

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5195

 IMPROVING INTEGRITY, SECURITY, AND ACCURACY
DURING DEVOPS PROCESS

HANAN FAHMY1, SAMAR SAMIR2, MONA NASR3
1, 2, 3 Department of Information Systems, Faculty of Computers and Artificial Intelligence, Cairo, Egypt

E-mail: 1hanan.fahmy@fci.helwan.edu.eg, 2samar.samir@fci.helwan.edu.eg,

3drmona_nasr@fci.helwan.edu.eg

ABSTRACT

DevOps is a culture that aids in increasing the service delivery speed of an organization. It encourages the
development and operations teams for working and coordinates them together to achieve faster and more
automated activities. Although DevOps becomes an essential building block in every software life cycle, its
processes suffer from data security attacks over time. Therefore, companies and organizations exert
considerable effort including investigation time, buying licenses for third-party defending tools, hiring highly
skilled security engineers, etc. to avoid these security attacks. Meanwhile, many studies suggest building
DevOps frameworks that concentrate on enabling automated processes without giving much focus to the
integrity and validation of the data, which might be lost or manipulated due to significant security attacks
during the deployment process, the ignorance of handling security assaults costs a lot of damage to the
organizations. In the current study, a DevOps framework DevHash is proposed to improve the previous
DevOps frameworks by adding new phases detecting and validating common security attacks, such as data
manipulation attacks that might occur during the deployment process. DevHash can detect data manipulation
attacks much faster than the other previous DevOps frameworks as the proposed framework DevHash
includes four main phases: "Coding", "Build Pipeline and Hashing", "Deployment Pipeline and Hashing” and
"Health Check". These phases are important in enhancing and validating data security during the deployment
process. To assess the performance of the proposed framework DevHash, a comparison has been made
between the DevHash framework and a previous traditional DevOps framework; it is applied to six cases
including a collection of software companies from various domains with different technologies. Finally, the
results showed that the proposed framework DevHash consumes less time than the traditional DevOps
framework in detecting major security attacks such as data manipulation attacks, and it helps in increasing
the integrity and the accuracy of data as well as the overall reliability of the DevOps processes.

Keywords: DevOps, Validation, Deployment Process, Security Attacks, Data Manipulation Attacks.

1. INTRODUCTION

The term "DevOps" stands for "development and
operations", and it refers to a method of close
cooperation between software developers and
operations [1]. The objective is to improve
communication and integration between
development and operations [2]; consequently, all
benefits of modern software development
methodologies using frequent releases of new
software features to the end-users and then learning
from them can be realized [3]. Although the DevOps
concept first appeared in the context of rapid
releases in 2009 [4], the vast majority of the
addressed problems had previously been identified
[5-7]. These previous studies identified the issue of
poor collaboration and early involvement of the

operations team in the software development
process as having a detrimental impact on software
release time and quality in the production
environment [6,7]. Because most agile approaches
do not address the system in use (operations) life-
cycle phase, much of the new attention on DevOps
occurs after the broad adoption of agile methods
[8,9]. As a result, several notions such as agile
infrastructure [10] and boundary spanning [11] have
been used to fill the gap in the agile literature but not
consistently. Instead of focusing solely on the
operations unit, the agile literature on boundary
spanning focuses on all units interacting with it and
they are external to the development unit [11,12].
The problem was initially addressed by developing
well-defined and formal methods for involving
operations in the development process [5,11].

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5196

DevOps aims at improving the speed with which
production updates are delivered and automating the
software development process [13].

DevOps arose from the collaboration of
development and operations team members to
reduce the gap between developers and operators
[14]; they not only accelerate new software releases
but also reduce the taken time responding to client
requests and changes. Development teams are
tasked with introducing new features, whereas
operations teams are concerned with maintaining
stability [15].

Recently, DevOps frameworks are
concentrating on automating and enhancing the
software development and deployment processes
without paying much attention to security attacks,
including attacks that could harm and manipulate the
data while transferring between different DevOps
processes. As a result, data reliability and data
integrity flowing inside the deployment pipeline will
be at risk and the company's processes will be in
jeopardy.

Because of this, companies try to ensure the
existence of the appropriate measures to prevent
data tampering and data loss, and provide a secure
deployment pipeline to run its operations, so in the
current study, a new framework “DevHash” is
proposed; it can validate and detect one of the most
common security attacks known as data
manipulation attacks where “DevHash” can detect
any manipulation that occurred during the
transferring of the build files between the source and
the target environments. As a result, the “DevHash”
framework will improve the integrity and accuracy
of data, as well as enhance the reliability of the
CI/CD processes.

2. PREVIOUS WORK

Several studies have been done to enhance
and handle the challenges affecting the DevOps
process. In 2019, the authors suggested a DevOps
approach for handling security measures along the
DevOps pipeline. This method is introducing
security into the DevOps process based on source
code inspection during the integration phase. The
outcomes of this strategy created for an actual
scenario involving the health industry were
promising [16].

In 2020, a paper presented some
contributions for professionals and practitioners,
including the primary DevOps capabilities, DevOps
areas, and the relationships between them. They
identified and detailed the main DevOps capabilities

as continuous integration, continuous deployment,
and continuous testing. The authors, on the other
hand, elicited and described the following DevOps
areas: culture, measurement, sharing, automation,
technology, people, and process [15].

In 2020, another study covered the key
components of DevOps in securing cloud solutions
and provided examples of real-world applications
from businesses like IBM. The importance of this
research to the United States is also discussed,
particularly for organizations looking to secure their
serverless systems [17].

In 2021, a study started to look into the
main problems users encounter when integrating
security tools into a DevOps workflow to offer
suggestions for fixing these problems.
Consequently, they conducted a study involving 31
carefully selected webinars on integrating security
tools in DevOps. They also used thematic analysis,
a qualitative data analysis method, to define the
issues and emerging solutions related to integrating
security tools in rapid deployment environments
[18].

To rationalize and systematize security and
privacy analyses in multi-cloud, a study in 2022
introduced an innovative DevOps framework and
methodology. This will enable an informed
decision-making process for a risk-cost balanced
selection of the system components requested from
Cloud Service Providers. The primary focus of the
current work is multi-cloud application development
[19].

Another study in 2022, is presented to
investigate the advantages of adopting both the
DevOps and Agile methodologies simultaneously.
By incorporating twelve case studies from global
software engineering firms, a qualitative
methodology is used. The advantages of adopting
both approaches simultaneously are determined via
thematic analysis. Twelve advantages are revealed
by the data, with the automation of procedures,
better team communication, and a decrease in time
to market due to process integration and faster
software delivery cycles being highlighted. The
Agile and DevOps methodologies, while addressing
various objectives and difficulties, can benefit
organizations when properly merged and integrated.
This study is innovative in that it systematizes the
advantages of adopting Agile and DevOps together
while considering various viewpoints of the
business environment for software engineering.
[20].

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5197

In earlier studies, the suggested DevOps
frameworks concentrated on implementing the
deployment pipeline and automating the processes
of developing and deploying the software without
paying much attention to security attacks or
modifications that could harm the data while
transferring it from one phase to another during
various DevOps processes.

Lack of data integrity, besides the absence
of proper techniques to avoid data manipulation and
data loss, could have a significant effect on the
organization's reputation, trust, and profits, which
eventually will increase customer churn.

 As a result, organizations must consider
security attacks as a threat to their existence, and
suitable approaches have to be taken to ensure safe
and smooth operations. So in this research,
"DevHash" added new validation phases to the
recent DevOps methodologies, to face these threats
and raise the security of the current deployment
process.

3. BACKGROUND

The modern software development process
is increasingly characterized by frequent and quick
software modifications that enable end-user input
[3,24]. A fundamental motivator for enterprises to
adopt DevOps [4] and continuous procedures [3] is
the need to be able to release software frequently,
rapidly, and automatically as soon as changes are
checked into the mainline. This section presents
the DevOps concept, DevOps exercises and
practices, CI, CD, and terminologies used in
developing the proposed framework DevHash and
they are as follows:

3.1 The DevOps Main Concept
The DevOps concept seeks to fill gaps

driven by the organizational separation between
software development, release, and operations
processes [9]. Throughout this perspective, the
development and operations teams must contend
with numerous competing goals of 'agility vs.
stability' and a slew of roadblocks such as
insufficient information flow and test environments
[6].

The scientific definition of DevOps is "a
mindset that encourages cross-functional
collaboration between teams within a software
development organization, particularly development
and IT operations, to reduce ambiguity, operate
resilient systems, and accelerate change delivery
[23]. Collaboration and communication between

operations and development are the central ideas of
DevOps [23].

3.2 DevOps Exercises Practices
The term "DevOps" refers to both technical

and non-technical processes [22]. The categories
distinguish between common practices carried out
jointly by development and operations teams, as
well as practices exclusive to development and
operations. The category of common practices is
further subdivided into collaborative practices
involving human interactions and mostly automated
procedural practices. The common practices of the
procedural category receive more attention than
their unique practices [24].

DevOps approaches are incorporated into
the deployment pipeline because the focus is not
only on the design and implementation of system
features but also on the environments and tools that
support the development, deployment, and operation
of software features [13]. The deployment pipeline
is an automated representation of the entire software
process, including all stages of getting software
updates from version control to end-user visibility
[24]. DevOps methods include deployment pipeline
automation, such as automatic environment
provisioning, intending to avoid (or minimize)
human system handovers from development to
operations. It can also be used to keep developers
away from the intricacies of deployment procedures,
resulting in a shorter learning curve [21,25]. The
automated deployment mechanism is built into the
continuous integration (CI) server with pre-defined
triggers to allow for the automatic deployment of
changes to virtual machines (VM) in production or
other cloud environments [13] in cloud-based
systems, with which the concept of DevOps is
frequently associated [26].

3.3 Continuous Integration (CI)
The term "Continuous Integration" (CI)

refers to a software development practice in which
team members integrate regularly their work,
usually at least once per day, resulting in multiple
integrations per day. An automated build validates
each integration to uncover integration flaws as
quickly as possible [30]. It seeks to continuously
integrate source code into the main branch [29],
enabling the developer to commit the code multiple
times daily, followed by an automatic build and
testing, and giving the developer prompt feedback
whenever a defect is found. In case no bugs are
discovered, the committed code is released to
production. Continuous Delivery necessitates
Continuous Integration [28].

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5198

3.4 Continuous Delivery or Continuous
Deployment (CD)

The term "Continuous Deployment" (CD)
refers to the ability to release a feature as soon as it
is ready, assuming a sufficient development and
deployment infrastructure in place [14]. It is an
operations practice in which release candidates
reviewed in continuous delivery are placed in a
production environment on a regular and timely
basis, the nature of which may vary depending on
the technical setting. This usually entails making it
widely available to consumers, but not always, and
in some cases, it is not even applicable as a concept
[27]. The Continuous Deployment pipeline is a set
of tools enabling a workflow to continuously
transfer source code from a version control system
to production via the build system after the code
passes the testing phase, it will be ready to be
deployed into the target environments [29]. After a
successful continuous integration pass, continuous
deployment normally puts the new build into
production, but it can also include automated
processes such as deploying virtual machines and
installing and configuring operating systems,
supporting software, and libraries [14].

3.5 Hashing
The term "Hashing" refers to the process of

dividing a data file into small chunks and combining
them to produce a numeric value that can be used to
identify the original data file. In the broadest sense,
hashing has many applications, including efficient
data storage and retrieval, data integrity, and data
matching [30].

3.6 Hashing Function
The hash function is one of the most widely

used concepts in information security today. Hash
functions are heavily used in modern cryptography;

in the field of information security, the Hash
function method is currently in widespread use. The
hashing process is carried out by the Hash function
[30,31].

3.7 Hashing Process
The hashing process in information sharing

primarily verifies the accuracy and integrity of data
(detection of changes). Calculating the hash code of
the data you want to keep safe and secure, is the core
idea; after that, you should compare it to the hash
code stored in memory as a standard. The mismatch
in Hash values compared here is unquestionably a
breach of data integrity. To ensure the security of
various types of data, all companies that provide
online services on the network employ a wide range
of hashing algorithms [30,31].

4. THE PROPOSED FRAMEWORK

4.1 Overview
The current paper introduces a new

framework DevHash, that presents new steps to
detect any data manipulation attack in an earlier
phase, saves a lot of time consumed in detecting
such attacks, and it also improves data integrity
during the deployment process. The proposed
framework DevHash and its integrated sequential
phases are described in detail in the following
section. As shown in Figure. 1, the framework is
broken down into four major sequential phases:
“Coding”, “Build Pipeline and Hashing”,
“Deployment Pipeline and Hashing”, and “Health
Check”.

Journal of Theoretical and Applied Information Technology
15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5199

Figure 1: Proposed Framework "DevHash" Architecture

4.2 Phase 1: Coding
Companies primarily use GitHub and other

continuous integration tools during this phase to
store, track and collaborate on software projects.
Developers can use it to upload their code files and
work together on projects with other developers. In
this phase, a GitHub repository has been created and
the source code has been pushed into it.

4.3 Phase 2: Build Pipeline and Hashing
In this phase, “AWS” (Amazon Web

Services), “Azure DevOps” or any platform can be
used for pipelines creation; in the proposed
framework DevHash, the build pipeline is linked
with the GitHub repository through the repository
URL to get the latest version of the source code. The
configuration file of the build pipeline is created to
build the source code, package the build files as
artifacts, and then calculates the Hash value of the
generated build files using the Hash Algorithm
(SHA-1) [32] as well as storing it in a temporary
variable named “sha1sum” as shown in Routine 1.

Routine 1 Build Pipeline and Hashing

1. version: 0.1
 2. phases:

 3. build:

 4. commands:

 5. - echo Build started on `date`

 6. - mvn package

 7. post_build:

 8. commands:

 9. - echo Build completed on `date`

10. - sha1sum
target/SampleMavenTomcatApp.war |
awk '{ print $1 }' > target/shaBuild

11. artifacts:

12. files:

13. - '**/*'

 There are two paths for this step: the first

one is when the build process is done successfully
and the build files are generated, the Hash value is
calculated for these files successfully, and then the
process will proceed to the next phase, ‘Deployment
Pipeline and Hashing’ in which the generated build
files and the calculated Hash value will be
considered the inputs for it.

 The second path is that when the build
process fails, the process will get the latest source
code from the source control tool, recompile the
application, create and package new build files again
and proceed with the process steps.

4.4 Phase 3: Deployment Pipeline and Hashing
 This phase consists of 3 main steps; they are

“Coping Files and Hashing”, “Hash Values
Comparison” and “Application Deployment”. All
these steps are integrated to complete the
deployment process and make a successful
deployment for a new application release into the
target environment and make sure that there are no

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5200

data attacks or differentiation between the original
build files and the deployed files. The Deployment
pipeline is created, and its configuration file includes
all the commands needed to complete all the 3 main
steps; it contains the target environment(s) details
(for example, QA, Staging, or Production
environment details), the files that should be moved
to the target environment, and the script files that
should be executed after the files’ coping process is
completed, as shown in Routine 2.

Routine 2 Deployment Pipeline and Hashing

1. version: 0.0

2. os: linux

3. files:

4. - source:
target/SampleMavenTomcatApp.war

5. destination: /opt/

6. - source: target/shaBuild

7. destination: /opt/

8. - source: Dockerfile

9. destination: /opt/

10. - source: Hello.war

11. destination: /opt/

12. hooks:

13. # ApplicationStop:

14. # - location: scripts/stop_application

15. # timeout: 300

16. AfterInstall:

17. - location: scripts/compare.sh

18. timeout: 300

19. ApplicationStart:

20. - location: scripts/start_application

21. timeout: 300

22. ValidateService:

23. - location: scripts/basic_health_check.sh

 After completion of the copying files
process in the targeted environment, the Hash value
will be calculated for these files using the (SHA-1)
algorithm [32], and then a process will start to
compare the Hash value of generated build files in
Phase 2 with the calculated one.

 Provided the two Hash values are not
identical, this case means data manipulation has
occurred and the deployed files differ from the
original build files. So, the deployment process will
be stopped and the whole process will retrigger once

more starting from getting the latest version of the
source code from the used source control tool, as
shown in Routine 3.

Routine 3 Comparison Script

1. sha1sum /opt/SampleMavenTomcatApp.war
| awk '{ print $1 }' > /opt/shaDeploy
2. build_sha=$(cat /opt/shaBuild)
3. deploy_sha=$(cat /opt/shaDeploy)
4. if [$build_sha = $deploy_sha]
5. then
6. echo Deployment successed, Go for testing
7. else
8. echo Deployment failed, trigger Pipeline
again
9. echo ShaValues are not identical
10. apt install awscli
11. aws codepipeline start-pipeline-execution -
- name SHA-Pipline --region us-west-2
12. exit 1
13. fi

 Now that the two values are identical, this

means there is no data manipulation occurring on the
build files and the deployed files are the same as they
generated from the build pipeline. Thus, the process
will proceed to the next step, “Application
Deployment” and the completion of the deployment
process will be done in the targeted environment, as
shown in Routine 4.

Routine 4 Application Starter

1. #!/bin/bash
2. set -e
3. # CATALINA_HOME='/usr/share/tomcat/'
4. # cp/opt/SampleMavenTomcatApp.war
$CATALINA_HOME/webapps/
5. # chown tomcat:tomcat-R /usr/share/tomcat/
6. # $CATALINA_HOME/bin/catalina.sh start
7. docker kill $(docker ps -q)
8. cd /opt/
9. docker build -t hello
10. docker run -itd -p 80:8080 hello

4.5 Phase 4: Health Check

In this phase, a health check script is
created to check that the deployed application is up
and running on the target environment and working
properly, as shown in Routine 5.

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5201

Routine 5 Health Check

1. #!/bin/bash

2. for i in `seq 1 10`;

3. do

4. HTTP_CODE=`curl --write-out
'%{http_code}' -o /dev/null -m 10 -q -s
http://localhost:80/Hello/`

5. if ["$HTTP_CODE" == "200"]; then

6. echo "Successfully pulled root page."

7. rm -rf /opt/SampleMavenTomcatApp.war

8. rm -rf /opt/shaBuild

9. rm -rf /opt/shaDeploy

10. rm -rf /opt/Dockerfile

11. rm -rf /opt/Hello.war

12. exit 0;

13. fi

14. echo "Attempt to curl endpoint returned
HTTP Code $HTTP_CODE. Backing off and
retrying."

15. sleep 10

16. done

17. echo "Server did not come up after the
expected time. Failing."

18. exit 1

4.6 The Proposed Execution Scenario is as

Below:

Step 1: In the beginning, after the execution of the
build pipeline, a number of build files will be

generated, and then the Hash value will be calculated
for the generated build files.

Step 2: After that, during the execution of the
deployment pipeline, the build files and their Hash
value will be transferred to the target environment(s).

Step 3: In the target environment(s), the comparison
script will be executed. It will calculate the Hash
value for the deployed files, and then compare it with
the Hash value calculated before in step 1.

Step 4: In case the two Hash values are identical, the
application starter will be executed to start up the
application on the target environment. After that, the
health check script will be executed to check that the
application is up and running. However, if the two
Hash values are not identical, the whole process will
be restarted.

5. RESULTS

 The proposed framework was evaluated
using six cases including a group of software
companies in different domains using different
technologies to assess the proposed framework
DevHash efficiency. In each case, the development
team of each project in Table 1 made some edits in
the configurations of the pipelines to apply the
proposed routines to work with its project.

 The results have been collected and
analyzed after applying the recent DevOps
framework presented in [20] and comparing it with
the proposed framework “DevHash”, using the six
cases mentioned in Table 1.

Table 1: Companies and Projects Description.

Aspect Case A Case B Case C Case D Case E Case F
Project Size Small

(5 modules)
Small

(7
modules)

Medium
(10

modules)

 Medium
(14

modules)

Large (21
modules)

 Large (25
modules)

System Web-based-
service

Rest APIU
for media
content

Web-based-
service

Web-based-
service

Web-based-
service

Web-based-
service

Methodology Agile Agile Agile Agile Agile Agile
Release
Cycle

Fixed
schedule

project of 6
months

2-week sprint

Serval time
to

production
2-week
sprint

Serval time
to

production
4-week
sprint

Serval time
to

production
4-week
sprint

Serval time
to

production
4-week
sprint

Serval time to
production

4-week sprint

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5202

Team size 3 full stack
developers, 1

project
manager

3 full stack
developers,

1 project
manager, 1

UX
designer

5 full stack
developers,

1 project
manager, 1

UX
designer, 1

product
owner

4 backend
developers,

1 UX
designer, 2

frontend
developers,

1 project
manager

6 backend
developers,

2 UX
designers, 3

frontend
developers,

1 project
manager, 1

product
owner

10 full stack
developers, 2

UX designers, 1
project manager,
1 product owner

Build output JAR JAR WAR WAR WAR AWS Machine
Image

Tools GitHub, Java,
Selenium,

Jenkins

GitHub,
Java,

JavaScript
Selenium,

Jenkins

GitHub,
Java,

Docker,
JavaScript
Selenium,

Jenkins

GitHub,
Java,

Selenium,
Angular,
Jenkins

GitHub,
Java,

Selenium,
React,
Jenkins

Bitbucket,
Jenkins, Python,

AWS, Java,
CloudFormation,

Vue
Docker

Languages java Java,
JavaScript,
Nodejs.js

Java,
JavaScript,
Nodejs.js

Java,
angular

Java, React Python, java,
Vue

 In the current study, a data manipulation
attack [33] has been selected to test the efficiency of
the proposed framework in all cases described in
Table 1. To simulate the data manipulation attack, a
tool commonly used by attackers for data
manipulation purposes has been used.

 In the beginning, when applying the recent
DevOps framework presented in [20], various
security attacks such as the data manipulation attack
have been detected after the project is deployed. It
has consumed a lot of time until the attack is
detected, where the consumed time includes the
deployment time and the rollback time, as shown in
Table 2.

Table 2: Consumed time for detecting the attack before
applying “DevHash”.

Cases Deployment
Time

(Minutes)

Rollback
Time

(Minutes)

Total
Consumed

Time
(Minutes)

Case A 3.1 3.2 6.3

Case B 4.7 4.72 9.42
Case C 6.0 6.2 12.2
Case D 6.9 7.0 13.9
Case E 8.3 8.42 16.72
Case F 9.52 9.50 19.02

 And the representation of the total
consumed time for detecting the attack before
applying “DevHash” is shown in Figure. 2.

Figure 2: Total Consumed Time Before Applying
"DevHash"

 On the other hand, after applying the
proposed framework DevHash, the security attacks
have been detected even before the project is
deployed. It saves a lot of time in comparison to the
recent DevOps framework presented in [20], as
shown in Table 3. DevHash will discover the
security attacks, in the ‘Comparison Script’step, as
shown in Routine 3.

Table 3: Consumed time for detecting the attack after
applying “DevHash”

Cases Consumed Time
(Minutes)

Case A 1.2

Case B 1.32

Case C 1.8

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5203

Case D 1.9

Case E 2.6

Case F 3.0

 The consumed time for detecting the attack
after applying “DevHash” is presented in Figure. 3.

Figure 3: Consumed Time After Applying "DevHash"

 A comparison between the consumed time
for detecting the data manipulation attack before and
after applying the proposed framework DevHash in
each case is summarized in Table 4.

Table 4: Consumed time for detecting the attack before
and after applying “DevHash”

Cases Total
Consumed

Time before
applying

“DevHash”
(Minutes)

Total
Consumed
Time After
applying

“DevHash”
(Minutes)

Case A 6.3 1.2
Case B 9.42 1.32
Case C 12.2 1.8
Case D 13.9 1.9
Case E 16.72 2.6
Case F 19.02 3.0

 The comparison between the consumed
time for detecting the attack before and after
applying the proposed framework “DevHash” is
presented in Figure. 4.

Figure 4: comparison between the consumed time for
detecting the attack before and after applying

“DevHash”

6. CONCLUSION AND FUTURE WORK

 DevHash framework is proposed to
enhance traditional DevOps frameworks when
dealing with data security attacks; the
implementation of the new phases can validate and
detect one of the most common data security attacks
known as data manipulation attacks. In the current
study, a comparison has been made between the
DevHash framework and a previous traditional
DevOps framework to evaluate the performance of
each framework when using a simulated data
manipulation attack. This comparison is applied to
six cases which include a set of software companies
in different domains with different technologies.

 Finally, the results showed that the
proposed framework DevHash consumes less time
than the traditional DevOps framework in detecting
major security attacks, such as data manipulation
attacks, which helps in increasing the integrity and
the accuracy of data, as well as the overall reliability
of the DevOps process. DevHash has shown
promising results regarding data security attacks
compared with the previous DevOps frameworks.

 Although, the “DevHash” framework
showed good results as mentioned before. But it still
can be extended, enhanced, and installed in many
other potential areas in the future, especially projects
that include sensitive data and require high levels of
security such as banking systems, stock markets,
medical research, and cryptocurrency organizations.

 In addition, the “DevHash” framework has
been used already in a number of case studies as
described above in the research, but applying the
“DevHash” framework in large-scale projects
becomes an interesting challenge that needs to be
considered.

 However, applying the validation steps to
the production environment, was the main focus of
this research. But the validation steps can also be

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5204

added to secure the deployment process to other
environments, such as staging, and QA
environments, which present an interesting point that
needs to be noted and applied. Afterward, results
need to be collected and analyzed to evaluate the
performance of the “DevHash” framework in
different environments.

REFERENCES:

[1] C. Amrit, M. Daneva, A mapping study on
cooperation between information system
development and operations, in: International
Conference on Product-Focused Software
Process Improvement, Springer, 2014, pp. 277–
280, doi:10.1007/978-3-319-13835-0_21.

[2] J. Humble, D. Farley, Continuous Delivery:
Reliable Software Releases through Build, Test,
and Deployment Automation, First ed., Addison-
Wesley Professional, Boston, 2010.

[3] A. Haghighatkhah, L.E. Lwakatare, S. Teppola,
T. Suomalainen, J. Eskeli, T. Karvonen, P.
Kuvaja, J.M. Verner, M. Oivo, Continuous
deployment of software intensive products and
services: a systematic mapping study, J. Syst.
Softw. 123 (2017) 265–291.

[4] J. Humble, J. Molesky, Why enterprises must
adopt DevOps to enable continuous delivery,
Cutt. IT J. 24 (8) (2011) 6–12.

[5] B. Tessem, J. Iden, Cooperation between
developers and operations in software
engineering projects, in: Proceedings of the
International Workshop on Cooperative and
Human Aspects of Software
Engineering,ACM,2008,pp. 105–108,
doi:10.1145/1370114.1370141.

[6] J.Iden, B.Tessem, T. Päivärinta, Problems in the
interplay of development and IT operations in
system development projects: a Delphi study of
Norwegian IT experts, Inf. Softw. Technol. 53
(4) (2011) 394–406.

[7] J. Hamilton, on designing and deploying
internet-scale services, in:Proceedings of the
21st Large Installation System Administration
Conference, USENIX Association, Dallas,
Texas, 2007, pp. 231–242.

[8] P. Abrahamsson, J. Warsta, M. Siponen, J.
Ronkainen, New directions on agile methods: a
comparative analysis, in: 25th International
Conference on Software Engineering, 2003.
Proceedings., IEEE, 2003, pp. 244–254,
doi:10.1109/ICSE.2003.1201204.

[9] O. Gotel, D. Leip, Agilesoftware development
meets corporate deployment procedures:
stretching the agile envelope, in: Agile Processes

in Software Engineering and Extreme
Programming, Springer, Berlin, Heidelberg,
2007, pp. 24–27.

[10] P. Debois, Agileinfrastructure and operations:
how infragile are you? in: Agile 2008
Conference, IEEE, 2008, pp. 202–207,
doi:10.1109/Agile.2008.42.

[11] D.E. Strode, S.L. Huff, B. Hope, S. Link,
Coordination in co-located agile software
development projects, J. Syst. Softw. 85 (6)
(2012) 1222–1238.

[12] G. van Waardenburg, H. van Vliet, When agile
meets the enterprise, Inf. Softw. Technol. 55 (12)
(2013) 2154–2171.

[13] L. Bass, I. Weber, L. Zhu, DevOps: A Software
Architect’s Perspective, Addison-Wesley
Professional, 2015.

[14] TeemuLaukkarinen, Kati Kuusinen and
TommiMikkonen (2017 IEEE/ACM), DevOps
in Regulated Software Development: Case
Medical Devices, 978-1-5386-2675-7/17 $31.00
© 2017 IEEE, DOI 10.1109/ICSE-
NIER.2017.20

[15] D. Teixeira, R. Pereira, T. A. Henriques, M.
Silva and J. Faustino, “A Systematic Literature
Review on DevOps Capabilities and Areas”,
International Journal of Human Capital and
Information TechnologyProfessionals, Volume
11, Issue 3, July-September 2020, PP. 1-22.

[16] X. Larrucea, A. Berreteaga, and I. Santamaria,
“Dealing with Security in a Real DevOps
Environment”, EuroSPI 2019: Systems,
Software and Services Process Improvement,
Springer, vol: 1060, pp: 453–464.

[17] Yarlagadda, R. Teja, "DevOps for Better
Software Security in the Cloud", International
Journal of Emerging Technologies and
Innovative Research (www.jetir.org),
ISSN:2349-5162, Vol.7, Issue 9, page no.1081-
1085, September 2020, Available at SSRN:
https://ssrn.com/abstract=3807615.

[18] R. N. Rajapakse, M. Zahedi, M. A. Babar, “An
Empirical Analysis of Practitioners' Perspectives
on Security Tool Integration into DevOps”,
Proceedings of the 15th ACM / IEEE
International Symposium on Empirical Software
Engineering and Measurement (ESEM), October
2021, Article No: 6, pp: 1–12,
https://doi.org/10.1145/3475716.3475776.

[19] S. F. Ahamed, M. Dhar M S, S. K. Kishore, M.
P. Borawake, T. D. R and M. Thenmozhi,
"DevOps Security and Privacy in the
Development of Multicloud Applications," 2022
International Conference on Electronics and

Journal of Theoretical and Applied Information Technology

15th July 2023. Vol.101. No 13
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5205

Renewable Systems (ICEARS), Tuticorin, India,
2022, pp. 1631-1635, doi:
10.1109/ICEARS53579.2022.9752387.T.
Okubo, H. Kaiya, “Efficient secure DevOps
using process mining and Attack Defense Trees”,
Procedia Computer Science, Elsevier, 2022, vol:
207, pp: 446-455.

[20] Almeida, F.; Simões, J.; Lopes, S. Exploring the
Benefits of Combining DevOps and Agile.
Future Internet 2022, 14, 63.
https://doi.org/10.3390/fi14020063

[21] L.E. Lwakatare, P. Kuvaja, M. Oivo, an
exploratory study of DevOps: extending the
dimensions of DevOps with practices, in: The
Eleventh International Conference on Software
Engineering Advances, IARIA, Rome, 2016, pp.
91–99.

[22] R. Penners, A. Dyck, Release engineering vs.
DevOps-an approach to define both terms, Full-
Scale Softw. Eng. (2015).
https://www2.swc.rwth-
aachen.de/docs/teaching/seminar2015/FsSE201
5papers.pdf#page← 53.

[23] L. Bass, R. Jeffery, H. Wada, I. Weber, L. Zhu,
Eliciting operations requirements for
applications, in 1st International Workshop on
Release Engineering, IEEE, 2013, pp. 5–8.

[24] Lucy Ellen Lwakatare, TerhiKilamo,
TeemuKarvonen, DevOps in practice: A
multiple case study of five companies,
Information and Software Technology 114
(2019) 217–230.

[25] J. Cito, P. Leitner, T. Fritz, H.C. Gall, The
making of cloud applications: an empirical study
on software development for the cloud, in: 10th
Joint Meeting on Foundations of Software
Engineering, ACM Press, 2015, pp. 393–403.

[26] D. Stahl, TorvaldMartensson and Jan Bosch,
Continuous Prac- tices and DevOps: Beyond the
Buzz, What Does It All Mean? 978-1- 5386-
2141-7/17 $31.00, IEEE DOI
10.1109/SEAA.2017.78,2017.

[27] Aayush Agarwal, SubHashGupta, Tanupriya
Choudhury (ICACCE- 2018), Continuous and
Integrated Software Development using
DevOps, 978-1-5386-4485-0/18/$31.00 ©2018
IEEE.

[28] Rickard Bremer and Johan Eriksson,
Understandings and Implemen- tations of
Continuous Delivery, June 2015.

[29] Kim Rejstrom, Implementing Continuous
Integration in a SmallCompany, Aalto
University School of Electrical Engineering,
2016.

[30] H. Farid,An Overview of Perceptual Hashing, in:
Journal of Online Trust and Safety, October
2021, pp.1-22,doi:10.54501/jots.v1i1.24.

[31] N. Quliyev,Z.Shamilov, S.Akbarova,The Role of
Hashing Algorithms in File
Security,in:Scientific Community:
Interdisciplinary Researc,2021, pp.518-524.

[32] D. Eastlake and P. Jones, "U.S. secure hash
algorithm 1 (SHA1)”, The Internet Society,
2001, pp:1-22.

[33] Chatterjee, R. (2021). Security in DevOps and
Automation. In: Red Hat and IT Security.
Apress, Berkeley, CA.
https://doi.org/10.1007/978-1-4842-6434-8_3.

