

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5055

ARE THERE POINTS OF SIMILARITY BETWEEN THE
CLASSIC OBJECT-ORIENTED APPROACH AND THE

MODEL PROGRAMMING APPROACH?

AZIZ SRAI1, FATIMA GUEROUATE2
1ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco

2LASTIMI Laboratory, Superior School of Technologies of Sale, Mohammadia School of engineering,

Mohamed V University city of Rabat, Morocco

E-mail: 1a.srai@uae.ac.ma, 2guerouate@gmail.com

ABSTRACT

NoSQL databases (also known as Not Only SQL databases) are non-relational database systems used to
store and retrieve data. Today, NoSQL databases are widely used in real-time web applications. NoSQL
databases can also be referred to as big data databases or cloud databases. NoSQL databases are generally
faster than SQL databases, so NoSQL databases are used for big data usage. In this article, we compare the
two approaches, the classic approach (object-oriented development) and the new approach (model-driven
approach or Model Driven Architecture), taking NoSQL databases as a case study. We first developed a
software solution applied to the NoSQL database using the classic object-oriented approach using Spring
Boot and secondly, we developed the same software solution through the use of the model approach or
MDA in order to reconcile the two approaches in terms of implementing platform independence and in
terms of development cycle time. We took as a case study, a use case of an eStore platform (class diagram).
Considering an application in its entirety is a difficult task, which is why we first represented the platform
with a simple class diagram.

Keywords: Big Data, MDA approach, NoSQL, QVT, PIM model.

1. INTRODUCTION

 A significant number of NoSQL solutions have
been developed. There are different ways to
structure data, but the set of solutions developed
can be divided into four models: the key-value
model, the column-oriented model, the document-
oriented model and the graph-oriented model. At
their inception, these approaches were developed
by relaxing relational principles. NoSQL is
currently considered an add-on solution. In another
context, the research world has recently developed
an important approach called Model Driven
Architecture (MDA). This approach, also called
model programming, has shown a significant
reduction in cost and time in terms of the
application development cycle compared to other
traditional development approaches (procedural
approach, service-oriented approach, object-
oriented approach, etc…). The contribution of this
article is based on the demonstration, through a
case study, of the advantages of the MDA approach

compared to the classical object-oriented approach.
We developed in parallel two solutions each with
one of the approaches and we compared the two
based on some criteria cited in the results section of
this article.

2. LITERATURE REVIEW

 Work [1] proposed an application of the MDA
approach on E-learning platforms, the authors use
UML to model the PIM, as well as ArcStyler for
model transformation, then propose a UML profile
for EJB. In this article, the transformation rules
between the models have not been defined. The
transformation rules between the two metamodels,
source metamodel and target metamodel; remain a
very important task to approve the validity of the
MDA approach on a technology.

 The author in [2] proposes a framework based on
OMG’s Model Driven Architecture. This platform-
independent framework specifies and classify

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5056

existing and future Learning Management Systems
(LMS).
 The work of Bézivin et al. [3] is dedicated to the
application of the MDA approach for the web
services platform. In this work the authors
presented a development of an illustrative example
of e-business based on two different applications of
a Model-Driven Architecture (MDA) approach. In
the first application, the Platform Independent
Model (PIM) is created using the Unified Modeling
Language (UML). This PIM is transformed using
Atlas Transformation Language (ATL) to generate
the Platform Specific Model (PSM) based on three
target platforms: Java, Web service and Java Web
service developer pack (JWSDP). In the second
application, the PIM is created using Enterprise
Distributed Object Computing (EDOC) and
transformed into another PSM based on the same
target platforms.
 The objective of work [4] is to generate a model
respecting the n-tier architecture using the MDA
approach; this model represents an E-learning
application. The authors proposed two metamodels,
a source metamodel based on UML, and a target
metamodel based on an n-tier architecture. The
authors have chosen the QVTo transformation
language to perform all possible transformations
between the two metamodels.
 After a large state of the art that we have done,
we have noticed that the majority of authors have
focused their work on transformations between old
technologies towards other more recent ones, while
basing themselves on the MDA approach. We
according to our knowledge, we did not find any
work which presents a comparison based on the
development in traditional approach and the MDA
approach. In this work we are based on this track,
i.e. which is more optimal in certain cases.
Certainly, it is a difficult and complex task.
However, as a first step in this context we have
contributed this work to begin this path of research
that links the two approaches. To do this, we
developed a use case of a platform with both
approaches, a classic development cycle, and
programming by model, and we compared the two.
We have gathered the characteristics of each in this
article.

3. METHODOLOGY

Software engineering is currently moving towards
model engineering, after the object approach, where
each software artifact is considered as a model.
Engineering led by MDE models (Model Driven
Engineering) presents a development approach that

has become very popular in software engineering,
which focuses on the creation and exploitation of
abstract models. In other words, it is an abstract
representation of the knowledge and activities that
govern a particular application domain facilitating
the understanding of the modeled system. It
describes all the concepts and technologies around
model management. The specification phase is
particularly important in an MDE approach and
represents a substantial part of the development
cycle. This allows developers to focus on the
desired behavior of the system, without worrying
about how to implement it. The implementation
phase is then started at the end of the cycle, once
the specification is completed and validated. The
partial generation of low-level code from the
specification also reduces development time and
therefore development costs. The MDE approach
aims to generate all or part of the application from
models. This in itself increases productivity while
optimizing compatibility between systems through
the large-scale reuse of standardized models. This
simplifies the design process, and promotes
communication between individuals and teams
working on a system through standardization of
terminologies and best practices used in the field of
software engineering.

Figure 1: Diagram summarizing the languages and
methods provided by MDA architecture

The MDE approach aims to generate all or part of
the application from models. This in itself increases
productivity while optimizing compatibility
between systems through the large-scale reuse of
standardized models. This simplifies the design
process, and promotes communication between
individuals and teams working on a system through

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5057

standardization of terminologies and best practices
used in the field of software engineering.

3.1 Principles of model-driven engineering

In recent years, many organizations are interested in
model-oriented engineering because it is an
approach that provides the basis for using models to
better understand, design, build, deploy, maintain
and modify a system. This is a beneficial
development for several reasons. First, the MDE
approach encourages the effective use of models in
the software development process, and second, it
supports the reuse of best practices when creating a
system. Its main goals are portability,
interoperability and reusability through the
separation of platform-dependent aspects from
more abstract application-independent aspects. This
architecture was introduced and defined by the
OMG and is thus in line with the continuity of the
object-oriented approach, by increasing the level of
abstraction to a level where another set of concepts
and relations is used, saying model. The model is
an essential condition for the realization of a solid
architecture as well as a good understanding of the
system to be developed. It is an often partial
specification of the functionality, structure and
behavior of a system. This model can be considered
as an abstraction of a system modeled as a set of
facts, subsequently expressed in a clearly defined
modeling language to formulate what is called a
metamodel. Several MDE approaches have
emerged. The most popular of these approaches is
the OMG Model Driven Architecture. This has
been extended and is not limited to models, but
rather puts the models and not the programs. This is
called Model Oriented Architecture (MDA).

3.2 Model-Driven Architecture

Model Driven Architecture (MDA) is a model-
oriented approach defined by the Object
Management Group (OMG) and made public at the
end of 2000. This approach specifies three levels of
abstraction (level business, platform independent
level and platform dependent level) for the
description of a system architecture and proposes a
development process based on these three levels
and driven by models. The basic idea of MDA is to
separate the functional specifications of a system
from the specifications of its implementation on a
given target platform. In an MDA oriented
development process, everything is seen as a
model. Thus, MDA identifies four types of models:
CIM, PIM, PDM and PSM. The CIM (Computation
Independent Model), also called domain model or
business model, models the requirements of the

system. Its purpose is to help understand the
problem but also to fix a common vocabulary for a
particular field. MDA makes no recommendation as
to the language to be used to describe CIMs. The
PIM (Platform Independent Model) or analysis and
abstract design model of the application. This
model describes the system without showing the
details of its use on a particular platform. In MDA,
it is possible to build several PIM models
independent of the target platform. PIM models do
not contain any information about the execution
platforms. A PIM must be refined with the details
of one or more particular architectures to produce a
PSM. The PDM (Platform Description Model)
describes the platform on which the system will be
run (for example component models at different
levels of abstraction like CCM or EJB).The PSM
(Platform Specific Model) or specific model of
execution platforms.PSM is the model produced by
transforming a PIM to take into account technical
information relating to the chosen platform. PSM
can be refined by successive transformations until
an executable system is obtained. The figure below
gives an overview of an MDA process commonly
called the Y development cycle by showing the
different levels of abstraction associated with
models.

Figure 2: Principles of the MDA process

3.3 Model transformation

MDA architecture is a means of structuring and
managing the software architecture of an
organization where models are used on a large
scale. Indeed, it allows defining a structuring of
guidelines for specifications expressed as models. It
is supported by automated tools and services to
both define the models and facilitate
transformations between different model types. In
other words, MDA makes it possible to separate the

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5058

specification of the functionalities of the studied
system from the specification of its application on
its implementation platform. It offers the possibility
of designing models independent of all platforms or
implementation environments. The MDA approach
provides a means through models to guide the
understanding, design, the deployment, operation
and maintenance of the studied system.

Figure 3: structure of a model transformation

In the cycle of the implementation of the MDA
architecture, three groups of models have been
specified, CIM (Computation-Independent Model)
processing-independent models: the most abstract
model in the MDA approach. It represents the
context and purpose of the model without any
complexity of control. Platform-independent
models PIM (Platform-Independent Model): the
model describes the behavior and structure of the
application independently of the platform
implemented. Platform-specific models PSM
(Platform-Specific Model): the model cannot be
executed but it contains all the necessary
information, concerning a specific platform, those
developers can use for the implementation.

3.4 Unified Modeling Language (UML)

UML is a language standardized by the OMG
allowing to model a system according to different
points of view, static and dynamic. The static
structure makes it possible to model a system using
objects, attributes, operations and relations. The
dynamic structure makes it possible to model the
dynamic behavior of a system by showing the
interactions between objects or the changes of state
within an object. State and activity diagrams fall
into this category.

3.5 History of software development approaches

The evolution of software technology continues to
be dynamic. New tools and techniques are
continually being announced in rapid succession.
This has forced the computer industry and players
in this sector to constantly seek new approaches to
software design and development.

3.5.1 The procedural approach

Since the invention of computers, many
development approaches have been tried and tested.
With the advent of programming languages like C,
structured programming became very popular this
was the main development technique in the 1980s.
It gives programmers the power to write moderately
complex program quite easily. The main features
presented in The Procedural Approach are: Most
functions share global data. Thus, data moves freely
from one function to another and transforms it from
one form to another. The program design uses a
top-down approach. Big problems are broken down
into smaller ones and mapped to functions. The
maintenance of systems developed with the
procedural approach is difficult and expensive. A
more modular development approach became
necessary. This is how the object-oriented approach
was born.

3.5.2 The object approach

The limitations presented by the procedural
approach led to the appearance of the object
approach. The main objective of this approach is to
provide a better programming model for
representing the world. The basis of the object
approach is the concept of object. An object is
defined as a software entity inspired by the real
world. An object has specific properties and
provides access methods. An object is an instance
of a class. Moreover, an object supports the
concepts of abstraction, encapsulation, inheritance
and polymorphism. These properties are the main
concepts of the object approach.

3.5.3 The component approach

The need for component-based development has
arisen to increase the level of abstraction and to
change the way of developing computer systems.
The component-oriented paradigm has enabled
several improvements over the object-oriented
paradigm, including increased productivity,
improved quality, and reduced development. The
component approach is based on the idea of
developing applications using components.
Components are analogous to functions in
procedure-oriented development. A component is a
more abstract form and it is capable of performing
specific functionality. Moreover, a component is a
software object intended to interact with other
components, encapsulating certain functionality or
a set of functionalities. A component must have a

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5059

clearly defined interface through which it is
associated with other components and conforms to
a prescribed behavior common to all components of
an architecture. Component-based software systems
are developed by selecting appropriate standard
components and then assembling them with well-
defined software architecture. The component
approach aims to create a software package in such
a way that its components can be easily reused in
other similar or different applications. The use of
middleware aims to assemble the components and
make them interoperable.
Middleware such as CORBA (Common Object
Request Broker Architecture), Java RMI (Java
Remote Method Invocation) and DCOM
(Distributed Component Object Model) have been
proposed to simplify the development of software
based on a component approach, and to allow
interoperability between distributed and
heterogeneous systems. They responded quite well
to interoperability in the context of distributed
systems, but the advent of the Internet introduced
new requirements to which they were not suited.
These middleware have been extended to meet
these new requirements, but with little success.

3.5.4 The service approach

Both the service approach and the component
approach seem to have the same objective: to
provide a basis for highly integrated and highly
interoperable software architecture, allowing
efficient and error-free software development. So,
develop a type of architecture allowing weak
coupling and high reusability of its components.
There is no clear demarcation between the service
approach and the component approach. In principle,
the service approach is the improvement of the
component approach because Individual services
are unique components, which can be linked to
achieve new business logic, new services, or a new
component. In principle, a service is defined as a
software entity whose use must be made within a
Service-oriented Architecture (SOA). The idea of
the service-oriented approach appeared in the
2000s. The historical sequence of the four
approaches that we have just described succinctly
can be found in the extended Racoon wave diagram
shown in Figure 4.

Figure 4: Extended Racoon wave diagram [Donsez,

2006].

3.6 QVT language

Query/View/Transformation (QVT) is a standard
defined by the OMG to specify transformations
between models, whose meta model satisfies the
MOF standard. It includes a declarative part and an
imperative part. The declarative part consists of two
parts: a part carrying out the correspondence
between the two models expressed in the standard
MOF named QVTr (relations), and a part which
makes it possible to evaluate conditions on the
elements of our models to make them correspond,
named QVTc (Core). These two parts use OCL
(Object Constraint Language) to define the
matching rules. OCL is a formal language
standardized by the OMG for specifying software
constraints. The imperative part, consisting of
QVTo (operational), makes it possible to extend the
declarative language. Constructs such as for loops
or if conditions are offered there. QVTo also
introduces the use of imperative OCL rules.

Figure 5: Relationships between QVT metamodels

3.7 Graph-oriented model

The graph-oriented model is based on graph theory.
The graph-oriented model is based on three
concepts; node, relation and property. Each node
has properties. Relationships connect nodes and
optionally have properties. This type of approach
facilitates navigational queries between nodes by
following the relationships between them: each
node has a physical pointer to neighboring nodes
allowing fast local search.

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5060

Figure 6: Principle of the graph-oriented model

The structure of the graph-oriented model is very
suitable for responding to issues such as the
management of a company's social network or any
other storage requiring graph browsing. The graph-
oriented model is also characterized by schema
flexibility; it is not any need to create a schematic
first for nodes and relations.

3.8 Source and Target Metamodels
The work presented in this article is a work aiming
at the comparison in certain criteria between the
classic object-oriented approach and the new MDA
approach, also known as model-based
programming. We have developed an application
with both approaches in parallel and we have
compared the two in terms of development time
and certain technical difficulties. For the MDA
approach we have developed two metamodels, a
source metamodel and a target metamodel.

3.9 UML source Metamodel

Figure 7, illustrates the simplified UML source
meta-model based on packages including
operations, associations and classes. Those classes
are composed of properties with parameters.

Figure 7: UML source meta-model

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5061

3.10 Document oriented target Metamodel

Figure 8, illustrates the simplified Document target meta-
model:

Figure 8: Graph target meta-model

4. RESULTS AND DISCUSSIONS

 In this section, the results of research are
explained and at the same time is given the
comprehensive discussion. Results can be presented
in figures, graphs, tables and others that make the
reader understand easily. The discussion can be
made in several sub-chapters. It is strongly
suggested that comparison wih results from other
published articles are provided to give more context
and to strengthen the claim of novelty.

4.1 Development of the case study with the
classical object oriented approach

 In this part, we will show the different phases of
development of our case study with the classical
object oriented approach, we recall that our case
study is a class diagram made up of two class
society and person with working associations, we
suppose that this case study is sufficient to apply it
in our study on this article. We have developed this
case study respecting all the development cycle
from design to unit testing. We have considered the
source model (Figure, 9) that we assume is
sufficient to mount our work.

Figure 9: Class diagram representing the case study

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5062

Figure 10: Pieces of code that demonstrate the classic development of our case study

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5063

4.2 Development of the case study with the
model approach (MDA approach)

 In this approach, we will develop our case study
with the MDA or model programming approach
through successive transformations between
models, from the PIM model to the PSM model.
We compare in the following part, the difference

between this approach and the classic approach. We
also demonstrate through this scientific contribution
the adoption of this approach compared to other
approaches. We detail below the different studies of
the development of our work through the MDA
approach.

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5064

Figure 11: Different phases of the development of our case study through the MDA approach

4.3 Comparison between the two approaches

 In this work we have developed a case study
with two approaches, a classical object oriented
approach and an MDA approach. During all the

development cycle of the two approaches we
discovered that the adoption of the MDA approach
compared to the classic development approaches is
too recommended for several reasons, among these
major reasons we can retain a complete
independence of the MDA approach in relation to

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5065

the implementation platform of the solution thing
that is necessary in the classical development where
the choice of the implementation platform is
essential. Another major factor is the development
time, we discovered that the MDA approach
requires an average time during the development
cycle, on the other hand the classic development
requires a remarkable time during the development
cycle. We reason in the table below these factors.

TABLE 1: A TABLE WHICH SUMMARIZES the
comparison between the two approaches.

Features

Independence

from the
implementation

platform

Time in

relation to
the

development
cycle

classic
approach

Yes

This approach
is 100% linked

to the
implementation

platform

A

 heavy
development

cycle

Model
Driven

Architecture
approach

No

This approach
is not linked to

the
implementation
platform, but in
some cases it

can be
linked with

certain
percentage,
because the

MDA approach
presents to

generate part or
all of the
solution

A

 light
development

cycle

5. CONCLUSION

In this work, we presented a development of a case
study for an eStore application (simple class
diagram), with two approaches, a classic object-
oriented approach and a search approach, which is
the MDA approach. We have compared the two

approaches through this scientific contribution. We
have demonstrated the validity of the MDA
approach and the advantages it has over the object-
oriented approach in the development of software
solutions. As perspectives of this work, we try to
apply the MDA approach on other platforms such
as NoSQL databases, mobile, web and desktop
applications. We support model programming
through these research studies.

REFERENCES:

[1] Hong Wang, Dong Zhang, Jun Zhou, MDA-

based development of e-learning system,
IEEE Proceedings 27th Annual International
Computer Software and Applications
Conference. COMPAC 2003, DOI:
10.1109/CMPSAC.2003.1245417.

[2] Kurillova,Model Driven E-Learning Platform
Integration, Proceedings of the EC-TEL 2007
PROLEARN Doctoral Consortium, Crete,
Greece, September 18, 2007.

[3] J. Bezivin; S. Hammoudi; D. Lopes; F.
Jouault, Applying MDA approach for Web
service platform, Proceedings. Eighth IEEE
International Enterprise Distributed Object
Computing Conference, 2004. EDOC 2004,
Monterey, CA, USA, DOI:
10.1109/EDOC.2004.1342505.

[4] A. Srai, F. Guerouate, N. Berbiche, H. Drissi,
“Generated PSM Web Model for E-learning
Platform Respecting n-tiers Architecture,”
International Journal of Emerging
Technologies in Learning (iJET), vol. 12, no.
10, pp. 212-220, 2017.

[5] Toward Automatic Generation of Column-
Oriented NoSQL Databases in Big Data
Context, Redouane Esbai, Fouad Elotmani,
Fatima Zahra Belkadi, International Journal of
Online and Biomedical Engineering, iJOE ‒
Vol. 15, No. 9, 2019.

[6] Liliana Favre, Liliana Martinez, Claudia
Pereira, “Modernizing software in science and
engineering: From C/C++ applications to
mobile platforms,” Conference: ECCOMAS
Congress 2016 European Congress on
Computational Methods in Applied Sciences
and Engineering, DOI:
10.7712/100016.2402.4906.

[7] Kim, S.D., Min, H.G., Her, J.S., Chang, S.H.:
Dream : a practical product line engineering
using model driven architecture. In:
Proceedings of the Third International

Journal of Theoretical and Applied Information Technology

30th June 2023. Vol.101. No 12
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5066

Conference on Information Technology and
Applications (ICITA 2005) (2005).

[8] Czarnecki, K., Helsen, S., Classification of
Model Transformation Approaches, in online
proceedings of the 2nd OOPSLA’03
Workshop on Generative Techniques in the
Context of MDA. Anaheim, October, 2003.

[9] Donsez, D., "Objets, composants et services :
intégration de propriétés non
fonctionnelles", Habilitation à Diriger des
Recherches de l'Université Joseph Fourier,
http://wwwadele.imag.fr/users/Didier.Donsez/
pub/publi/hdr/, Déc. 2006.

