

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4949

COMPARISON ANALYSIS OF BOLDI-VIGNA ζ2
ALGORITHM AND END-TAGGED DENSE CODE
ALGORITHM ON AUDIO FILE COMPRESSION

1HANDRIZAL, 2PAUZI IBRAHIM NAINGGOLAN, 3AFIF REFANO MUFID
1,2,3Department of Computer Science, Faculty of Computer Science and Information Technology,

Universitas Sumatera Utara, Jl. Universitas No. 9-A, Medan 20155, Indonesia

E-Mail: handrizal@usu.ac.id

ABSTRACT

In this modern era, everything is done online including data-sending activities. However, the problem faced
today is the large size of the data, which causes the length of the sending process and the use of large storage
capacity. Therefore, to overcome this problem, data processing techniques are needed, one of which is
compression techniques. Data compression aims to reduce the size of the data, reduce the bandwidth required
when transmitting data, and reduce the need for data storage. Wav files are widely used in game creation,
which is commonly used for sound effects and music, wav files tend to have a large size. So compression
techniques are needed to reduce the size of data or files. The Boldi-Vigna algorithm takes advantage of
locality and similarity in graph data. This algorithm mostly supports random access, except for the
implementation of the required reference compression. In the End-Tagged Dense Code (ETDC) algorithm,
instead of using a flag bit to signify the beginning of a codeword, the flag bit is used to signify the end of a
codeword. This study tested a comparison of data compression between the Boldi-Vigna ζ2 algorithm and
the End-Tagged Dense Code algorithm using audio files in 8-bit format with an extension of *.wav. Based
on testing in this study, it was found that the Boldi-Vigna ζ2 algorithm is better in the audio file compression
process with an average Ratio of Compression of 73.81%, an average Compression Ratio of 1.58, and an
average Space Savings of 26.18%. While the End-Tagged Dense Code algorithm has a better compression
time with an average compression time of 1.05 seconds. It can be concluded that the Boldi-Vigna ζ2
algorithm is better at compressing audio files, while the End-Tagged Dense Code algorithm is faster at
performing the compression process. The compression results obtained are influenced by the number of the
same digital values contained in the wav audio file that needs to be compressed. Both algorithms can restore
the whole audio file like the original audio file through the decompression process.

Keywords: Compression, Audio, Boldi-Vigna ζ2, End-Tagged Dense Code

1. INTRODUCTION

In this modern era, everything is done online
including data-sending activities. This certainly has
a positive impact on human life. But the problem
faced today is the large size of the data, thus causing
the length of the delivery process and u and storage
capacity. Therefore, to overcome this problem, data
processing techniques are needed, one of which is
compression techniques. Data compression aims to
reduce the size of the data, reduce the bandwidth
required when transmitting data, and reduce the need
for data storage.

Audio is a sound or voice produced when
molecules in the air are transformed by a motion
caused by an object that produces a vibration. This
amount of vibration is referred to as the frequency of
the vibration. One such forward and backward

movement is called a cycle. Then the unit for
frequency is cycle per second or cps. This unit is
commonly known as Hertz (Hz). Sounds or sounds
that can be heard by the human ear range from 20 Hz
to 20,000 Hz, also known as audio sonic [1].

Digital audio is a digital version of analog audio,
which is processed by converting the amplitude of
an analog wave into time intervals (samples) to
produce digital audio. In digital audio, analog audio
is converted into digital audio so that it can be
processed by a digital system or computer using a
tool called an Analog to Digital Converter (ADC),
then digital audio is converted back into analog
audio so that it can be heard by humans using a tool
called a Digital to Analog Converter (DAC) [2].

Wav is a standard audio file developed by
Microsoft and IBM with a file extension (*.wav).
Wav allows sound to be recorded in various

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4950

qualities, such as 8-bit or 16-bit with a sample rate
of 11025 Hz, 22050 Hz, or 44100 Hz. For good
quality, namely: 44100 Hz, 16-bit will take up about
150 Kb of capacity every second. Wav files are
widely used in the creation of games, which are
commonly used for sound effects and music. Wav
files tend to have a large size, it is because the Wav
file format is not compressed so it has the advantage
of faster loading times [3].

The Boldi-Vigna (ζ2) algorithm was introduced
by Paolo Boldi and Sebastiano Vigna as a family of
variable-length codes which is a great option for
compression. This algorithm takes advantage of
locality and similarity in graph data. Boldi-Vigna
mostly supports random access, except for the
implementation of required reference compression
[4]. Boldi-Vigna code zeta starts with a positive k
integer, a factor in shrinking the code.

The End-Tagged Dense Code (ETDC)
Algorithm is inspired by the Huffman Code Tagged
Algorithm and is achieved through very simple
changes. Compared to using a flag bit to signify the
beginning of a codeword, in the End-Tagged Dense
Code (ETDC) Algorithm, the flag bit is used to
signify the end of a codeword. That is, the bit flag is
0 for the first bit of each codeword byte except for
the last bit, which has 1 on its first bit. The bit flag is
sufficient to ensure that the code is a code prefix,
apart from the other 7 bits [5].

Data compression is the art or science of
representing information in a concise form [6]. Data
compression is used to reduce the number of bits
generated from each symbol that appears. With this
data compression, it is expected to save storage
space by reducing data size. File delivery can be
done quickly if the file is small, but not all data sent
by people has a small capacity so large capacity
memory is needed to store all the data needed, and,
unstable internet connection speeds take a relatively
long time in the process of sending data. Therefore,
in large-scale data transmission, a compression
process is also required [7].

Data compression can be divided into 2
categories, lossless compression, where Y is equal to
X, and lossy compression, where Y is different from
X but provides much higher compression than
lossless compression [6].

On lossless compression, the compressed data
will not lose the information in it, and the data that
has been compressed can be decompressed again.
Lossless compression uses simple bit operations to
reduce the number of bits required to store a single
sample thereby reducing the size of the entire audio
file [8]. Lossless compression is usually used in data
that does not tolerate any discrepancy between the

original data and the data after being compressed [6].
Therefore, the data that has been generated after the
lossless compression process is maintained
authenticity and quality.

In lossy compression, data that has been
compressed loses some information, so it cannot be
decompressed again, due to some estimation or
approximation methods used in algorithms [9]. The
compression ratio obtained in lossy compression is
much higher than that of lossless compression
because some information is omitted in lossy
compression [6]. Thus making lossy compression
more suitable for use in data that does not require
data authenticity after the compression process is
carried out.

Based on the above background, which
algorithm has the best and most efficient
compression results. Therefore, in this research, the
author applies a lossless compression method, so
that the compressed audio file does not lose data and
still maintains its quality. This research uses Boldi-
Vigna (ζ2) algorithm and End-Tagged Dense Code
(ETDC) Algorithm in compressing wav audio files,
to compare the performance between these
algorithms.

2. FORMULATION OF THE PROBLEM

In this research, the formulation of the problem
discussed is that the large size of the audio file causes
the length of the transmission process, as well as the
use of a large storage capacity, so a data compression
process is needed using the Boldi-Vigna ζ2
Algorithm and the End-Tagged Dense Code
Algorithm, to find an algorithm that has the best and
efficient compression results.

3. SCOPE AND LIMITATION

The scope and limitations of this research are as
follows:

 Comparing Boldi-Vigna ζ2 algorithm and
End-Tagged Dense Code algorithm.

 The compressed file type is a *.wav audio file
in 8-bit format.

 The audio file used is a maximum of 10 MB
in size.

 The parameters used to measure data
compression performance are calculating the
value of Rc (Ratio of compression), Cr
(Compression ratio), Ss (Space savings), and
compression time (Running Time).

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4951

 The programming language used is Kotlin
which is created using the Android Studio
IDE (Integrated Development Environment).

4. THEORETICAL FRAMEWORK

4.1. Boldi-Vigna ζ2 Algorithm

The Boldi-Vigna Zeta code's algorithm begins
with a positive integer k which is the shrinkage factor
of the code. The set of all positive integers is
partitioned into intervals [20, 2k – 1], [2k, 22k – 1],
[22k, 23k – 1], with a general form [2hk, 2(h+1)k – 1].
The length of each interval is 2(h+1)k – 2hk.

The encoding of the Boldi-Vigna ζ2 algorithm
is as follows:

1. The set of positive integers is partitioned
into intervals [2 hk, 2(h+1)k – 1].

2. Input value of n.
3. The value of k = 2, because it uses the

Boldi-Vigna ζ2 algorithm.
4. Find n in the interval, starting from h = 0.
5. See the unary code for h+1, the unary code

used is reverse type.
6. Calculate the minimum binary code, x = n

– 2hk.
7. Calculate the length of the interval, z =

2(h+1)k – 2hk.
8. Calculate s = ⌈log2 z⌈.
9. If x < 2s – z, then x is encoded as binary

code, in s – 1 bit. If x ≥ 2s – z, then (x – z +
2s) is encoded as binary code in s bits.

10. Boldi-Vigna Code = Unary Code + Binary
Code

Boldi-Vigna Code can be seen in Table 1.

Table 1. Boldi-Vigna ζ2 Code

n ζ2
1 10
2 110
3 111
4 01000
5 01001
6 01010
7 01011
8 011000
9 011001
10 011010
11 011011
12 011100
13 011101
14 011110

15 011111
16 00100000

4.2. End-Tagged Dense Code Algorithm

The End-Tagged Dense Code algorithm is
marked with the symbol b bit as the compiler of the
codeword, starting with bit 0 for each first bit of a
codeword byte, except for the last byte starting with
1 on the first bit.

For values n = 0 to n = 2b-1 – 1, formed by b bits
of the codeword, consisting of 1 and followed by a
combination of b-1 bits, the value starts from 2b-1 to
2b – 1. Then for the value of n = 2b-1 to n = (2b -1)2 +
(2b-1) – 1, formed using 2b bits of a codeword, the
value of which is between [0 and 2b-1 – 1] and the
second [2b-1 and 2b – 1]. Next, the value for n = (2b–

1)2 + (2b–1) to n = (2b–1)3 + (2b–1)2 + (2b–1) – 1 formed
using 3b bits of a codeword, the value of which is
located between [0 and 2b–1 – 1], the second [0 and
2b-1 – 1], and the third [2b–1 and 2b – 1], and so on.

The encoding of the End-Tagged Dense Code
algorithm is as follows:

1. Character sets are sorted by frequency of
occurrence.

2. Input value of n.
3. The value of b used is 3.
4. The smallest value of the last set of codes,

s = 2b-1
5. x = binary code ((n mod s) + s)
6. y = n div s, if y ≤ 0, then the codeword of

the End-Tagged Dense Code algorithm
stops there, but if y > 0, then the
calculation n2 = y – 1 is carried out.

End-Tagged Dense Code can be seen in Table
2.

Table 2. End-Tagged Dense Code

n ETDC (b =3) Bit
0 100 3
1 101 3
2 110 3
3 111 3
4 0 00 100 6
5 000 101 6
6 000 110 6
7 000 111 6
8 001 100 6
9 0 01 101 6

10 001 110 6

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4952

n ETDC (b =3) Bit
11 001 111 6
12 010 100 6
13 010 101 6
14 0 10 110 6
...
19 011 1 11 6
20 0 00 0 00 1 00 9
21 0 00 000 101 9
...
83 0 11 011 111 9
84 0 00 0 00 0 00 1 00 12
...

339 0 11 0 11 011 1 11 12
...

4.3. General Architecture

The general architecture is a system design
scheme that describes the overall flow. General
architecture can also be a guideline for the creation
of system modeling. The general architecture is
depicted in Figure 1.

Figure 1. General Architecture

The explanation of the general architecture
above is as follows:

1. The user inputs an audio file in wav format
into the system.

2. Then the file is compressed using the
algorithm the user chooses, which is
Boldi-Vigna ζ2 or End-Tagged Dense
Code.

3. After that, the system will output a file that
has been compressed and saved to the
storage device.

4. The compressed file will be decompressed
using the algorithm chosen by the user,
namely Boldi-Vigna ζ2 or End-Tagged
Dense Code.

5. After the decompression process, the
system will output in the form of an
original audio file in wav format.

4.4. Research Design

Research design is divided into functional
requirements and non-functional requirements.

4.4.1. Functional Requirements

Functional requirements are requirements that
must exist for the system to run according to its
purpose. The functional requirements for the system
created are as follows:

1. The system should be able to read the bit
values present in audio files with the *.wav
extension.

2. The system should be able to perform
compression and decompression on audio
files using the Boldi-Vigna ζ2 algorithm.

3. The system must be able to compress and
decompress audio files using the End-
Tagged Dense Code algorithm.

4. The system must be able to display the
results of the parameters used to measure
the performance of the data compression
used, namely Rc (Ratio of compression),
Cr (Compression ratio), Ss (Space
savings), and compression time (Running
Time).

4.4.2. Non-Functional Requirements

Non-functional needs are additional needs that
support the capacity of the running system. Non-
functional needs in the system created are as follows:

1. Simple
The system must have a user-friendly
appearance, so users can easily use the
system.

2. Ease
The system can be used offline so that it
has high mobility and can be used
anywhere.

3. Performance
The system must be able to perform tasks
relatively in compressing and
decompressing audio files.

4. Economical
The system can work well without having
to spend money.

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4953

5. Information
The system can display information on
files.

4.5. Compression Performance Measuring
Parameters

Data compression performance can be
calculated based on the following parameters:

1. Ratio of Compression (Rc)

The ratio of compression (Rc) is the
percentage of data size after the
compression process is carried out with the
size of the data before the compression
process is carried out.

Rc =
Data Size After Compression

Data Size Before Compression
 × 100%

2. Compression Ratio (Cr)

Compression ratio (Cr) is a comparison of
the size of the data before the compression
process with the data after the compression
process.

Cr =
Data Size Before Compression

Data Size After Compression

3. Space Savings (Ss)

Space Savings (Ss) is a percentage of
storage space savings.

Ss = ൬1 −
Data Size After Compression

Data Size Before Compression
 ൰ × 100 %

5. RECENT RESEARCH

Research that is relevant to the research that the
author will conduct is as follows:

1. Boldi & Vigna [2005] entitled "Codes for
the World Wide Web" explains that the
Boldi-Vigna code ζ is very suitable for
storing Web-Graphs. In the test results,
codes ζ2 and ζ3 almost always obtained the
best results compared to codes γ (ζ1), ζ4, δ,
and nibble. But in tests where there was no
internalization code δ performed slightly
better [10].

2. Brisaboa et al [2007] entitled "Lightweight
natural language text compression"
explains that End-Tagged Dense Code
obtained a compression ratio 8% higher
than Tagged Huffman Code, and 2.5%
higher than Plain Huffman Code, and

obtained an encoding time of 40% lower
than Plain Huffman Code, and obtained the
same search time as Tagged Huffman Code
[11].

3. Buehrer & Chellapilla [2008] entitled "A
Scalable Pattern Mining Approach to Web
Graph Compression with Communities"
explains that Boldi-Vigna code ζ achieves
high edge compression and scales well for
large graphs. When compared to Huffman
code, Boldi-Vigna code ζ gains no more
than a 5% loss in the number of bits per
edge, and the typical loss is between 2-3%
[12].

4. Claude & Navarro [2010] entitled "Fast and
Compact Web Graph Representations"
explained that Web-Graph (Boldi-Vigna
code ζ) obtained compression ratio results
in 1.5-2 times faster to navigate compressed
graphs [13].

5. Valencia et al [2010] entitled "Translation
Table Compression under End-Tagged
Dense Code" explains that in phrase-based
translation tables, End-Tagged Dense Code
reduces space savings between 30-60%
[14].

6. Mancebo et al [2019] entitled "Saving
Energy in Text Search Using Compression"
explains that End-Tagged Dense Code is a
good compression alternative, based on its
compression ratio which is around 30-35%,
as well as its fast compression and
decompression time [5].

7. Lin et al [2019] entitled "Text Compression
for Myanmar Information Retrieval"
explained that the End-Tagged Dense Code
method obtained an average compression
ratio on Myanmar language text of 49%. In
End-Tagged Dense Code, the higher the
word frequency, the higher the
compression ratio obtained, so word
segmentation and construction of
dictionary files are very important [15].

6. PROBLEM ANALYSIS

Problem analysis is the process of identifying
problems, the causes of problems, and the
consequences of these problems, so that the system
can run by the objectives. In this research, the
problem discussed is that the large size of the audio
file causes the length of the transmission process,
and the use of large storage capacity, so a data
compression process is needed. In this research, the
author compares two algorithms to find out which

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4954

algorithm has the best and most efficient data
compression results for compressing audio files with
*.wav extension, using the Boldi-Vigna ζ2 algorithm
and the End-Tagged Dense Code algorithm, with
parameters Rc (Ratio of compression), Cr
(Compression ratio), Ss (Space savings), and
compression time (Running Time).

7. IMPLEMENTATION AND TESTING

The system is created using Kotlin programming
language using the Android Studio IDE (Integrated
Development Environment). In this study, the file
used was Audio files in 8-bit format with a size of 96
bytes and an extension of *.wav. Comparison based
on comparison parameters, namely Ratio of
Compression, Compression Ratio, and Space
Savings to know the effectiveness and efficiency of
the two algorithms in compressing the wav audio
file. The digital audio value (hex value) can be seen
in Figure 2.

Figure 2. Digital Audio Value

7.1. Compression Using Boldi-Vigna ζ2
Algorithm

The compression process using the Boldi-
Vigna ζ2 algorithm is as follows:

1. Digital values contained in the sample
audio file with 96 bytes size in Figure 4 are:

52 49 46 46 0E 1B 00 00 57 41 56 45 66 6D
74 20 1E 00 00 00 55 00 01 00 11 2B 00 00
E8 03 00 00 01 00 00 00 0C 00 01 00 02 00
00 00 34 00 01 00 71 05 64 61 74 61 D0 1A
00 00 FF E3 10 C4 00 00 00 02 5B 20 00
00 00 9D 20 62 C2 E0 98 6C E0 03 03 6F
20 14 20 C0 7E 5D E4 0A 3A A8 63 94 77
FE

2. The hexadecimal digital audio values are
sorted first by frequency, then the
compression process using the Boldi-Vigna
ζ2 algorithm can be seen in Table 3.

Table 3. Calculation of Compression using Boldi-Vigna
ζ2 Algorithm Process

Digital
Audio

Boldi-
Vigna ζ2

Code
Frequency

Bit ×
Frequency

Value
(Hex)

00 10 29 58
20 110 5 15
01 111 4 12
03 01000 3 15
02 01001 2 10
46 01010 2 10
61 01011 2 10
74 011000 2 12
E0 011001 2 12
05 011010 1 6
0A 011011 1 6
0C 011100 1 6
0E 011101 1 6
10 011110 1 6
11 011111 1 6
14 00100000 1 8
1A 00100001 1 8
1B 00100010 1 8
1E 00100011 1 8
2B 00100100 1 8
34 00100101 1 8
3A 00100110 1 8
41 00100111 1 8
45 00101000 1 8
49 00101001 1 8
52 00101010 1 8
55 00101011 1 8
56 00101100 1 8
57 00101101 1 8
5B 00101110 1 8
5D 00101111 1 8
62 001100000 1 9
63 001100001 1 9
64 001100010 1 9
66 001100011 1 9
6C 001100100 1 9
6D 001100101 1 9
6F 001100110 1 9
71 001100111 1 9
77 001101000 1 9
7E 001101001 1 9
94 001101010 1 9
98 001101011 1 9
9D 001101100 1 9
A8 001101101 1 9
C0 001101110 1 9
C2 001101111 1 9
C4 001110000 1 9
D0 001110001 1 9
E3 001110010 1 9
E4 001110011 1 9
E8 001110100 1 9
FE 001110101 1 9
FF 001110110 1 9

Total 525 bit

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4955

3. Because the number of bits after
compression is not a multiple of eight, a
calculation is made, namely, 525 mod 8 = 5
→ 8 – 5 = 3, then 0 bits are added to the
padding bits as much as 3 bits 000. After
that, a flag bit was added which showed the
number of padding bits, namely 3 (binary
code = 00000011) as much as 8 bits
00000011. So that the number of string bits
becomes 525 bits + 3 bits + 8 bits = 536 bits
or 67 bytes.

After the calculation of compression using the
Boldi-Vigna ζ2 algorithm, the data size before
compression = 96 bytes, and the data size after
compression = 67 bytes. Then compression
performance can be calculated based on the
comparison parameters:

 Rc =
ୈୟ୲ୟ ୗ୧୸ୣ ୅୤୲ୣ୰ େ୭୫୮୰ୣୱୱ୧୭୬

ୈୟ୲ୟ ୗ୧୸ୣ ୆ୣ୤୭୰ୣ େ୭୫୮୰ୣୱୱ୧୭୬
 × 100%

Rc =
67

96
 × 100%

Rc = 69,79%

 Cr =
Data Size Before Compression

ୈୟ୲ୟ ୗ୧୸ୣ ୅୤୲ୣ୰ େ୭୫୮୰ୣୱୱ୧୭୬

Cr =
96

67

Cr = 1,4328

 Ss = ቀ1 −
Data Size After Compression

Data Size Before Compression
 ቁ × 100 %

Ss = ൬1 −
67

96
 ൰ × 100 %

Ss = 30,2083%

7.2. Compression Using End-Tagged Dense
Code Algorithm

The compression process using the End-
Tagged Dense algorithm is as follows:

1. Digital values contained in the sample
audio file with 96 bytes size in Figure 4 are:

52 49 46 46 0E 1B 00 00 57 41 56 45 66 6D
74 20 1E 00 00 00 55 00 01 00 11 2B 00 00
E8 03 00 00 01 00 00 00 0C 00 01 00 02 00
00 00 34 00 01 00 71 05 64 61 74 61 D0 1A
00 00 FF E3 10 C4 00 00 00 02 5B 20 00
00 00 9D 20 62 C2 E0 98 6C E0 03 03 6F
20 14 20 C0 7E 5D E4 0A 3A A8 63 94 77
FE

2. The hexadecimal digital audio values are
sorted first by frequency, then the

compression process using the End-Tagged
Dense Code algorithm can be seen in Table
4.

Table 4. Calculation of Compression using the End-
Tagged Dense Code Algorithm Process

Digital
Audio
Value
(Hex)

End-Tagged
Dense Code

Frequency
Bit ×

Frequency

00 100 29 87
20 101 5 15
01 110 4 12
03 111 3 9
02 000 100 2 12
46 000 101 2 12
61 000 110 2 12
74 000 111 2 12
E0 001 100 2 12
05 001 101 1 6
0A 001 110 1 6
0C 001 111 1 6
0E 010 100 1 6
10 010 101 1 6
11 010 110 1 6
14 010 111 1 6
1A 011 100 1 6
1B 011 101 1 6
1E 011 110 1 6
2B 011 111 1 6
34 000 000 100 1 9
3A 000 000 101 1 9
41 000 000 110 1 9
45 000 000 111 1 9
49 000 001 100 1 9
52 000 001 101 1 9
55 000 001 110 1 9
56 000 001 111 1 9
57 000 010 100 1 9
5B 000 010 101 1 9
5D 000 010 110 1 9
62 000 010 111 1 9
63 000 011 100 1 9
64 000 011 101 1 9
66 000 011 110 1 9
6C 000 011 111 1 9
6D 001 000 100 1 9
6F 001 000 101 1 9
71 001 000 110 1 9
77 001 000 111 1 9
7E 001 001 100 1 9
94 001 001 101 1 9
98 001 001 110 1 9
9D 001 001 111 1 9
A8 001 010 100 1 9
C0 001 010 101 1 9
C2 001 010 110 1 9
C4 001 010 111 1 9

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4956

D0 001 011 100 1 9
E3 001 011 101 1 9
E4 001 011 110 1 9
E8 001 011 111 1 9
FE 010 000 100 1 9
FF 010 000 101 1 9

Total 555 bit

3. Because the number of bits after
compression is not a multiple of eight, a
calculation is made, namely, 555 mod 8 = 3
→ 8 – 3 = 5, then 0 bits are added to the
padding bits as much as 5 bits 00000. After
that, a flag bit is added which shows the
number of padding bits, namely 5 (binary
code = 00000101) as much as 8 bits
00000101. So that the number of string bits
becomes 555 bits + 5 bits + 8 bits = 568 bits
or 71 bytes.

Data size before compression = 96 bytes, and
the data size after compression = 71 bytes. Then
compression performance can be calculated based
on the comparison parameters:

 Rc =
ୈୟ୲ୟ ୗ୧୸ୣ ୅୤୲ୣ୰ େ୭୫୮୰ୣୱୱ୧୭୬

ୈୟ୲ୟ ୗ୧୸ୣ ୆ୣ୤୭୰ୣ େ୭୫୮୰ୣୱୱ୧୭୬
 × 100%

Rc =
71

96
 × 100%

Rc = 73,95%

 Cr =
Data Size Before Compression

ୈୟ୲ୟ ୗ୧୸ୣ ୅୤୲ୣ୰ େ୭୫୮୰ୣୱୱ୧୭୬

Cr =
96

71

Cr = 1,3521

 Ss = ቀ1 −
Data Size After Compression

Data Size Before Compression
 ቁ × 100 %

Ss = ൬1 −
71

96
 ൰ × 100 %

Ss = 26,0416%

8. SYSTEM TEST RESULTS

Comparison testing of system compression using
Boldi-Vigna ζ2 Algorithm and End-Tagged Dense
Code Algorithm; was performed with 10 sample
audio files in 8-bit format with the *.wav extension.

8.1. Data Size Comparison After Compression

Data size comparison after compression can be
seen in Table 5.

Table 5. Data Size Comparison After Compression

File Name

File Size
Before

Compression
(Bytes)

File Size After
Compression

(Bytes)

Boldi-
Vigna ζ2

End-
Tagged
Dense
Code

sample 1.wav 3.089.060 1.097.609 1.435.791
sample 2.wav 9.273.320 3.209.268 4.252.004
sample 3.wav 3.298.156 2.543.751 2.680.426
sample 4.wav 1.507.678 1.370.806 1.418.026
sample 5.wav 1.129.138 1.054.066 1.086.276
sample 6.wav 1.302.766 1.070.191 1.118.010
sample 7.wav 132.344 125.216 128.517
sample 8.wav 580.538 534.256 556.251
sample 9.wav 52.730 24.063 29,257

sample 10.wav 16.478 15.790 16,353

Based on Table 5. above, the results show that
the file size after the compression process using the
Boldi-Vigna ζ2 Algorithm is smaller compared to
using the End-Tagged Dense Code Algorithm.

8.2. Performance Comparison of Algorithms

Calculation Results of Compression
Performance Measurement Parameters can be seen
in Table 6.

Table 6. Performance Comparison of Algorithms

File
Name

Boldi-Vigna ζ2 End-Tagged Dense Code
Rc Cr Ss Rc Cr Ss

sample
1.wav

35,53% 2,81 64,46% 46,47% 2,15 53,52%

sample
2.wav

34,60% 2,88 65,39% 45,85% 2,18 54,14%

sample
3.wav

77,13% 1,29 22,87% 81,27% 1,23 18,72%

sample
4.wav

87,27% 1,14 12,72% 90,28% 1,10 9,71%

sample
5.wav

93,35% 1,07 6,64% 96,20% 1,03 3,79%

sample
6.wav

82,14% 1,21 17,85% 85,81% 1,16 14,18%

sample
7.wav

94,61% 1,05 5,38% 97,10% 1,02 2,89%

sample
8.wav

92,02% 1,08 7,97% 95,81% 1,04 4,18%

sample
9.wav

45,63% 2,19 54,36% 55,48% 1,80 44,51%

sample
10.wav

95,82% 1,04 4,17% 99,24% 1,01 0,75%

Avg 73,81% 1,58 26,18% 79,35% 1,37 20,64%

Based on Table 6. above, the results show that
the ratio of compression (Rc) of audio files using the
Boldi-Vigna ζ2 algorithm is smaller than using the
End-Tagged Dense Code algorithm. This proves that
the Boldi-Vigna ζ2 algorithm has a smaller
compressed file size than the End-Tagged Dense
Code algorithm.

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4957

The compression ratio (Cr) of audio files using
the Boldi-Vigna ζ2 algorithm is greater than using
the End-Tagged Dense Code algorithm. This proves
that the Boldi-Vigna ζ2 algorithm compresses audio
files with *.wav extension better than the End-
Tagged Dense Code algorithm.

And the Space Savings (Ss) of audio file
compression using the Boldi-Vigna ζ2 algorithm is
greater than using the End-Tagged Dense Code
algorithm. This proves that the Boldi-Vigna ζ2
algorithm saves storage space better than the End-
Tagged Dense Code algorithm.

8.3. Compression Time Comparison

Compression time comparison can be seen in
Table 7.

Table 7. Compression Time Comparison

File Name
Running Time (Seconds)

Boldi-Vigna ζ2
End-Tagged
Dense Code

sample 1.wav 1,24 1,54
sample 2.wav 4,53 4,10
sample 3.wav 2,54 1,86
sample 4.wav 0,95 0,96
sample 5.wav 0,70 0,70
sample 6.wav 0,74 0,77
sample 7.wav 0,10 0,11
sample 8.wav 0,42 0,37
sample 9.wav 0,05 0,03

sample 10.wav 0,04 0,03
Average 1,13 1,05

Based on Table 7. above, audio file
compression time using the End-Tagged Dense
Code algorithm is smaller than using the Boldi-
Vigna ζ2 algorithm. This proves that the End-
Tagged Dense Code algorithm is faster in
performing the compression process than the Boldi-
Vigna ζ2 algorithm.

8.4. Comparison Graph of Compression Results

Comparison of the performance of the two
algorithms based on the parameters Ratio of
Compression (Rc), Compression Ratio (Cr), Space
Savings (Ss), and Compression Time, depicted with
a graph in Figure 3., Figure 4., Figure 5., and Figure
6.

Figure 3. Ratio of Compression (Rc) Comparison
Graph

Figure 4. Compression Ratio (Cr) Comparison
Graph

Figure 5. Space Savings (Ss) Comparison Graph

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4958

Figure 6. Running Time Comparison Graph

9. CONCLUSION

9.1. Conclusion

Based on testing in this study, it was found that
the Boldi-Vigna ζ2 algorithm is better in the audio
file compression process with an average Ratio of
Compression of 73.81%, an average Compression
Ratio of 1.58, and an average Space Savings of
26.18%. While the End-Tagged Dense Code
algorithm has a better compression time with an
average compression time of 1.05 seconds. It can be
concluded that the Boldi-Vigna ζ2 algorithm is
better at compressing audio files, while the End-
Tagged Dense Code algorithm is faster at
performing the compression process. The
compression results obtained are influenced by the
number of the same digital values contained in the
wav audio file that needs to be compressed. Both
algorithms can restore the whole audio file like the
original audio file through the decompression
process.

9.2. Future Research

For future research, it is hoped that the system
created can perform compression on audio files in
16-bit format, the system can use audio files with
other extensions such as *.mp3, *.flac, *.aac, *.aiff,
and so on, then the system can be more effective; so
that the compression result file has a smaller size.
and the system can be run on various platforms such
as desktop, web, and IOS.

REFERENCES

[1] O. Manz, Well Packed – Not a Bit Too
Much: Compression of Digital Data
Explained in an Understandable Way.
Germany: Springer Fachmedien Wiesbaden,
2021.

[2] J. Hashim, A. Hameed, M. J. Abbas, M.
Awais, H. A. Qazi, and S. Abbas, “LSB
Modification based Audio Steganography
using Advanced Encryption Standard (AES-
256) Technique,” 12th Int. Conf. Math.
Actuar. Sci. Comput. Sci. Stat. MACS 2018 -
Proc., pp. 1–6, 2019, doi:
10.1109/MACS.2018.8628458.

[3] H. Karimi, P. Roy, S. Saba-Sadiya, and J.
Tang, “Multi-Source Multi-Class Fake
News Detection,” Proc. 27th Int. Conf.
Comput. Linguist., pp. 1546–1557, 2018,
[Online]. Available:
https://aclanthology.coli.uni-
saarland.de/papers/C18-1131/c18-1131

[4] J. Lee and F. Liu, “An Efficient Graph
Compressor Based on Adaptive Prefix
Encoding,” 31st Int. Conf. Sci. Stat.
Database Manag. (SSDBM ’19), 2019.

[5] J. Mancebo, C. Calero, F. García, N. R.
Brisaboa, A. Fariña, and Ó. Pedreira,
“Saving Energy in Text Search Using
Compression,” no. c, pp. 1–7, 2019.

[6] K. Sayood, Introduction to Data
Compression. 5th Edition, 5th ed. Morgan
Kaufmann, 2018.

[7] D. Rachmawati, M. A. Budiman, and M. A.
Subada, “Comparison study of Fibonacci
code algorithm and Even-Rodeh algorithm
for data compression,” J. Phys. Conf. Ser.,
vol. 1321, no. 3, 2019, [Online]. Available:
IOP Publishing.

[8] T. Grzes, Lossless and Lossy Audio Codecs
for Low-Performance Microcontrollers for
Use in IoT. Berlin, Heidelberg: Springer-
Verlag, 2019. doi: 10.1007/978-3-030-
28957-7_36.

[9] M. A. Budiman and D. Rachmawati, “On
Using Goldbach G0 Codes and Even-Rodeh
Codes for Text Compression,” IOP Conf.
Ser. Mater. Sci. Eng., vol. 180, 2017,
[Online]. Available: IOP Publishing.

[10] P. Boldi and S. Vigna, “Codes for the World
Wide Web,” Internet Math., vol. 2(4), no.
407–429, 2005.

[11] N. R. Brisaboa, A. Fariña, G. Navarro, and
J. R. Paramá, “Lightweight natural language
text compression,” Inf. Retr. Boston., vol.
10(1), pp. 1–33, 2007.

[12] G. Buehrer and K. Chellapilla, “A Scalable
Pattern Mining Approach to Web Graph
Compression with Communities,” Proc.
2008 Int. Conf. Web Search Data Min.
(WSDM ’08), pp. 95–106, 2008.

[13] F. Claude and G. Navarro, “Fast and

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4959

Compact Web Graph Representations,”
ACM Trans. Web, vol. 4, no. 4, 2010.

[14] T. Valencia, L. O. Cerdeira, E. L. Iglesias,
and F. J. Rodríguez, “Translation Table
Compression under End-Tagged Dense
Code,” pp. 0–5, 2010.

[15] N. Lin, K. V. A, and Y. N. Soe, “Text
Compression for Myanmar Information
Retrieval,” Proc. 2019 3rd Int. Conf. Nat.
Lang. Process. Inf. Retr., pp. 62–67, 2019.

