
Journal of Theoretical and Applied Information Technology 
15th July 2023. Vol.101. No 13 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
 

 
5264 

 

 DRIVING MODE SWITCHING MECHANISM BASED ON 
REINFORCEMENT LEARNING 

 

YILIN ZHU1, SANG-CHUL KIM2 
1,2School of Computer Science, Kookmin University, Korea 

E-mail: 1z514201255@gmail.com, 2sckim7@kookmin.ac.kr (2Corresponding author) 
 
 

ABSTRACT 
 

Autonomous driving technology can improve traffic efficiency and safety, making the driving process more 
convenient and comfortable, thus increasing road safety and reducing environmental pollution. In this study, 
we explore the mode switching problem between automatic and manual driving and propose a driving mode 
switching mechanism based on deep reinforcement learning. First, we study the background on driving 
scenes based on safety degree calculation. Then, a real-time online switching mechanism based on deep 
reinforcement learning is presented. Finally, the proposed algorithm’s effectiveness is verified using a 
simulation platform. The simulation results show that based on the analysis of lateral position deviation, 
heading angle deviation, and safety index data, the deep RL method proposed in this project can effectively 
realize the switch between manual and automatic driving modes. As the results, the mode switching strategy 
can respond well to the vehicle’s lateral position deviation, heading angle deviation, and longitudinal safety 
degree and thus improve vehicle operation safety.  

Keywords: Autopilot, Intensive Learning, Actor–Critic Framework 

 
1. INTRODUCTION 
 

In the last several years, with the increasing 
global trade and the progress of science and 
technology, the number of vehicles worldwide has 
increased dramatically. Road networks have become 
more and more complex and traffic safety, road 
congestion, and other issues have become 
increasingly severe. Also, traffic accidents have 
become more frequent, causing a large number of 
casualties and property losses. Uncivilized driving 
behaviors such as lane changing, illegal overtaking, 
turning around, and not maintaining a safe distance 
are the main reasons for traffic accidents [1][2]. 
Autonomous driving technology can improve traffic 
efficiency and safety, making the driving process 
more convenient and comfortable, and thus 
increasing road safety and reducing environmental 
pollution. 

 Deep reinforcement learning has developed 
rapidly in recent years. In some aspects, the agents 
trained by reinforcement learning can perform close 
to or even beyond the human level. Compared with 
rule-based methods, automatic driving decision-
making technology based on deep reinforcement 
learning does not need to establish rules manually. 
When encountering an unknown environment, the 
model can be improved through continuous 

interaction with the environment. The behavioral 
decision-making method based on deep 
reinforcement learning can adapt to more conditions 
and has strong robustness and adaptive ability. In 
complex traffic scenes, the state space and action 
space of automatic driving are extremely large. 
Therefore, it is difficult to establish a decision rule 
that can be mapped from the state space to the action 
space manually. Also, if the artificially established 
rules encounter undefined conditions, serious traffic 
accidents may happen. Therefore, deep 
reinforcement learning has promising application 
value in the study of safe and reliable switching of 
driving modes during vehicle operation. 

 
2. RELATED WORKS 

Currently, there are generally three 
solutions for the development of unmanned driving 
technology [3]. The first is the most common 
solution, which realizes a complex driving control 
framework using modular construction of the 
driving system. This solution is called the modular 
pipeline (MP) [4]. The second scheme is based on 
human driving data, known as imitation learning 
(IL) [5]. The third method is learning through the 
interactive data between vehicles and the 
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environment, also known as reinforcement learning 
(RL) [6]. 

To meet the requirements for 
commercialization and safety regulations, most 
researchers and commercial companies in the 
automotive industry choose to adopt the MP scheme 
[7]. Although the academia is the frontier of 
scientific and technological innovation, there is still 
relatively little research on end-to-end unmanned 
driving using the latter two schemes, such as Drive 
Lab, an unmanned driving laboratory from NVIDIA, 
and WAYVE in the UK [8]. Because of the rise of 
artificial intelligence, many deep learning methods 
are now being used for end-to-end control of robots, 
unmanned driving perception, and multi-sensor 
fusion. However, in the decision-making control of 
unmanned driving, driving strategies are still 
designed based on traditional artificial rules [9]. 
Therefore, considering the deep RL’s great potential 
for unmanned driving and the lack of relevant 
research at this stage, it is very meaningful to explore 
the work on decision-making control in unmanned 
driving using deep RL methods. 

There are two main decision-making 
methods for automatic driving behavior: the rule-
based decision-making method and the learning-
based decision-making method. The rule-based 
decision-making scheme is currently the most 
commonly used. In this method, according to the 
characteristics of the surrounding road environment, 
the road surface is divided into several types of 
driving scenes. Then, the rule base is established 
based on the experience of human drivers. The 
decision-making results of the autonomous vehicle 
in various scenarios are determined according to the 
preset rule base. Among many rule-based decision-
making methods, the finite state machine [10] is the 
most frequently used because of its strong 
practicality and clear logic, which is easy to debug 
and implement. 

The focus of this study is on the safe and 
reliable switching mechanism of the driving mode 
based on deep RL. Deep RL combines the idea of 
deep learning based on RL. It uses the powerful 
fitting capability of deep learning to approximate the 
model required by RL iteratively. This chapter will 
introduce the relevant theoretical basis from three 
aspects: RL, deep RL, and the Actor–Critic 
framework. 

RL, also known as evaluation learning, is 
an essential branch of machine learning 
[11][12][13]. It has no prior knowledge, does not 
need to give correct action, and only needs to provide 
a return and then adjusts the strategy to maximize the 
total cumulative return. 

Whether it is a value function or a policy 
gradient method, the fundamental purpose is to 
optimize the policy and allow the agent to take better 
actions. However, there is a big difference between 
the two with regard to how to achieve this purpose. 
 
2.1 Value Function 

The value function method is an evaluation 
of the policy 𝜋 . The value functions include the 
state-value functions and the state-action value 
function. The state-value functions refer to the total 
expected return 𝑉 (𝑠) obtained by executing policy 
𝜋 in state 𝑠, and the state-action value functions refer 
to the total expected return obtained by taking action 
𝑎  in state 𝑠  and performing policy 𝜋 . The state-
action value function is often referred to as the Q 
function, denoted as 𝑄 (𝑠, 𝑎) . In general RL 
problems, Q-functions are usually used due to the 
complexity of the problem. It is known that the value 
function is the evaluation of policy 𝜋 . When the 
space of policy 𝜋  is a finite state-action space, 
argmax can be determined for all Q-functions to 
obtain the optimal policy. However, this method is 
often challenging to use because even though the 
number of states and actions is limited, their strategy 
space is usually a geometric multiple. Currently, the 
most common operation is to carry out policy 
iteration, which can be divided into deterministic 
and random strategies. The deterministic strategy is 

𝑎 = 𝜇(𝑠). 
The expression form of the random strategy 

is 
𝑎~𝜋(𝜃|𝑠). 
The advantage of the deterministic strategy 

is that it requires less sampling data and the 
algorithm is efficient. On the other hand, the 
advantage of the random strategy lies in its ability to 
explore. 

 
2.2 On-policy and Off-policy 

Deterministic policy algorithms are 
efficient but cannot explore the environment. To 
solve this problem, the concepts of off-policy and 
on-policy are introduced. When iterating a policy, 
the method is to follow an established or new policy. 
If it follows the established policy, it is an on-policy. 
Otherwise, it is an off-policy. 
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Deep learning is one of the branches of 
machine learning, which has achieved a lot in image 
recognition and natural language processing 
[14][15][16]. A simple explanation of deep learning 
is that when you know the input and mapping, you 
can get its output. However, in actuality, mapping is 
complex and cannot be expressed by expression, or 
it is simply an unknown state. Currently, deep 
learning constructs a deep neural network as the 
bridge between sample input and feature output. It 
continuously inputs samples for training so the 
neural network can fit and approximate a mapping 
corresponding to the samples as much as possible. 
Finally, the network completed by training can be 
approximately equivalent to the required mapping. 

Q-learning is one of the most common and 
widely used RL algorithms. However, when 
encountering more complex situations, the method 
of updating tables can no longer meet the 
requirements. Therefore, we have to look for other 
methods to replace tables to describe the status and 
actions. Since the number of input and output 
neurons of the neural network can be determined at 
will, introducing deep learning into the RL 
framework and replacing the original Q table with 
the neural network can significantly improve the 
operation of the RL algorithm and can handle higher 
dimensional and more complex situations. In other 
words, the neural network provides the perception 
ability lacking in RL. By combining the fitting and 
approximation ability of deep learning with RL’s 
ability to generate strategies, and transforming the 
neural network from table to network form, deep RL 
can be achieved. 

The Actor–Critic algorithm is a progressive 
iterative algorithm that combines a policy and a 
value function, known as the Actor–Critic 
framework [17][18][19]. With the Actor–Critic 
framework as the core, many excellent deep RL 
algorithms have emerged over the years, such as 
DDPG, A3C, and PPO. 

Let us analyze several essential branches of 
machine learning. The algorithm development 
process discusses the sequence from RL to deep RL 
to the Actor–Critic framework. First, we analyze the 
theoretical principles of RL and expound on their 
advantages, disadvantages, and characteristics from 
the following aspects: RL based on value function or 
strategy function and intensive learning of policy or 
off-policy. Then, because RL has difficulty in 
dealing with high-dimensional state problems, we 
introduce the principle of deep RL. Deep RL 
skillfully combines the fitting approximation ability 
of deep learning with the generation strategy ability 
of RL, realizing the transformation of RL from table 

to neural network and significantly improving the 
computing ability and application range. Finally, this 
chapter introduces the Actor–Critic framework, a 
popular deep RL framework in recent years. This 
framework uses Actor and Critic networks to update 
parameters alternately. Currently, many deep RL 
algorithms are based on the Actor–Critic framework. 
 
3. PROPOSED ALGORITHM 
 

We introduce the method of achieving 
smooth mode switching between automatic driving 
and manual driving, including the evaluation of 
driving safety, the design of the mode switching 
module, and the algorithm design based on deep RL. 

 
3.1 Safety Algorithm 

This project takes a typical three-lane 
scenario as an example to determine and calculate 
the lane safety degree in automatic driving, which 
requires vehicles to meet the minimum safe distance. 
As shown in Fig. 1, the minimum safe distance 
includes (1) the driving distance of the driver’s 
reaction time, (2) the braking deceleration distance, 
and (3) the stopping distance of traffic vehicles at the 
maximum deceleration speed. Based on the setting 
of the minimum safe distance, the project gives the 
calculation formula for this distance, as shown in Eq. 
(1). 

 

 
 

Figure 1. Schematic Diagram of Minimum Safe Distance 
for Intelligent Driving Vehicles 

𝑑 = 𝑣 ∗ 𝑡 + 𝑎 ∗ 𝑡 +
∗

+

 ,                                                                          (1) 

where, 𝑣 , 𝑎  represent the speed and 
acceleration of the vehicle, 𝑣 , 𝑎  are the speed 
and acceleration of the traffic vehicle, 𝑡  is the 
driver’s reaction time, and 𝑑  denotes the 
calculated minimum safe distance. Using Eq. (1), 
this project can calculate the security threshold for 
situational assessment, as shown in Eq. (2): 
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𝑇 = .                                    (2) 

 
It can be seen from Eq. (2) that the 

calculation result of the safety threshold 𝑇  is 
closely related to the speed 𝑣  of the vehicle and 
the speed 𝑣  of the traffic vehicle. 

To ensure the safety of vehicle operation, it 
is essential to develop a real-time online human–
computer fusion autonomous mode switching 
mechanism. This project defines the mode switching 
process (module) of the autonomous vehicle as an 
optimal control problem based on RL and develops 
a man–machine integration mode switching 
controller with autonomous capability to cope with 
the driving safety caused by the external 
environment in the process of vehicle movement. 

RL is an online optimization control 
method based on environment interaction, which 
depends on the description of the controlled object 
and the current state of the operating environment. 
State information is used as the input to the mode 
switching strategy, which defines the environmental 
observations received at each time step. Here, the 
lateral position offset difference, e, of the vehicle, 
the heading angle deviation, ∆𝜑 , the three-lane 
safety degree, and a total of five parameters are 
selected to form the state space as shown in Eq. (3). 

𝑆 = {𝑒, ∆𝜑, left , current , right }.       (3) 

Specifically, the smart vehicle needs to 
travel along the centerline of the lane. In the ideal 
operating state, under a given speed condition, the 
lateral displacement deviation, 𝑒 , and the heading 
angle deviation, ∆𝜑, between the centerline of the 
vehicle body and the lane centerline is close to zero. 
Figure 2 shows the lateral position offset difference, 
e, and the heading angle deviation, ∆𝜑 , of the 
vehicle, respectively. 

 

Figure 2. Vehicle Lateral Position Offset Difference e 
And Heading Angle Deviation ∆𝜑 

Also, it is necessary to ensure the vehicle’s 
safety during operation. Therefore, the evaluation 
index of safety degree under the current driving 

situation should also be considered as a state space 
parameter of the mode switching strategy. This study 
takes a typical three-lane scenario as an example. 
The three lanes have different safety assessments, 
which are respectively expressed as left lane safety 
(left_safe), middle lane safety (current_safe), and 
right lane safety (right_safe), as shown in Fig. 3. 

 

 

Figure 3. Safety Degree Of Three-Lane Scene 

3.2 Motion Space Variable 
Based on the current environmental state, 

the action space of the autonomous vehicle includes 
lateral behavior and longitudinal behavior. Lateral 
behavior refers to left lane change, right lane change, 
and lane keeping mode. Longitudinal behavior refers 
to acceleration, deceleration, and speed-keeping 
patterns. The human–machine integration switching 
mechanism based on RL is for evaluating the risk 
cost of intelligent control system behavior, and the 
driver’s expected driving strategy under the 
constraint of the human driver’s experience, 
redistributing the weight of automatic driving and 
manual driving, and output mode switching flag bit 
as shown in Eq. (4). 

𝐴 =
left ,  right ,  lane ,

acceleration, deceleration, speed
. (4) 

 

3.3 Design of Cost Function for Risk Assessment 
 

As a key element of the RL framework, the 
objective evaluation optimization function 
maximizes the objective reward function and 
minimizes driving risk by adjusting the control 
strategy and optimizing the action sequence through 
a reward and punishment mechanism. In the vehicle 
driving task, the purpose of the design of the cost 
function is to find the optimal mode switching 
strategy to reduce the motion error of the vehicle as 
much as possible and improve driving safety. The 
design criterion is shown in Fig. 4. 
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Figure 4. Design Criteria Of Reward Function For Mode 

Switching 
 
3.4 Algorithm Design 

The overall design is shown in Fig. 5. The 
proposed human–machine fusion mode switch based 
on the RL framework is mainly composed of three 
parts: the Actor network, the Critic network, and the 
mode switch state machine based on the risk degree 
evaluation, for weight redistribution, and driving 
mode flag bit output. 
 

 
Figure 5. Overall Framework Of Project Design 

 
The mode switching for human–computer 

integration has the following features: 
 
(1) The adaptive feature can constantly update the 
behavior strategy when there is a change in the 
environment, which is completed by the Actor 
feedforward control network; 
(2) Self-evaluation characteristics, according to the 
objective cost function, evaluates the current driving 
strategy risk, which is completed by the Critical 
feedback evaluation network; 
(3) The driving weight is dynamically allocated. 
Based on the risk evaluation function and the 
experience constraints of manual drivers, the weight 
is redistributed. 
 

The deep RL algorithm used in this project 
is the DDPG algorithm. The algorithm is a deep RL 
algorithm for continuous action space, so it is 
suitable as an autonomous driving decision 
algorithm based on deep RL. The DDPG algorithm 
combines the core ideas of the value function 

method and the policy gradient method, uses a neural 
network to fit the value function, adopts experience 
playback similar to the DQN algorithm, and adopts 
a dual network structure in both the Actor and the 
Critic networks. In the DDPG algorithm, the strategy 
network is used to update the strategy, 
corresponding to the Actor-network in the Actor–
Critic algorithm framework, and the parameter 𝜃 is 
used to represent the deterministic strategy 𝑎 =

𝜇 𝑠|𝜃 . The value network is used to fit the action 
value function and give the gradient information to 
the Actor-network, corresponding to the critic 
network in the Actor–Critic algorithm framework, 
and its parameter is 𝜃 . 

The objective function of the Actor-
network in the DDPG algorithm is the expectation of 
cumulative reward value. It has been proved that the 
gradient of the objective function concerning the 
policy network 𝜃  is equal to the expected gradient 

of the action value function 𝑄 𝑠, 𝑎|𝜃  with respect 
to 𝜃  by Silver et al. [20]. The gradient ascent 
formula of the policy network 𝜇 𝑠|𝜃  is shown in 
Eq. (5). 
 

∇ 𝐽 ≈ 𝐸 ∇ 𝑄 𝑠, 𝑎|𝜃 | , | =

𝐸 ∇ 𝑄 𝑠, 𝑎|𝜃 | , ( )∇ 𝜇 𝑠 |𝜃 | . 

                                                                             (5) 
 

The value network 𝑄 𝑠, 𝑎|𝜃  updates the 
parameter 𝜃  of the value network through the DQN 
algorithm, and the gradient of the value network is 
(6) 

∇ = 𝐸 , , , ′,…, 𝑟 + ∇ ′𝛾𝑄′ 𝑠, 𝜇′ 𝑠|𝜃 ′ −

𝑄 𝑠, 𝑎|𝜃 ′ ∇ 𝑄 𝑠, 𝑎|𝜃 . 

                                                                        (6) 
 

The Actor-network is a policy function that 
needs reward and punishment information to adjust 
the strategy, select different actions according to 
different states, and is responsible for generating 
actions and interacting with the environment. The 
Critic-network is an evaluation function responsible 
for evaluating the performance of actors and guiding 
the output of the Actor-network in the next phase. 
Theoretically, a neural network with only one hidden 
layer is enough to achieve the global approximation 
and description of any nonlinear function. In the 
process of model training, this study designs a fully 
connected network structure. By optimizing the 
objective function and using the algorithm of DDPG 
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to find the optimal control strategy, the mapping 
from the state space to the action space can be 
realized. The architecture of the Actor–Critic 
network is shown in Fig. 6. They are all composed 
of three layers: input, output, and hidden layers with 
600 neurons. 
 

 
Figure 6. Architecture Of Actor–Critical Network 

 
 
4. EXPERIMENT AND DISCUSSION 

4.1 Simulation Platform 
 

The scene is an essential part in the 
simulation test of automatic driving. Scenes 
generally include two parts: the scene in the 
vehicle’s process and the driving site, reflecting the 
real environment and driving behavior. The real 
environment has static traffic facilities and dynamic 
change objectives. Driving behavior includes cruise 
control, car following, overtaking, and other driving 
tasks. Our study uses TORCS (The Open Racing Car 
Simulator) as the simulation environment. TORCS 
can simulate a car’s transmission, clutch, engine, and 
various road characteristics. The environment is 
widely used in game competitions, simulation, and 
other fields. The graphical interface of TORCS is 
shown in Fig. 7. 
 

 
Figure 7. TORCS Simulation Environment 

 

TORCS is an open-source auto-driving 
simulator for racing cars, which consists of two parts: 
client and server. The client is responsible for 
receiving the sensor information sent by the server 
and returning the control quantity to the server after 
making decisions based on the obtained information 
to realize the vehicle motion control. The server is 
responsible for rendering the image quality of the 
simulation environment and controlling the vehicle 
based on the client’s decision results. The TORCS 
autopilot simulation platform can provide a variety 
of state information so that this project can decide 
according to the task requirements. The platform 
provides 19 kinds of sensors, as shown in Table 1. 
Moreover, the physical isolation between the game 
engine and the driver is established so that users can 
obtain the status information of all vehicles in the 
driving environment and the surrounding 
environment without knowing the internal data 
structure, which significantly improves the 
development efficiency of the automatic driving 
decision-making algorithm. Many machine learning 
researchers choose the TORCS platform for 
algorithm simulation verification [21], [22]. 
 

Table 1. Sensor Types Of TORCS Autonomous Driving 
Simulation Platform 

 
Name Range (unit) Description 
angle [−𝜋, +𝜋] (rad) The angle between the 

longitudinal axis of the 
car and the axis of the 

road 
track (0, 200) (m) Distance between a 

vehicle within 200 
meters and the edge of 

the road 
trackPos (−∞, +∞) Distance between car 

and road axis 
speedX (−∞, +∞) 

(km/h) 
Velocity along the 

longitudinal axis of the 
vehicle 

speedY (−∞, +∞) 
(km/h) 

Speed along the 
transverse axis of the 

vehicle 
speedZ (−∞, +∞) 

(km/h) 
Speed along the Z-axis 

of the car 
damage [0, +∞) (point) Current damage to the 

car 
wheelSpinVel [0, +∞) (m) wheel rotation speed 

rpm (0, +∞) (rpm) Engine speed 
curLapTime [0, +∞) (s) The time spent in the 

current loop 
distFromStart [0, +∞) (m) The distance from the 

car to the starting line 
distRaced [0, +∞) (m) Distance from the start 

line to the finish 
fuel [0, +∞) (l) Current remaining fuel 

level 
gear {−1,0,1 … 6} Current gear 

lastLapTime [0, +∞) (s) Start time of the last lap 
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opponents [0,200] (m) Distance to the nearest 
vehicle within 200m 

racePos {1,2,3 … 𝑁} Current ranking 
z (−∞, +∞) (m) Distance from the 

center of mass of the 
car to the Z-axis track 

surface 

 
In this study, we use the TORCS autopilot 

simulation platform for the experiment as follows. 
First, the TORCS autopilot simulation platform 
stores the state feature sequence in the experience 
playback pool (also known as the sample buffer, 
Replay Buffer). The DDPG algorithm then receives 
the small batch of state sample information features 
from the Replay Buffer. Finally, it outputs the 
direction, speed, acceleration, braking, and other 
information of the control vehicle to evaluate the 
current identifier to determine whether manual 
driving or automatic driving should be performed. 
 
4.2 Network Parameter Configuration 

This project is based on the DDPG 
algorithm in deep RL to achieve smooth driving 
mode switching. The algorithm principle, 
calculation method, framework design, and pseudo-
code implementation of the DDPG algorithm have 
already been discussed in Section 3. Here, we give 
the hyperparameter settings of the DDPG algorithm 
in the simulation experiment, as shown in Table 2 
 

Table 2. Hyperparameters of the DDPG Algorithm 

Hyperparameter Preset 

Actor-network learning rate 0.001 

The critical network learning 
rate 

0.01 

State space dimension 5 

Action space dimension 6 

Discount factor 0.95 

Network iteration step size 200,000 

 
Driving mode switch refers to the switching 

process between the driver’s manual driving mode 
and the vehicle’s autonomous driving mode in a 
vehicle equipped with the automated driving system 
(ADS). 

As defined by the SAE J3016 standard [23], 
driving automation systems from levels L0 to L3 
require a human driver to support dynamic driving 
tasks and take over driving control when needed. 
Even at L4 autopilot, the system cannot cover all 
driving scenarios. Therefore, a human driver needs 
to take over the controls if the vehicle goes beyond 
the intended operating zone ODD. The essence of 
take-over is the conversion of vehicle driving control 
between “human” and “machine.” According to the 

initiator and executor of driving right conversion, 
take-over can be divided into request take-over 
initiated by the ADS and active intervention initiated 
by users. The direct conversion between intelligent 
driving and manual driving is shown in Fig. 8. 
 

 
Figure 8. Direct Conversion Between Intelligent Driving 

And Manual Driving 
 
4.2.1 Passive Takeover 

When the system related to the dynamic 
driving task fails, or the vehicle exceeds the 
specified operating area (generally determined by 
parameters such as lateral distance deviation, 
heading angle deviation, and safe driving area), the 
ADS sends a takeover request to the user, and the 
user responds by controlling the transverse and 
longitudinal motion control. Passive takeover 
emphasizes that it is initiated by the ADS and 
executed passively by the user. The driving mode 
switching strategy based on deep RL proposed in 
this project is that the ADS outputs the driving mode 
flag and requests the human driver to take over when 
the vehicle exceeds the expected specified driving 
area or does not meet the safe driving state by 
observing the real-time environmental operation 
state. 
 
4.2.2 Active Intervention 

When the autopilot system is still running, 
the user actively provides input to the transverse and 
longitudinal motion control actuator. The system 
will choose to exit the autopilot function or continue 
to perform dynamic driving tasks according to 
whether the user’s input reaches the threshold. 
Active intervention emphasizes the initiative of 
users. The ADS can allow various active 
intervention methods. For example, the user can 
control the brake pedal, accelerator pedal, parking 
brake switch, turn signal switch, hazard warning 
lamp switch, and other ways to implement the active 
intervention. The ADS proposed in this project 
based on deep RL will automatically detect the 
running state of the vehicle. When the car is restored 
to its initial state through manual intervention, the 
automatic driving sign will be sent, and the ADS will 
take over passively. 
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4.3 Driving Mode Switching Sequence Diagram 
The sequence diagram of the manual 

driving mode switching to the automatic driving 
mode is shown in Fig. 9. 
 

 
 

Figure 9. Time Sequence Diagram Of Mode Switching 
(From Manual Driving To Automatic Driving) 

 
Figure 9 shows that the sequence diagram is 

divided into four stages: 
 

 Stage 1: Human drivers drive to keep the 
driving state of vehicles stable. 

 Stage 2: The automatic driving mode is in 
the state to be activated, and the system 
will prompt that the automatic driving 
function can be started. 

 Stage 3: The driver starts the automatic 
driving mode and enters the manual 
automatic mode switching process. 

 Stage 4: The vehicle enters the automatic 
driving mode. 

 
Figure 10 shows the sequence diagram of 

automatic driving mode switching to manual driving 
mode. 

 
Figure 10. Time Sequence Diagram Of Mode Switching 

(From Automatic Driving To Manual Driving) 
 

It can be seen from Fig. 10 that the sequence 
diagram is divided into four stages: 
 

 Stage 1: The ADS controls the vehicle, 
and the driving state remains stable. 

 Stage 2: Event triggering, output mode 
switching driving flag bit based on mode 
switching strategy of RL by observing 
vehicle operation status, such as lateral 
position deviation, heading angle 
deviation, and three-lane driving safety. 

 Stage 3: The vehicle requests the driver to 
take over and enter the automatic manual 
mode switching process. 

 Stage 4: The driver takes over and 
controls the vehicle to keep it running 
stably. 
 

4.5 Simulation Results 
Two different scenarios are set up to select the 

conservative and aggressive driving strategies, 
respectively. The simulation experiment of driving 
mode switching is conducted to verify the 
generalization performance of the proposed deep RL 
model. The generalization performance described in 
this project refers to whether the deep RL model can 
adapt to different scenarios to achieve smooth 
switching of driving modes in different scenarios. 
 

 Scenario Case 1: Set the initial vehicle to 
drive on the left lane, with the vehicle’s 
driving speed in front of the user at 38 
km/h and the vehicle’s driving speed in 
front of the user at 41 km/h. Select a 
conservative driving strategy. The 
simulation results obtained in this 
scenario are shown in Fig. 11. 

 

 
Figure 11. The Scenario Case 1’s Simulation Results 

 
It can be seen from the simulation results of 

Case 1 (Fig. 11) that in the current scenario, the 
automatic driving lateral behavior decision first 
executes lane keeping. With the appearance of 
distant obstacles in front, the longitudinal behavior 
decision executes deceleration and enters the speed 
following mode. At the same time, determine 
whether the right lane meets the conditions for a safe 
lane change. After meeting the conditions, the 
horizontal decision-making behavior executes the 
right lane change, the longitudinal behavior 
decision-making executes the vehicle acceleration 
mode, and finally completes the lane change and 
overtaking, ensuring driving efficiency 
 

 Scenario Case 2: Set the initial vehicle 
driving in the middle lane, with the 
driving speed of the front car at 43 km/h, 
the driving speed of the left front car at 43 
km/h, and the driving speed of the right 
front car at 47 km/h. The aggressive 
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driving strategy is selected. Figure 12 
shows the simulation results obtained in 
this scenario. 

 

 
 

Figure 12. Case 2’s Simulation Results 
 

It can be seen from the simulation results of 
Case 2 (Fig. 12) that in the current scenario, the 
horizontal behavior decision first implements lane 
keeping. With the approaching obstacles in front, the 
vertical behavior decision implements deceleration 
but does not enter the speed following mode. The 
horizontal behavior decision directly executes right 
lane changing. In the first overtaking behavior, the 
horizontal behavior decision again executes left lane 
changing. It can be seen that when the aggressive 
driving style is a constraint, the lateral decision-
making mode will frequently perform lane changing. 
 

The simulation results of Case 1 and Case 2 
show that the driving mode switching algorithm 
based on the deep RL proposed in this project has 
good generalization performance and can adapt to 
different scenarios. 
 
4.6 Effectiveness 

It is confirmed that the deep RL model 
proposed in this study has good generalization 
performance. We verify the effectiveness of this 
algorithm for driving mode switching tasks. The 
proposed model collects vehicle operation status 
data, including lateral position deviation, heading 
angle deviation, and safety index. The model also 
records the current driving mode, verifies the 
effectiveness of the driving mode switching strategy 
based on deep RL, and records the distance that can 
be safely driven. The experimental simulation results 
are shown in Fig. 13. 
 

 
 
Figure 13. Effectiveness Verification Results Of Driving 

Mode Switching Strategy 
 

It can be seen from the experimental 
simulation results (Fig. 13) that the driving mode 
switching strategy based on deep RL proposed in 
this project can be successfully switched to manual 
driving when the lateral position deviation and 
heading angle deviation are significant by observing 
the vehicle operational state data. 
 

The mathematical results show that the 
proportion of manual driving is 55.73%, and the 
proportion of automatic driving is 44.26%. At the 
same time, the driving mode switching strategy can 
respond to the lane safety degree. When it is lower 
than the safety degree, the proposed strategy 
switches to the manual driving mode, and when it is 
higher than the safety degree threshold, it enters the 
automatic driving mode. The results show that the 
proportion of manual driving is 48.57%, and the 
proportion of automated driving is 51.43% at this 
point. The simulation results show that based on the 
analysis of lateral position deviation, heading angle 
deviation, and safety index data, the deep RL method 
proposed in this project can effectively realize the 
switch between manual and automatic driving 
modes. 
 
5. CONCLUSION 

This paper illustrates the components in a 
modern autonomous driving systems based on the 
real-time online switching mechanism with deep 
reinforcement learning. The first achievement of the 
paper is the understandings of distance and safety 
degree of moving obstacles implemented by the 
motion space variable, design of cost function for 
risk assessment, and safety algorithm.  The second 
achievement of the paper is the decision and 
planning with Actor–Critic framework followed by 
switching strategy.  

Taking a typical three-lane traffic scene as an 
example, to calculate and judge the safety degree of 
moving obstacles in the lane, a real-time online 
switching mechanism based on RL is adopted. 
Through real-time observation of the safety degree 
index of the current driving situation and the running 
data of the vehicle, the state space parameters of the 
vehicle are formed, and the cost function based on 
risk evaluation is designed. Through the constructed 
Actor–Critic network, the output mode switches the 
flag bit. Finally, the effectiveness of the proposed 
algorithm is verified by the simulation platform. 
Through the case setting in the simulation scenario, 
the success rate of mode switching is verified. The 
results show that the mode switching strategy can 
respond well to the vehicle lateral position deviation, 
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heading, angle deviation, and longitudinal safety 
degree and improve the vehicle’s operational safety. 
This paper verifies the effectiveness of the driving 
strategy designed in this project in the two scenarios 
presented, but in general, there is still much room for 
research and improvement. In the future, the work 
that can be improved in this project includes the 
following: 
(1) Research on automatic driving strategies transfer 
learning in different scenarios [24]. The 
experimental scenarios designed in this project are 
few compared with the actual scenarios. In future 
research, we can study the application of transfer 
learning in RL. Not only can we explore how to 
transfer the knowledge or skills learned in a single 
scene to other environments, but we can also study 
how to transfer the knowledge learned in the virtual 
environment to the actual scene, which will 
undoubtedly greatly promote the application of 
driving strategies based on RL in reality. 
(2) Hot start research using expert strategies. This 
project uses random strategy initialization in the 
training process, so the exploration efficiency is 
relatively low, and the training process is lengthy. In 
succeeding research, we can use IL to obtain an 
initialization strategy from expert data, which can 
significantly accelerate the training process. 
(3) Research on the design of reward function. The 
reward function is the critical factor that determines 
whether the agent can learn effective strategies. If 
the designed reward function needs to adjust the 
coefficients of different reward items constantly, it is 
highly subjective based on manual observation and 
continuous experiments. Therefore, in future studies, 
a mechanism similar to “internal curiosity” can be 
added to the agent exploration strategy to guide the 
agent to accelerate learning. In addition, we can also 
consider using the inverse RL method to avoid the 
process of designing reward functions and 
automatically find more effective reward functions. 
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