
Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4287

AN ENHANCED APPROACH FOR TEST SUITE REDUCTION
USING CLUSTERING AND GENETIC ALGORITHMS

SARAH M. NAGY1, HUDA A. MAGHAWRY2, NAGWA L. BADR3

1,2,3Information Systems Department, Faculty of Computer and Information Sciences, Ain Shams
University, Cairo, Egypt

E-mail: 1sara.nagy@cis.asu.edu.eg, 2huda_amin@cis.asu.edu.eg, 3nagwabadr@cis.asu.edu.eg

ABSTRACT

Software testing is a procedure used to evaluate the quality, accuracy, and completeness of a generated
computer software. It entails a series of actions taken with the goal of identifying software faults so they can
be fixed before the product is made available to end users. Testing a program against a collection of inputs
known as test cases is one of the most practical ways to find faults in it. Redundant test cases are useless.
Besides, they increase the testing effort, testing costs, and testing time. Testing involves spending a lot of
time on a lot of unreliable test cases. An excessive cost is wasted when redundant or outdated tests are run
that do not increase fault detection capabilities. In this study, the objective is to propose an enhanced approach
for test suite reduction to enhance the regression testing process. This is achieved by reducing the time spent
in testing by finding a subset of test cases that fulfill the requirements and discovering most of the faults
already present. This subset is known as a reduced test suite. A test suite is a set of tests that enables testers
to run and report the status of the test execution. Therefore, a clustering-based approach is proposed to
considerably minimize the test suite. The proposed approach applies the K-means++ clustering algorithm.
Utilizing K-mean++, test cases are grouped into groups depending on their degree of similarity. Then, a
multi-objective genetic algorithm is applied to reduce the test suite in each cluster based on code coverage.
For any unsupervised clustering algorithm, determining the optimal number of clusters into which the data
can be divided is a crucial step. Therefore, two methods were experimented to determine the optimal k: elbow
method and silhouette analysis method. The proposed enhanced approach outperformed previously published
approaches in terms of test suite reduction and code coverage rate.
Keywords: Regression Testing, Clustering, Genetic Algorithm, Test Suite Reduction

1. INTRODUCTION

Software quality [1][2] is a major challenge
that all software developers strive to achieve. Due
to the prevalence of software and how much daily
impact it has on our lives, it is currently receiving a
lot of attention. The most crucial step in improving
and raising the quality of software is software
testing. Therefore, it is vital, based on specific
coverage criteria, to produce various test cases.
Testing consumes almost half of the total cost of
software development [3].

During each change to the software source code,
programmers can introduce new software defects
that alter some expected system behavior or remove
some feature that was intended to be available. As
a result, after each software modification, the
system should be checked again to confirm that it is
functioning as intended. This is known as

regression testing. Although regression testing [4]
is an essential activity, running large test suites can
be costly. A test suite is a set of test cases designed
for verifying that a software program has a certain
set of behaviors. New test cases must be appended
to the present test suite whenever features are
changed, or bugs are resolved. However, given that
current test cases must be modified when bugs are
fixed, previous test cases can be useless. When
adding new features, new test cases must be added,
and when removing old features, old test cases must
be removed. Besides, new test cases must be
introduced to ensure that the removal of old features
does not damage the unchanged features. If test
suites expand in size as software evolves, testing
becomes more expensive to run whole test suites.
Additionally, some previous test cases will be
redundant, outdated, or unnecessary. In the

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4288

software, test case duplication will be possible. The
repeating of data between one test case and another
is referred to as redundancy. As a result, it is evident
that a good test suite structure is one of the main
aspects of software testing that can save a lot of time
from performing redundant or unneeded test cases.
This repeated data is not noticeable enough to
capture unless advanced techniques such as data
mining [5] techniques are utilized.

The following three strategies can be used to cope
with large test suite and reduce its size: reduction,
selection, and prioritizing [6][7]. Here is the
difference between the three strategies:

Test case reduction [8][9]:
It chooses a selection of tests that are not duplicate
but still have a high degree of fault detection. The
reduction may be permanent (in which case the
redundant tests are permanently eliminated) or
temporary. Test case reduction is not aware of the
program modifications being made at any particular
time.

Test case selection [10]:
As opposed to test case reduction, test case
selection is modification aware. Strategies for
selecting test cases try to choose the specific group
of test cases that examined the modified code at a
specific time.

Test case prioritization [11][12][13]:
It aims to provide a sequence of tests that enables
earlier defect discovery. Programmers must wait a
long time to verify that the software modifications
are accurate if a particular test suite takes a long
time to run. In order to be much faster and give the
programmers valuable feedback, a prioritizing
technique will run initially the tests that are more
likely to find a bug than others.

When test suites are excessively large, those three
strategies can be used, and they are frequently used
in combination. Applying a selection or prioritizing
strategy directly may not be effective since it might
take too long if all tests used as input to these two
techniques are successful. Therefore, a reduction
could be carried out before using these strategies. In
this study, the objective is to propose an enhanced
approach for test suite reduction to enhance the
regression testing process. The proposed approach
incorporates optimization techniques, a clustering
technique, and a genetic algorithm. It applies a K-
means++ [14] clustering algorithm to group test
cases based on how similar they are. To get the best

performance for the K-means++ technique, the
optimal number of clusters k that based on it will
divide the test cases should be determined first
before applying the K-means++. Therefore, the first
step of the proposed approach is to determine the
optimal k. The silhouette analysis and elbow
methods were experimented. Following
determining the optimal k, the K -means++ is
applied. Then, a multi-objective genetic algorithm
is applied to decrease the number of test cases in
each cluster.
The paper is organized as follows: Section 2
provides a review of the related work. Then, section
3 provides an explanation of the proposed approach.
The used benchmark programs and the
experimental results are explained in section 4 and
finally, section 5 states the conclusion and offers the
future work.

2. RELATED WORK

Reducing the number of test suites has been a
major issue, and many researchers proposed
different ways to handle the size of the test suite. In
2021, Chunyan Xia, YanZhang, and Zhanwei Hui
[15] proposed an evolutionary multi-objective
optimization algorithm for cluster test suite
reduction. To combine related test cases into one
cluster, a K-means method was specifically applied.
Then, based on the clustering outcomes, the
evolutionary algorithm is utilized to eliminate
redundant test cases. Then, coverage, fault and cost
related criteria are used to represent optimization
objects. The experimental analysis demonstrates
that the suggested method benefits from eliminating
unnecessary test cases and identifying failures
while maintaining testing effectiveness. The
experiments also demonstrate that the technique has
the best test case code coverage rate and missing
failure rate.

On the basis of integer linear programming, a novel
formulation of the multi-criteria test suite
minimization issue was proposed [16] by O. Rsan
Zener and Hasan Sözer in 2020. Deficiencies in the
most recent formulations that could produce less
than ideal results have been recognized. They
proved this using opposing instances,
demonstrating how their theory may correct the
flaws found. In terms of the same objective function
and set of factors, such as statement coverage, the
results demonstrate that their linear formulation
produces superior results. Additionally, it benefits
from better time performance in comparison to non-

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4289

linear formulations, increasing its scalability for
increasingly challenging issues.

A machine learning-based strategy for test suite
reduction was introduced [17] in 2020 by
Chetouane, et al. This strategy is based on the data
clustering method K-means. With the aid of a
binary search algorithm, it groups comparable test
cases into clusters. Then, in order to create the
resultant reduced test suite, a representative test
case is chosen from each cluster. They evaluated
their method on many example programs’ test
suites. Their objective was to gauge the
effectiveness of the resultant test suite. After a
preliminary assessment, the findings have shown
promise, as the suggested K-mred algorithm
guarantees to keep a fixed coverage level for a
specifically chosen coverage metric despite
reducing the initial test suite by an average of
95.9%.

 In 2016, Neha Chaudhary and O.P. Sangwan [18]
suggested a new method for condensing the number
of tests in a suite that takes into account two criteria:
the event weight and test case defect count. They
evaluated their results for two separate applications
and found that the size of their test suites was
reduced by 20% for each application.

Handling large test suites is one of the critical topics
nowadays in the testing field. In all of these papers,
various methods were proposed to handle the large
test suits to eliminate redundant test cases and
obtain a reduced test suite while maintaining code
coverage and reducing time to improve the
efficiency of the regression test. Therefore, this
paper provides an improved approach consisting of
clustering and genetic algorithms to gain the best
reduced test suite to be executed.

3. PROPOSED APPROACH

One of the critical issues related to regression
testing is the executed test suite size [7]. Therefore,
the objective of this research is to propose an
approach that generates a subset of test cases with
high code coverage and find most of the faults that

are already present in order to shorten the time spent
testing. The proposed approach applies reduction
techniques to handle the size of the test suite using
clustering technique, and a genetic algorithm. The
framework of the proposed approach is shown in
figure 1.

The Proposed approach applies a K-means++
clustering algorithm to divide test cases into groups
according to how similar they are. K-means++ were
used to overcome the drawback of k-means which
is it is dependent on initialization of centroid.
Before applying the K-means++, the optimal
number of clusters k should be determined first to
achieve the best performance of the K-means++
technique. Therefore, the first step is to determine
the optimal k. Elbow and silhouette analysis
methods are applied to identify the optimal k.

The elbow approach [19][20] depicts the cost
function value created using a range of k values.
The average of the squared distances from the
cluster centroids is used to calculate distortion. The
Euclidean distance is utilized. However, as k rises,
the improvements in average distortion decrease.
The elbow, or value of k at which improvement in
distortion decreases the most, is the point at which
further clustering of the data should cease. The chart
should simulate an arm, with the "elbow" on the
arm representing the value of the optimal k as
shown in figure 2. The basic steps of the elbow
method are as follows:

1. Select a set of values of k.
2. Run various K-means iterations,

increasing k in each iteration, and
determine the average distances from all
data points to the centroid.

3. Plot the points. Then, look for the
"Elbow"—the location where the average
distance from the centroid abruptly
decreases.

Figure 1 The Framework of the Proposed Approach for Test Suite Reduction

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4290

Figure 2 The Elbow Method using Distortion.

The silhouette coefficient [20][21] quantifies how
similar a data point is within a cluster to other
clusters. It measures how well a data point fits into
the cluster to which it has been assigned using two
criteria:

1. How near the data point is to the cluster's
other points.

2. The distance between the data point and
points in other clusters.

The range of silhouette coefficients is from -1 to 1.
If the silhouette coefficient is close to one, this
means that compared to nearby clusters, the sample
is far away. If the silhouette coefficient is zero, this
means that the sample is on or near the decision
boundary between two adjacent clusters. If the
silhouette coefficient is less than zero, the samples
can be outliers or assigned to the incorrect cluster.
The following equation is used to determine the
silhouette coefficient for a specific data point:

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}

(1)

where S(i) stands for the data point's silhouette
coefficient, a(i) is the average distance between
each data point in the cluster to which i belongs, and
b(i) is the average distance between i and every
cluster to which i does not belong.
The basic steps of silhouette method are as follows:

1. Run various values of k (for example from
1 to 10)

2. Determine the average silhouette for each
k.

3. Plot the graph between k and average
silhouette as shown in figure 3.

4. Take maximum value for silhouette score.

Figure 3 Silhouette Analysis for Optimal k.

The second step is to run K-means++ algorithm to
group the test cases based on the similarity between
them. The drawback of K-means is that the centroid
point must be defined by the user. When dealing
with test case clustering, this becomes much more
crucial because every center point is expressed by a
test case, and determining the distance between test
cases is not a simple operation. A K-means++ [14]
was used to solve this issue and identify a decent
initial center point. While K-means++ has never
been used to cluster test cases before, this study uses
it to find the ideal seed for first cluster centers.

The basic steps of K-means++ are as follows:

1. Select the first centroid randomly.
2. For each point calculate distance from the

point to the cluster center.
3. Select the point that has maximum

distance from the nearest centroid as a new
centroid.

4. Repeat step 2 and 3 until reach the right
number of clusters.

Finally, a non-dominated sorting genetic algorithm
(NSGA-II) [15] is applied to reduce the size of the
test suite. For the purpose of resolving problems
involving multiple objectives in optimization,
NSGA-II is an effective Genetic Algorithm-based
(GA) decision space exploration engine. The multi-
objective optimization (MOO) [22] refers to finding
the ideal solution values for many desired goals.
This includes more than one goal function that
needs to be minimized or maximized. A user is

0

1

2

3

4

0 2 4 6 8 10

Di
st

or
tio

n

Value of K

The Elbow Method Using Distortion

Elbow point

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

Si
lh

ou
tt

e
Sc

or
e

Value of k

Silhouette Analysis For Optimal k

Optimal k

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4291

never satisfied by finding a single solution [23]
utilizing a single criterion for the optimization
problems because there are several objectives
involved. Pareto optimal solutions are a group of
best-case scenarios that result from the existence of
competing objectives.
In the NSGA-II [15] process, a starting population
Pt of size N is first established. A new population
Qt is established after the population Pt has
completed all crossover and mutation processes.
After then, the population Rt, which is formed by
combining the populations Pt and Qt, is subjected
to the non-dominated sorting process. The Rt
population is then separated into distinct fronts
according to the degree of non-dominance. To
establish the Pt+1 population, choose N members

from Rt in the next step. Only N members are
chosen for Pt+1 from the first front's least crowded
zone if the size of the first front is greater than or
equal to N. On the other hand, the members of the
first front are instantly transferred to the subsequent
generation if the size of the first front is smaller than
N, and the remaining members are removed from
the second front's least crowded zone and added to
Pt+1. If Pt+1's size is still less than N after the first
front, the process is repeated until Pt+1's size
reaches N. The populations Pt+2, Pt+3, ... are
formed for successive generations using the same
procedure up until the stopping criteria are met. The
operation schema of NSGA-II is described in figure
4. The proposed approach Pseudocode is shown in
algorithm 1.

Figure 4 Operation Schema of NSGA-II.

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4292

4. EXPERIMENTS AND RESULTS

The aim of the experiments is to evaluate the
proposed approach compared to previously
published approaches through different programs.

4.1 Experiment Setup

Experiments were conducted on a Windows 10

Pro with a 3.00GHz Intel® Core (TM) i7-9700
processor, 16.0 GB of RAM. The proposed
approach consists of three techniques silhouette

Algorithm 1: Proposed Approach

Input: test suite to be reduced

1: Determine the optimal k that represents the number of groups the test suite will be divided into

2: Selecting random the first centroid

3: repeat

4: for each test case in test suite do

5: Calculate the distance between test cases and centroids to assign each test case to the
nearest cluster

6: Select the point having maximum distance from the nearest centroid is selected to be
the next centroid

7: end for

8: until reach the number of optimal k

9: for each cluster do

10: The population of chromosomes is initially initialized by the random generator using a binary
value

11: repeat

12: for each test suite do

13: Compute the fitness value

14: end for

15: Apply non-dominated sorting and calculating crowding distance to get the new parent
generation

16: Store a test suite if it has a fitness value that is greater than or equal to the fitness
value of the entire test suite

17: Determine the new children generation by using selection, mutation, and crossover

18: Combine parents and children to get the next generation

19: until number of iterations is completed

20: end for

21: Combine the stored test suites to form the final test suite that will be executed

Output: reduced test suite

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4293

analysis method, K-means++ and NSGA-II.
Algorithms implemented using MATLAB
(R2021a_v9.10.0). Seven Siemens programs that
were originally developed by Tom Ostrand and
colleagues at Siemens Corporate Research [24] as
well as one European Space Agency program were
subjected to experiments. Regression testing
frequently uses these benchmark programs as
comparisons. Software-artifact Infrastructure
Repository (SIR) is where all of these programs and
test suites were found [25]. SIR's SUT (System
Under Test) in their study takes into account that the
fault-embedded versions of the programs, test
suites, and test cases have been precisely produced
to enable researchers to only develop testing
methodologies rather than test programs and test
cases.
Table 1 summarizes the programs’ details, with
columns 1 to 7 that are described as follows:

1. The "Program name" is the name of the

software.
2. The "Program Description" is a description of

the software.
3. The “Original Versions” is the count of original

versions of the software. The original version
is the one without fault.

4. The “Faulted Versions” is the count of software
versions with faults.

5. The “Lines of Code” is the sum of the number
of lines in the text of the program's source code.

6. The “Test Cases” is the total count of test cases
used to examine the software.

7. The “Fault” is the count of faults injected in the
program for the Siemens programs, there is
only one fault in each version of the SUT that
is defective, making the total number of faults
equal to the number of defective versions.

4.2 Research Questions

The following research questions are
investigated to evaluate the proposed approach:

RQ1 Which method is effective to determine the
optimal k, elbow method or silhouette analysis
method?
RQ2 How effective is the proposed approach for
minimizing the test suite when compared to
previously published approaches?
RQ3 In comparison to other approaches, how
effective is the minimized test suite generated by
the proposed approach in terms of code coverage?
RQ4 How effective is the proposed approach in
comparison to other approaches in terms of
execution time?

Table 1 Programs Description.

4.3 Evaluation Metrics

To evaluate the proposed approach, multiple
measures are used to assess the effectiveness of the

approach. The measures are reduction rate, code
coverage, and execution time.

Program
Name

Program Description Original
Versions

Faulted
Versions

Lines of
Code

Test
Cases

Fault

totinfo Information Measure 1 23 565 1052 23

tcas Altitude Separation 1 41 173 1608 41

schedule Priority Scheduler 1 9 412 2650 9

schedule2 Priority Scheduler 1 10 374 2710 10

print_tokens Lexical analyzer 1 7 726 4130 7

print_tokens2 Lexical analyzer 1 10 570 4115 10

replace Pattern Replace 1 32 564 5542 32

space European Space Agency
Program

1 35 6199 13585 35

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4294

Reduced test suite size as a percentage of the
original test suite size is used to compute the test
suite reduction rate using the following equation:

𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 =
|𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆| − |𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆𝑹𝒆𝒅|

|𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆|
× 𝟏𝟎𝟎%

(2)

where TestSuite is the original test suite's number
and TestSuiteRed is the scaled-down test suite's
number.

The percentage of statements covered to test cases
that actually run is known as the average code
coverage. It is calculated using the following
equation:

𝑻𝒆𝒔𝒕𝑪𝒂𝒔𝒆𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝑪𝒐𝒅𝒆 =
|𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝒄𝒐𝒅𝒆|

|𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝒄𝒂𝒔𝒆|
× 𝟏𝟎𝟎%

(3)

where the number of executed test cases is
represented by ExecutionCase, and how many
codes the executed test cases covered is represented
by CoverageCode.

The execution time of test suite reduction is taken
into account, which is mainly divided into two
components: clustering time and evaluation time. It
is computed using the following equation:

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆 = 𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝑲𝑻𝒊𝒎𝒆
+ 𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝑻𝒊𝒎𝒆
+ 𝑬𝒗𝒂𝒍𝒖𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆

(4)

where OptimalKTime represents the time of finding
optimal k, ClusterTime defines the amount of time
needed to cluster the test suite, and EvolutionTime
is the amount of time needed to evolve the test suite.

4.4 Results

The objective of the first experiment was to

answer the first research question to find which
method is effective to determine optimal k, elbow
method or silhouette analysis method.

 RQ1 Which method is effective to determine

the optimal k, elbow method or silhouette
analysis method?

The experiments were held on the eight programs to
compare between two popular methods to get the

optimal k that will be used after that in K-means++
to divide the clusters based on it: elbow and
silhouette analysis methods. Therefore, the
objective was to determine which one of the two
methods is more effective to be used in the second
experiment in terms of reduction rate and code
coverage rate. Each tested program is run 30 times
to confirm the dependability of the results. The
average value of the experimental data is utilized as
the experimental result.
Test suite reduction and code coverage rates were
calculated for the two methods with different
programs to take decision on which method will be
more effective to be used in the proposed approach.
The results are presented in Table 2 and 3. For tcas,
schedule, print_tokens 2, and replace programs,
both methods achieved the same results in terms of
test suite reduction and code coverage rate. They
achieved test suite reduction rates of 47.8%, 51.1%,
45.7%, and 52.8%, respectively. They achieved
code coverage rates of 23.8%, 32.6%, 25.8%, and
23.4%, respectively. For totinfo, schedule 2,
print_tokens, and space programs, the Silhouette
method achieved higher results than the elbow
method in terms of test suite reduction and code
coverage rate. For test suite reduction rate, totinfo
achieved 39.5% using the elbow method and 40.2%
using the silhouette method, schedule 2 achieved
52.7% using the elbow method and 54.4% using the
silhouette method, print_tokens achieved 46.8%
using the elbow method and 47.9% using silhouette
method, space achieved 41.9% using elbow method
and 42.5% using silhouette method. For test suite
code coverage, totinfo achieved 87.6% using the
elbow method and 88.5% using the silhouette
method, schedule 2 achieved 28.7% using the
elbow method and 29.9% using the silhouette
method, print_tokens achieved 33.4% using the
elbow method and 34.3% using silhouette method,
space achieved 75.5% using elbow method and
76.2% using silhouette method. As shown in figure
5, the Silhouette method shows higher test suite
reduction than the elbow method in totinfo,
schedule 2, print_tokens, and space programs in
terms of test suite reduction rate. Figure 6 shows a
comparison between the elbow method and
silhouette method in terms of code coverage rate.
As shown in figure 6, the Silhouette method
achieved better test suite code coverage than the
elbow method in totinfo, schedule 2, print_tokens,
and space programs in terms of code coverage.
Therefore, the silhouette analysis method can
effectively decrease the size of the test suite and
present high code coverage.

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4295

Table 2 Comparison between Elbow and Silhouette Methods Based on Test Suite Reduction.
Program name/ SUT Test Suite Reduction

Elbow Method Silhouette Method
totinfo 39.5% 40.2%
tcas 47.8% 47.8%

schedule 51.1% 51.1%
schedule2 52.7% 54.4%

print_tokens 46.8% 47.9%
Print_tokens2 45.7% 45.7%

replace 52.8% 52.8%
space 41.9% 42.5%

Figure 5 Elbow Method vs Silhouette Method based on
Test Suite Reduction.

Figure 6 Elbow Method vs Silhouette Method based on
Test Suite Code Coverage.

The objective of the second experiment was to
answer the research questions about the
effectiveness of the proposed approach when
compared to previously published approaches in
terms of minimizing the test suite, code coverage,
and execution time. The proposed approach was
compared with existing approaches that have the
same objective to reduce the test suite that will be
executed in the regression test. Literature [15]
proposed an evolutionary MOO algorithm for
cluster test suite reduction (TSR-CE), TSR-CE
employs a multi-objective genetic algorithm for test

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4296

suite reduction and the K-means algorithm for test
suite clustering. A multi-objective test suite
reduction technique (TSR-LF) based on a linear
formula was proposed in the literature [16].
Statement coverage, error detection abilities, and
test execution time are among the optimization
goals. A test suite reduction method (TSR-FK)
based on fuzzy K-means was published in the
literature [26]. This algorithm's goal is to minimize
the number of test cases that must be removed while
still preserving the coverage and error detection rate

of the reduced test suite. Besides the traditional
multi-objective evolution method of test suite
reduction (TSR-T) proposed in the literature [15].
The four test suite reduction methods listed above
(TSR-CE, TSR-LF, TSR-FK, and TSR-T) are
appropriate for comparison with the suggested
approach, as they are capable of representing the
state-of-the-art and have implemented approaches
that are similar to our method. The experiment was
held on the eight programs. The results are
presented in Table 4,5 and 6.

Table 3 Comparison between Elbow and Silhouette Methods Based on Test Suite Code Coverage.

Program name/ SUT Test Suite Code Coverage
Elbow Method Silhouette Method

totinfo 87.6% 88.5%
tcas 23.8% 23.8%

schedule 32.6% 32.6%
schedule2 28.7% 29.9%

print_tokens 33.4% 34.3%
Print_tokens2 25.8% 25.8%

replace 23.4% 23.4%
space 75.5% 76.2%

Table 4 Comparison between the Proposed Approach, TSR-CE [15], TSR-LF[16], TSR-FK[26], and TSR-T[15] based
on Test Suite Reduction.

Program Name/ SUT Test Suite Reduction
Proposed Approach TSR-CE [15] TSR-LF [16] TSR-FK [26] TSR-T [15]

totinfo 40.2% 38.1% 30.3% 31.8% 25.6%
tcas 47.8% 46.5% 39.5% 43.7% 28.7%

schedule 51.1% 48.3% 42.6% 39.2% 36.9%
schedule2 54.4% 51.6% 43.7% 44.4% 40.4%

print_tokens 47.9% 45.3% 40.6% 45.6% 37.2%
Print_tokens2 45.7% 43.1% 41.6% 36.6% 38.4%

replace 52.8% 49.8% 43.9% 46.6% 35.8%
space 42.5% 39.1% 37% 38.9% 31.8%
means 47.82% 46.24% 41.27% 42.14% 35.6%

Table 5 Comparison between the Proposed Approach, TSR-CE [15], TSR-LF[16], TSR-FK[26], and TSR-T[15] based

on Test Suite Code Coverage.

Program Name/ SUT Test Suite Code Coverage
Proposed Approach TSR-CE [15] TSR-LF [16] TSR-FK [26] TSR-T [15]

totinfo 88.5% 86.7% 77.08% 78.80% 72.16%
tcas 23.8% 20.12% 17.78% 19.14% 15.10%

schedule 32.6% 30.07% 27.12% 25.57% 24.64%
schedule2 29.9% 28.51% 24.52% 24.80% 23.17%

print_tokens 34.3% 32.15% 29.58% 24.64% 27.99%
Print_tokens2 25.8% 24.34% 23.72% 21.85% 22.49%

replace 23.4% 20.27% 18.16% 19.08% 15.84%
space 76.2% 74.98% 72.41% 74.68% 66.91%
means 41.81% 39.64% 36.30% 36.07% 33.54%

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4297

Table 6 Comparison between the proposed Approach, TSR-CE[15], TSR-LF[16], TSR-FK[26] and TSR-T[15] based
on Execution Time.

Program Name/ SUT Execution Time (seconds)
Proposed Approach TSR-CE [15] TSR-LF [16] TSR-FK [26] TSR-T [15]

totinfo 6.2 6.4 6.1 6.3 6.8
tcas 14.1 13.5 14.4 13.1 15.2

schedule 12.5 13.1 13.7 12.8 14.6
schedule2 15.6 15.7 16.4 15.9 17.5

print_tokens 145.6 145.2 150.5 140.7 161.3
Print_tokens2 134.9 133.6 141.0 135.8 152.4

replace 306.3 304.4 323.6 315.3 331.9
space 1385.7 1402.1 1493.3 1353.2 1581.7
means 252.61 254.25 269.88 249.14 285.18

 RQ2 How effective is the proposed approach

for minimizing the test suite when compared to
previously published approaches?

The test suite reduction rate was measured for all
approaches with different programs to measure the
effectiveness of the proposed approach to reduce
the test suite. The results are presented in Table 4.
In the previously published approaches, TSR-CE
recorded the highest average test suite reduction
rate with a value of 46.24% but the proposed
approach recorded 47.82%, so the proposed
approach achieved better results compared to other
approaches. According to the results, the proposed
approach shows higher test suite reduction than
other approaches in all the SUT as shown in figure
7 as boxplot based on the following five parameters:
minimum, median, maximum, first quartile Q1, and
third quartile Q3.

 RQ3 In comparison to other approaches, how

effective is the minimized test suite generated
by the proposed approach in terms of code
coverage?

To measure the effectiveness of the minimized test
suite in terms of code coverage, the code coverage
was calculated for all approaches using different
programs. The test suite code coverage was
calculated for all approaches with different
programs to measure the efficiency of the
minimized test suite in code coverage. The average
number of lines of code that each test case may
cover is referred to as its average code coverage.
The higher the score, the more code lines on
average are covered by each test case, indicating
that the algorithm is more efficient.
The results are presented in Table 5. In the
previously published approaches, TSR-CE
recorded the highest average test suite code
coverage rate with a value of 39.64% but the
proposed approach recorded 41.81%, so the
proposed approach achieved better results
compared to other approaches. From the results, the
proposed approach shows better test suite code

coverage in all SUT as shown in figure 8 as boxplot
based on the same five parameters mentioned
before. So, as a conclusion, the proposed approach
achieved high test suite reduction and high code
coverage rate with the eight programs totinfo, tcas,
schedule, schedule 2, print_tokens, print_tokens 2,
replace, and space. Therefore, the proposed
approach can effectively reduce the test suite size
and present high code coverage.

 RQ4 How effective is the proposed approach in

comparison to other approaches in terms of
execution time?

The execution time was calculated for the proposed
approach, TSR-CE, TSR-LF, TSR-FK, and TSR-T
for all programs to evaluate the efficiency of the
minimized test suite in execution time. The results
are presented in Table 6. The TSR-FK has the
quickest average execution time. The proposed
approach method takes just 3.47 seconds longer on
average to execute. Execution times can be noticed
to be a little different. In other words, the proposed
approach sometimes takes slightly more execution
time but achieved high test suite reduction and code
coverage rates figure 9 shows the results for the five
approaches as boxplot based on the same five
parameters mentioned before.

The proposed approach is experimentally compared
to four test suite reduction approaches by applying
them on the eight programs from the SIR repository
to answer the four mentioned research questions.
Concluded from the results: (1) the silhouette
analysis method is more effective to identify the
optimal k than elbow method. (2) The proposed
approach is effective for minimizing the test suite
when compared to previously published
approaches. (3) The minimized test suite generated
by the proposed approach in terms of code coverage
is more effective than previously published
approaches. (4) the proposed approach sometimes
takes slightly more execution time but achieved
high test suite reduction and code coverage.

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4298

Therefore, the proposed approach outperformed
other approaches and is effective in reducing the
test suite while maintaining high code coverage.
However, the limitation of the proposed approach

and the previously published approaches is that all
can produce a small representative set of test cases
but with less fault detection capability.

Figure 7 Proposed Approach vs TSR-CE vs TSR-LF vs TSR-FK vs TSR-T based on Test Suite Reduction.

Figure 8 Proposed Approach vs TSR-CE vs TSR-LF vs TSR-FK vs TSR-T based on Test Suite Code Coverage.

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4299

Figure 9 Proposed Approach vs TSR-CE vs TSR-LF vs TSR-FK vs TSR-T based on Execution Time.

5. CONCLUSION AND FUTURE WORK

Modern software systems are constantly evolving in
order to improve the functionality and
maintainability of the software and to correct its
defects. To verify that software updates do not
cause new regression issues, regression testing has
been frequently employed. Although necessary,
regression testing can be costly for large test suites.
To verify changes made to software, new test cases
are created. The size of the existing test suites is
then increased by the addition of these additional
cases. As a result, it gets highly expensive to run the
full test suite for every update, and some of the
previous test cases eventually become redundant,
outdated, or unnecessary. Test suites are getting
more and larger, thus optimization is necessary to
make them smaller and run faster. In this study, the
objective is to propose an enhanced approach for
test suite reduction to enhance the regression testing
process. Regression test suites are minimized using
the K-means++ clustering algorithm to group test
cases depending on their degree of similarity into
clusters. Then, a multi-objective genetic algorithm
is applied to reduce the test suite in each cluster
based on code coverage. Determining the optimal
number of clusters into which the data can be
divided is a crucial step for any unsupervised
clustering algorithm. Therefore, two methods were

experimented to find out the optimal k: elbow
method and silhouette analysis method.
Experiments were performed on eight programs:
totinfo, tcas, schedule, schedule 2, print_tokens,
print_tokens 2, replace, and space. For totinfo,
schedule 2, print_tokens, and space programs. The
Silhouette method achieved higher results than the
elbow method in terms of test suite reduction and
code coverage rate. Besides, experiments were held
using the eight programs to compare the proposed
approach and four previously published
approaches. In terms of the average test suite
reduction rate, the proposed approach achieved
47.82%. However, the highest value achieved by
previously published approaches is 46.24%. In
terms of average test suite code coverage, the
proposed approach achieved 41.81%. However, the
highest value achieved by previously published
approaches is 39.64%. Therefore, according to the
results, the proposed approach outperformed other
approaches and is effective in reducing the test suite
while maintaining high code coverage. In the
future, the proposed approach will be extended and
experimented on test suites with module
dependencies and in a parallel automation
execution environment will be conducted.

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4300

REFERENCES:

[1] M. A. Jamil, M. Arif, N. S. A. Abubakar, and

A. Ahmad, “Software testing techniques: A
literature review,” Proceedings - 6th
International Conference on Information and
Communication Technology for

the Muslim World, ICT4M 2016, pp. 177–182, Jan.
2017, doi: 10.1109/ICT4M.2016.40.

[2] Syed Roohullah Jan, Syed Tauhid Ullah Shah,
Zia Ullah Johar, Yasin Shah, and Fazlullah
Khan, “An Innovative Approach to
Investigate Various Software Testing
Techniques and Strategies,” International
Journal of Scientific Research in Science,
Engineering and Technology IJSRSET, 2016.

[3] M. R. Thansekhar and N. Balaji, “Reduction
of Test Cases using Clustering Technique,”
Int J Innov Res Sci Eng Technol, 2014,
[Online]. Available:
http://www.iariajournals.org/software/

[4] R. H. Rosero, O. S. Gómez, and G. Rodríguez,
“15 Years of Software Regression Testing
Techniques - A Survey,” International Journal
of Software Engineering and Knowledge
Engineering, vol. 26, no. 5. World Scientific
Publishing Co. Pte Ltd, pp. 675–689, Jun. 01,
2016. doi: 10.1142/S0218194016300013.

[5] A. A. Saifan, E. Alsukhni, H. Alawneh, and
A. al Sbaih, “Test Case Reduction Using Data
Mining Technique,” International Journal of
Software Innovation, vol. 4, no. 4, pp. 56–70,
Oct. 2016, doi: 10.4018/ijsi.2016100104.

[6] D. di Nardo, N. Alshahwan, L. Briand, and Y.
Labiche, “Coverage-based regression test
case selection, minimization and
prioritization: A case study on an industrial
system,” in Software Testing Verification and
Reliability, Jun. 2015, vol. 25, no. 4, pp. 371–
396. doi: 10.1002/stvr.1572.

[7] S. Yoo and M. Harman, “Regression testing
minimization, selection and prioritization: a
survey,” Software Testing, Verification and
Reliability, p. n/a-n/a, 2010, doi:
10.1002/stvr.430.

[8] R. Wang, B. Qu, and Y. Lu, “Empirical study
of the effects of different profiles on
regression test case reduction,” IET Software,
vol. 9, no. 2, pp. 29–38, Apr. 2015, doi:
10.1049/iet-sen.2014.0008.

[9] N. L. Hashim and Y. S. Dawood, “Test case
minimization applying firefly algorithm,” Int
J Adv Sci Eng Inf Technol, vol. 8, no. 4–2, pp.

1777–1783, 2018, doi: 10.18517/ijaseit.8.4-
2.6820.

[10] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and
I. Ghani, “Effective regression test case
selection: A systematic literature review,”
ACM Computing Surveys, vol. 50, no. 2.
Association for Computing Machinery, May
01, 2017. doi: 10.1145/3057269.

[11] M. Qasim, A. Bibi, S. J. Hussain, N. Z.
Jhanjhi, M. Humayun, and N. U. Sama, “Test
case prioritization techniques in software
regression testing: An overview,”
International Journal of Advanced and
Applied Sciences, vol. 8, no. 5, pp. 107–121,
May 2021, doi: 10.21833/ijaas.2021.05.012.

[12] A. Bajaj and O. P. Sangwan, “A Systematic
Literature Review of Test Case Prioritization
Using Genetic Algorithms,” IEEE Access,
vol. 7, pp. 126355–126375,2019,doi:
10.1109/ACCESS.2019.2938260.

[13] J. Chi et al., “Relation-based test case
prioritization for regression testing,” Journal
of Systems and Software, vol. 163, May 2020,
doi: 10.1016/j.jss.2020.110539.

[14] Aubaidan, Bashar, Masnizah Mohd, and
Mohammed Albared. "Comparative study of
k-means and k-means++ clustering
algorithms on crime domain." Journal of
Computer Science 10.7 (2014): 1197

[15] C. Xia, Y. Zhang, and Z. Hui, “Test Suite
Reduction via Evolutionary Clustering,”
IEEE Access, vol. 9, pp. 28111–28121, 2021,
doi: 10.1109/ACCESS.2021.3058301.

[16] O. Ö. Özener and H. Sözer, “An effective
formulation of the multi-criteria test suite
minimization problem,” Journal of Systems
and Software, vol. 168, Oct. 2020, doi:
10.1016/j.jss.2020.110632.

[17] Chetouane, Nour, et al. "On using k-means
clustering for test suite reduction." 2020 IEEE
International Conference on Software
Testing, Verification and Validation
Workshops (ICSTW). IEEE, 2020.

[18] N. Chaudhary and O. P. Sangwan, “Multi
Objective Test Suite Reduction for GUI
Based Software Using NSGA-II,”
International Journal of Information
Technology and Computer Science, vol. 8, no.
8, pp. 59–65, Aug. 2016, doi:
10.5815/ijitcs.2016.08.07.

[19] A. Pandey and A. K. Malviya, “Enhancing
test case reduction by k-means algorithm and
elbow method,” International Journal of
Computer Sciences and Engineering, vol. 6,

Journal of Theoretical and Applied Information Technology
15th June 2023. Vol.101. No 11
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4301

no. 6, pp. 299–303, Jun. 2018, doi:
10.26438/ijcse/v6i6.299303.

[20] Danny Matthew SAPUTRA, Daniel
SAPUTRA, and Liniyanti D. OSWARI,
“Effect of Distance Metrics in Determining
K-Value in KMeans Clustering Using Elbow
and Silhouette Method,” Proceedings of the
Sriwijaya International Conference on
Information Technology and Its Applications
(SICONIAN 2019), vol. 172, 2020.

[21] K. R. Shahapure and C. Nicholas, “Cluster
quality analysis using silhouette score,” in
Proceedings - 2020 IEEE 7th International
Conference on Data Science and Advanced
Analytics, DSAA 2020, Oct. 2020, pp. 747–
748. doi: 10.1109/DSAA49011.2020.00096.

[22] Zeeshan Anwar and Ali Ahsan, “Comparative
Analysis of MOGA, NSGA-II and MOPSO
for Regression Test Suite Optimization,”
International Journal of Software
Engineering, 2014, [Online].Available:
https://www.researchgate.net/publication/282
649705

[23] S. Yoo and M. Harman, “Using hybrid
algorithm for Pareto efficient multi-objective
test suite minimisation,” Journal of Systems
and Software, vol. 83, no. 4, pp. 689–701,
Apr. 2010, doi: 10.1016/j.jss.2009.11.706.

[24] “Software-artifact Infrastructure Repository.”
https://sir.csc.ncsu.edu/portal/index.php
(accessed Dec. 10, 2022).

[25] J. L. Min, N. Rajabi, and A. Rahmani,
“Comprehensive study of SIR: Leading SUT
repository for software testing,” in Journal of
Physics: Conference Series, Apr. 2021, vol.
1869, no. 1. doi: 10.1088/1742-
6596/1869/1/012072.

[26] G. Chou-Guang, L. Du, and X. Hao,
``Research of software testing case reduction
algorithm based on k means,'' Microelectron.
Comput., vol. 33, no. 5, pp. 133_141, May
2016.

