
Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4184

EMPIRICAL INVESTIGATIONS TO SENTIMENT ANALYSIS
OF MOVIE REVIEWS USING LSTM

1DR. HABIBULLA MOHAMMAD, 2DR. J. RAVINDRA BABU, 3DR. SURYA PRASADA RAO
BORRA. 4DR.SRINU PYLA 5MR.TATA BALAJI 6MRS. B. MOUNIKA 7KOTESWARA RAO

KODEPOGU

1Sr.Assistant Professor, Dept of ECE, PVP Siddhartha Institute of Technology,

2Associate Professor, Dept of ECE, PVP Siddhartha Institute of Technology:
3Associate Professor, Dept of ECE, PVP Siddhartha Institute of Technology:

4Dept. of ECE, Gayatri Vidya Parishad College of Engineering Visakhapatnam,

5Asst. Professor, Dept of ECE, PVP Siddhartha Institute of Technology:
6CSE Department, SRKR Engineering College, Bhimavaram, Andhra Pradesh,

7Associate Professor, Dept of CSE, PVP Siddhartha Institute of Technology:

E-mail: honeyhabeeb@gmail.com, jrb0009@gmail.com, suryaborra1679@gmail.com, srinupyla@gvpce.ac.in,
balu170882@gmail.com, bmounika@srkrec.ac.in, koteswara2003@yahoo.co.in

ABSTRACT

Sentiment analysis or opinion mining is the computational study of people’s opinions, sentiments, attitudes
and emotions expressed in written language. It is one of the most active research areas in Natural Language
Processing in the recent years. Sentiment analysis aids corporations in making decisions and changes in
their business or service models based on the feedback of the customers regarding the current models.
 Most sentiment analysis problems are classification problems (positive/neutral/negative) and not
regression problems. It comes under Sequential problems which are a class of problem in machine learning
where the order of the features presented to the model is important for making predictions.
 In this project, we study the existing classification model based on Recurrent Neural Network
(RRN), build a machine learning (Classification) model using long short-term memory (LSTM) network to
overcome the Vanishing Gradient problem faced in RRN. The model takes an IMDB movie review dataset
with 50,000 reviews as input; trains on 25,000 and uses the experienced acquired so far to classify another
25,000 reviews into positive and negative categories. We animate the results of the model using graphs.
Keywords: LSTM, RNN, Sequential Problems, Sentiment, Movie Reviews

 1. INTRODUCTION

Sentiment analysis is an area of Natural Language
Processing that benefited from the resurgence of
deep learning. Sentiment analysis is defined as the
prediction of the positivity of a text. Most
sentiment analysis problems are classification
problems (positive/neutral/negative) and not
regression problems. It comes under Sequential
problems which are a class of problem in machine
learning where the order of the features presented
to the model is important for making
predictions.[1]

There are many practical applications of sentiment
analysis. For example, modern customer service
centers use sentiment analysis to predict the
satisfaction of customers through the reviews they
provide on platforms such as Yelp or Facebook.

This allows businesses to step in immediately
whenever customers are dissatisfied, allowing the
problem to be addressed as soon as possible, and
preventing customer churn.

Sentiment analysis has also been applied in the
domain of stocks trading. In 2010, scientists
showed that by sampling the sentiment in Twitter
(positive versus negative tweets), we can predict
whether the stock market will rise. Similarly, high-
frequency trading firms use sentiment analysis to
sample the sentiment of news related to certain
companies, and execute trades automatically, based
on the positivity of the news. The problem is
sentiment analysis i.e. classifying the polarity of the
movie reviews, i.e. whether the expressed opinion
in the review or an entity feature/aspect is positive
or negative.

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4185

1.1Sequential problems: These are a class of
problem in machine learning in which the order of
the features presented to the model is important for
making predictions. Sequential problems are
commonly encountered in the following scenarios:

NLP, including sentiment analysis, language
translation, and text prediction Time series
predictions

For example, let's consider the text prediction
problem, as shown in the following screenshot,
which falls under NLP:[2]

Human beings have an innate ability for this, and it
is trivial for us to know that the word in the blank is
probably the word Japanese. The reason for this is
that as we read the sentence, we process the words
as a sequence. The sequence of the words captures
the information required to make the prediction. By
contrast, if we discard the sequential information
and only consider the words individually, we get
a bag of words, as shown in the following diagram.
We can see that our ability to predict the word in
the blank is now severely impacted. Without
knowing the sequence of words, it is impossible to
predict the word in the blank. Besides text
predictions, sentiment analysis and language
translation are also sequential problems. In fact,
many NLP problems are sequential problems,
because the languages that we speak are sequential
in nature, and the sequence conveys context and
other subtle nuances. Sequential problems also
occur naturally in time series problems. Time series
problems are common in stock markets. The stock
prediction problem is accurately defined as a time
series problem, because knowing the movement of
the stocks in the preceding hours or minutes is often
crucial to predicting whether the stock will rise or
fall. Today, machine learning methods are being
heavily applied in this domain, with algorithmic
trading strategies driving the buying and selling of
stocks.

 1.2NLP and sentiment analysis:

NLP is a subfield in artificial intelligence (AI) that
is concerned with the interaction of computers and

human languages. As early as the 1950s, scientists
were interested in designing intelligent machines
that could understand human languages. Early
efforts to create a language translator focused on
the rule-based approach, where a group of linguistic
experts handcrafted a set of rules to be encoded in
machines. However, this rule-based approach
produced results that were sub-optimal, and, often,
it was impossible to convert these rules from one
language to another, which meant that scaling up
was difficult. For many decades, not much progress
was made in NLP, and human language was a goal
that AI couldn't reach—until the resurgence of deep
learning.

With the proliferation of deep learning and neural
networks in the image classification domain,
scientists began to wonder whether the powers of
neural networks could be applied to NLP. In the
late '00s, tech giants, including Apple, Amazon, and
Google, applied LSTM networks to NLP problems,
and the results were astonishing. The ability of AI
assistants, such as Siri and Alexa, to understand
multiple languages spoken in different accents was
the result of deep learning and LSTM networks. In
recent years, we have also seen a massive
improvement in the abilities of text translation
software, such as Google Translate, which is
capable of producing translations as good as human
language experts.

1.3Sentiment analysis is also an area of NLP that
benefited from the resurgence of deep learning.
Sentiment analysis is defined as the prediction of
the positivity of a text. Most sentiment analysis
problems are classification problems
(positive/neutral/negative) and not regression
problems. There are many practical applications of
sentiment analysis. For example, modern customer
service centers use sentiment analysis to predict the
satisfaction of customers through the reviews they
provide on platforms such as Yelp or Facebook.
This allows businesses to step in immediately
whenever customers are dissatisfied, allowing the
problem to be addressed as soon as possible, and
preventing customer churn. Sentiment analysis has
also been applied in the domain of stocks trading.
High-frequency trading firms use sentiment
analysis to sample the sentiment of news related to
certain companies, and execute trades
automatically, based on the positivity of the
news.[3]

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4186

1.4Why sentiment analysis is difficult:

Early efforts in sentiment analysis faced many
hurdles, due to the presence of subtle nuances in
human languages. The same word can often covey
a different meaning, depending on the context.
Take for example the following two sentences:

We know that the sentiment of the first sentence is
negative, as it probably means that the building is
literally on fire. On the other hand, we know that
the sentiment of the second sentence is positive,
since it is unlikely that the person is literally on fire.
Instead, it probably means that the person is on
a hot streak, and this is positive. The rule-based
approach toward sentiment analysis suffers because
of these subtle nuances, and it is incredibly
complex to encode this knowledge in a rule-based
manner. Another reason sentiment analysis is
difficult is because of sarcasm. Sarcasm is
commonly used in many cultures, especially in an
online medium. Sarcasm is difficult for computers
to understand. In fact, even humans fail to detect
sarcasm at times. Take for example the following
sentence:

We can probably detect sarcasm in the preceding
sentence, and come to the conclusion that the
sentiment is negative. However, it is not easy for a
program to understand that.

2. Existing System-RNN: To work with
sequential data, the neural network needs to
take in specific bits of the data at each time
step, in the sequence that it appears. This
provides the idea for an RNN. An RNN has high-
level architecture, as shown in the following
diagram:

Figure1. RNN Architecture

From the previous diagram, we can see that an
RNN is a multi-layered neural network. We can
break up the raw input, splitting it into time steps.
For example, if the raw input is a sentence, we can
break up the sentence into individual words (in this
case, every word represents a time step). Each word
will then be provided in the corresponding layer in
the RNN as Input. More importantly, each layer in
an RNN passes its output to the next layer. The
intermediate output passed from layer to layer is
known as the hidden state. Essentially, the hidden
state allows an RNN to maintain a memory of the
intermediate states from the sequential data.

2.1Inside RNN:

The following diagram depicts the mathematical
function inside each layer of an RNN:

The mathematical function of an RNN is simple.
Each layer t within an RNN has two inputs:

 The input from the time step t
 The hidden state passed from the previous

layer t-1

Each layer in an RNN simply sums up the two
inputs and applies a tanh function to the sum. It
then outputs the result, to be passed as a hidden
state to the next layer. More formally, the output
hidden state of layer t is this:

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4187

In the previous equation, n is the index of the last
layer in the RNN. Recall from previous chapters
that the sigmoid function produces an output
between 0 and 1, hence providing the probabilities
for each class as a prediction. We can see that if we
stack these layers together, the final output from an
RNN depends on the non-linear combination of the
Understanding the approach:[4]

The architecture of an RNN makes it ideal for
handling sequential data. Let's take a look at some
concrete examples, to understand how an RNN
handles different lengths of sequential data. Let's
first take a look at a short piece of text as our
sequential data:

We can treat this short sentence as sequential data
by breaking it down into five different inputs, with
each word at each time step. This is illustrated in
the following diagram:

Now, suppose that we are building a simple RNN
to predict whether it snowing is based on this
sequential data. The RNN would look something as
follows:

Figure2.RNN look

The critical piece of information in the sequence is
the word HOT, at time step 4 (t4, circled in red).
With this piece of information, the RNN is able to
easily predict that it is not snowing today. Notice
that the critical piece of information came just
shortly before the final output. In other words, we
would say that there is a short-term dependency in
this sequence.

2.2Drawbacks:

Clearly, RNNs have no problems with short-term
dependencies. But what about long-term
dependencies? Let's take a look now at a longer
sequence of text. Let's use the following paragraph
as an example:

Our goal is to predict whether the customer liked
the movie. Clearly, the customer liked the movie
but not the cinema, which was the main complaint
in the paragraph. Let's break up the paragraph into a
sequence of inputs, with each word at each time
step (32 time steps for 32 words in the paragraph).
The RNN would look this:

 Figure3.RNN look

The critical words liked the movie appeared
between time steps 3 and 5. Notice that there is a
significant gap between the critical time steps and
the output time step, as the rest of the text was
largely irrelevant to the prediction problem
(whether the customer liked the movie). In other
words, we say that there is a long-term dependency
in this sequence. Unfortunately, RNNs do not work

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4188

well with long-term dependency sequences. RNNs
have a good short-term memory, but a bad long-
term memory. To understand why this is so, we
need to understand the vanishing gradient
problem when training neural networks.[5]

2.3Vanishing gradient problem:

The vanishing gradient problem is a problem when
training deep neural networks using gradient-based
methods such as back propagation. Recall in
previous chapters, we discussed the back
propagation algorithm in training neural networks.
In particular, the loss function provides information
on the accuracy of our predictions, and allows us to
adjust the weights in each layer, to reduce the loss.
So far, we have assumed that back propagation
works perfectly. Unfortunately, that is not true.
When the loss is propagated backward, the loss
tends to decrease with each successive layer:

As a result, by the time the loss is propagated back
toward the first few layers, the loss has already
diminished so much that the weights do not change
much at all. With such a small loss being
propagated backward, it is impossible to adjust and
train the weights of the first few layers. This
phenomenon is known as the vanishing gradient
problem in machine learning.[6]

Interestingly, the vanishing gradient problem does
not affect CNNs in computer vision problems.
However, when it comes to sequential data and
RNNs, the vanishing gradient can have a significant
impact. The vanishing gradient problem means that
RNNs are unable to learn from early layers (early
time steps), which causes it to have poor long-term
memory.

2.4Proposed System-LSTM:

LSTMs are a variation of RNNs, and they solve
the long-term dependency problem faced by
conventional RNNs. Before we dive into the

technicalities of LSTMs, it is useful to understand
the intuition behind them.

LSTMs – the intuition

As we explained in the previous section, LSTMs
were designed to overcome the problem with
long-term dependencies. Let's assume we have
this movie review:

The task is to predict whether the reviewer liked the
movie. As we read this review, we immediately
understand that this review is positive. In particular,
the following words (highlighted) are the most
important:

If we think about it, only the highlighted words are
important, and we can ignore the rest of the words.
This is an important strategy. By selectively
remembering certain words, we can ensure that our
neural network does not get bogged down by too
many unnecessary words that do not provide much
predictive power. This is an important distinction of
LSTMs over conventional RNNs. Conventional
RNNs have a tendency to remember everything
(even unnecessary inputs) that results in the
inability to learn from long sequences. By contrast,
LSTMs selectively remember important inputs
(such as the preceding highlighted text), and this
allows them to handle both short- and long-term
dependencies. [7]

The ability of LSTMs to learn from both short- and
long-term dependencies gives it its name, long
short-term memory (LSTM).

Inside an LSTM network:

LSTMs have the same repeating structure of RNNs
that we have seen previously. However, LSTMs
differ in their internal structure. The following

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4189

diagram shows a high-level overview of the
repeating unit of an LSTM:[8]

Figure 4. Repeating Unit Of An LSTM:

LSTMs have the ability to selectively remember
important inputs and to forget the rest. The internal
structure of an LSTM allows it to do that. [9]

An LSTM differs from a conventional RNN in that
it has a cell state, in addition to the hidden state.
You can think of the cell state as the current
memory of the LSTM. It flows from one repeating
structure to the next, conveying important
information that has to be retained at the moment.
In contrast, the hidden state is the overall memory
of the entire LSTM. It contains everything that we
have seen so far, both important and unimportant
information. [9]

The LSTM releases information between the
hidden state and the cell state via three important
gates:

 Forget gate
 Input gate
 Output gate

Like physical gates, the three gates restrict the flow
of information from the hidden state to cell state.

Figure 5. Repeating Unit Of An LSTM-2

The Forget gate (f) forms the first part of the
LSTM repeating unit, and its role is to decide how
much data we should forget or remember from the
previous cell state. It does so by first concatenating
the Previous Hidden State (ht−1) and the
current Input (xt), then passing the concatenated
vector through a sigmoid function. Recall that the
sigmoid function outputs a vector with values
between 0 and 1. A value of 0 means to stop the
information from passing through (forget), and a
value of 1 means to pass the information through
(remember).

The output of the forget gate, f, is as follows:

2.5Input gate:
The next gate is the Input gate (i). The Input gate
(i) controls how much information to pass to the
current cell state. The input gate of an LSTM is
highlighted in the following diagram

Figure 6. Input Gate

Just like the forget gate, the Input gate (i) takes as
input the concatenation of the Previous Hidden
State (ht-1) and the current Input (xt). It then passes
two copies of the concatenated vector through a
sigmoid function and a tanh function, before
multiplying them together.

The output of the input gate, i, is as follows:

Now we have what is required to compute the
current cell state (Ct) to be output. This is
illustrated in the following diagram:

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4190

2.6 Output gate:

Finally, the output gate controls how much
information is to be retained in the hidden state.
The output gate is highlighted in the following
diagram:

Figure7: Output Gate:

First, we concatenate the Previous Hidden State
(ht−1) and the current Input (xt), and pass it through
a sigmoid function. Then, we take the current cell
state (Ct) and pass it through a tanh function.
Finally, we take the multiplication of the two,
which is passed to the next repeating unit as the
hidden state (ht). This process is summarized by the
following equation:

 Input: The input to our neural network shall be
IMDb movie reviews. The reviews will be in the
form of English sentences. The dataset provided in
Keras has already encoded the English words into
numbers, as neural networks require numerical
inputs.
Zero Padding:

 Movie reviews have different lengths, and
therefore the input vectors have different sizes. This
 is an issue, as neural networks only accept
fixed-size vectors. To address this issue, we define
a maxlen parameter. The maxlen parameter shall be
the maximum length of each movie review.
Reviews that are longer than maxlen will be
truncated, and reviews that are shorter
than maxlen will be padded with zeros.

 The following diagram illustrates the zero
padding process:

Figure 8: Zero Padding Process:

2.8Word Embedding:

The first layer in our neural network is the word
embedding layer. Word embeddings are
a learned form of vector representation for
words. The word embedding layer takes in words as
input, and then outputs a vector representation of
these words. The vector representation should place
similar words close to one another, and dissimilar
words distant from one another. The word
embedding layer learns this vector representation
during training.[9]

 Representing Words as Vectors:

We need to represent words as input data for our
neural network i.e. we need to represent the words
as vectors.

 One-hot Encoding: A one hot encoding is
a representation of categorical variables as binary
vectors.

This first requires that the categorical values be
mapped to integer values. Then, each integer value
is represented as a binary vector that is all zero
values except the index of the integer, which is
marked with a 1.

 Let's consider phrases such as the
following:

 Happy, excited
 Happy
 Excited

There are several problems with this one-hot
encoded representation. Firstly, the number of
 axes depends on the number of unique
words in our dataset. As we can imagine, there are

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4191

tens of thousands of unique words in the
English dictionary. If we were to create an axis for
each word, then the size of our vector would
quickly grow out of hand. Secondly, such a vector
 representation would be extremely sparse
(full of zeros). This is because most words appear
 only once in each sentence/paragraph. It is
difficult to train a neural network on such a sparse
vector.[9]

Word Embeddings: It is learned form of vector
representation for words. The main advantage of
word embeddings is that they have fewer
dimensions than the one-hot encoded
 representation, and they place similar
words close to one another.

The following diagram shows an example of a
word embedding:

3. LSTM Layer:

 The LSTM layer takes as input the vector
representation of the words from the word
embedding layer, and learns how to classify the
vector representation as positive or negative. As
we've seen earlier, LSTMs are a variation of RNNs,
which we can think of as multiple neural networks
stacked on top of one another.

3.1Dense Layer:

 The next layer is the dense layer (fully
connected layer). The dense layer takes as input the
output from the LSTM layer, and transforms it into
a fully connected manner. Then, we apply a
sigmoid activation on the dense layer, so that the
final output is between 0 and 1.

3.2Output:

 The output is a probability between 0 and
1, representing the probability that the movie
review is positive or negative. A probability near to
1 means that the movie review is positive, while a

probability near to 0 means that the movie review is
negative.

Note:

There are certain parameters we need to decide
when we compile our model. They are as follows:

3.3Loss function:

It’s a method of evaluating how well specific
algorithm models the given data. If predictions
deviate too much from actual results, loss function
would give a very large number.
We use a binary_crossentropy loss function when
the target output is binary and
 a categorical_crossentropy loss function
when the target output is multi-class. Since the
sentiment of movie reviews in this project
is binary (that is, positive or negative), we
will use a binary_crossentropy loss function.

3.4Optimizer:

In order to minimize the error observed using loss
function, we use optimizer.
The choice of optimizer is an interesting problem in
LSTMs. Certain optimizers may not work for
certain datasets, due to the vanishing gradient and
the exploding gradient problem .It is often
impossible to know beforehand which optimizer
works better for the dataset.
Therefore, the best way to know is to train different
models using different optimizers, and to use the
optimizer that gives the best results. We try
the SGD, RMSprop, and the ADAM optimizer.

3.5Implementation:

 Importing necessary packages and classes:
 Import IMDB Dataset:
 Zero Padding:
 Model Building:
 Training the model:
 Plotting the accuracy per epoch:
 Plotting the confusion matrix:

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4192

4. RESULTS:

SGD Optimizer:

Figure 9: training and validation accuracy
The training and validation accuracy is stuck at
50%. Essentially, this shows that the training has
failed and our neural network performs no better
than a random coin toss for this binary
classification task. Clearly, the SGD optimizer is
not suitable for this dataset and this LSTM network

RMSprop Optimizer

Figure10: RMSprop Optimizer

Within 10 epochs, our model is able to achieve a
training accuracy of more than 95% and a
validation accuracy of around 85%. Clearly,
the RMSprop optimizer performs better than
the sgd optimizer for this task

ADAM Optimizer:

Figure11.ADAM Optimizer:

The ADAM optimizer does pretty well. From the
preceding graph, we can see that the Training
Accuracy is almost 100% after 10 epochs, while
the Validation Accuracy is around 80%. This gap of
20% suggests that overfitting is happening when
the ADAM optimizer is used.

By contrast, the gap between training and
validation accuracy is smaller for
the RMSprop optimizer. Hence, we conclude that
the RMSprop optimizer is the most optimal for this
dataset and the LSTM network, and we shall use

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4193

the model built using the RMSprop optimizer from
this point onward.

4. Conclusion: In this project, we have built a
model to classify movie reviews using LSTM
network in combination with RMSprop
optimizer. The model overcomes the Long-
Term dependency and vanishing gradient
problems of RRN and classifies the reviews in
the test set with accuracy 85%. LSTM-based
neural networks fail to detect sarcasm and
other subtleties in our language. NLP is an
extremely challenging subfield of machine
learning that researchers are still working on
today

REFERENCES:

[1]. James Loy, “Neural Network Projects with

Python”, Packt Publishing,
ISBN:9781789138900

[2]. 2.Stone, Philip J., Dexter C. Dunphy, and
Marshall S. Smith. "The general inquirer: A
computer approach to content analysis." MIT
Press, Cambridge, MA (1966).

[3]. 3.Gottschalk, Louis August, and Goldine C.
Gleser. The measurement of psychological
states through the content analysis of verbal
behavior. Univ of California Press, 1969.

[4]. 4.Cataldi, Mario; Ballatore, Andrea; Tiddi,
Ilaria; Aufaure, Marie-Aude (2013-06-22).
"Good location, terrible food: detecting
feature sentiment in user-generated reviews".
Social Network Analysis and Mining. 3 (4):
1149–1163. CiteSeerX 10.1.1.396.9313.
doi:10.1007/s13278-013-0119-7. ISSN 1869-
5450. S2CID 5025282.

[5]. 5.Thelen, Michael; Riloff, Ellen (2002-07-06).
"A bootstrapping method for learning
semantic lexicons using extraction pattern
contexts". Proceedings of the ACL-02
Conference on Empirical Methods in Natural
Language Processing - Volume 10. EMNLP
'02. USA: Association for Computational
Linguistics.

[6]. 6.Yu, Hong; Hatzivassiloglou, Vasileios
(2003-07-11). "Towards answering opinion
questions: separating facts from opinions and
identifying the polarity of opinion sentences".
Proceedings of the 2003 Conference on
Empirical Methods in Natural Language
Processing. EMNLP '03. USA: Association
for Computational Linguistics: 129–136.

[7]. 7.Sepp Hochreiter; Jürgen Schmidhuber
(1997). "Long short-term memory". Neural
Computation.

[8]. 8.Li, Xiangang; Wu, Xihong (2014-10-15).
"Constructing Long Short-Term Memory
based Deep Recurrent Neural Networks for
Large Vocabulary Speech Recognition".
arXiv:1410.4281 [cs.CL].

[9]. 9.Ma, Yukun; et al. (2018). "Targeted aspect-
based sentiment analysis via embedding
commonsense knowledge into an attentive
LSTM". Proceedings of AAAI. pp. 5876–
5883.

