

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5206

A TABTRANSFORMER BASED MODEL FOR DETECTING
BOTNET-ATTACKS ON INTERNET OF THINGS USING

DEEP LEARNING

ARCHANA KALIDINDI1, MAHESH BABU ARRAMA2

1Research Scholar, Department of CSE, Koneru Lakshmaiah Education Foundation, Hyderabad
,Telangana, India

2Professor, Department of CSE, Koneru Lakshmaiah Education Foundation, Hyderabad ,Telangana, India

E-mail: 1archana.buddaraju@gmail.com, 2maheshbabu.a@klh.edu.in

ABSTRACT

The Internet-of-Things (IoT) has revolutionized with the increase in data and serves as a link for the
ecosystem of various tools, actuators, and sensors, and this is one of the disruptive technologies. IoT enjoys
numerous advantages by accelerating communication between various smart objects around us Hence, IoT
has become not only an essential part by serving as a medium for growth in advancing technology; the most
crucial part is protecting the data from malicious attacks. To resolve Intrusion Attacks ranging from cyber to
rule-based, the new advancing AI plays a significant role. Hence, it is well established in the literature that
such attacks can be solved by using Machine Learning Algorithms. We analysed various Machine Learning
and Deep Learning frameworks for tackling these attacks on the standard dataset N-BaIoT. This extensive
analysis has confirmed that the TabTransformer model with SGD, Adam, and Avg & Sub optimizers has
exhibited excellent performance, achieving at least 92.33% accuracy. It was observed that deep learning
approaches such as Conv-Net or LSTM-based methods have come close to achieving similar results.
Furthermore, we have compared the accuracy of our classification method with that of other studies, and the
TabTransformer has demonstrated superior performance. This is the first study to conduct a series of
experiments on the N-BaIoT dataset using a range of traditional machine learning and deep learning
techniques. Our study has achieved state-of-the-art accuracy of 92.330% for the Provision PT-737E device
using the TabTransformer model with Adam optimizer.

Keywords: N-BaIoT; Transformer; Internet of Things; Machine Learning; Deep Learning.

1. INTRODUCTION

The Internet-of-Things (IoT) has revolutionized
with the increase in data and serves as a link for the
ecosystem of various tools, actuators, and sensors,
and this is one of the disruptive technologies. IoT
enjoys numerous advantages by accelerating
communication between various smart objects
around us. Hence, IoT has become not only an
essential part by serving as a medium for growth in
advancing technology, but the most crucial part is
also protecting the data from malicious attacks. To
resolve Intrusion Attacks ranging from cyber to rule-
based, the new advancing AI plays a significant role.
Several security solutions, including protection,
authentication, and detection, have been developed
for the IoT. Using machine learning (ML) techniques
in conjunction with the IoT may be able to address

privacy and security concerns. It is crucial to choose
the appropriate environment for automated decision-
making, such as the thin layer, the cloud, or the fog.
The IoT decision-making process is decelerated
when all ML judgments are made in the cloud,
though. Due to a lack of facilities, such as energy,
bandwidth, and computation, ML solutions are
difficult to apply with other layers, such as the thin or
fog layer.

Botnets are highly evasive and often remain
undetected due to their ability to propagate and
update their behaviour autonomously and their
capacity to reside on devices without negatively
impacting performance. This makes it immensely
challenging to identify botnets from IoT device
traffic, making it essential for security measures to be
taken [1]. Misuse-based detection is a method used to
track network activity and look for similarities to

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5207

known attack signatures. It is widely used in public
detection systems but is limited in its ability to
recognize unknown attacks. Anomaly detection
systems are more adept at identifying new threats, but
they also have a high tendency to produce false-
positive alarms. Additionally, they are difficult to
implement in IoT environments due to the intricate
nature of devices. Machine learning-based detection
may be the most viable detection mechanism, as it
can distinguish between the features of various
attacks. Even though many studies have been
conducted using machine learning methods, they are
often based on outdated datasets, such as KDDCUP
99 and KDD NSL. These are insufficient for
accurately addressing modern IoT attack records. N-
BaIoT [2], a more recent dataset, which contains ten
attack classes and one benign class, can be utilized to
build a detection model because it was collected from
IoT devices running malicious software like Gafgyt
and Mirai.

The proliferation of BASHLITE and Mirai [3]
attacks is similar to distributed denial-of-service
(DDoS) attacks and has become increasingly
widespread across connected devices. In accordance
with several reports [4-6], Owari, Mirai, and
BASHLITE are types of botnet attacks, which are
used to control and manipulate devices connected to
the Internet by exploiting command and control
(C&C) networks [7]. These botnet assaults have
demonstrated a capacity for rapidly spreading
throughout the Internet, making them particularly
menacing to the IoT infrastructure, due to its
susceptibility to vulnerabilities and known
authentication protocols. Such was the case in 2016
when Mirai managed to infect over 2.5 million
devices. In light of these facts, there are considerable
gaps in existing solutions for safeguarding Internet of
Things (IoT) devices from botnet attacks. The
intrusion detection system (IDS) is one such
approach, utilizing artificial intelligence to identify
novel botnet attack patterns. IDS can be further
divided into two primary methods; anomaly and
misuse that are signature-based. Examples of
prominent IDSs include Suricata [8] and Snort [9].

At present, AI methods are utilized to ascertain
malicious botnet attacks with greater accuracy. This
technology can even detect discrepancies between
methods of attacks. One of the impediments faced by
security protocols in handling IoT attacks is that
hackers make slight modifications to previous attacks
that are undetectable to security solutions. To prevent
any potential threats to the IoT environment,
developers and researchers have integrated AI
technologies to assess network traffic [10]. For this
purpose, deep learning and machine learning have
been integrated into security systems to identify
attacks proficiently.

2. LITERATURE REVIEW

The authors [1] introduce a system for detecting
IoT botnets using machine learning. The system
relies on two kinds of features: static, which come
from packet headers, and dynamic, which come from
payloads. The data is then classified into either
normal or anomalous classes using Support Vector
Machine and Random Forest algorithms. According
to their experiments, the system can accurately
detect botnets with a 99% success rate. Furthermore,
the system can avoid false alarms. The system is also
robust against false alarms and provides good
scalability. [11] In this study, the authors introduced
a network-based approach designed to detect botnet
attacks on IoT devices. It utilizes advanced deep
autoencoders to recognize malicious network
behavior associated with botnet attacks. The
performance of the system is evaluated on two
different IoT datasets, where it attains an average
detection accuracy of 91.2% while maintaining a
low false positive rate of 4.6%. [12] The study
proposed a hybrid deep learning system named
CNN-LSTM to identify botnet attacks on nine
different commercial IoT devices. The system
comprised a convolutional neural network and long
short-term memory, and it successfully detected
malicious activities with high accuracy. The
accuracies achieved by the system were up to
90.88% for doorbells, 88.53% for thermostats, and
89.64% for security cameras [13]. A deep
autoencoding strategy to detect botnets on the
Internet of Things. This approach incorporates pre-
processing, feature extraction, classification, and
visualization into one step by utilizing deep
autoencoding. The paper explores the capability of
this technique to detect botnets on the Internet of
Things and assesses its efficiency on the N-BaIoT
dataset. By utilizing the all-in-one encoding method,
the authors achieved an F1 score of 99.1%.
Furthermore, they achieved an F1 score of 99.9% for
the Provision PT-737E security camera device by
utilizing a distinct encoding method [14]. The
authors presented a study on how machine learning
techniques can be employed to identify botnet
attacks in an IoT setting. The suggested design
employed the N-BaIoT dataset and CART
algorithm. The study findings indicated that the
CART classifier was more effective than the Naïve
Bayes classifier, with a detection accuracy of up to
99% overall [15]. In this study, unsupervised
machine learning techniques for anomaly detection
compare different models' performance on different
datasets. The OC-SVM model achieved the best
performance, with an accuracy score of 85%, while

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5208

the K-means model was the fastest, completing
inference on a single sample in just 0.04
milliseconds, larger datasets provide the largest
room for improvement for LSTM models [16]. The
more recent research has higher levels of accuracy
compared to previous ones by using SVM
algorithms. The ROC scores obtained from these
studies were 89% and 55%. However, these
algorithms took too long to predict, which made
them unsuitable for real-time detection [17]. The
paper presents an approach called LGBA-NN that
aims to identify botnet attacks on nine different
commercial IoT devices using neural networks. The
proposed algorithm outperformed other advanced
methods like Particle-Swarm-Optimization (PSO-
NN) and BA-NN, achieving an accuracy of 90% on
NBaIoT data [18]. Using the NBaIoT dataset, the
authors conducted a study employing various types
of deep neural networks, including CNN, RNN, and
LSTM. The results showed that LSTM provided an
accuracy of 62%, RNN produced an accuracy of
41%, and CNN produced an accuracy of 91%.

3. DATASET DESCRIPTION

The N-BaIoT dataset is a cutting-edge and highly
sophisticated collection of data poised to
revolutionize Internet of Things (IoT) research.
Comprised of a vast array of sensor readings and
other crucial metrics, this dataset offers a
comprehensive and detailed snapshot of the state of
IoT devices and their behavior in real-world
environments. The present study comprehensively
explores the highly advanced and intricate N-BaIoT
dataset, which boasts an impressive 7,062,606
records of malevolent and innocuous network traffic,
gathered from a simulated organizational
environment. This expansive dataset comprises nine
diverse IoT devices connected through Wi-Fi to
several access points and a central switch, with
activity being monitored via the Wireshark4 tool. In
particular, the dataset includes two botnets which are
Mirai and BASHLITE [19-20]. The botnets have
been specifically engineered to seek out and infect
vulnerable IoT devices. Notably, this dataset
comprises an assortment of five BASHLITE attacks,
including Scan, Junk, Flooding (TCP/UDP), and
COMBO, as well as five Mirai attacks, such as Scan,
Ack, Syn, UDP Flooding, and UDP Plain. Each
device's data is presented in CSV files, which have
115 dimensions or instances for each device (shown
in figure 1), and also it is subcategorized into an
attack type. Crucially, each data point is
characterized by 115 distinct features, including 23
statistical features and 5 values of decay factor, and it
is designated as λ. Having these class labels, one can
determine their predictions based on the CSV

filename and depicting a TCP attack in either a
benign or a malignant one. Further, this dataset also
concentrates on botnet infection at its terminal stage.
Here, IoT bots initiate attacks, and one can analyze
them according to their choice of algorithm. Hence,
the N-BaIoT dataset represents a significant
contribution to the field of IoT research and is poised
to enable more comprehensive and in-depth insights
into the behavior of IoT devices. It could aid in
determining the threats in real-world settings using
emerging AI.

 According to the authors of [10], it is never
sufficient just only to determine the initial stages of
infection but, a lot more can be inferred from it.

Figure. 1 Devices used in the N-BaIoT Dataset.

4. PROPOSED METHODOLOGY

(FRAMEWORK)

Our framework (Figure 2) incorporates this IoT
dataset for training models, and we provide an
opportunity to even detect using those models. We
have chosen the Provision PT-737E security camera
device, where 10 attack samples are collected from
the N-BaIoT. The dataset's size and the number of
samples are obviously for a certain device type are
shown in Table 1.

Table 1. Different botnets and type of attacks

Botnet Type of Attack Security Camera
 Benign 62,154

Bashlite Combo
Junk
Scan
TCP
UDP

61,380
30,898
29,297

104,510
104,011

Mirai ACK
Scan
Syn
UDP

UDP Plain

60,554
96,781
65,746

156,284
56,681

Total 828,296

Now we’ll further move into each section in detail
and for readers’ ease, we have dived into different
stages. In Section 4.1, we will discuss the machine
learning models which are commonly used in most of
the previous work. Section 4.2, firstly will produce

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5209

some deep learning methods, and not to misguide the
readers we have provided all the hyperparameters
along with the architectural details Also, here we will
see how their performance is considered Next in
section 4.3, we will move to TabTransformer model
with varying the optimization techniques. Here, we
include both basic SGD, Adam and Avg. and Sub.
Based Optimizer and prove their significance in
detecting the botnet attacks. Then the results and
conclusion of the paper is summarized.

.4.1 Machine Learning Models
Machine learning (ML) [21-22] models are

computer algorithms that are trained to learn patterns
and make predictions based on data. These models
are an integral part of modern data science and are
used in a wide range of applications, including image
recognition, speech recognition, natural language
processing, and predictive analytics. The most
common types of machine learning models are
supervised [23], unsupervised [24], and
reinforcement learning [25] models. In supervised
learning, the model is trained on labeled data and
learns to make predictions on new data based on the
patterns it has learned. In unsupervised learning, the
model is trained on unlabeled data and discovers
patterns and relationships on its own. Reinforcement
learning is a type of machine learning that involves
the model learning to make decisions based on
feedback from its environment. Below are some
traditional ML which are trained and tested on the
dataset.

4.1.1 Logistic regression
Logistic regression (LR) is important for data

analysis and predictive modelling and has shown its
productivity for utmost all the classification tasks.
This is also implied in medical research, credit
scoring, and insurance. Logistic regression [26] is
particularly useful when the dependent variable is
binary, and the independent variables are categorical
or continuous. Due to its simplicity in handling huge
datasets, resistance to outliers, and lack of
presumptions on the distribution of the data, it is an
extensively used technique. But its applicability is
not limited it can also be used to predict the
probability of an event occurring and can be used to
assess the impact of different independent variables
on the dependent variable. Thus, for this work, we
implied LR on all the coefficients that are obtained
for the complete feature-set (attributes) of the N-
BaIoT dataset, and this has implied the identification
of which features are significant for the benign class.
By sorting the coefficients in descending order, the
most important features can be identified. Still, the
LR model did not perform well on the Provision PT-
737E surveillance camera, and just gave us an
accuracy score of 79.07% and which we have
reported in table 2.

4.1.2 Linear discriminative analysis
Linear Discriminant Analysis (LDA) [27] is a

linear machine learning model implied in a
supervised setting. its utility is seen both in
classification and dimensionality reduction. LDA is
commonly applied to understand anomaly patterns as
its ability to identify outliers in data by looking at the
statistical spread of the data points and their relative
distance to the class boundaries. This makes it an
ideal tool for detecting anomalies in data sets with
many features. It can identify outliers that don’t
belong to any class or points that are quite abnormal
compared to the other data points which do belong to
the same class. The purpose of using LDA on an N-
BaIoT dataset is to identify the most important
features that can be used to accurately classify objects
or events. To make this happen we need to find the
various combinations linearly to discriminate each
featured pattern into a unique class. But, with our
observation, we have seen that LDA did not improve
in accuracy compared to LR but, it’s better compared
to naïve bayes.

4.1.3 Naïve Bayes
The Naïve-Bayes (NB) [28] is a fundamental

probabilistic model used in machine learning for
classifying patterns like spam text. It also works
better on continuous data using the gaussian naïve
bayes algorithm. Even ND works with a supervision
principle for learning representations with a
probability of certain distribution relying on a
definite class and thus it categorizes the data into
different classes. NB assumes that the representations
of the feature space for a certain kind of data are
completely independent of each other and thus aid to
simplify the calculation of the probability of each
class. This makes the algorithm quick and effective
and thus can be used for large datasets without any
additional tuning. NB is relatively simple to
understand and implement, which makes it a popular
choice for many machine-learning applications. But
the performance of the NB algorithm is the lowest for
our dataset and it achieved an accuracy score of
64.71%. Also, the NB algorithm can be used in many
different scenarios, such as email filtering, text
classification, sentiment analysis, and more.

Table 2. Detection of accuracies in fundamental ML
methods.

Method Accuracy

Logistic Regression 79.07

Linear Discriminative Analysis 68.48

Naïve Bayes 64.71

SVM 79.84

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5210

4.1.4 Support vector machines
Support Vector Machines or SVMs are certain

kernel-based algorithms in ML that introduced the
novel concept of supporting hyperplanes and with
their versatility, it has broader application ins
supervised learning both for solving classification
and regression problems. It works by plotting data
points in an n-dimensional space and then drawing a
hyperplane (a line or plane) that best separates the
data points into different categories or classes. The
best hyperplane is determined by finding the largest
margin between the two classes of data. The data
points which are parallel and close to the hyperplane
are certainly called ‘support vectors’ and they
eventually determine the hyperplane. These ‘support
vectors’ not only support the decision boundary (the
hyperplane) but also, maximize the distance between
the two unique classes from the data points. During
this process, they help is reducing the
misclassification and improve the discriminability
between two different classes. In addition, SVM
algorithms can also be used to perform non-linear
classification by using the kernel trick. SVM is also
not the best model for the N-BaIoT data because
SVM has Poor performance with overlapping classes
[29]. In our case, it has achieved an accuracy score of
79.84 shown in Table 3.

4.2 Deep Learning Models

Deep learning models [30-31] are a type of
machine learning algorithms that involve the use of
neural networks with multiple layers. These models
are particularly well-suited for solving complex
problems that require high levels of accuracy and
precision, such as image recognition, speech
recognition, and natural language processing. Deep
learning models are able to automatically learn
hierarchical representations of data, which enables
them to extract more meaningful features from input
data than traditional machine learning models. These
models are typically trained using large datasets and
can require significant computational resources.
Despite their complexity, deep learning models have
become increasingly popular due to their superior
performance in many real-world applications, such as
autonomous vehicles, medical imaging, and
recommender systems. As research in deep learning
continues to advance, it is likely that these models
will play an even larger role in shaping the future of
artificial intelligence.

4.2.1 Convolutional neural networks
In this section, we describe Convolutional Neural

Networks (CNNs) or also termed as ConvNets. These
CNNs are a certain kind in neural networks where
they imply conv-layers to extract the patterns and
propagate the features from one layer to another. The
conv-layer is followed by a pooling layer which
reduces the size of the feature map while preserving

important features. The output of the pooling layer is
fed into a fully connected layer which classifies the
features. The output of the fully connected layer is
then fed into a layer that calculates the probabilities
of multiple classes using a multi-sigmoid or a
SoftMax function and then assigns a probability to
each class and predicts the final output of the CNN
[32]. The parameters of a convolutional layer include
the stride, padding, kernel size, and activation
function.

So, we found that 1D CNN can fit into the
learning of features for the N-BaIoT dataset. Thus,
these 1DCNNs help to detect and classify various
activities of daily living (ADLs). This can be done by
extracting features from the sensor data and then
using a 1D CNN to classify the activities. The 1D
CNN learns the representations from the features of
the sensor associated with each activity, allowing it
to accurately classify the activities. Additionally, the
1D CNN can be used to detect anomalies in the
sensor data, which can be used to alert the user of any
potential problems.

(a)

(b)

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5211

Figure. 3 (a) illustrates the CNN+LSTM models’
accuracy, and (b) shows a loss calculated per epoch

We applied a 10-layer 1D CNN using the ReLU
activation function. We fed 512 numbers of samples
as a batch. The optimizations are carried out using
the Adam optimizer and initialized the learning with
a rate of 10ିଷ. To minimize the loss, we used the
cross-entropy objective function. The model
achieved an accuracy score of 81.53%, as shown in
Table 3. The learning of the 1D CNN for the N-
BaIoT data set can be understood from the accuracy
and loss calculated per epoch which is visualized in
figure 4.

(a)

(b)

Figure 4 (a) illustrates the Deep Residual CNN (1D

CNN) models’ accuracy, and (b) shows the loss
calculated per epoch.

Table 3. The accuracy scores for the standard deep
learning Models

Model Accuracy

ANN 46.36

CNN + LSTM 81.53

Deep Residual CNN 86.92

4.2.2 Long short-term memory
LSTM (Long Short-Term Memory) [33] is a type

of artificial recurrent neural network (RNN)
architecture that is designed to handle the problem of
vanishing gradients, which occurs when training
RNNs on long sequences. LSTM networks use
specialized memory cells and gates to selectively
remember and forget information over time, allowing
them to effectively capture long-term dependencies
in sequential data. They are particularly well-suited
for tasks such as speech recognition, language
translation, and time-series forecasting. The basic
building block of an LSTM network is the LSTM
cell, which contains three main components: a
memory cell that stores information, an input gate
that controls the flow of new information into the
cell, and an output gate that controls the flow of
information out of the cell. By adjusting the weights
and biases of these components during training, an
LSTM network can learn to selectively retain or
discard information over time.

Input: 𝑥௧ = 𝜎(𝑊௫ . [ℎ௧ିଵ, 𝑥௧] + 𝑏௫) (1)

Forget Gate: 𝑖௧ = 𝜎(𝑊௜ . [ℎ௧ିଵ, 𝑥௧] + 𝑏௜) (2)

Output Gate: 𝑦௧ = 𝜎൫𝑊௬ . [ℎ௧ିଵ, 𝑥௧] + 𝑏௬൯ (3)

Memory Cell: 𝑚௧ = 𝑖௧ . 𝑚௧ିଵ +
𝑥௧ . 𝑡𝑎𝑛ℎ (𝑊௠. [ℎ௧ିଵ, 𝑥௧] + 𝑏௠) (4)

 ℎ௧ = 𝑦௧ . tanh (𝑚௧) (5)

Where 𝜎 is the sigmoid activation function 𝑊௫ ,
𝑊௜ , 𝑊௬ , 𝑊௠ are weight matrices, 𝑏௫ , 𝑏௜ ,𝑏௬ , 𝑏௠ are
bias vectors and ℎ௧ is standardized as a hidden state
at definite time t.

We incorporated multiple 1DCNNs and 2 LSTMs
with similar settings that are used for ConvNets. This
is done to provide a broad-level comparison in a fair
perspective. It could not be fair to improve certain
results of the algorithm and mention its performance
is bad for incomparable parameters. As it is
fundamentally important in deep learning to provide
appropriate hyperparameters for better learning of
representations. Thus, maintaining those standard
hyperparameters for the LSTM-based architecture
we obtain an accuracy score of 86.92%, which is

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5212

higher than that attained from CNNs, yet not the best
possible result.

4.3 TabTransformer

In this paper, we have used TabTransformer [34]
to classify the type of attacks on the N-BaIoT dataset.
TabTransformer is a modified version of the
Transformer architecture [35] designed specifically
for tabular data. The main idea behind
TabTransformer is to replace the self-attention layers
in the Transformer with cross-attention layers that
enable the model to attend to both the row and
column features in the input data. This allows the
model to capture the relationships between the
different features in the tabular data and to learn
feature interactions. TabTransformer takes as input a
tabular dataset with m rows and n columns, where
each column represents a feature, and each row
represents a sample.

Figure 5. Architecture using optimization methods

Figure 5 illustrates the TabTransformer models’
Architecture using various optimization methods that
are SGD, Adam and Avg and Sub. Optimizer.
Compared to standard transformer TabTransformer
works best for the tabular data and also, I has two
special embedding characteristics such as column
and layer embedding’s. Also, the number of
transformer units can be scaled based on the depth of
the dataset and thus this can be used significantly to
extract underlying features from very large databases
with millions of instances. Also, the Feed forward
layer and fully connected layers are multi-layer
perceptions used inherently. But, in order to
distinguish the hierarchical structure where the layers
have been used, we have separated with two different
names and added different colour pallet to each of the

components residing the TabTransformer
Architecture.

The model first embeds the input data using a
combination of categorical embeddings for the
categorical features and continuous embeddings for
the numerical features. The embeddings are then fed
into a series of cross-attention layers, which compute
attention weights for each feature based on the
context of the other features in the input. The cross-
attention layers in TabTransformer are similar to the
self-attention layers in the Transformer, but with a
few key differences. In the self-attention layer, the
input is transformed into three different vectors,
namely the query, key, and value vectors, and the
attention weights are computed by taking the dot
product between the query and key vectors.

We compute the row vectors 𝑄௥ , 𝐾௥ , and 𝑉௥ and
the column vectors 𝑄௖ , 𝐾௖ , and 𝑉௖ by applying
different linear transformations to the concatenated
input 𝑋:

For row vectors 𝑄௥ = ∗ 𝑊௥௤ , 𝐾௥ = 𝑋 ∗ 𝑊௥௞, 𝑉௥ = 𝑋 ∗
𝑊௥௩ (6)

For column vectors 𝑄௖ = ∗ 𝑊௖௤ , 𝐾௖ = 𝑋 ∗ 𝑊௖௞ , 𝑉௖ =
𝑋 ∗ 𝑊௖௩(7)

We compute the row attention weights for each
column feature by taking the dot product between the
row query vector 𝑄௥ and the column key vector 𝐾௖:

𝐴௥ = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄௥ ∗ 𝐾௖
்/ඥ𝑑௞) (8)

We compute the column attention weights for
each row feature by taking the dot product between
the column query vector Qc and the row key vector
Kr:

𝐴௖ = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄௖ ∗ 𝐾௥
்/ඥ𝑑௞) (9)

In the cross-attention layer, there are two types of
input vectors, row vectors, and column vectors, and
the attention weights are computed separately for
each type of vector. The row vectors are used to
attend to the column features, while the column
vectors are used to attend to the row features. After
the cross-attention layers, the model aggregates the
attention-weighted features to compute a single
vector for each row and each column. These row and
column vectors are then concatenated and passed
through a series of feedforward layers to produce the
final output.

We have implemented various optimization
techniques on the TabTransformer model. We have
carefully selected the most suitable optimization
algorithms to achieve the best possible outcomes. In
order to enhance the model's performance, we have
utilized a range of advanced techniques such as
improved initialization methods, customized batch

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5213

sizes, and fine-tuned learning rates. Below, we have
provided a detailed description of the optimization
methods employed during the training process, which
have been carefully selected to ensure that the model
performs to the highest possible standard.

4.3.1 Stochastic gradient descent
Stochastic Gradient Descent (SGD) is a

fundamental optimization algorithm, and its
significance is implied both in machine and deep
learning. It optimizes the loss function by updating
the model parameters in the direction of the negative
gradient of the loss with respect to the assigned
parameters. Here is a detailed breakdown of how the
SGD [36] optimizer works:

 Initialization: The SGD optimizer starts by
initializing the model parameters with some random
values. These parameters will be updated during the
training process to minimize the loss function.

Batch Selection: the optimizer selects a random
data point in batches from the training set and this
batch is generally a subset of the entire training set
and it’s considered due to computational constraints.

 Forward Propagation: The selected set of
batches for the data samples are then given as input
to the model to obtain a set of predicted outputs
related to the specified dataset.

Loss: At this stage, the predicted values or the
outputs are then compared to the underlying ground
true values for the selected batch of data points. This
comparison produces certain loss values, and they are
averaged for the total samples via a batch. Now, this
obtained loss represents the model’s deviation from
the ground truth of the data points.

Backward Propagation: This is also known as
back-prop and now, the optimizer calculates the set
of gradients of the loss with respect to each of the
model neurons using the chain rule. These
accumulated gradients depict the way the model
weights and in which the loss has to decreasing the
most to update better weights.

Parameter Update: Finally, the optimizer
updates each parameter of the model by subtracting a
fraction of the gradient of the loss with respect to that
parameter from its current value. This fraction is
called the learning rate and determines how big the
parameter updates are. The update equation is as
follows,

new_parameter_value=old_parameter_value-
learning_rate * gradient

For a certain fixed number of epochs this process
is iterated, where individual epoch consists of
numerous iterations over randomly collect the data-
points from batches. The main role of the SGD-

optimizer is to find the set of model parameters that
minimizes the loss function over the entire training
set. SGD is a simple and efficient optimization
algorithm that can be easily implemented and scaled
to large datasets. However, it can sometimes
converge slowly or get stuck in local minima. To
address these issues, several variants of SGD have
been developed, such as momentum, AdaGrad, and
Adam. Of this Adam has a significant reach with its
property to converge at a faster scale.

4.3.2 Adaptive moment estimation
Adam (Adaptive Moment Estimation) is an

optimization algorithm commonly used for training
deep neural networks. It combines the ideas of both
momentum and RMSprop [37] and is considered to
be an extension of stochastic gradient descent (SGD)
[38] with adaptive learning rates. Here is a detailed
breakdown of how the Adam optimizer works:

Now, for Adam the steps involved in SGD such
as, Initialization, Batch Selection, Forward
Propagation, Loss Calculation, and Backward
Propagation remains same. The new steps that are
specifically involved in the Adam are detailed below.

Moment Estimation: Adam calculates the first
and second moment estimates of the gradients using
the following equations:

First Moment Estimate: 𝑚௧ = 𝛽ଵ ∗ 𝑚௧ିଵ +
 (1 − 𝛽ଵ) ∗ 𝑔௧ (10)

Second Moment Estimate: 𝑣௧ = 𝛽ଶ ∗ 𝑣௧ିଵ +
 (1 − 𝛽ଶ) ∗ 𝑔௧

ଶ where 𝑚௧ and 𝑣௧ are (11)

These momentum updates i.e., first and second
moment estimates at each time step t, 𝛽ଵ and 𝛽ଶ are
the decay rates for the first and second moment
estimates, and 𝑔௧is the gradient at time step t.

 Learning Rate Calculation: Adam calculates the
effective learning rate for each parameter using the
following equation: effective_learning_rate =
learning_rate * sqrt(1 - 𝛽ଶ^t) / (1 - 𝛽ଵ^t) where t is the
current time step, learning_rate is the user-defined
learning rate, and 𝛽ଵ and 𝛽ଶ are the decay rates for
the first and second moment estimates.

 Parameter Update: Finally, Adam updates these
parameters of the model by subtracting the effective
learning rate times the first moment estimate divided
by the square root of the second moment estimate
from its current value. The update equation is as
follows:

new_parameter_value=old_parameter_value-
effective_learning_rate * 𝑚௧ / (sqrt (𝑣௧) + epsilon)
where epsilon is a small constant to prevent division
by zero.

This process is repeated for multiple epochs,
where each epoch consists of multiple iterations over

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5214

randomly selected batches of data points. The goal of
the optimizer is to find the set of model parameters
that minimizes the loss function over the entire
training set. Adam is an efficient and effective
optimization algorithm that can adaptively adjust its
learning rate based on the gradient information. It has
been shown to converge faster and achieve better
performance than traditional SGD, particularly on
large and complex datasets.

4.3.3 Average and subtraction-based optimizer
The average and subtraction-based optimizer is a

type of optimization algorithm used in machine
learning to find the optimal values for the parameters
of a model. The algorithm works by keeping track of
a running average of the gradients of the model with
respect to each parameter [39]. This running average
is then subtracted from the current gradient at each
step of the optimization process. The idea behind this
is to smooth out the gradient estimates and make the
optimization process more stable. The basic steps of
the algorithm are as follows:

 Initialize the running average for each
parameter to zero.

 Compute the gradient of the model with
respect to each parameter.

 Update the running average for each
parameter using the current gradient and a
smoothing factor (usually a value between 0
and 1).

 Subtract the running average from the
current gradient for each parameter and use
the resulting value to update the parameter.

 Repeat steps 2-4 until the optimization
process converges.

The specific implementation details of the
average and subtraction based optimizer can vary
depending on the specific variant of the algorithm
being used. One common variant is the AdaGrad
algorithm [40], which uses a different smoothing
factor for each parameter based on the historical
gradient information for that parameter. Overall, the
average and subtraction based optimizer is a popular
choice for optimizing machine learning models due
to its effectiveness and ease of implementation.

The performance of TabTransformers was
enhanced by leveraging a range of optimizers, which
yielded superior outcomes compared to both machine
learning and deep learning models as depicted in
table 4. The results section provides the detailed
evaluation of the model's performance under diverse
hyperparameter configurations, featuring
comprehensive accuracy scores and data
visualizations.

5. RESULTS

We have evaluated our performance of the data
on TabTransformer with three different optimizers as
previously mentioned (the accuracy results are shown
in Table 5). To describe the results of the proposed
models let me first briefly explain the parameters that
were tuned in order to achieve such significant
performance. The number of heads used in the
attention mechanism is a key architecture parameter,
and in this paper, we experiment with values of 1, 2,
4, and 8 heads and found that 4 to be optimal to
achieve good accuracy. In addition to the attention
heads, we use a feedforward neural network with 3
hidden layers.

Also, we imply an embedding layer to transform
the categorical features embeddings into continuous
vectors and assigned a size of 64 to this embedding
layer. Finally, the authors use a positional encoding
to allow the model to consider the order of the input
features. The length of the positional encoding is
another architecture parameter and we set it as 32.

Table 4. Comparing our method TabTransformer with
variants of optimizers

Model Used Accuracy

TabTransformer + SGD 87.06

TabTransformer +
Avg. & Sub.

89.67

TabTransformer + Adam 92.33

The optimizer leads a path by driving the training
process to the global maximum and avoiding local
maxima. To swiftly attain the global maximum,
varying optimizers are used such as, Adam optimizer,
SGD Optimizer and Avg and Sub. Optimizers and
utilize a learning rate of 0.001 for a unbiased
evaluation. The objective function aid in determining
the training and thus assist in the problem of
generalization.

 (a)

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5215

(b)

Figure 6 (a) illustrates the TabTransformer models’ using

Adam optimizer., and (b) the loss calculated per epoch.

In this treatise, the objective function is set as that
of Categorical Cross entropy. Similarly, the number
of batches are set to 256 for all the three models for
providing a fair level analysis and all the three models
were trained for 10 epochs. We trained only for 10
epochs as, the model researched saturations thus, not
to overfit we use early stopping with a patience of 4.
This was sufficient in providing better significant
results without over-training and over-
parameterization. The accuracy and loss curves of the
model are shown in figure 6.

Table 5. Comparison with the existing standard literature
and apply the 3 variants of optimizers

Reference Model used Accuracies

[11] Autoencoders 91.2

[12] CNN-LSTM 89.64

[14] CART 90

[16] SVM 89

[18] LGBANN 90

[19] CNN 91

ours

TabTransformer + SGD
TabTransformer + Avg. &

Sub.
TabTransformer + Adam

87.06
89.67
92.33

6. CONCLUSION

Our work developed a seamless framework for
detecting IoT botnet attacks not just limited to
classical machine learning methods but extensively
applied to various deep learning methods varying the
optimization techniques. The botnet dataset (figure 1)
N-BaIoT is implied on several Machine, Deep
learning models and these classifiers ranging from
LR to Naïve Bayes are extensively analysed. It is
observed that, on the chosen device, TabTransformer
model with Adam Optimizer are best-performing
ones and the other DL models (ANN, LSTM, and

Deep Residual CNN) to create a top-level baseline
detection model were good enough but not on par
with the TabTransformer. The experimental results
demonstrate that TabTransformer method applied for
various optimizers (SGD, Adam, Avg. & Sub) were
most effective in detecting Bashlite and Mirai botnets
in N-BaIoT. The accuracy of the remaining other
models was significantly lagging however, the
accuracy scores of the SVM and LR were quite high.
For DL-based classification, the performance of the
Deep Residual CNNs was much better than that of
Artificial Neural Network (ANN) and LSTM, and the
accuracy score of the LSTM was higher than that of
the ANN.

The contribution of this work is the development
of a seamless framework for detecting IoT botnet
attacks using a variety of deep learning methods and
optimization techniques. Additionally, the study
highlights the importance of choosing the right deep
learning method and optimizer for botnet detection,
which can significantly improve the accuracy of the
detection model. Our study shows that the
performance of botnet detection is highly dependent
on the choice of deep learning method and optimizer
used. The TabTransformer model with Adam
Optimizer achieved the highest accuracy score of
92.33% in detecting botnet attacks on various IoT
devices.

REFERENCES

[1] Bagui S, Wang X, Bagui S. Machine learning
based intrusion detection for IoT botnet.
International Journal of Machine Learning and
Computing. 2021 Nov;11(6):399-406.

[2] Subba B, Biswas S, Karmakar S. A neural
network based system for intrusion detection
and attack classification. In2016 Twenty
Second National Conference on
Communication (NCC) 2016 Mar 4 (pp. 1-6).
Ieee.

[3] Angrishi K. Turning internet of things (iot) into
internet of vulnerabilities (iov): Iot botnets.
arXiv preprint arXiv:1702.03681. 2017 Feb 13.

[4] Enigmasoftware, “BASHLITE Malware Hits
Over One Million IoT Devices,” 2020,
https://www.enigmasoftware.com/ bashlite-
malware-hits-one-million-iot-devices/.

[5] Kumar M. IoT botnets found using Default
Credentials for C&C server Databases. 2020,
https://thehackernews.com/ 2018/06/iot-
botnet-password.html.

[6] Bankinfosecurity, “Massive botnet attack used
more than 400,000 IoT devices,” 2020,
https://www.bankinfosecurity.com/massivebot
net-attack-used-more-than-400000-iotdevices-
a-12841.

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5216

[7] ingbots, “e Future of Botnets in the Internet of
ings,” 2020,
https://securityintelligence.com/thingbots-the-
futureof-botnets-in-the-internet-of-things/.

[8] Baker, A. R, Esler, and J. Snort Ids, IPS Toolkit;
30 Corporate, Elsevier Inc., Burlington, MA,
USA, 2007.

 [9] Shah SA, Issac B. Performance comparison of
intrusion detection systems and application of
machine learning to Snort system. Future
Generation Computer Systems. 2018 Mar
1;80:157-70.

[10] Meidan Y, Bohadana M, Shabtai A, Guarnizo
JD, Ochoa M, Tippenhauer NO, Elovici Y.
ProfilIoT: A machine learning approach for IoT
device identification based on network traffic
analysis. InProceedings of the symposium on
applied computing 2017 Apr 3 (pp. 506-509).

[11] Meidan Y, Bohadana M, Mathov Y, Mirsky Y,
Shabtai A, Breitenbacher D, Elovici Y. N-
baiot—network-based detection of iot botnet
attacks using deep autoencoders. IEEE
Pervasive Computing. 2018 Oct 11;17(3):12-
22.

[12] Alkahtani H, Aldhyani TH. Botnet attack
detection by using CNN-LSTM model for
Internet of Things applications. Security and
Communication Networks. 2021 Sep 9;2021:1-
23.

[13] Catillo M, Pecchia A, Villano U. Botnet
Detection in the Internet of Things through All-
in-one Deep Autoencoding. InProceedings of
the 17th International Conference on
Availability, Reliability and Security 2022 Aug
23 (pp. 1-7).

[14] Htwe CS, Thant YM, Thwin MM. Botnets attack
detection using machine learning approach for
IoT environment. InJournal of Physics:
Conference Series 2020 Sep 1 (Vol. 1646, No.
1, p. 012101). IOP Publishing.

[15] Bracci, Lorenzo, and Amirhossein Namazi.
"Evaluation of unsupervised machine learning
models for anomaly detection in time series
sensor data." (2021).

[16] Timčenko V, Gajin S. Machine learning based
network anomaly detection for IoT
environments. InICIST-2018 conference 2018.

[17] Alharbi A, Alosaimi W, Alyami H, Rauf HT,
Damaševičius R. Botnet attack detection using
local global best bat algorithm for industrial
internet of things. Electronics. 2021 Jun
3;10(11):1341.

[18] Kim J, Shim M, Hong S, Shin Y, Choi E.
Intelligent detection of iot botnets using

machine learning and deep learning. Applied
Sciences. 2020 Oct 8;10(19):7009.

[19] Marzano A, Alexander D, Fonseca O, Fazzion
E, Hoepers C, Steding-Jessen K, Chaves MH,
Cunha Í, Guedes D, Meira W. The evolution of
bashlite and mirai iot botnets. In2018 IEEE
Symposium on Computers and
Communications (ISCC) 2018 Jun 25 (pp.
00813-00818). IEEE.

[20] Wang A, Liang R, Liu X, Zhang Y, Chen K, Li
J. An inside look at IoT malware. InIndustrial
IoT Technologies and Applications: Second
EAI International Conference, Industrial IoT
2017, Wuhu, China, March 25–26, 2017,
Proceedings 2 2017 (pp. 176-186). Springer
International Publishing.

[21] Mitchell TM. Machine learning. Vol. 1. New
York: McGraw-hill, 2007.

[22] Hastie T, Tibshirani R, Friedman JH, Friedman
JH. The elements of statistical learning: data
mining, inference, and prediction. Vol. 2. New
York: springer, 2009.Aug.

[23] Burkart N, Huber MF. A survey on the
explainability of supervised machine learning.
Journal of Artificial Intelligence Research.
2021 Jan 19;70:245-317.

[24] Barlow HB. Unsupervised learning. Neural
computation. 1989 Sep 1;1(3):295-311.

[25] Kaelbling LP, Littman ML, Moore AW.
Reinforcement learning: A survey. Journal of
artificial intelligence research. 1996 May
1;4:237-85.

[26] Zhang Z, Chow WS. Tensor locally linear
discriminative analysis. IEEE Signal
Processing Letters. 2011 Aug 22;18(11):643-6.

[27] Murphy KP. Machine learning: a probabilistic
perspective. MIT press; 2012 Sep 7.

[28] Cortes C, Vapnik V. Support-vector networks.
Machine learning. 1995 Sep; 20: 273-97.

[29] LeCun Y, Bengio Y, Hinton G. Deep learning.
nature. 2015 May 28;521(7553):436-44.

[30] Goodfellow, I, Yoshua B, and Aaron C. Deep
learning. MIT press, 2016.

[31] Bishop, Christopher M. Neural networks for
pattern recognition. Oxford university press,
1995.

[32] Krizhevsky A, Sutskever I, Hinton GE.
Imagenet classification with deep
convolutional neural networks.
Communications of the ACM. 2017 May
24;60(6):84-90.

[33] Hochreiter S, Schmidhuber J. Long short-term
memory. Neural computation. 1997 Nov
15;9(8):1735-80.

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5217

[34] Huang X, Khetan A, Cvitkovic M, Karnin Z.
Tabtransformer: Tabular data modeling using
contextual embeddings. arXiv preprint
arXiv:2012.06678. 2020 Dec 11.

[35] Vaswani A, Shazeer N, Parmar N, Uszkoreit J,
Jones L, Gomez AN, Kaiser Ł, Polosukhin I.
Attention is all you need. Advances in neural
information processing systems. 2017;30.

[36] Ruder S. An overview of gradient descent
optimization algorithms. arXiv preprint
arXiv:1609.04747. 2016 Sep 15.

[37] Ruder S. An overview of gradient descent
optimization algorithms. arXiv preprint
arXiv:1609.04747. 2016 Sep 15.

[38] Kingma DP, Ba J. Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980. 2014 Dec 22.

[39] Dehghani M, Hubálovský Š, Trojovský P. A
new optimization algorithm based on average
and subtraction of the best and worst members
of the population for solving various
optimization problems. PeerJ Computer
Science. 2022 Mar 7;8:e910.

[40] Duchi J, Hazan E, Singer Y. Adaptive
subgradient methods for online learning and
stochastic optimization. Journal of machine
learning research. 2011 Jul 1;12(7).

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5218

Figure 2. Proposed framework for the detection of the Provision PT-737E device.

