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ABSTRACT 

 
Sentiment analysis or opinion mining is the computational study of people’s opinions, sentiments, attitudes 
and emotions expressed in written language. It is one of the most active research areas in Natural Language 
Processing in the recent years. Sentiment analysis aids corporations in making decisions and changes in 
their business or service models based on the feedback of the customers regarding the current models. 
 Most sentiment analysis problems are classification problems (positive/neutral/negative) and not 
regression problems. It comes under Sequential problems which are a class of problem in machine learning 
where the order of the features presented to the model is important for making predictions. 
 In this project, we study the existing classification model based on Recurrent Neural Network 
(RRN), build a machine learning (Classification) model using long short-term memory (LSTM) network to 
overcome the Vanishing Gradient problem faced in RRN. The model takes an IMDB movie review dataset 
with 50,000 reviews as input; trains on 25,000 and uses the experienced acquired so far to classify another 
25,000 reviews into positive and negative categories. We animate the results of the model using graphs. 
Keywords: LSTM, RNN, Sequential Problems, Sentiment, Movie Reviews

 
 1. INTRODUCTION 

 
Sentiment analysis is an area of Natural Language 
Processing that benefited from the resurgence of 
deep learning. Sentiment analysis is defined as the 
prediction of the positivity of a text. Most 
sentiment analysis problems are classification 
problems (positive/neutral/negative) and not 
regression problems. It comes under Sequential 
problems which are a class of problem in machine 
learning where the order of the features presented 
to the model is important for making 
predictions.[1] 

There are many practical applications of sentiment 
analysis. For example, modern customer service 
centers use sentiment analysis to predict the 
satisfaction of customers through the reviews they 
provide on platforms such as Yelp or Facebook. 

This allows businesses to step in immediately 
whenever customers are dissatisfied, allowing the 
problem to be addressed as soon as possible, and 
preventing customer churn. 

Sentiment analysis has also been applied in the 
domain of stocks trading. In 2010, scientists 
showed that by sampling the sentiment in Twitter 
(positive versus negative tweets), we can predict 
whether the stock market will rise. Similarly, high-
frequency trading firms use sentiment analysis to 
sample the sentiment of news related to certain 
companies, and execute trades automatically, based 
on the positivity of the news. The problem is 
sentiment analysis i.e. classifying the polarity of the 
movie reviews, i.e. whether the expressed opinion 
in the review or an entity feature/aspect is positive 
or negative. 
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1.1Sequential problems: These are a class of 
problem in machine learning in which the order of 
the features presented to the model is important for 
making predictions. Sequential problems are 
commonly encountered in the following scenarios: 

NLP, including sentiment analysis, language 
translation, and text prediction Time series 
predictions 

For example, let's consider the text prediction 
problem, as shown in the following screenshot, 
which falls under NLP:[2] 

Human beings have an innate ability for this, and it 
is trivial for us to know that the word in the blank is 
probably the word Japanese. The reason for this is 
that as we read the sentence, we process the words 
as a sequence. The sequence of the words captures 
the information required to make the prediction. By 
contrast, if we discard the sequential information 
and only consider the words individually, we get 
a bag of words, as shown in the following diagram. 
We can see that our ability to predict the word  in 
the blank is now severely impacted. Without  
knowing the sequence of words, it is impossible  to 
predict the word in the blank. Besides text 
predictions, sentiment analysis and language 
translation are also sequential problems. In fact, 
many NLP problems are sequential problems, 
because the languages that we speak are sequential 
in nature, and the sequence conveys context and 
other subtle nuances. Sequential problems also 
occur naturally in time series problems. Time series 
problems are common in stock markets. The stock 
prediction problem is accurately defined as a time 
series problem, because knowing the movement of 
the stocks in the preceding hours or minutes is often 
crucial to predicting whether the stock will rise or 
fall. Today, machine learning methods are being 
heavily applied in this domain, with algorithmic 
trading strategies driving the buying and selling of 
stocks.        
 
 1.2NLP and sentiment analysis: 
 
NLP is a subfield in artificial intelligence (AI) that 
is concerned with the interaction of computers and 

human languages. As early as the 1950s, scientists 
were interested in designing intelligent machines 
that could understand human languages. Early 
efforts to create a language translator focused on 
the rule-based approach, where a group of linguistic 
experts handcrafted a set of rules to be encoded in 
machines. However, this rule-based approach 
produced results that were sub-optimal, and, often, 
it was impossible to convert these rules from one 
language to another, which meant that scaling up 
was difficult. For many decades, not much progress 
was made in NLP, and human language was a goal 
that AI couldn't reach—until the resurgence of deep 
learning. 

With the proliferation of deep learning and neural 
networks in the image classification domain, 
scientists began to wonder whether the powers of 
neural networks could be applied to NLP. In the 
late '00s, tech giants, including Apple, Amazon, and 
Google, applied LSTM networks to NLP problems, 
and the results were astonishing. The ability of AI 
assistants, such as Siri and Alexa, to understand 
multiple languages spoken in different accents was 
the result of deep learning and LSTM networks. In 
recent years, we have also seen a massive 
improvement in the abilities of text translation 
software, such as Google Translate, which is 
capable of producing translations as good as human 
language experts. 

1.3Sentiment analysis is also an area of NLP that 
benefited from the resurgence of deep learning. 
Sentiment analysis is defined as the prediction of 
the positivity of a text. Most sentiment analysis 
problems are classification problems 
(positive/neutral/negative) and not regression 
problems. There are many practical applications of 
sentiment analysis. For example, modern customer 
service centers use sentiment analysis to predict the 
satisfaction of customers through the reviews they 
provide on platforms such as Yelp or Facebook. 
This allows businesses to step in immediately 
whenever customers are dissatisfied, allowing the 
problem to be addressed as soon as possible, and 
preventing customer churn. Sentiment analysis has 
also been applied in the domain of stocks trading. 
High-frequency trading firms use sentiment 
analysis to sample the sentiment of news related to 
certain companies, and execute trades 
automatically, based on the positivity of the 
news.[3] 

 



Journal of Theoretical and Applied Information Technology 
15th June 2023. Vol.101. No 11 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
4186 

 

1.4Why sentiment analysis is difficult: 

Early efforts in sentiment analysis faced many 
hurdles, due to the presence of subtle nuances in 
human languages. The same word can often covey 
a different meaning, depending on the context. 
Take for example the following two sentences: 

    

 

We know that the sentiment of the first sentence is 
negative, as it probably means that the building is 
literally on fire. On the other hand, we know that 
the sentiment of the second sentence is positive, 
since it is unlikely that the person is literally on fire. 
Instead, it probably means that the person is on 
a hot streak, and this is positive. The rule-based 
approach toward sentiment analysis suffers because 
of these subtle nuances, and it is incredibly 
complex to encode this knowledge in a rule-based 
manner. Another reason sentiment analysis is 
difficult is because of sarcasm. Sarcasm is 
commonly used in many cultures, especially in an 
online medium. Sarcasm is difficult for computers 
to understand. In fact, even humans fail to detect 
sarcasm at times. Take for example the following 
sentence: 

 

We can probably detect sarcasm in the preceding 
sentence, and come to the conclusion that the 
sentiment is negative. However, it is not easy for a 
program to understand that.  

2. Existing System-RNN: To work with 
sequential data, the neural network needs to 
take in specific bits of the data at each time 
step, in the sequence that it appears. This 
provides the idea for an RNN. An RNN has high-
level architecture, as shown in the following 
diagram: 

 

 

Figure1. RNN Architecture 

From the previous diagram, we can see that an 
RNN is a multi-layered neural network. We can 
break up the raw input, splitting it into time steps. 
For example, if the raw input is a sentence, we can 
break up the sentence into individual words (in this 
case, every word represents a time step). Each word 
will then be provided in the corresponding layer in 
the RNN as Input. More importantly, each layer in 
an RNN passes its output to the next layer. The 
intermediate output passed from layer to layer is 
known as the hidden state. Essentially, the hidden 
state allows an RNN to maintain a memory of the 
intermediate states from the sequential data. 

2.1Inside RNN: 

The following diagram depicts the mathematical 
function inside each layer of an            RNN: 

 

The mathematical function of an RNN is simple. 
Each layer t within an RNN has two inputs: 

 The input from the time step t 
 The hidden state passed from the previous 

layer t-1 

Each layer in an RNN simply sums up the two 
inputs and applies a tanh function to the sum. It 
then outputs the result, to be passed as a hidden 
state to the next layer. More formally, the output 
hidden state of layer t is this: 
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In the previous equation, n is the index of the last 
layer in the RNN. Recall from previous chapters 
that the sigmoid function produces an output 
between 0 and 1, hence providing the probabilities 
for each class as a prediction. We can see that if we 
stack these layers together, the final output from an 
RNN depends on the non-linear combination of the 
Understanding the approach:[4] 

The architecture of an RNN makes it ideal for 
handling sequential data. Let's take a look at some 
concrete examples, to understand how an RNN 
handles different lengths of sequential data. Let's 
first take a look at a short piece of text as our 
sequential data: 

 

We can treat this short sentence as sequential data 
by breaking it down into five different inputs, with 
each word at each time step. This is illustrated in 
the following diagram: 

Now, suppose that we are building a simple RNN 
to predict whether it snowing is based on this 
sequential data. The RNN would look something as 
follows: 

 

Figure2.RNN look 

The critical piece of information in the sequence is 
the word HOT, at time step 4 (t4, circled in red). 
With this piece of information, the RNN is able to 
easily predict that it is not snowing today. Notice 
that the critical piece of information came just 
shortly before the final output. In other words, we 
would say that there is a short-term dependency in 
this sequence. 

2.2Drawbacks: 

Clearly, RNNs have no problems with short-term 
dependencies. But what about long-term 
dependencies? Let's take a look now at a longer 
sequence of text. Let's use the following paragraph 
as an example: 

 

Our goal is to predict whether the customer liked 
the movie. Clearly, the customer liked the movie 
but not the cinema, which was the main complaint 
in the paragraph. Let's break up the paragraph into a 
sequence of inputs, with each word at each time 
step (32 time steps for 32 words in the paragraph). 
The RNN would look this: 

 

  Figure3.RNN look 

The critical words liked the movie appeared 
between time steps 3 and 5. Notice that there is a 
significant gap between the critical time steps and 
the output time step, as the rest of the text was 
largely irrelevant to the prediction problem 
(whether the customer liked the movie). In other 
words, we say that there is a long-term dependency 
in this sequence. Unfortunately, RNNs do not work 
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well with long-term dependency sequences. RNNs 
have a good short-term memory, but a bad long-
term memory. To understand why this is so, we 
need to understand the vanishing gradient 
problem when training neural networks.[5] 

2.3Vanishing gradient problem: 

The vanishing gradient problem is a problem when 
training deep neural networks using gradient-based 
methods such as back propagation. Recall in 
previous chapters, we discussed the back 
propagation algorithm in training neural networks. 
In particular, the loss function provides information 
on the accuracy of our predictions, and allows us to 
adjust the weights in each layer, to reduce the loss. 
So far, we have assumed that back propagation 
works perfectly. Unfortunately, that is not true. 
When the loss is propagated backward, the loss 
tends to decrease with each successive layer: 

 

 
 

As a result, by the time the loss is propagated back 
toward the first few layers, the loss has already 
diminished so much that the weights do not change 
much at all. With such a small loss being 
propagated backward, it is impossible to adjust and 
train the weights of the first few layers. This 
phenomenon is known as the vanishing gradient 
problem in machine learning.[6] 

Interestingly, the vanishing gradient problem does 
not affect CNNs in computer vision problems. 
However, when it comes to sequential data and 
RNNs, the vanishing gradient can have a significant 
impact. The vanishing gradient problem means that 
RNNs are unable to learn from early layers (early 
time steps), which causes it to have poor long-term 
memory. 

2.4Proposed System-LSTM: 

LSTMs are a variation of RNNs, and they solve 
the long-term dependency problem faced by 
conventional RNNs. Before we dive into the 

technicalities of LSTMs, it is useful to understand 
the intuition behind them. 

 
LSTMs – the intuition 

As we explained in the previous section, LSTMs 
were designed to overcome the problem with 
long-term dependencies. Let's assume we have 
this movie review: 

 

The task is to predict whether the reviewer liked the 
movie. As we read this review, we immediately 
understand that this review is positive. In particular, 
the following words (highlighted) are the most 
important: 

 
If we think about it, only the highlighted words are 
important, and we can ignore the rest of the words. 
This is an important strategy. By selectively 
remembering certain words, we can ensure that our 
neural network does not get bogged down by too 
many unnecessary words that do not provide much 
predictive power. This is an important distinction of 
LSTMs over conventional RNNs. Conventional 
RNNs have a tendency to remember everything 
(even unnecessary inputs) that results in the 
inability to learn from long sequences. By contrast, 
LSTMs selectively remember important inputs 
(such as the preceding highlighted text), and this 
allows them to handle both short- and long-term 
dependencies. [7] 

The ability of LSTMs to learn from both short- and 
long-term dependencies gives it its name, long 
short-term memory (LSTM). 

Inside an LSTM network: 

LSTMs have the same repeating structure of RNNs 
that we have seen previously. However, LSTMs 
differ in their internal structure. The following 
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diagram shows a high-level overview of the 
repeating unit of an LSTM:[8] 

 

Figure 4. Repeating Unit Of An LSTM: 

LSTMs have the ability to selectively remember 
important inputs and to forget the rest. The internal 
structure of an LSTM allows it to do that. [9] 

An LSTM differs from a conventional RNN in that 
it has a cell state, in addition to the hidden state. 
You can think of the cell state as the current 
memory of the LSTM. It flows from one repeating 
structure to the next, conveying important 
information that has to be retained at the moment. 
In contrast, the hidden state is the overall memory 
of the entire LSTM. It contains everything that we 
have seen so far, both important and unimportant 
information. [9] 

The LSTM releases information between the 
hidden state and the cell state via three important 
gates: 

 Forget gate 
 Input gate 
 Output gate 

Like physical gates, the three gates restrict the flow 
of information from the hidden state to cell state. 

 

Figure 5. Repeating Unit Of An LSTM-2 

The Forget gate (f) forms the first part of the 
LSTM repeating unit, and its role is to decide how 
much data we should forget or remember from the 
previous cell state. It does so by first concatenating 
the Previous Hidden State (ht−1) and the 
current Input (xt), then passing the concatenated 
vector through a sigmoid function. Recall that the 
sigmoid function outputs a vector with values 
between 0 and 1. A value of 0 means to stop the 
information from passing through (forget), and a 
value of 1 means to pass the information through 
(remember). 

The output of the forget gate, f, is as follows: 

 

2.5Input gate: 
The next gate is the Input gate (i). The Input gate 
(i) controls how much information to pass to the 
current cell state. The input gate of an LSTM is 
highlighted in the following diagram 

 
Figure 6. Input Gate 

 

Just like the forget gate, the Input gate (i) takes as 
input the concatenation of the Previous Hidden 
State (ht-1) and the current Input (xt). It then passes 
two copies of the concatenated vector through a 
sigmoid function and a tanh function, before 
multiplying them together. 

The output of the input gate, i, is as follows: 

 

Now we have what is required to compute the 
current cell state (Ct) to be output. This is 
illustrated in the following diagram: 
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2.6 Output gate: 

Finally, the output gate controls how much 
information is to be retained in the hidden state. 
The output gate is highlighted in the following 
diagram: 

 

Figure7: Output Gate: 

First, we concatenate the Previous Hidden State 
(ht−1) and the current Input (xt), and pass it through 
a sigmoid function. Then, we take the current cell 
state (Ct) and pass it through a tanh function. 
Finally, we take the multiplication of the two, 
which is passed to the next repeating unit as the 
hidden state (ht). This process is summarized by the 
following equation: 

 

 
  Input: The input to our neural network shall be 
IMDb movie reviews. The reviews will be in the 
form of English sentences. The dataset provided in 
Keras has already encoded the English words into 
numbers, as neural networks require numerical 
inputs.  
Zero Padding: 

 Movie reviews have different lengths, and 
therefore the input vectors have different sizes. This 
 is an issue, as neural networks only accept 
fixed-size vectors. To address this issue, we define 
a maxlen parameter. The maxlen parameter shall be 
the maximum length of each movie review. 
Reviews that are longer than maxlen will be 
truncated, and reviews that are shorter 
than maxlen will be padded with zeros. 

 The following diagram illustrates the zero 
padding process: 

 

 

  
 
 
 
 
 
 
 
 

Figure 8: Zero Padding Process: 
 

2.8Word Embedding: 

The first layer in our neural network is the word 
embedding layer. Word embeddings are 
a learned form of vector representation for 
words. The word embedding layer takes in words as 
input, and then outputs a vector representation of 
these words. The vector representation should place 
similar words close to one another, and dissimilar 
words distant from one another. The word 
embedding layer learns this vector representation 
during training.[9] 

  Representing Words as Vectors: 

We need to represent words as input data for our 
neural network i.e. we need to represent the words 
as vectors. 

 One-hot Encoding: A one hot encoding is 
a representation of categorical variables as binary 
vectors. 

This first requires that the categorical values be 
mapped to integer values. Then, each integer value 
is represented as a binary vector that is all zero 
values except the  index of the integer, which is 
marked with a 1. 

 Let's consider phrases such as the 
following: 

 Happy, excited 
 Happy 
 Excited 

There are several problems with this one-hot 
encoded representation. Firstly, the number of 
 axes depends on the number of unique 
words in our dataset. As we can imagine, there are 
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tens  of thousands of unique words in the 
English dictionary. If we were to create an axis for 
each  word, then the size of our vector would 
quickly grow out of hand. Secondly, such a vector 
 representation would be extremely sparse 
(full of zeros). This is because most words appear 
 only once in each sentence/paragraph. It is 
difficult to train a neural network on such a sparse 
vector.[9] 

Word Embeddings:  It is learned form of vector 
representation for words. The main advantage of 
word embeddings is that they have fewer 
dimensions than the one-hot encoded 
 representation, and they place similar 
words close to one another. 

The following diagram shows an example of a 
word embedding: 

 

 

 

 

3. LSTM Layer: 

 The LSTM layer takes as input the vector 
representation of the words from the word 
embedding layer, and learns how to classify the 
vector representation as positive or negative. As 
we've seen earlier, LSTMs are a variation of RNNs, 
which we can think of as multiple neural networks 
stacked on top of one another. 

3.1Dense Layer: 

 The next layer is the dense layer (fully 
connected layer). The dense layer takes as input the 
output from the LSTM layer, and transforms it into 
a fully connected manner. Then, we apply a 
sigmoid activation on the dense layer, so that the 
final output is between 0 and 1. 

3.2Output: 

 The output is a probability between 0 and 
1, representing the probability that the movie 
review is positive or negative. A probability near to 
1 means that the movie review is positive, while a 

probability near to 0 means that the movie review is 
negative. 

Note: 

There are certain parameters we need to decide 
when we compile our model. They are as follows: 

3.3Loss function:  

It’s a method of evaluating how well specific 
algorithm models the given data. If predictions 
deviate too much from actual results, loss function 
would give a very large number. 
We use a binary_crossentropy loss function when 
the target output is binary and 
 a categorical_crossentropy loss function 
when the target output is multi-class. Since  the 
sentiment of movie reviews in this project 
is binary (that is, positive or negative),  we 
will use a binary_crossentropy loss function. 

 
3.4Optimizer: 

In order to minimize the error observed using loss 
function, we use optimizer. 
The choice of optimizer is an interesting problem in 
LSTMs. Certain optimizers may  not work for 
certain datasets, due to the vanishing gradient and 
the exploding gradient  problem .It is often 
impossible to know beforehand which optimizer 
works better for  the dataset.  
Therefore, the best way to know is to train different 
models using different optimizers, and to use the 
optimizer that gives the best results. We try 
the SGD, RMSprop, and the ADAM optimizer.
  
3.5Implementation: 

 Importing necessary packages and classes: 
 Import IMDB Dataset: 
 Zero Padding: 
 Model Building: 
 Training the model: 
 Plotting the accuracy per epoch: 
 Plotting the confusion matrix: 
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4. RESULTS: 
 
SGD Optimizer: 
 

 

 
 

Figure 9: training and validation accuracy 
The training and validation accuracy is stuck at 
50%. Essentially, this shows that the training has 
failed and our neural network performs no better 
than a random coin toss for this binary 
classification task. Clearly, the SGD optimizer is 
not suitable for this dataset and this LSTM network 
 
RMSprop Optimizer 
 

 
 

 
 

Figure10: RMSprop Optimizer 

Within 10 epochs, our model is able to achieve a 
training accuracy of more than 95% and a 
validation accuracy of around 85%. Clearly, 
the RMSprop optimizer performs better than 
the sgd optimizer for this task 

ADAM Optimizer: 

 

 

Figure11.ADAM Optimizer: 

The ADAM optimizer does pretty well. From the 
preceding graph, we can see that the Training 
Accuracy is almost 100% after 10 epochs, while 
the Validation Accuracy is around 80%. This gap of 
20% suggests that overfitting is happening when 
the ADAM optimizer is used. 

By contrast, the gap between training and 
validation accuracy is smaller for 
the RMSprop optimizer. Hence, we conclude that 
the RMSprop optimizer is the most optimal for this 
dataset and the LSTM network, and we shall use 
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the model built using the RMSprop optimizer from 
this point onward. 

4. Conclusion: In this project, we have built a 
model to classify movie reviews using LSTM 
network in combination with RMSprop 
optimizer. The model overcomes the Long-
Term dependency and vanishing gradient 
problems of RRN and classifies the reviews in 
the test set with accuracy 85%. LSTM-based 
neural networks fail to detect sarcasm and 
other subtleties in our language. NLP is an 
extremely challenging subfield of machine 
learning that researchers are still working on 
today 
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