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ABSTRACT 
 

Phishing websites are one of the biggest threats Internet users face today, and they require constantly 
updated techniques to combat the increasing number of such threats. So far, various methods have 
been proposed to increase the efficiency of phishing website detection. Swarm intelligence (SI) is one 
of the approaches that has garnered the interest of researchers working in the phishing website 
detection field. This article presents an up-to-date review of the SI techniques used for phishing 
website detection, which deserves wider investigation by researchers. Another contribution of this 
paper is to provide a comparison of the effectiveness of various SI-based phishing website detection 
techniques. Based on the survey result, we provide a clear overview of which approach is more 
suitable for each case and highlight the need for future research efforts devoted to the unique features 
of the SI for phishing website detection. 
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1. INTRODUCTION 

The Internet has become so integral to daily 
life that its absence is unthinkable. Socializing, 
sharing knowledge, going shopping, and going to 
work are just a few of the many aspects of daily 
life that the Internet has revolutionized. Keeping 
data secure is a must for all computer networks. 
New forms of networks introduce new 
vulnerabilities and dangers, necessitating a wide 
range of recommended approaches to keeping 
computers secure against intrusion. Phishing is one 
type of attack, and it became a lot more 
common that year [1]. Social engineering 
combined with computer technology is known as 
”phishing” and it is used in network attacks to steal 
users’ private information. Using SMS, emails, or 
social media messages with misleading content, 
attackers try to trick users into clicking on fake 
links so that they can steal sensitive information 
(such as usernames, passwords, and credit card 
numbers) [2]. With the evolution of the Internet, 
phishing methods have evolved since they were 
first documented in a study in 1987 [3]. For 
instance, as the use of online payment systems 
grew, so did the number of phishing attempts 
targeting those systems. Phishing scams caused 
over 54 million USD  in losses and accounted for 
nearly 30% of the cyber attack complaints 
received by the Internet Crime Complaint Center 

in 2020, as stated in the related Internet 
Crime Report [1]. Therefore, it is crucial for 
Internet users to be able to tell legitimate from 
fraudulent websites. 

There are a number of methods used to 
thwart phishing scams [4][5]. Swarm 
intelligence (SI) approaches, which mimic 
animal swarm behavior for solving problems, 
have recently attracted a lot of attention for their 
potential usefulness in the detection of phishing 
websites. The strategies and tactics of swarms 
have been studied and modeled. Models 
including the bat algorithm (BA), particle swarm 
optimization (PSO), artificial bee colony (ABC), 
ant colony optimization (ACO), a gray wolf 
optimizer (GWO), the salp swarm algorithm 
(SSA), and the firefly algorithm (FA) were 
implemented for detecting phishing websites. 

In light of the fact that SI has the potential to 
play a significant role in solving the phishing 
website problem, this paper offers a review of 
the work that has been proposed in the area of 
SI-based phishing websites. While previous 
publications have covered a variety of 
approaches, the focus here is on a single 
method—the detection of phishing websites 
using swarm intelligence. A further valuable 
contribution is the evaluation of different SI 
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phishing website detectors. This paper, therefore, 
makes an effort to define and organize the work 
done so far on the topic of SI-based phishing 
websites. To the best of my knowledge, this work 
is the first to provide a review paper of the SI 
techniques used for phishing website detection and 
provide a comparison of the effectiveness of 
various SI-based phishing website detection 
techniques. The rest of this article is organized as 
follows. In Section 2, we present the basics of 
phishing scams. Several similar works are 
discussed in Section 3. The SI methods are 
described in Section 4. In Section 5, we present SI 
methods for detecting phishing websites. 
Discussion, including an analysis of the 
effectiveness of these methods, is provided in 
Section 6. The paper is concluded in Section 7. 

 
2. PHISHING ATTACK 

Misleading Internet users in order to steal 
sensitive information is called ”phishing” [6][7]. 
Phishers are cyber criminals who engage in phishing 
assaults. In the mid-1990s, phishing became a major 
security concern when hackers began using it to gain 
login credentials [8][9]. The majority of phishing 
attacks are successful because of website spoofing 
[10][11] and email spoofing [12]. 

 
2.1 Phishing Attack Mechanism 

The phishing attack mechanism was 
addressed by the authors of [13]. The first step is for 
an attacker to create a phishing website that is highly 
convincing in appearance. Attackers, however, 
spelled the URL incorrectly while trying to trick 
users. Even if the computer’s browser may see the 
URL address, it is difficult for the non-expert user to 
identify it by sight and memory alone because it 
mimics authentic URLs. After that, they steal the 
page’s content, including the design, logos, and text, 
by using programs to steal it from legal websites. 
Users are asked to enter personal details like login 
credentials and financial information into these 
phony websites. The second step is to force browsers 
to click the link by sending them an email. Links to 
malicious websites can be distributed using QR 
codes, short messages service (SMS), emails, voice 
messages, mobile applications, and social media 
[14]. After users click the link, they are taken to a 
phony website where the phishers can steal their 
information by tricking them into updating their 
accounts, making purchases, or resetting their 
passwords. Therefore, attackers obtain all 
information entered by users on the phony website. 
The next step is engaging in illegal activity, such as 

wire fraud or account takeover, using the victims’ 
actual information. 

 
2.2 Anti-Phishing Techniques 

Before an attacker may successfully steal 
money from a user’s account or use the 
information for other attacks, they must first 
complete a series of steps [13]. Therefore, a 
phishing assault can be stopped if the attack is 
stopped at a certain stage. This means that 
measures to combat phishing, such as web 
scraping, can be implemented at any time. This 
makes it harder for cyber criminals to use certain 
scripts to create crawlers that automatically obtain 
the content of legal web pages, intercept useful 
information, and copy it to phishing web pages. 
This is accomplished by employing obfuscation 
methods, displaying crucial data via sprites, and 
substituting text with graphics in order to thwart 
web scraping. Furthermore, using spam filters to 
identify unwanted emails prior to the user reading 
or clicking the link is another method used to 
combat phishing. Blacklists, whitelists, and 
empirical rules were the backbones of the first 
filters. In addition, some filters use machine- 
learning-based intelligent prediction models to 
detect spam that isn’t on the predefined blacklist. 
Also, users are also unable to identify the phishing 
website by its URL alone; hence, several web 
browsers incorporate a security component to 
identify such sites. For phishing websites whose 
addresses are unknown, however, blacklist and 
whitelist-based methods are ineffective. 
Thankfully, new concepts and techniques for 
identifying phishing attempts have emerged thanks 
to the rapid growth of AI technology. Phishing 
links that aren’t on the whitelist or blacklist can be 
detected using the machine learning-based 
predictive model. Furthermore, a second layer of 
authorization verification can be used to stop an 
attacker from exploiting stolen information to steal 
money, get access to a website, or otherwise 
misuse an account. 

 
3. RELATED WORKS 

Large-scale phishing detection methods 
have been presented in recent years, with some of 
the most successful implementations to date. 
Recent proposals are thought to be more cutting-
edge. There are numerous literature reviews 
outlining and contrasting various methods for 
identifying phishing websites. The research team 
behind [15] conducted a survey of AI-based 
phishing detection methods. The authors studied 
statistical phishing records to determine the impact 
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and patterns of phishing attacks. Various phishing 
attack methods were compiled, along with the most 
common channels of communication and devices 
used as targets. The measures of the machine, deep, 
hybrid, and scenario-based learning are discussed in 
this paper as they pertain to anti- phishing efforts. In 
[15], the authors gave a brief history of phishing and 
notable phishing attack reports before reviewing 
machine learning-based phishing detection. Social 
engineering assaults and malware-based phishing are 
distinguished in the paper. They sorted rule-based 
characteristics into three distinct groups: features 
extracted from source code, features extracted from 
URLs, and features extracted from images. In [16], 
the authors presented a survey on major detection 
techniques and taxonomy for automatically detecting 
phishing solutions, categorizing them into web 
address-based methods, webpage content-based 
solutions, and hybrid approaches based on the input 
parameters. In each section, the authors detailed and 
provided an explanation of the most cutting-edge 
approaches. However, based on the methods used 
and the input parameters, the authors of [17] 
categorized phishing detection solutions into 
numerous groups. This research presents three 
distinct phishing methods and evaluates their relative 
accuracy. Moreover, in the comprehensive survey 
[18], Jain and Gupta examined phishing attack 
strategies, detection methods, and some current 
issues. The authors then presented and contrasted 
numerous countermeasures against phishing. Then, a 
number of significant obstacles, including choosing 
effective features, recognizing short URLs, and 
detecting smartphones, were provided. 

 
 

3.1 Methodologies of Phishing Website Detection 
 

As a social engineering problem, phishing 
attacks require solutions based on education, 
technical approaches, and legal oversight [14]. There 
are now three types of strategies for identifying 
phishing websites: list-based, heuristic, and 
machine- learning approaches [19]. Methods based 
on lists rely on systems to report and confirm either 
whitelists or blacklists. A whitelist is an approved 
list of websites or web addresses. The term 
”blacklist” refers to a list of verified phishing 
domains. An automatically updated white list 
defense against phishing was proposed by the 
authors of [20]. The experimental results 
demonstrate that the method is effective, with an 
accuracy of 86.02% and a false-positive rate of less 
than 1.48%, and a response time that ensures real-
time products and an environment. Also, phishing 

websites can be identified using heuristic 
algorithms, which compare a set of attributes 
retrieved from the textual content of the phony 
website with those of real websites. Machine 
learning approaches the subject of identifying 
potentially malicious websites as a classification 
problem using a set of features collected from the 
source code. More accurate performance and 
fewer false-positive rates are promised by machine 
learning approaches [14] for countering dynamic 
phishing assaults. Also, using identity keywords 
collected from the website’s textual content and a 
comparison of the domains of the legitimate and 
target websites is used by the authors of [21], 
which proposed a phishing detection method 
called PhishWHO. In [22], the authors checked the 
website’s legitimacy by looking at its logo. Thus, 
machine learning techniques are used to extract a 
logo from website photos, which is then used to 
detect phishing websites by creating a model to 
learn from a dataset containing structured features 
and making a prediction about whether or not the 
target website is real. 

 
4. SWARM INTELLIGENCE (SI) 

One source of motivation for humans in 
addressing difficult problems is the natural world. 
Recent years have seen the emergence of methods 
that draw inspiration from biology in fields as 
diverse as health, economics, engineering, the 
social sciences, and computer science. Many 
intrusion detection methods have also been 
presented that take biological inspiration. One 
such method is called swarm intelligence (SI). 
Swarm intelligence was originally used to describe 
a cellular robotics system in [23]. Many of the 
proposed algorithms and methodologies in these 
areas of study are based on swarm intelligence and 
cooperative problem-solving strategies of animals, 
insects, and birds. While a single person could 
never hope to undertake such a task; in reality, 
studies have shown that lone animals like insects, 
birds, and fish display very low levels of 
intelligence, and they are able to accomplish 
challenging tasks such as coordinating their 
movements and determining the quickest route to a 
food source when they interact socially with one 
another and their environment. Complex problems 
can often be solved with the help of computational 
intelligence methods like SI, such as some of NP-
hard optimization issues such as the traveling 
salesman, routing, and scheduling. Similarly, SI 
methods have shown useful in phishing attack 
detection systems, either on their own as a self-
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determining module or in conjunction with other 
predictive models. 

 
5. SI APPROACHES IN PHISHING WEBSITE 

DETECTION 

The swarm intelligence approaches that will 
be discussed in this section are particularly well-
suited to the task of phishing website identification 
due to their ability to facilitate broad anomaly 
detection. In particular, swarm intelligence (SI) 
methods employ numerous agents to tackle difficult 
tasks. To find the best answer, every agent takes part 
and communicates with others in various ways. In 
this part, we take a close look at the various SI-based 
methods currently in use for detecting phishing 
websites. The primary method used to classify the 
systems shown here is the SI method, in which each 
section begins with a quick summary of the 
corresponding SI method that was used. We next 
demonstrate some application areas where SI is 
used, as well as some works that employ SI for 
phishing website identification. 

 
5.1 Bat Algorithm (BA) 

In 2010, [24] researchers created the meta-
heuristic swarm method known as the Bat method 
(BA). The author was motivated to create this 
method by the echolocation mechanism employed 
by micro bats to help them locate prey and avoid 
obstacles during hunts. Bats use a method called 
echolocation to navigate their environments and find 
food when it’s dark. This method is based on the 
echoes the bats make as they fly. In addition, 
echolocation is used to determine how far away 
potential sources of nourishment are. Bats increase 
the frequency of their calls and decrease the volume 
of the echo to better locate possible prey as they fly 
at different speeds and use different frequencies to 
communicate with one another as they search for 
food. The bats’ position, speed, and frequency are 
adjusted, and its personal and world history are 
updated. Because all bats utilize echolocation to 
reach where they need to go, Yang based his 
algorithm on the rules of that biological system. The 
bats remember their current location and speed. The 
bats’ position and speed are then modified according 
to the volume and variables [24][25] in order to 
determine the next search phase. The loud sound 
pulses that bats emit also assist them to estimate the 
distance between themselves and an obstruction. 
Multi-objective BA (MOBA) [26], Chaotic BA 
(CBA) [27], Differential operator and L’evy flights 
BA (DLBA) [28], K-means BA (KMBA) [29], 
Binary BA (BBA) [30], Fuzzy Logic BA (FLBA) 

[31], and Improved BA (IBA) [32] are just a few 
of the variants of the BA versions. 

As a result, the BA is used for research in 
a wide range of disciplines. Discrete decision-
making problems can be ad- dressed by the BA 
[25]. These BA arch mobility issues were 
proposed to be globally optimized using a chaotic 
method of the bat algorithm [33]. Hybridization of 
the BA has been investigated to boost the 
performance of the SVM algorithm [34], for 
example, by optimizing the SVM parameters for 
intrusion detection [35] with the help of the BA. 

 

5.1.1 Bat Algorithm for Phishing Website 
Detection  

An enhanced method called binary bat 
was proposed by the authors in [36]. The neural 
network is designed using the binary BA, and it 
uses this information to classify the URLs of the 
websites accessible via the network. The 
experimental results demonstrate that deep 
learning with the Adam optimizer achieves high 
classification accuracy at 94.8% when used with 
the SI approach for detecting phishing websites. 
Thus, to identify potential phishing sites, they 
suggested a deep learning model based on the SI-
BBA algorithm. In [37], the authors developed an 
approach to tuning deep learning neural networks 
for phishing sites that makes use of a bat and 
hybrid-bat algorithm. When used to their 
detection, the new SI technique yields significant 
improvements over prior algorithms. The 
experimental results show promise, with increases 
in accuracy and performance when compared to 
existing classification algorithms for identifying 
phishing websites. Therefore, phishing website 
classification is an area where the suggested tuning 
deep learning utilizing a bat/hybrid-BA 
(TDLHBA/TDLHBA) approach excels. 

 
5.2 Particle Swarm Optimization (PSO) 

As a population-based computer 
technique, Particle Swarm Optimization (PSO) 
was initially created by Kennedy and Eberhart 
[38][39] to mimic the cooperative behavior of 
birds as they swarm to explore food. Using the 
PSO technique offers a number of benefits, 
including its ease of implementation (requiring 
fewer mathematical equations and parameters) 
[40][41]. In PSO, each potential solution is 
represented by a ”particle” that travels across 
space at a specific speed within a ”swarm.” Then, 
each particle dynamically adjusts its position and 
velocity based on its own flying knowledge and 
the flying knowledge of its neighbors. Each 
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particle remembers its best position from the 
previous PSO iteration (pbest) and has access to the 
global best position that has been recorded. (gbest). 
Each particle, then, determines its own location and 
speed using pbest and gbest. Particles continually 
evaluate the viability of candidate solutions and 
remember the optimal environment. Each particle 
provides its neighbors with the best solution it has 
found so far, known as the particle best or local best 
[42]. Particles can then see where their neighbors 
have succeeded, guiding their own travels through 
the area; as a result, the population tends to converge 
at the end of an experiment. A particle’s location is 
affected by both its own best location and the best 
location of its companion particles. The fitness 
function used to evaluate a particle’s performance is 
different for each optimization issue. 
 
5.2.1 Particle Swarm Optimization (PSO) for 

Phishing Web- site Detection 
 In [43], the authors offer a method for 

identifying fake online content. An effective model 
exists by combining the association and 
classification data techniques with the PSO 
algorithm for optimization. All the criteria and 
guidelines for categorizing the phishing website are 
characterized and identified using the proposed 
algorithms. An ACO algorithm was then used to 
optimize the outcomes of the categorization. 
However, this study has constraints, such as a lack of 
precision in estimating when the phishing 
categorization will converge and the possibility of 
sequences of random decisions. Because of this 
restriction, the authors turned to PSO to optimize a 
search space and predict social actions when they 
encounter phishing websites. When compared to 
other classification algorithms for detecting e-
banking phishing websites, the associative 
classification algorithm using the PSO technique 
showed superior performance across two parameters 
(prediction accuracy and URL domain identity) and 
(security encryption). As such, PSO is regarded as a 
leading model in the field of network safety. In [44], 
it is suggested that feature weighting based on 
particle swarm optimization can improve phishing 
website identification. The proposed method 
proposes using PSO to weigh different website 
features efficiently to obtain better phishing website 
detection accuracy. Specifically, the suggested PSO-
based website feature weighting distinguishes 
between the various website features based on their 
relevance in distinguishing phishing from legitimate 
websites. The experimental results showed that the 
proposed PSO- based feature weighting significantly 
improved the accuracy of machine learning models 

used to identify phishing websites, despite the fact 
that these models made use of fewer website 
features. 

 
5.3 Artificial Bee Colony (ABC) 

Inspired by the foraging habits of bees, 
Dervis Karaboga in [45] devised an optimization 
method called the Artificial Bee Colony (ABC) 
algorithm. Several academics have looked into 
potential uses for the ABC algorithm. There are 
three types of bees in a colony: workers, observers, 
and scouts. Using waggle motions, these bees 
coordinate their efforts to search for, select, and 
navigate food sources, reproduce, and alert other 
agents to the location of the food source. Workers 
leave the hive to forage for food, while observers 
utilize the data gathered by the workers to decide 
where to forage. When one of the worker bees eats 
all of the available food, it becomes a scout bee 
and goes in quest of more. The first step is to pick 
a food source from the available options. After 
then, the worker bees will forage randomly for 
new food sources that have more nectar than the 
ones they were given. If the identified alternative 
is better than the current option, it is adopted as the 
new preference. The worker bees then 
communicate this information to the observer bee 
by performing waggle dances. In this way, the 
observing bees select and evaluate potential food 
sources, accepting the new option if its fitness 
value is higher than the current one and rejecting it 
otherwise. Therefore, ABC looks into which of 
numerous options is best. 

The ABC algorithm is a strong one that 
may be implemented in a variety of ways [46]. The 
technique is also flexible enough to be used with 
others to solve a wide range of optimization issues 
[47]. The ABC method has been effectively 
applied by numerous scholars to problems in many 
different disciplines of study, including but not 
limited to mathematics, computer science, 
engineering, decision sciences, biochemistry, 
genetics, physics, environmental science, 
medicine, and neurology [48]. Examples of areas 
where ABC has been put to use include data 
clustering [49], software test suite optimization 
[50][51], and image processing [52]. The ABC 
method is also used in intrusion prevention and 
detection systems (IDS) [53][54]. Using a 
classifier based on ABC for cloud computing is 
one example of how the method is put to use in an 
IDS in conjunction with a classification learning 
algorithm [53]. In addition, Random neural 
networks (RNNs) can be trained with the help of 
the ABC method, which is what the authors of [54] 
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did to create their ABC-based random neural 
network intrusion detection system (RNN-ABC). 

 
5.3.1 Artificial Bee Colony (ABC) for Phishing 

Website Detection 
 In [55], the authors suggest a method for 

safeguarding against phishing attempts by 
identifying fake web addresses. The researchers 
employ an ABC approach to determine if the 
claimed website is genuine. If the URL is legitimate, 
then a big chunk of the issue goes away. Half of the 
job is done once it’s clear that the link needs to be 
clicked on is malicious. According to the data 
gathered during the experiments, the typical 
accuracy of the system is 89%. 

 
5.4 Ant Colony Optimization (ACO) 

The field of Ant Colony Optimization 
(ACO) analyzes artificial systems that take their cues 
from the behavior of ant colonies. Discrete 
optimization issues [56] have been approached with 
the ants’ exploratory mindset and their ability to 
locate the most direct route from their nests to a food 
source. Ants follow a regimented behavioral pattern, 
even though some ants have little or restricted 
vision. At first, ants wander aimlessly in search of 
nourishment. After finding food, ants bring it back to 
their colony and leave a pheromone along the path 
they took to get there. Therefore, ants may 
determine, based on the concentration of 
pheromones placed along each possible route, which 
route to choose. The route that has a higher 
concentration of pheromones will be chosen more 
frequently. Because ants choose the shortest route 
and return to their nests more quickly, the 
pheromone concentration is higher along the shorter 
route than along the longer route. The experiments in 
[57] demonstrate that the ants always take the 
shortest route. 

 
This has led to several research drawing 

parallels between ant behavior and other disciplines. 
For instance, the authors of [58] were motivated to 
find solutions to least cost path problems by the 
mentality of an ant colony. Also, ACO has been used 
to solve the shortest path problem in numerous 
telecommunication networks [59]. ACO has been 
used in a number of contexts, most notably as an 
algorithm that finds relevant information and 
produces high-quality solutions to a wide range of 
optimization problems. As a result, ACO algorithms 
are developed for a wide variety of NP-hard 
problems, including but not limited to: the traveling 
salesman problem [60][61][62][63][64], the 
sequential ordering problem [65][66], the quadratic 

assignment problem (QAP) [67], the multiple 
knapsacks [68][69], the k-cardinality trees [70], 
constraint satisfaction [71][72], classification rules 
[73], Bayesian networks [74][75], the set covering 
problem [76][77], open shop scheduling [78][79], 
maximum clique [80][81], protein-ligand docking 
[82][83], protein folding [84][85], scheduling 
problems, such as total weighted tardiness 
[86][87][88], course timetabling [89][90], project 
scheduling [91][92], graph coloring [93][94]. The 
IDS industry also makes use of ACO algorithms. 
Thus, several methods have been developed to 
construct IDS models in conjunction with ACO 
algorithms [95][96][97] to safeguard the system 
from intrusions. The K- harmonic means 
clustering algorithm [98] and the fuzzy c- means 
[99] are two examples of algorithms that are 
frequently combined with ACO in the proposed 
research. Furthermore, in [100], it is explored how 
combining ACO with kernel principal component 
analysis (KPCA) might enhance the quality of 
clustering. The advantages of SVM classification 
and the ACO clustering efficiencies were 
integrated in [101]. Additionally, ACO is used in 
conjunction with SVM as a feature selection 
technique, as shown in [102][103]. In their 
research, the authors of [104] proposed an 
approach that combines a genetic algorithm (GA) 
for feature selection with a modified binary coded 
ACO algorithm (MBACO). IP traceback problems 
(IPTBK) involve determining where an attack 
originated over the Internet, and ant colony 
techniques are often utilized for this task [105]. 
Combining ACO with PCA, a method for anomaly 
detection termed digital signature is suggested in 
[106]. ACO is a resilient algorithm [107] because 
it may be tweaked to solve a wide variety of 
optimization issues. Also, the performance of the 
model could be enhanced by combining ACO with 
other algorithms [95]. 

 

5.4.1 Ant Colony Optimization (ACO) for 
Phishing Website Detection 
 The authors of [108] employed ACO in 

conjunction with a crude set-based feature 
importance algorithm to get a subset of attributes 
from the dataset of phishing websites. The random 
forest (RF) classifier achieved 97.26% accuracy in 
this study. 

 
5.5 Grey Wolf Optimizer (GWO) 

The Grey Wolf Optimizer (GWO) was 
proposed by [109]; it is an intelligent swarm 
algorithm that mimics the social structure and 
hunting techniques of grey wolves. The average 
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pack size for gray wolves is between five and twelve 
individuals. Alpha, beta, delta, and omega are the 
four levels of the dominating hierarchy among gray 
wolves. Alphas are in charge, and they come in both 
sexes. They run things, and they have all the power. 
The beta wolves are the pack’s second- highest 
ranking members; they assist the alphas with tasks 
including making decisions. The only wolves the 
beta wolf can’t command are the alphas. And if an 
alpha gets too old or dies, the beta wolves (of any 
sex) are the next in line to take over as leader. Delta 
wolves are third in the wolf pack hierarchy, after 
alpha and beta but above the omega pack. The GWO 
algorithm’s search method mimics the three stages 
of gray wolf hunting: locating the prey, enclosing it, 
and making an assault. Exploration is prioritized 
throughout the searching and surrounding phases, 
but the offensive phase is focused on exploitation. 
The GWO algorithm’s value lies in its ability to cut 
down on the total number of search parameters 
required by various programs. The alpha solution is 
considered the best option when simulating the 
social hierarchy of gray wolves and is followed by 
the beta and delta solutions. The remaining options 
are all omegas. 

 
Binary GWO and a neural network 

classifier were used to identify critical features for a 
network intrusion detection system [110], just one 
example of the many ways in which GWO has been 
put to use by researchers. To further enhance IDS 
functionality, a modified binary GWO (MBGWO) is 
proposed for feature selection [111]. Low intrusion 
detection efficiency, which may be due to attacks’ 
dynamic alterations, and a lack of an adequate 
training set are two issues that cloud GWO (CGWO) 
proposes to address in [112]. The approach also 
combines the efficiency of the K-means algorithm 
with the precision of the one-class support vector 
machine. In order to improve the anomaly-based 
IDS model, the authors of [113] implemented a 
multi-objective GWO algorithm. In [114], GWO and 
Black forest (BF) classifiers are used to create an 
efficient data-integrity-based IDS (DI-EIDS). The 
BF classifier is used to find the most useful samples 
for the sampling ratio optimization performed with 
GWO. This means they are used over and over to 
pick the best characteristics. To effectively classify 
and identify the various forms of intrusion attacks, 
the authors of [115] devised a framework that 
combines a hybrid GWO cuckoo search optimization 
(HGWCSO) for optimal feature selection with an 
enhanced transductive SVM (ETSVM). Combining 
GWO with the cuckoo search algorithm improves 
search speed, system stability, and security against 

infiltration. The Laplaci and GWO clustering 
methods and the support vector machine (SVM) 
classification approach are also discussed and 
utilized to identify potential invaders [116]. 

 
 

5.5.1 Grey Wolf Optimization (GWO) for 
Phishing Website Detection 
In [117], the authors attempt to apply a 

machine learning model to distinguish between 
phishing and authentic websites by analyzing 
several features of their URLs. The length of the 
IP address, the authenticity of the HTTPs request, 
the presence of pop-up windows for data entry, 
and the state of the server form handler are all 
examples of such characteristics. The legitimacy 
of a website was predicted using a support vector 
machine (SVM) binary classifier trained on an 
existing dataset. This was accomplished by 
locating the best hyperplane to divide the classes. 
Four optimization techniques are used to locate 
this optimal hyperplane: the Bat Algorithm (BA), 
the Firefly Algorithm (FA), the Grey Wolf 
Optimization (GWO), and the Whale Optimization 
Algorithm (WOA). The GWO method 
outperforms the FA among the four nature-
inspired optimization techniques tested. This 
method has various real- world applications, such 
as being used in antivirus software and browser 
extensions to help consumers determine whether 
or not a website is trustworthy. By scanning 
websites and feeding the inputs into the model, 
this model might also be implemented as a 
classifier in real-time to safeguard users from 
phishing. In addition to improving spam filters, 
this technique might be used to check websites for 
potential security flaws. In this way, the model can 
aid online hosting firms in their search for accurate 
classifiers to identify phishing websites. 

 
5.6 Salp Swarm Algorithm (SSA) 

The Salp Swarm Algorithm (SSA) is a 
recently developed optimization method [118] that 
has the potential to address a wide range of 
optimization challenges. It mimics the actions of 
salps, which are barrel-shaped planktonic tunicates 
belonging to the family Salpidae in the animal 
kingdom. They move and have tissues like 
jellyfish, and a large proportion of their mass 
consists of water [119]. They change their postures 
by pushing water through their jelli-shaped bodies, 
which allows them to move around [120]. The salp 
chain is a swarm behavior used by salps in the 
ocean that aids in foraging and improves the 
efficiency with which the salps may move 
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[121][122]. In light of this behavior, the authors of 
[118] developed a mathematical model of salp 
chains and evaluated it in a number of optimization 
scenarios. At the outset of SSA, a population is 
divided into two parts: a leader, represented by the 
salp at the chain’s top, and their followers. The 
location of the salps is calculated in the n-
dimensional problem space represented by these 
archs. The salps’ foraging behavior suggests that 
whatever they are attacking is a food source. The 
new location is then regularly updated. The SSA has 
been praised for its simplicity, power, adaptability, 
and ease of use in both serial and parallel 
configurations. 

 
For optimization problems with many 

objectives, SSA has been a common choice as an 
algorithm [123][124][125][126]. To handle feature 
selection (FS) tasks, Faris et al. provided one of the 
most important papers on SSA in [124]. The best 
internal conductor was identified using simple SSA 
by the authors of [127] for the actual radial 
distribution system in use in Egypt. Gain and 
parameter optimization for a fractional- order 
proportional integral derivative controller using SSA 
is presented in [128]. However, authors in [129] 
proposed using SSA to optimize the size of a CMOS 
differential amplifier and the comparator circuit, 
which is another application of SSA in electrical 
engineering. Other examples of engineering 
challenges include designing a PID-fuzzy control for 
a seismic exited structural system [130], extracting 
the parameters of polarization curves of polymer 
exchange membrane fuel cells model [131], and 
optimizing load frequency control using SSA in 
managing the active power of an isolated renewable 
microgrid [132]. The authors of [133] applied SSA 
to optimize the least squares hyperparameters in an 
environmental application predicting emissions from 
Energy using Support Vector Machines (SVM). 

5.6.1 Salp Swarm Algorithm (SSA) for Phishing 
Website Detection 
A new phishing detection method based on 

the SSA was proposed in [134]. In the wrapper-
based feature selection framework, the SSA 
algorithm is used as a search algorithm. The primary 
goal is to reduce the number of features used by the 
phishing system while increasing its classification 
performance. Three cutting-edge algorithms are used 
to compare the phishing system. In terms of user 
evaluation metrics, the results suggest that Binary 
SSA performed the best. 

 
 
 

5.7 Firefly Algorithm (FA) 
 
In  late 2007 and early 2008, researchers 

at Cambridge University [135][136] drew 
inspiration from the flashing behavior of fireflies 
to create the Firefly Algorithm (FA). The FA 
basically employs several rules, such as the fact 
that fireflies are unisex and all of them attracted 
one other, and the fact that the FA controls the 
brightness of the firefly so that the FA’s less light-
flashing fireflies will migrate toward the FA’s 
brighter ones. If there isn’t even one really brilliant 
firefly, though, the behavior will be unpredictable 
at best [137]. 

 
Several researchers are interested in the 

FA, and it has found numerous uses. The authors 
of [138][139] showed that, when it came to 
compressing digital images, the firefly algorithm 
required the least amount of processing power. 
The firefly algorithm (FA) was utilized for feature 
selection by Banati and Bajaj. They demonstrated 
the FA’s superior performance consistency over 
alternative algorithms [140]. Nonlinear and 
multimodal design issues were shown to be 
amenable to the FA in [141]. The FA was used by 
the authors of [142] to improve antenna design in 
[143]. In addition, extensive research has shown 
that FA is effective for a wide variety of test 
problems, such as multi-objective load dispatch 
issues [144] and traveling salesman problem (TSP) 
and scheduling problems [145]. FAs also show 
great performance in the fields of classification 
and clustering [146]. For instance, Senthilnathet al. 
presented a comprehensive performance analysis 
that compared FA to other algorithms and found 
that it performed well in clustering [146]. The FA 
typically achieves the best results compared to 
alternate algorithms. There is additional evidence 
that FAs can be used to teach NNs [147]. FAs can 
be very useful for optimization in uncertain 
settings, as shown in [148]. Discrete versions of 
the FA have been created with excel- lent 
performance [149], and they can be used for 
traveling- salesman problems, graph coloring, and 
other applications. These variants of the FA are 
useful for discrete problems and combinatorial 
optimization. The FA’s potential for use in multi- 
objective optimization is also explored in [150]. 
Both chaos and hybridization of the FA with other 
algorithms can boost its efficiency [151][139]. 
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5.7.1 Firefly Algorithm (FA) for Phishing 
Website Detection  

 
In order to solve the parameter setting 

problem for a deep neural network, the authors of 
[152] introduced FA for phishing website detection. 
Three SI algorithms were employed in this study to 
the problem of phishing website classification: the 
bat algorithm, the hybrid-bat algorithm, and the 
firefly algorithm. In order to differentiate phishing 
from authentic websites, the authors used the 
presented approach versions to a classification 
problem. Experiments comparing the suggested 
method’s performance to that of four different 
phishing datasets yielded encouraging results, 
demonstrating the method’s potential. The suggested 
swarm intelligence- based solution vastly 
outperformed the manually configured deep neural 
network in terms of prediction performance. When 
testing various methods for  

identifying bogus websites, the proposed 
firefly approach performed the best. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm Used Reference Paper Number of Features Data Set Accuracy 
Feature selection using 

Ant Colony Optimization 
(ACO) 

[108] 23 Rough sets 97.259% 

Deep learning based using 
Binary Bat Algorithm 

(BBA) 
[36] 30 Kaggle 94.8% 

Deep neural networks using 
Firefly Algorithm (FA) [152] 

30 
9 

111 

by Mohammad 
by Abdelhamid 

by Vrbancic 

96.65% 
86.06% 
94.39% 

Tuning deep learning using 
Bat/Hybrid Bat 

Algorithm 
(TDLBA/TDLHBA

) 

[37] 31 
UCI 

Machine Learning 
Repository 

97% 

Support vector machines 
and Gray Wolf 

Optimizer (GWO) 
[117] 9 

UCI 
Machine Learning 

Repository 
90.38% 

Associative classification 
algorithm with 
Particle Swarm 

Optimization (PSO) 

[43] 27 Phishtank 91% 

Particle Swarm 
Optimization 

trained Classification 
Association Rule Mining 

(PSOCARM) 

[153] 17 PhishTank 
Email: 83% 
URL: 88% 

Feature weighting using 
Particle Swarm 

Optimization (PSO) 
[44] 30 

UCI 
Machine Learning 

Repository 
95.88% 

Feature selection using 
Salp Swarm 

Optimization (SSO) 
[134] 57 Phishtank 95% 

Artificial Bee Colony 
Algorithm (ABC) [55] 12 

Created by the 
authors 89% 

Table 1: Performance Comparison of Several Swarm 
Intelligence-Based Phishing Website Detection 

Methods 
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6. DISCUSSION 

This study focused on the SI-based algorithms 
available for detecting phishing websites, which is 
different than other studies that presented the 
methods for phishing detection in general. In Section 
4, we discussed the various SI methods that have 
been used to identify phishing websites. It is possible 
to draw some conclusions about the efficacy of such 
an  algorithm, as shown in the table. Table 1 presents 
a comparison of several of the methods discussed 
thus far. As a result of this study, we need more 
future efforts dedicated to studying the techniques 
for detecting phishing websites using SI algorithms. 
As the complexity of phishing attempts grows daily, 
new detection techniques must be developed using 
the unique features dedicated to swarm intelligence 
algorithms. 

 
7. CONCLUSION 

Swarm intelligence (SI) refers to a set of 
techniques that draws inspiration from the collective 
intelligence displayed by swarms such as swarms of 
insects. Researchers were interested in phishing 
website identification once SI was successfully 
applied in other fields. In this survey, an analysis of 
the methods proposed for detecting phishing 
websites has been performed. However, the paper 
focused on SI-based algorithms available for 
detecting phishing websites. Furthermore, the SI is 
used to categorize the works and show how well the 
corresponding algorithm performs. The survey 
presented the algorithms along with highlighting 
their efficacies. The result of the study is identified 
that the SI-based phishing website detection domain 
is limited which still needs to be explored. As the 
sophistication of phishing attempts grows daily, new 
methods of detection must be developed. Thus, this 
paper can be considered a reference for researchers 
working in the domain of phishing website detection 
and swarm intelligence. 
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optimization and swarm intelligence,” 2004. 

[57] S. Goss, S. Aron, J.-L. Deneubourg, and J. 
M. Pasteels, “Self-organized shortcuts in the 
argentine ant,” Naturwissenschaften, vol. 76, 
no. 12, pp. 579–581, 1989. 



  
Journal of Theoretical and Applied Information Technology 

30th June 2023. Vol.101. No 12 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 

 
5050 

 

[58] M. Dorigo, M. Birattari, and T. Stutzle, “Ant 
colony optimization,” IEEE computational 
intelligence magazine, vol. 1, no. 4, pp. 28–39, 
2006. 

[59] R. Schoonderwoerd, O. E. Holland, J. L. 
Bruten, and L. J. Rothkrantz, “Ant-based load 
balancing in telecommunications networks,” 
Adaptive behavior, vol. 5, no. 2, pp. 169–207, 
1997. 

[60] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant 
system: optimization by a colony of cooperating 
agents,” IEEE Transactions on Systems, Man, 
and Cybernetics, Part B (Cybernetics), vol. 26, 
no. 1, pp. 29–41, 1996. 

[61] T. Stutzle and H. Hoos, “Max-min ant system 
and local search for the traveling salesman 
problem,” in Proceedings of 1997 IEEE inter- 
national conference on evolutionary 
computation (ICEC’97). IEEE, 1997, pp. 309–
314. 

[62] A. F. Tuani, E. Keedwell, and M. Collett, 
“Heterogenous adaptive ant colony 
optimization with 3-opt local search for the 
travelling salesman problem,” Applied Soft 
Computing, p. 106720, 2020. 

[63] X. Yang and J.-s. Wang, “Application of 
improved ant colony opti- mization algorithm 
on traveling salesman problem,” in 2016 
Chinese Control and Decision Conference 
(CCDC). IEEE, 2016, pp. 2156– 2160. 

[64] K. Yang, X. You, S. Liu, and H. Pan, “A novel 
ant colony optimization based on game for 
traveling salesman problem,” Applied 
Intelligence, pp. 1–14, 2020. 

[65] R. Skinderowicz, “An improved ant colony 
system for the sequential ordering problem,” 
Computers & Operations Research, vol. 86, pp. 
1–17, 2017. 

[66] L. M. Gambardella, R. Montemanni, and D. 
Weyland, “An enhanced ant colony system for 
the sequential ordering problem,” in Operations 
Research Proceedings 2011. Springer, 2012, 
pp. 355–360. 

[67] S. Oliveira, M. S. Hussin, A. Roli, M. Dorigo, 
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