 
sample size. 

Sampling of data size were discussed by Baohua 
Gu and Bing Liu [ 8] proposed a similar work to that 
of Ganti et al [11] [13] [15] in providing a metric to 
put a number on the variation between two data sets. 
However, the work discussed in [8] is based on 
statistical information divergence of data sets mostly 
from the UCI repository, and Sample sizes derived 
were independent of any data mining algorithm 
unlike in [3]. Alfonso Estrada and Eduardo F. 
Morales [27] proposed a Novel Progressive 
sampling technique aiming to reduce the overall run 
time to estimate the samples required for the 
convergence of any learning algorithm. However, 
the selection of the initial sample size by the work 
discussed in [28] is dependent on both types of data 
sets in use and the algorithm was chosen to act upon 
that data. Both [28] and [8] have not addressed the 
problem of huge data sets such as big data in 
Distributed Computational environments. For the 
concept of the most number of samples required for 
the convergence of learning algorithms use of 
statistically derived bounds by Matteo Riondato 
outdates all previous works [12]. However [12] [8], 
[13], [15] does not focus on improvising 
contemporary strategies followed in progressive 
sampling design. The fact that the initial sample size 
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chosen crucially determines the overall run time of 
any progressive sampling algorithm.  

Rademacher Approximation is statistical tool to 
derive bounds on datasets required for the 
convergence of learning problem [18] [19] [20] [21]. 
To determine the sample numbers required to obtain 
the necessary accuracy for adaptive learning, 
localized Rademacher complexities are made use of. 
Such probabilistic bounds have been proved on the 
number of active examples and several applications 
to binary classification problems are considered 
[18]. Function classes can be created as 
combinations of functions from basis classes, and 
they can be shown to have Rademacher and 
Gaussian complexities that are constrained by the 
complexity of the underlying basis classes. [19] [22]. 
Biomedical data sets were efficiently used to 
estimate total sampling size using progressive 
sampling without deal with its initial sample size 
[23]. 

Work proposed in [12], [7] demonstrate the use 
statistical bound such as VC-Dimension and 
Rademacher Averages to derive ε-Approximation of 
given datasets and thus contributes to generate 
training samples in a one-shot sampling scheme. 
However, this may lead under sampling or 
oversampling depending on the type of dataset and 
classifiers used in learning. Even though [12] 
achieve parallel processing and onetime database 
scanning, it has not considered overall sampling time 
and heterogeneity scenarios of datasets and learning 
algorithm. On the other hand, work proposed in [8] 
proposes methodologies to compute minimal initial 
sample size for simple data sets which can fit into 
primary memory. In the phase of improvisation of 
iterative nature of progressive sampling scheme for 
big data, work contribution from all previous works 
aims little towards optimization of computation. 

In this work, an enhanced methodology named 
Statistically Optimal Initial Sample size (SOISsize) 
for deriving to derive the initial minimal sample set 
size is provided. This work can be applied to carry 
out Progressive sampling on Big Data with size 
beyond the capacity of main memory, in a 
distributed computational environment such as 
HDFS.Since all computations in the proposed work 
are optimized in a parallel computation using 
Hadoop, the overall performance comparatively out 
rates all concerned previous works. 
 
3. PROGRESSIVE SAMPLING MODEL ON 

BIGDATA ENVIRONMENT  

In this section architecture of computation and 
data handling in a big-data Hadoop environment is 
modeled and discussed. The multi-Vectored and 

highly dimensional big data set can be loaded to 
secondary memory and preprocessed to apply Map 
Reduce function to generate key-value pairs. In the 
following section  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Architecture big data sets in the Hadoop 
environment 

Figure 1 clearly depicts the architecture of big data 
in a distributed file system architecture. Data sets 
considered for the processing and analytics will be 
loaded into the HDFS system which names node. 
Entire data sets which require Giga bytes of space in 
memory will be loaded to n data nodes while all 
metadata required for controlling the data node will 
be kept created in the data node. HDFS analyses the 
data pattern and reports errors in the consistency of 
data. All reported error data will be resolved with 
basic preprocessing techniques [38]. Preprocessing 
techniques such as normalization, filling missing 
values, feature verification and selection, etc. are 
incorporated here. Post to preprocessing Map 
Reduce framework is applied to reduce the data to 
key-value pairs. Further preprocessed data will be 
subjected to parallel computation to estimate the 
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initial minimal sample size. Pre-Processing stages 
applied to Biomedical and UCI big data incorporate 
the following standard procedures. Data chosen for 
the estimation of the initial minimal sample size and 
sample set is an acquisition from various data 
sources.  
3.1 Normalization 
This preprocessing stage ensures that each row in the 
data set has a unit norm. Any row in the data set 
chosen, if found to mismatch in the expression of the 
unit for any quantity, such rows are normalized to 
maintain integrity. 
3.2 Data Imputation 
Data imputation is a technique where the missing 
value row will be retained by substituting it with a 
suitable value. The substation of value depends on 
the probable and classified reason for missing data. 
For the biomedical dataset chosen for estimating the 
initial sample size, the most occurring value is 
replaced. 
3.3 Feature Selection and Extraction 

The selection of a subset of features concerned 
with the setting of the experiment refers here to as 
feature selection. Most prominent features are just 
sufficient to make analytics hints feature selection, 
eliminating the most redundant ones. Extraction is a 
technique that can be applied to a subset of features 
to estimate a new feature.in the case of biomedical 
data set incorporated for progressive sampling, any 
additional features related to visibility or structure 
are introduced. 
3.4 Hadoop Distributed File system 

Hadoop Distributed File system implements a 
multi-node cluster mechanism to store data in a data 
nodes system called racks. Each data node has 
processing and storage capabilities. All data nodes 
are configured and controlled by a special node 
called the Name node. All data nodes under a single 
name node are enabled to run distributed 
applications including mining and analytics. In this 
context after preprocessing of big data sets, 
generated key-value pairs will be sued to estimate 
and determine a minimal initial sample set for a 
progressive sampling of big datasets using 
Rademacher Averages [39]. 
3.5 Map-Reduce Framework 

Map–Reduce Algorithm generates key-value pairs 
out of the data provided to it as input. Mapping 
algorithms map data in different blocks and generate 
intermediate key-value pairs which will be provided 
as input to Reducer which reduces key-value pairs 
which will be then saved in HDFS. The Map Reduce 
algorithm is constructed based on two functions such 
as a map and reduce where the input is obtained from 
the key-value pairs which are denoted as (k,v).  

The map function obtains a pair of inputs in a 
single iteration and provides a multiset of pairs i.e. 
{(k_1,v_1 ),(k_2,v_2 ),…,(k_n,v_n )  }. The multiset 
union is denoted as U which is comprised of the 
multisets of map function when it is applied to every 
pair of inputs. The set U is partitioned into U_k ̅ , 
where the specified key is denoted as k ̅ and the U_k ̅  
is comprised of the pair of values denoted as (k ̅,v). 
Similarly, the reduce function takes the input key as 
k ̅ and provides multiple sets of values [38][39]. 
The results of preprocessing of big datasets are 
tabulated as follows 

Table 1. Analysis of preprocessing on datasets  
 

 Parameters of Dataset  
a. Features selection, b. Features 
Extracted, c. No missing value rows and 
imputed, d. Size in GBs, e. Framework 

dataset a b
. 

c. d. e  

ECBDL 

985 3 35 23 

HDFS 

Medicare 
123 3 56 25 

HDFS 

Melanoma 
117513 0 23 103 

HDFS 

Splice 
1000000 3 789 98 

HDFS 

adult 
14 2 6 0.2 

HDFS 

census 
14 2 5 0.2 

HDFS 

led 7 2 7 0.1 HDFS 
covtype 54 2 7 0.5 HDFS 

 
In the table 1 provides a complete analysis of each 
dataset loaded to Hadoop and the methodology 
applied on each data node to reduce the loaded data 
into key-value pairs 
 
4. ESTIMATING A MINIMAL INITIAL 

SAMPLE SIZE MATHEMATICAL MODEL 
In this section, complete methodology and 

associated concepts for estimating a minimal initial 
sample size to apply PSA in Big Data such that 
optimized learning of a concept can be achieved to 
be within the PAC framework, are proposed. 

Figure 2 depicts the modeling of the proposed 
methodology to estimate the initial minimal sample 
size. Key-value pairs of dataset resulted after 
preprocessing and Map Reduce stages, the entire 
dataset will be taken to all data nodes in a distributed 
with the balance of instances loaded to each. Each 
part of the data set loaded specific data node is 
referred to as range space. For Data Set D, R is said 
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to range space where R⊂D. For each range space 
ri∈R as R= {r1. r2, r3…….}. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Modeling of Initial minimal sample size 

computation 
4.1 Progressive sampling of Big Data 

By fundamental definition of sampling, it refers to 
the selection of samples from the data pool. Here 
concerning big data, the selection of elements from 
the big data set is randomized. In all randomized 
selection probability of selecting any sample will 
always be 0.5 both with and without replacement 
strategies. A brief survey of the literature on 
sampling big data reveals a few sampling techniques 
such as Random sampling, Random Sampling with 
Bucketing, and Random sampling with Bernoulli's 
sampling [24] can be used in a Hadoop environment 
to handpick the samples from the data pool. A 
sampling of semi-structured data or unstructured 
data loaded to data nodes of HDFS can be sampled 
across all nodes and results can be aggregated to 
form a sample set. The sampling technique can be 
realized by a python package PyHive and Hive query 
language. Hive is a query language that can be used 
on any DFS or HDFS. PyHive is used to write scripts 
that run Hive queries on the data set loaded to HDFS. 

Progressive sampling is controlled sampling 
where optimized training of any machine learning 
classifier is ensured to be within the probably 
approximately correct framework. It runs over 
iterations to arrive at the complete or total cardinality 
of samples optimally required to train the classifier. 
Use of Rademacher averages sets tight bounds for 
the most number of samples required. Computing 
Rademacher Averages locally at each data node and 
aggregating results in Rademacher Averages for the 
entire data set. The initial sample size or starting 
sample size required to start PSA on any given data 
set plays a vital role in determining the overall run 
time to approximate the optimal training sample set. 
In this work, a novel approach to estimating minimal 
initial sample size called Statistical Optimal size 

design is proposed with experimental design and 
results. 
4.2 Measuring Quality of Samples 

If a given dataset D, R is called to be Range space 
where R⊂D. Range space Ri∈R will be used to 
locally estimate sample size and later all of them are 
aggregated to form a Statistical Optimal Sample 
size. The primary criteria to estimate the sample size 
locally at each data node is to consider sample 
quality. The metric adopted here to measure the 
quality of a sample is Divergence or Deviation 
contributed by Kullback’s Information Measure 
[12]. Although Divergence Concept is used in their 
work by Baohua Gu and Bing Liu [8] to estimate it 
did not experiment with Big data sets in a distributed 
environment. 
i) Divergence  

If z is a particular value of any generic variable Z 
and Hi is the concept that Z is from a statistical 
population with generalized probability densities 
(under a probability measure λ) fi(x), i = 1, 2, then 
the information divergence [8] is defined by  

J (1, 2) = ∫ (f1(x)-f2(x)) (log f1(x) - log f2(x) dλ(x)). 

According to [8] [23] J (1, 2) is referred to as a 
measure of the divergence between hypotheses H1 
and H2 which indicates the measure of the difficulty 
of discrimination between them. Given two 
multinomial populations, if Pij is the probability of 
occurrence of a jth value in the ith population then the 
information divergence is          

J (1, 2) = Σcj=1 (p1j-p2j) (log p1j- log p2j) 

The information divergence has a limiting property 
which is described in theorem 1 whose proof can be 
obtained from [8]. Theorem 1 serves as a 
fundamental basis for the estimation of Sios. 
Theorem 1:  If f(x) is  probability density function 
and {fn(x)}, is a series of probability density 
functions where n → +∞, denote the information 
divergence from fn(x) to f(x) as J(fn(x),f(x)), then we 
have, if J(fn(x),f(x)) → 0, so that  fn(x)/f(x) → 1[λ], 
uniformly. Here [λ] refers to the limitation and the 
fraction held in a probability measure λ. [8] 
Definition 1: For any Range Space R (with n 
attributes) subset of a big data set i.e. R⊂D being 
processed in distributed environment such as HDFS 
and its sample S, then the quality of sample Q(S) 
=exp (-J (S, R)) where Jk(S, R) denotes information 
divergence between S and R on attribute K and it is 
given by J = (1 /n) ∑nk=1 Jk(S, R) [8]. 

To calculate Jk(S, R) at each data node of the 
Hadoop system all categorical attributes are treated 
as multinomial and continuous attributes such as 
numerical attributes are also treated as multinomial 

Big Data Input (HDFC)-Before 

MAP Reduce 

Big Data Input (HDFC)-After 

Preprocessed Big Data 

Named Node 
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by considering respective bin classes and bin class 
frequency through the construction of histograms. 
As per [8] the information divergence J > 0, hence 0 
< Q ≤ 1, where Q = 1 means that no information 
divergence exists between S and R. Larger the 
information divergence, the smaller will be the 
sample quality; and vice versa [8] [24]. 

Upon a single scan of a specific Range Space R at 
each data node, both categorical values and 
frequencies of numerical values that fall in the bins 
can be incrementally gathered. Since scan and 
quality measure to estimate minimal sample size, 
runs parallel, the time complexity of calculating 
sample quality at any data node will be O (Nd) where 
Nd is the total number of instances at each data node. 
Since all data nodes in HDFS works the parallel 
same amount of time would require to process the 
entire data in HDFS and measure sample quality and 
hence to have an approximation of the quality of all 
samples in the entire data as a whole. 

At each data node of Hadoop, occurrences of 
categorical values and Frequencies of numerical 
values can be incrementally collected. Hence Time 
complexity of calculating sample quality is O (Nd) 
(Nd is the total number of instances at any one data 
node of HDFS) [25][26]. Since computation runs 
massively parallel time taken by one data node to 
compute the sample quality will be the time for the 
entire big data set. However, data processing speed 
depends on the nature of the data under processing.  
Space complexity issues are trivial in impact as 
HDFS manages the entire data set on a secondary 
disk only. One scan of data at each node is sufficient 
enough to make processing and analytics. 
ii) Statistically optimal Initial Sample size 

The larger the sample size, the higher will be the 
sample quality. Therefore, the higher the divergence 
between elements of a sample, the better will be the 
sample for training any machine learning classifier. 
Statistically optimal initial sample need not be same 
as Optimal Sample size (OSsize). Hence statistically 
optimal initial sample size (SOISsize) can be defined 
as follows  

Definition 2: For any dataset D, its SOISsize is the 
size at which its sample quality tends to become 
sufficiently close to 1. 
SOISsize depends only on dataset D, while OSS 
relies on both the data set and the learning algorithm. 
Therefore, the SOISsize is not necessarily the OSsize. 
Model Accuracies of both OSsize and SOISsize can be 
very close. For a given machine learning classifier 
LM and a sufficiently large dataset D with a 
probability density function FD(x), LM can be used 
as an operator to map FD(x) to any real number., i.e., 
LM: FD(x) → Acc∗ [8] where Acc* is the maximum 

accuracy obtained. Assume that a random sample of 
OSsize has the probability density function FOS(x) 
and that of SOISsize has p.d.f. Fsois(x) then there 
exists a theorem which is as follows; 
Theorem 2:  If a random sample S of D has a 
probability density function FD(x) and L satisfies 
that FS(x)/ FD(x) → 1[λ] =⇒ |L(FS(x)) − L(FD(x)) 
| → 0, then Accsoissize → Accossize. 

Proof:  Suppose we have a series of n random 
samples of Dataset D with an incrementally larger 
sample size. Denoting the ith sample as {Si}, sample 
quality for Si can be designated as Q (Si) where i= 
1,2,3,4 …. n. 
According to the definition of SOISsize, Si 
→SOISsize as Q {Si} →1 i.e., the information 
divergence of Si from D is J (Si, D) → 0. 
Applying Theorem 1, we have,  

FSi (x)/f(x) → 1, therefore, |L (FSi (x)) −L (f(x))| → 
0.  
In an asymptotic sense, 
L (fSi (x)) → Accsosssize  

and  
L (f(x)) → Accossize, that is, Accsosssize → 
Accossize.  

However, in addition, SOISsize, since all 
computations are massively parallel; incorporates 
the idea of estimating the mean population with a 
certain confidence level at each data node of HDFS, 
and later averaging both to arrive at the exact number 
of samples to start progressive sampling in the phase 
of training any classifier to sufficiently huge 
datasets. From statistics, the size of a sample to 
estimate the mean of a population with a certain 
confidence level is given by [27]: 
                 N * σ2 
NMIN=   ───────────         ------- (1) 

   (N − 1) ∗ D + σ. 
Where D is ((N∗C) 2/ 4) and C is the confidence 
level of this estimate. Estimating σ 2, is needed, 
which in the absence of any information it is 
approximated by σ ≈ N 4. Since N − 1 ≈ N for large 
N, and after some simple manipulation: 
                     N 
NMIN = ───────────        ----- (2) 

 4 • N • C2 + 1  
Possibly a good way is s to fix a confidence level (C) 
and apply it to all the databases. The Average of 
SOISSIZE and   NMIN can yield the minimal initial 
sample size required to launch a progressive 
sampling on huge datasets managed by HDFS [27]. 
 
4.3 Algorithm for estimating minimal Initial 
sample size (SOISsize) 
Input: a large Dataset (D) of Size N {  
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            Si|i=1, 2, 3……………, n} 

Output: Statistically Optimal Initial Sample  
            Size (SOISsize) 
Step1: Load ∀ri ∈ R where R= {r1, r2……..rn} and  
           R ⊂D to specific node of HDFS 
Step2: Estimate the Probability Distribution  
            Function of each ri∈R at all nodes 
            And select some samples from each bin  
            Compute Nmin for each Range with a    
            Predefined confidence level 
Step 3: Compute Sample Quality for each sample  
            Q (Si) 
Step 4: Plot the intermediate regression curve and  
            Estimate its find mid-point called SOISsize 

Step 5: Find the Mean of individual data nodes  
             SOISsize 

Step 6: Find the Mean of Nmin at each specific  
            Node. And finally, find the average of   
            SOISsize and NMIN to yield the most  

            Expected optimal SOISS 
Step 7: Apply Random sampling at each node  
             Select a sample set whose cardinality is  
             SOISsize 
Step 8: Random sample the sample set resulted in  
            Step 7 again to gather accurate SOIS  
i) Sampling Schedule Design 
Geometric scheduling with constant common factors 
can be heuristically adopted to improvise the 
sampling schedule to be used over subsequent 
iterations in PSA. Doubling the sample size at each 
new iteration can give rise oversample of the 
learning algorithm the at any time near its 
convergence. Therefore, the idea to incorporate here 
is not to use a multiplicative factor of 2 for the 
SOISsize. However, sample size can be increased 
with a fractional geometric ratio such as 1.5, which 
would result in a good approximation of the number 
of samples used in training. Thus in all experiments 
conducted, a fractional common ratio is adopted 
which has played a significant role in the overall 
computational time of PSA [27]. 
ii) Computing Rademacher Averages 
Let Z be space and D be a fixed distribution D|Z. Let 
S = {z1. . . zm} be a set of examples drawn i.i.d. from 
D|Z. Furthermore, F will therefore be a class of 
functions f: Z → R. 
Definition. The empirical Rademacher complexity 
of F is defined to be  
Rm (F) =Eσ [supf∈F ((1/m) ∑mi=1 σi f (zi))] 
Where σ1 . . . σm are independent random variables 
uniformly chosen from {−1, 1}. Such random 
variables as Rademacher variables. The upper bound 
to Rademacher Approximation to the given dataset 
provided in [5][7][8] is adopted here. The code given 

in [23] is used to compute Rademacher Averages of 
any given data set. 
 
5. RESULTS AND DISCUSSION  
In this section, experiments were conducted on 
datasets such as ECBDL, Medicare, Melanoma, 
Splice, adult, census, led, and covtype to estimate the 
initial minimal sample size and samples to initiate 
the PSA. Validation of chosen datasets is 
demonstrated to compute time complexity and space 
complexity 
5.1 Experimental setup and computational 
procedure 
The proposed sampling algorithm using the 
Rademacher average is implemented using python 
programming language to evaluate classification 
accuracy. The evaluation is carried out in a system 
with an Intel i5 2.7 GHz processor, 6GB Random 
Access Memory (RAM), and windows 10 operating 
system.  

To compute SOISsize for a given big dataset D, R 
⊂ D is loaded to a configured HDFS almost equally 
to each data node. Code written in Python runs in a 
distributed way across all nodes to make a single 
scan of each range space ri∈R at each data node and 
compute corresponding Q(Si) (i = 1,2,3, n). For the 
corresponding pair of (Si, Qi) a quality curve is 
plotted in intermediate stages and SOISsize can be 
estimated at any data node by finding the mid-point 
of the quality curve. SOISsize computed at all nodes 
can be aggregated by taking the mean value can be 
calculated to arrive at the most optimal SOISsize. 

Since computation is massively parallel processing 
and distributed through whole data, further NMIN can 
be computed at all data nodes and later both SOISsize 
computed and mean of NMIN calculated can be 
averaged to gather statistically optimal initial sample 
size to apply progressive sampling to ensure 
optimized learning of big data by machine learning 
algorithm [2].  

To calculate ε-Approximation Rademacher 
Averages for the given dataset and hypothesis 
mapping function. For conducting progressive 
sampling to train any classifier to its convergence 
with and without SOIS samples Naïve Bayes 
classifier is used. The naive Bayes Classifier is 
trained explicitly until its convergence is met for the 
data set chosen and the corresponding time and 
number of iterations required are recorded. The 
accuracy of classification for each data is 
experimentally verified and results are plotted. 
Accuracy of classification with SOISsize is compared 
to that of training without initial minimal samples 
[26]. 

The Convergence of classifier with very little or 
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optimal learning and time consumed for estimating 
sample are mainly evaluated by conducting 
experiments. PAC (Probably Approximately correct 
frame work) provides a range of optimal value 
within which convergence of LA has to lie (0 to 1). 
Computational Time is another key value 
experimentally determined in distributed 
environment. Concerned to progressive sampling 
estimating its computational time in parallel 
environment is relatively novel by the methodology 
employed. Experiment setting focuses to multi-
vectored big data sets in which we cover Volume, 
Veracity, and Vectored etc. Additionally, data 
selected for experiments diversified. 
5.2 Input Data Anaysis  
A total of 8 large data sets are used to estimate the 
initial minimal sample size and also the Rademacher 
bound of the dataset for the specific classification 
problem. Out of 8 datasets 4 datasets outlined in 
Table1 such as 'ECBDL',' Medicare', 'Melanoma', 
and 'Splice' are derived from publicly available data 
from several domains of healthcare and Biomedical 
Informatics and other 4 data sets such as adults, led 
census, COV type are selected from UCI repository. 
In the following subsequent sections, description of 
the data set such as source, formulation, and 
previous research work presented. All data sets 
outlined in table 2 are inherently class-imbalanced.  
i) Big datasets of vectors Variety and volume 
The follow charactertics of dataset are as follows,   
ECBDL Evolutionary Computation for Data and Big 
Learning is the full form of ECDBL. A data set of 
large protein contact map prediction at ECDBL 
workshop. Aaron N Richter and Taghi M. 
Khosgoftar reformatted this dataset for their work in 
sample size estimation. This dataset comprises pair 
of amino acids in every instance and a binary class 
label indicating whether or not the pair is a protein 
structure. In this work we have utilized the dataset 
provided by ECBDL in our experiments, as it 
contains 7,998,231 instances and 985 features [26]. 

 
Table 2. Biomedical Datasets of high volume and 

veracity 
 Big data datasets: a. Proteomics, b. Insurance 

Claims, c. Clinical records, d. Genomics 
ECBDL Medicare Melanoma Splice 

Domain a. b. c. d. 
Native 
instances 

7998231 3692555 9531408 4627840 

Positive 
Instances 

171,933 1409 17246 14549 

Class ratio 2.15% 0.03815% 0.181% 0.341% 

Features 985 123 117513 1000000 

Medicare dataset contains attributes of medical 
insurance and medical claim of all US citizens aged 
65 and above. Center for Medicare and medicated 

services releases this data every year. This data is 
highly dimensional and voluminous. Previous work 
used this data to make categorical encoding and 
reformat for big data experiments [26]. 
Melanoma is a dermatological dataset. This dataset 
includes data from common dermatology patients 
visits between 2011 and 2016. [26]. each instance in 
the dataset has attributes which describe Melanoma 
characteristics of recent years. A binary class label is 
adopted to identify whether a patient with certain 
dermatological features could be classified as 
melanoma or not. Features incorporated in the model 
include patient name, family history, allergies etc. 
Splice a dataset called Splice is used to locate human 
acceptor splice sites in DNA sequences. This 
complex, large data set was acquired from the 
LIBSVM dataset archive. A significant prediction 
issue is splice detection. Splice dataset is gathered 
from LIBSVM repository and used to perform 
sampling and derive samples. 
ii) Big datasets of vectors Variety and volume 
These datasets are adopted from UCI and exhibit 
veracity and velocity 

 
Table 3. UCI datasets 

 
The adult dataset comprises more than 45k instances 
with 14 different features such as age, work, 
education, relationship. Etc. 
The led dataset comprises more than 100k instances 
with 7 attributes about LED display domain with 10 
class labels. etc.  
In the Census, adult dataset comprises more than 
190k instances with 14 different features such as age, 
work, education, relationship. Etc. 
IN the Covtype, adult dataset comprises more than 
58k instances with 54 different features such as soil 
type, hillslope, forest, etc. 

We evaluate measures on 4 huge and voluminous 
biomedical big data sets such as ECBDL, Medicare, 
Melanoma, and Splice, and 4 UCI datasets such as 
adult, led, census, and covtype. Table 3 shows the 
statistically optimal initial sample size (SOISsize) for 
all data sets used in our experiments, Computation 
time (Tsois) to gather SOISsize. Progressive sampling 
time with the incorporation of the minimal initial 
sample set, to converge naïve Bayes classifier is 
denoted by TPSsois and that without SOIS is by 
TPSws. The number of Iteration with SOIS is 

 Datasets 
Adult Led census covtype 

Instances 48000 100K 199.5k 581012 
Positive 
Instances 

36000 NA 48842 360000 

Class ratio 51.23% 45.76% 2.84% 5.98% 
feature 14 7 14 54 
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indicated by NoIsois and that without SOIS is denoted 
by NoIws. Plots show the sample size, computation 
time, and progressive sampling time with and 
without the initial sample size. The accuracy of the 
classifier trained to values generated by PSA is 
evaluated against the so far best methodologies in 
the literature to estimate the initial sample size. 
5.3  Validation of Results 

 Table 4 outlines the initial sample size SOISsize 
along with its computation time Tsois, Time for PSA 
TPSsois, Time for PSA without Initial samples size 
Tws and Number of iterations. The values shown in 
the columns of table 4 describe the results of the 
Progressive Sampling Algorithm with an Initial 
minimal sample size. The column with the Attribute  

 
Table 4. Initial Sample size and time complexities 

          Progressive sampling results 
Datasets Total Data SOISsize Tsois(in Sec) 

ECBDL 7998231 1279716 3.8 
Medicare 3692555 590809 2.8 
Melanoma 9531408 1,525,025 5.34 
Splice 4627840 740454 4.4 
adult 48000 8000 2.2 
led 100K 10000 3.1 
census 199.5k 35000 1.23 
covtype 581012 70000 1.56 

 
'Total data' refers to the total number of instances the 
data set has. SOISsize refers to a number of instances 
that can be selected from the data set as initial 
minimal samples to apply a progressive sampling 
algorithm. Values estimated as optimal sample size 
depend on the dataset under consideration. Tsois 
refers to time expensed in the computation of 
SOISsize. Table 4 outlines the Time for PSA TPSsois, 
Time for PSA without Initial samples size Tws 
Number of iterations 
 
The values shown in the columns of table 4 describe 
time complexities associated with the computation 
of PSA with and without SOISsize. Tsois refers to the 
Time required for the estimation of SOISsize. 
 

Table 5: Initial Sample size and time complexities 
 Progressive sampling time 

complexity results 
Datasets Tsois (in Sec) TPSsois (in Sec) TPSws (in Sec) 
ECBDL 3.8 12.234 48.23 
Medicare 2.8 13.432 50.43 
Melanoma 5.34 13.234 55.12 
Splice 4.4 15.456 56.23 
adult 2.2 2.123 18.12 
led 3.1 3.13 14.36 
census 1.23 5.21 32.36 
covtype 1.56 5.1 46.47 

TPSsois refers to time expensed in the execution of 
PSA including SOISsize sample in the first iteration. 

TPSws refers to the time required to execution of PSA 
without including SOISsize. Table 6 outlines a 
number of iterations for PSA with and without the 
initial sample size Table 6 shows the number of 
iterations required to complete PSA on datasets 
shown in the first column. NoIsois refers to the 
number of iterations required to complete PSA with 
incorporating of initial minimal sample size and 
NoIws refers to the number of iterations required to 
complete PSA without incorporating initial minimal 
samples in the first iteration. Thus by the value 
shown, it can be inferred that the initial sample size 
improves the efficiency of PSA. 

 
Table 6. Number of Iterations 
 No. of Iterations in PSA 

Datasets NoIsois NoIws 

ECBDL 4 32 
Medicare 3 35 
Melanoma 4 65 
Splice 3 34 
adult 2 18 
led 2 25 
census 2 26 
covtype 2 31 

Table 7 outlines space complexities for PSA with 
and without the initial sample size Table 7 shows the 
value of memory space occupied by or made use of, 
at each respective data node of HDFS. Sdata_node refers 
to space in computation for PS without SOISsize. 
The quantity Sdata node sois refers to t space in 
computation for PS with SOISsize. 

 
Table 7. Space Complexity in PSA 

Datasets Sdata_node(PS) Sdata_node_soissois 

ECBDL 18 8 

Medicare 16 6 

Melanoma 25 15 

Splice 28 8 

adult 2 0.5 

led 3 1 

census 3 1 

covtype 3 1 
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5.4 Validation of data sizes and minimal initial 
sample set size 
The graph below shows the plot of the comparison 
of Dataset sizes and the corresponding initial 
minimal sample size estimated. 

Figure 3: Results Of Dataset Size And Corresponding 
SOIS 

 
Along the x-axis, dataset instances are plotted and 
with the y-axis, the initial sample size SOISsize is 
plotted. Unit along both axes is fixed to no of 
instances. It can be observed that there is a 
substantial decrease in the initial sample size 
required. Concerning biomedical big datasets, it can 
be observed that there is a substantial decrease in 
SOISsize. and for datasets chosen from the UCI 
repository, there is a significant decrease in sample 
size. 
Time Complexity of each data set for the initial sample 
size 
It can be observed that variation of computation time 
almost varies linearly with respect to the volume of 
the dataset. The curve in the graph can be identified 
by Tsois. 

Figure 4: Results Of Datasets  And Tsois 
 

Time Complexity of each data set for progressive 
sampling without a minimal initial sample size 
The above graph shows the plot of the Time taken to arrive 
at the initial minimal sample size. Along the x-axis, data 
sets are mentioned, and via the y-axis time computational 
time of the initial minimal sample size (TPSws)) are 
plotted. 
 

Figure 5: Results of TPSws for each dataset 

It can be observed that variation of computation 
time almost varies linearly w r t to the volume of the 
dataset. The curve in the graph can be identified by 
Tsois. 
Time Complexity of each data set for progressive 
sampling 

The graph below shows the time complexity of 
progressive sampling with the incorporation initial 
minimal sample size. Along the x-axis, data sets are 
marked and that of the y-axis time consumed for 
overall progressive sampling is plotted. 

 

Figure 6: Results Of Tpsois  For Each Dataset 

5.5 Comparison of Time Complexities for each 
data set for progressive sampling 

The figure7 shows a plot of comparison of time 
complexities of PSA with and without SOISsize. 
Variation of time complexities with and without 
initial minimal sample sizes shows a linear 
relationship. Along the x-axis, TPSws are plotted. 
The unit of TPSws and TPSsois is considered to be 
in seconds. The curve which indicates progressive 
sampling on big datasets is identified by TPSsois in 
the graph. The curve which indicates progressive 
sampling without an initial minimal sample size is 
identified by TPSws. 

 

Figure 7: Results Of Tpssois And Tpsws 

 

It can be observed in the graph that there is a 
substantial reduction in the total time taken for the 
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conduction of progressive sampling in big data and 
arriving at an accurate classification within the PAC 
framework. Concerning the voluminous dataset 
from the biomedical category there is a significant 
difference in time required for progressive sampling 
due to the veracity of the datasets Thus the variation 
of time complexities of progressive sampling varies 
in (Big-Oh) O(Size of datasets+ training cost). 
However, with initial minimal sample size 
effectively reduces overall PSA runtime cost. 

 
Figure 8: Results Of NOI With And Without SOIS For 

Each Dataset 
 

The figure 8 shows a plot of comparison of the 
number of iterations of PSA with and without 
SOISsize. Along the x-axis, datasets are marked and 
that of the y-axis quantify the number of iteration 
incurred in a total runtime of PSA with the 
incorporation of Initial minimal sample size 
(SOISsize) and without it. The curves shown in the 
graph indicates the number of iteration PSA runs 
with and without the incorporation of SOISsize 

Space Complexity of each data set for the initial 
sample size 

The Figure 9 shows a plot of the Space 
complexities of initial sample sizes for the 
corresponding dataset. Space complexity refers to 
memory occupation by certain data under 
processing. In this sum, the total data in all data 
nodes of HDFS during the computation of PSA are 
plotted for each dataset. Along the X-axis datasets 
are marked and the y-axis memory space in Giga 
Bytes is quantified. The curve shown graph indicates 
the memory consumed for the process of estimating 
the initial sample. 

Figure 9: Results Of Dataset Size And Corresponding 
Soissize 

Space Complexity of each data set for the 
Progressive sampling process 

The figure10 shows the plot of Space complexities 
of the PS process for each dataset along the x-axis, 
datasets are marked, and which sum of total data 
occupied at each node of HDFS is plotted. Size of 
the data occupied at each node in gigabytes. It is 
evident in the graph that incorporating an initial 
minimal sample size in applying PSA in Big Data 
Analytics would exhibit a substantial reduction in 
memory space usage. Additionally, employing 
parallel processing also assures possibly less 
computational space and time. 

Figure 10: Results Of Dataset Size And During PS 
Corresponding Soissize 

The Figure 11 shows, a plot of space complexities 
in the computation process of PSA with and without 
SOISsois. Along the X-axis datasets are marked and 
through the y-axis, space complexities are calibrated 
with the unit in terms of gigabyte. The curves 
Sdata_node_sois   in the graph indicate the usage of 
memory space while the computation of PSA is 
running state, with the incorporation of SOISsize.  
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Figure 11: Results Of Space Complexities In PS 
Computation 

 
The curve Sdata_node indicates memory 

occupation for computing PSA without SOIS. It is 
clearly visible that with SOISsize, lesser and more 
efficient occupation of memory for PSA 
computation. 
Accuracy of classification. 

The figure 12 shows a plot of the accuracy results 
of classification obtained by training a learning 
algorithm with SOISsize and without SOISsize 
Along the x-axis, datasets are marked and with the 
Y-axis Accuracies of classification by the Naïve 
Bayes algorithm are plotted. The curve "PSA with 
SOIS Accuracy of classification" indicates the 
accuracy demonstrated by the classifier for the 
training data set approximated by PSA with SOISsize 

obtained through the proposed work.  

 
Figure 12: Results Of Accuracy Of Classification 

The curve "Existing work Accuracy" demonstrate 
the accuracy obtained out of training the classifier by 
existing methodologies to derive an initial minimal 
sample size. It is evident from the graph that PSA 
with SOISsize would enable the classifier to provide 
better accuracy than earlier models of PSA with the 
initial sample size estimation technique. For the 
comparison of accuracy, earlier work proved in [4], 
[36], and [37] were considered.  

 
6. COMPARATIVE STUDY 
 
This section presents a comparative study of the 

different proposed models for estimating the initial 
minimal sample size for a progressive sampling of 
big data. To analyze the impact of the estimated 
initial minimal sample size on progressive sampling 
efficiency, the accuracy of classifiers for each 
iteration output is studied.  
In the Bangera, Nandita, and Kayarvizhya [36] 
showed that progressive sampling provides effective 
sampling for future sensitive machine learning 
algorithm. Richter, Aaron N, and Taghi M Khoftar 
[26] provided a methodology to determine the 
sample size of biomedical big data with a complete 
focus on learning from generated samples and 
achieved good accuracy in learning. Our work 
presents reasonably better accuracy in learning when 
compared to learning accuracies in 
[26],[36],[37].Since there was no discussion on the 
overall execution time of PS, the proposed work 
provides comparatively good accuracy and optimal 
computational time and convergence of the learning 
algorithm.  
In the Gu B, Liu B, and Hu F [8] worked on 
estimating the initial sample size for PSA on data 
sets of UCI and derived SOISsize using the statistical 
information measure and also obtained classifier 
accuracy in the range of 90-93 percent for the data 
set and classifier used. Also, the sampling schedule 
adopted in their work was a geometric ratio equal to 
2 which would double the sample size for each 
subsequent iteration. In the Provost F, Janse D Oates 
[3] proposed a methodology of progressive sampling 
drawing the initial sample was made completely 
random.   In the Matteo Riondato and Eli Upfal [14] 
have presented an estimation of ε-Approximation of 
frequent item set via progressive sampling approach 
with Rademacher averages with an assumed random 
initial sample set size.  
In the Provest F, Jensen, and D. Oates T [3] proposed 
a method for progressive sampling where the initial 
sample size was assumed to random value and 
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geometric progression for sampling schedule design. 
Bangera, Nandita, and Kayarvizhya [36] achieved 
accuracy in an average of 91% for feature-based and 
progressive sampling. However initial sample 
selection was made random and not guaranteed to be 
minimum. Bangera, Nandita, and Kayarvizhya [37] 
proposed a reduction in the time taken to mine 
frequent item sets using progressive sampling with 
Rademacher averages. The Runtime of PSA is 
compared with that of static sampling without 
concern for the initial minimal sample size. [37] 
achieved significantly good accuracy.  

Richter, Aaron N, and Taghi M Khoftar [26] provided 
a methodology to determine the sample size of 
biomedical big data with a complete focus on learning 
from generated samples and achieved good accuracy 
in learning. Since there was no discussion on the 
overall execution time of PS, the proposed work 
provides comparatively good accuracy and optimal 
computational time and convergence of the learning 
algorithm. Convergence of classifier is ensured to be 
within PAC framework accuracy limits. 
 

Table 7: Comparative Studies 

 
7. CONCLUSIONS 

Progressive sampling ensures the estimation of an 
optimum number of the sample set for training a 
learning algorithm iteratively. The initial sample set 
size in the very first iteration of PSA plays a key role 
in computational time and the number of samples 
used in the training phase. The proposed work 
efficiently estimates a minimal initial sample set size 
in a big-data Hadoop environment. Statistical 
measures used in the approach discussed are verified 

in a parallel computation environment and prove to 
be comparatively improved in all such related work. 
The proposed methodology statistically optimal 
sample size (SOISsize) experimentally shows a better 
result in computational time and cardinality of the 
training set. Space Complexities are 
transcendentally reduced due to distributed and 
parallel computing in the Hadoop environment.  

Sampling on big data to extract a learning or 
training set in a distributed environment for highly 
dimensional datasets is in focus since very recent 
times. However computational time estimation and 
space complexity optimization is very novel to this 
area of the research work which serves out to be the 
strength of the paper. Results proposed were verified 
using one learning algorithm on multiple datasets 
which need to address in sequential papers. Also 
datasets used have values in binary, a different 
mathematical tool like pseudo dimension has to be 
used in future enhancements. Thus, this works 
significantly contributes to reducing training time 
and cost of learning algorithm while also keeping the 
result of a classifier to be in the probably 
approximately correct framework as the 
misclassification results.  

In our opinion this work proposed, proves 
reasonably well on heterogeneous big data sets and 
shows best accuracy of learning. However, for real 
valued datasets Psuedo-Dimesion mathematical 
bounds are expected to provide near accurate 
sampling bounds. Hence adopting Pseudo 
Dimension to progressive sampling would be a 
future research works. For real valued datasets 
Pseudo dimension mathematical tool must be 
applied on datasets to determine bounds in 
distributed environment. Multiple learning 
algorithm performance for the bounds estimated 
can be used analysis as an extended future work. 
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