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ABSTRACT 
 

Software testing is a procedure used to evaluate the quality, accuracy, and completeness of a generated 
computer software. It entails a series of actions taken with the goal of identifying software faults so they can 
be fixed before the product is made available to end users. Testing a program against a collection of inputs 
known as test cases is one of the most practical ways to find faults in it. Redundant test cases are useless. 
Besides, they increase the testing effort, testing costs, and testing time. Testing involves spending a lot of 
time on a lot of unreliable test cases. An excessive cost is wasted when redundant or outdated tests are run 
that do not increase fault detection capabilities. In this study, the objective is to propose an enhanced approach 
for test suite reduction to enhance the regression testing process. This is achieved by reducing the time spent 
in testing by finding a subset of test cases that fulfill the requirements and discovering most of the faults 
already present. This subset is known as a reduced test suite. A test suite is a set of tests that enables testers 
to run and report the status of the test execution. Therefore, a clustering-based approach is proposed to 
considerably minimize the test suite. The proposed approach applies the K-means++ clustering algorithm. 
Utilizing K-mean++, test cases are grouped into groups depending on their degree of similarity. Then, a 
multi-objective genetic algorithm is applied to reduce the test suite in each cluster based on code coverage. 
For any unsupervised clustering algorithm, determining the optimal number of clusters into which the data 
can be divided is a crucial step. Therefore, two methods were experimented to determine the optimal k: elbow 
method and silhouette analysis method. The proposed enhanced approach outperformed previously published 
approaches in terms of test suite reduction and code coverage rate.   
Keywords: Regression Testing, Clustering, Genetic Algorithm, Test Suite Reduction 
 
1. INTRODUCTION 

 

Software quality [1][2] is a major challenge 
that all software developers strive to achieve. Due 
to the prevalence of software and how much daily 
impact it has on our lives, it is currently receiving a 
lot of attention. The most crucial step in improving 
and raising the quality of software is software 
testing. Therefore, it is vital, based on specific 
coverage criteria, to produce various test cases. 
Testing consumes almost half of the total cost of 
software development [3].  

 
During each change to the software source code, 
programmers can introduce new software defects 
that alter some expected system behavior or remove 
some feature that was intended to be available. As 
a result, after each software modification, the 
system should be checked again to confirm that it is 
functioning as intended. This is known as 

regression testing. Although regression testing [4] 
is an essential activity, running large test suites can 
be costly. A test suite is a set of test cases designed 
for verifying that a software program has a certain 
set of behaviors. New test cases must be appended 
to the present test suite whenever features are 
changed, or bugs are resolved. However, given that 
current test cases must be modified when bugs are 
fixed, previous test cases can be useless. When 
adding new features, new test cases must be added, 
and when removing old features, old test cases must 
be removed. Besides, new test cases must be 
introduced to ensure that the removal of old features 
does not damage the unchanged features. If test 
suites expand in size as software evolves, testing 
becomes more expensive to run whole test suites. 
Additionally, some previous test cases will be 
redundant, outdated, or unnecessary. In the 
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software, test case duplication will be possible. The 
repeating of data between one test case and another 
is referred to as redundancy. As a result, it is evident 
that a good test suite structure is one of the main 
aspects of software testing that can save a lot of time 
from performing redundant or unneeded test cases. 
This repeated data is not noticeable enough to 
capture unless advanced techniques such as data 
mining [5] techniques are utilized.  

 
The following three strategies can be used to cope 
with large test suite and reduce its size: reduction, 
selection, and prioritizing [6][7]. Here is the 
difference between the three strategies: 
 
Test case reduction [8][9]: 
It chooses a selection of tests that are not duplicate 
but still have a high degree of fault detection. The 
reduction may be permanent (in which case the 
redundant tests are permanently eliminated) or 
temporary. Test case reduction is not aware of the 
program modifications being made at any particular 
time. 
 
Test case selection [10]: 
As opposed to test case reduction, test case 
selection is modification aware. Strategies for 
selecting test cases try to choose the specific group 
of test cases that examined the modified code at a 
specific time. 
 
Test case prioritization [11][12][13]: 
It aims to provide a sequence of tests that enables 
earlier defect discovery. Programmers must wait a 
long time to verify that the software modifications 
are accurate if a particular test suite takes a long 
time to run. In order to be much faster and give the 
programmers valuable feedback, a prioritizing 
technique will run initially the tests that are more 
likely to find a bug than others. 
 
When test suites are excessively large, those three 
strategies can be used, and they are frequently used 
in combination. Applying a selection or prioritizing 
strategy directly may not be effective since it might 
take too long if all tests used as input to these two 
techniques are successful. Therefore, a reduction 
could be carried out before using these strategies. In 
this study, the objective is to propose an enhanced 
approach for test suite reduction to enhance the 
regression testing process. The proposed approach 
incorporates optimization techniques, a clustering 
technique, and a genetic algorithm. It applies a K-
means++ [14] clustering algorithm to group test 
cases based on how similar they are. To get the best 

performance for the K-means++ technique, the 
optimal number of clusters k that based on it will 
divide the test cases should be determined first 
before applying the K-means++. Therefore, the first 
step of the proposed approach is to determine the 
optimal k. The silhouette analysis and elbow 
methods were experimented. Following 
determining the optimal k, the K -means++ is 
applied. Then, a multi-objective genetic algorithm 
is applied to decrease the number of test cases in 
each cluster. 
The paper is organized as follows:  Section 2 
provides a review of the related work. Then, section 
3 provides an explanation of the proposed approach. 
The used benchmark programs and the 
experimental results are explained in section 4 and 
finally, section 5 states the conclusion and offers the 
future work. 
 
2. RELATED WORK 
 

Reducing the number of test suites has been a 
major issue, and many researchers proposed 
different ways to handle the size of the test suite. In 
2021, Chunyan Xia, YanZhang, and Zhanwei Hui 
[15] proposed an evolutionary multi-objective 
optimization algorithm for cluster test suite 
reduction. To combine related test cases into one 
cluster, a K-means method was specifically applied. 
Then, based on the clustering outcomes, the 
evolutionary algorithm is utilized to eliminate 
redundant test cases. Then, coverage, fault and cost 
related criteria are used to represent optimization 
objects. The experimental analysis demonstrates 
that the suggested method benefits from eliminating 
unnecessary test cases and identifying failures 
while maintaining testing effectiveness. The 
experiments also demonstrate that the technique has 
the best test case code coverage rate and missing 
failure rate. 

 
On the basis of integer linear programming, a novel 
formulation of the multi-criteria test suite 
minimization issue was proposed [16] by O. Rsan 
Zener and Hasan Sözer in 2020. Deficiencies in the 
most recent formulations that could produce less 
than ideal results have been recognized. They 
proved this using opposing instances, 
demonstrating how their theory may correct the 
flaws found. In terms of the same objective function 
and set of factors, such as statement coverage, the 
results demonstrate that their linear formulation 
produces superior results. Additionally, it benefits 
from better time performance in comparison to non-
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linear formulations, increasing its scalability for 
increasingly challenging issues. 
 
A machine learning-based strategy for test suite 
reduction was introduced [17] in 2020 by 
Chetouane, et al. This strategy is based on the data 
clustering method K-means. With the aid of a 
binary search algorithm, it groups comparable test 
cases into clusters. Then, in order to create the 
resultant reduced test suite, a representative test 
case is chosen from each cluster. They evaluated 
their method on many example programs’ test 
suites. Their objective was to gauge the 
effectiveness of the resultant test suite. After a 
preliminary assessment, the findings have shown 
promise, as the suggested K-mred algorithm 
guarantees to keep a fixed coverage level for a 
specifically chosen coverage metric despite 
reducing the initial test suite by an average of 
95.9%. 
 
 In 2016, Neha Chaudhary and O.P. Sangwan [18] 
suggested a new method for condensing the number 
of tests in a suite that takes into account two criteria: 
the event weight and test case defect count. They 
evaluated their results for two separate applications 
and found that the size of their test suites was 
reduced by 20% for each application. 
 
Handling large test suites is one of the critical topics 
nowadays in the testing field. In all of these papers, 
various methods were proposed to handle the large 
test suits to eliminate redundant test cases and 
obtain a reduced test suite while maintaining code 
coverage and reducing time to improve the 
efficiency of the regression test. Therefore, this 
paper provides an improved approach consisting of 
clustering and genetic algorithms to gain the best 
reduced test suite to be executed. 
 
3. PROPOSED APPROACH 
 

One of the critical issues related to regression 
testing is the executed test suite size [7]. Therefore, 
the objective of this research is to propose an 
approach that generates a subset of test cases with 
high code coverage and find most of the faults that 

are already present in order to shorten the time spent 
testing. The proposed approach applies reduction 
techniques to handle the size of the test suite using 
clustering technique, and a genetic algorithm. The 
framework of the proposed approach is shown in 
figure 1. 
 
The Proposed approach applies a K-means++ 
clustering algorithm to divide test cases into groups 
according to how similar they are. K-means++ were 
used to overcome the drawback of k-means which 
is it is dependent on initialization of centroid. 
Before applying the K-means++, the optimal 
number of clusters k should be determined first to 
achieve the best performance of the K-means++ 
technique. Therefore, the first step is to determine 
the optimal k. Elbow and silhouette analysis 
methods are applied to identify the optimal k.  
 
The elbow approach [19][20] depicts the cost 
function value created using a range of k values. 
The average of the squared distances from the 
cluster centroids is used to calculate distortion. The 
Euclidean distance is utilized. However, as k rises, 
the improvements in average distortion decrease. 
The elbow, or value of k at which improvement in 
distortion decreases the most, is the point at which 
further clustering of the data should cease. The chart 
should simulate an arm, with the "elbow" on the 
arm representing the value of the optimal k as 
shown in figure 2. The basic steps of the elbow 
method are as follows: 
 

1. Select a set of values of k. 
2. Run various K-means iterations, 

increasing k in each iteration, and 
determine the average distances from all 
data points to the centroid. 

3. Plot the points. Then, look for the 
"Elbow"—the location where the average 
distance from the centroid abruptly 
decreases. 

 
 

 

Figure 1 The Framework of the Proposed Approach for Test Suite Reduction 
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Figure 2 The Elbow Method using Distortion. 

 
The silhouette coefficient [20][21] quantifies how 
similar a data point is within a cluster to other 
clusters. It measures how well a data point fits into 
the cluster to which it has been assigned using two 
criteria: 
 

1. How near the data point is to the cluster's 
other points. 

2. The distance between the data point and 
points in other clusters. 

The range of silhouette coefficients is from -1 to 1. 
If the silhouette coefficient is close to one, this 
means that compared to nearby clusters, the sample 
is far away. If the silhouette coefficient is zero, this 
means that the sample is on or near the decision 
boundary between two adjacent clusters. If the 
silhouette coefficient is less than zero, the samples 
can be outliers or assigned to the incorrect cluster. 
The following equation is used to determine the 
silhouette coefficient for a specific data point: 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
 

(1) 

where S(i) stands for the data point's silhouette 
coefficient, a(i) is the average distance between 
each data point in the cluster to which i belongs, and 
b(i) is the average distance between i and every 
cluster to which i does not belong. 
The basic steps of silhouette method are as follows: 

1. Run various values of k (for example from 
1 to 10) 

2. Determine the average silhouette for each 
k. 

3. Plot the graph between k and average 
silhouette as shown in figure 3. 

4. Take maximum value for silhouette score. 
 

 
Figure 3 Silhouette Analysis for Optimal k. 

The second step is to run K-means++ algorithm to 
group the test cases based on the similarity between 
them. The drawback of K-means is that the centroid 
point must be defined by the user. When dealing 
with test case clustering, this becomes much more 
crucial because every center point is expressed by a 
test case, and determining the distance between test 
cases is not a simple operation. A K-means++ [14] 
was used to solve this issue and identify a decent 
initial center point. While K-means++ has never 
been used to cluster test cases before, this study uses 
it to find the ideal seed for first cluster centers. 

The basic steps of K-means++ are as follows: 
 

1. Select the first centroid randomly. 
2. For each point calculate distance from the 

point to the cluster center. 
3. Select the point that has maximum 

distance from the nearest centroid as a new 
centroid. 

4. Repeat step 2 and 3 until reach the right 
number of clusters. 

 
Finally, a non-dominated sorting genetic algorithm 
(NSGA-II) [15] is applied to reduce the size of the 
test suite.  For the purpose of resolving problems 
involving multiple objectives in optimization, 
NSGA-II is an effective Genetic Algorithm-based 
(GA) decision space exploration engine. The multi-
objective optimization (MOO) [22] refers to finding 
the ideal solution values for many desired goals. 
This includes more than one goal function that 
needs to be minimized or maximized. A user is 
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never satisfied by finding a single solution [23] 
utilizing a single criterion for the optimization 
problems because there are several objectives 
involved. Pareto optimal solutions are a group of 
best-case scenarios that result from the existence of 
competing objectives.   
In the NSGA-II [15] process, a starting population 
Pt of size N is first established. A new population 
Qt is established after the population Pt has 
completed all crossover and mutation processes. 
After then, the population Rt, which is formed by 
combining the populations Pt and Qt, is subjected 
to the non-dominated sorting process. The Rt 
population is then separated into distinct fronts 
according to the degree of non-dominance. To 
establish the Pt+1 population, choose N members 

from Rt in the next step. Only N members are 
chosen for Pt+1 from the first front's least crowded 
zone if the size of the first front is greater than or 
equal to N.  On the other hand, the members of the 
first front are instantly transferred to the subsequent 
generation if the size of the first front is smaller than 
N, and the remaining members are removed from 
the second front's least crowded zone and added to 
Pt+1. If Pt+1's size is still less than N after the first 
front, the process is repeated until Pt+1's size 
reaches N. The populations Pt+2, Pt+3, ... are 
formed for successive generations using the same 
procedure up until the stopping criteria are met. The 
operation schema of NSGA-II is described in figure 
4. The proposed approach Pseudocode is shown in 
algorithm 1. 

 
 
 
 
 

Figure 4 Operation Schema of NSGA-II. 
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4. EXPERIMENTS AND RESULTS 

 

The aim of the experiments is to evaluate the 
proposed approach compared to previously 
published approaches through different programs.  
 
4.1 Experiment Setup 

 
Experiments were conducted on a Windows 10 

Pro with a 3.00GHz Intel® Core (TM) i7-9700 
processor, 16.0 GB of RAM. The proposed 
approach consists of three techniques silhouette 

Algorithm 1: Proposed Approach 

Input: test suite to be reduced 

1: Determine the optimal k that represents the number of groups the test suite will be divided into 

2: Selecting random the first centroid 

3: repeat 

4:  for each test case in test suite do 

5:  Calculate the distance between test cases and centroids to assign each test case to the 
nearest cluster 

6:  Select the point having maximum distance from the nearest centroid is selected to be 
the next centroid 

7:  end for 

8: until reach the number of optimal k 

9: for each cluster do 

10:  The population of chromosomes is initially initialized by the random generator using a binary 
value 

11:  repeat 

12:  for each test suite do 

13:  Compute the fitness value 

14:  end for 

15:  Apply non-dominated sorting and calculating crowding distance to get the new parent 
generation 

16:  Store a test suite if it has a fitness value that is greater than or equal to the fitness 
value of the entire test suite 

17:  Determine the new children generation by using selection, mutation, and crossover 

18:  Combine parents and children to get the next generation 

19:  until number of iterations is completed 

20: end for 

21: Combine the stored test suites to form the final test suite that will be executed 

Output: reduced test suite 
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analysis method, K-means++ and NSGA-II. 
Algorithms implemented using MATLAB 
(R2021a_v9.10.0). Seven Siemens programs that 
were originally developed by Tom Ostrand and 
colleagues at Siemens Corporate Research [24] as 
well as one European Space Agency program were 
subjected to experiments. Regression testing 
frequently uses these benchmark programs as 
comparisons. Software-artifact Infrastructure 
Repository (SIR) is where all of these programs and 
test suites were found [25].  SIR's SUT (System 
Under Test) in their study takes into account that the 
fault-embedded versions of the programs, test 
suites, and test cases have been precisely produced 
to enable researchers to only develop testing 
methodologies rather than test programs and test 
cases. 
Table 1 summarizes the programs’ details, with 
columns 1 to 7 that are described as follows: 
 
1. The "Program name" is the name of the 

software.  
2. The "Program Description" is a description of 

the software. 
3. The “Original Versions” is the count of original 

versions of the software. The original version 
is the one without fault.  

4. The “Faulted Versions” is the count of software 
versions with faults.  

5. The “Lines of Code” is the sum of the number 
of lines in the text of the program's source code. 

6. The “Test Cases” is the total count of test cases 
used to examine the software. 

7. The “Fault” is the count of faults injected in the 
program for the Siemens programs, there is 
only one fault in each version of the SUT that 
is defective, making the total number of faults 
equal to the number of defective versions. 

 
4.2  Research Questions  
 

The following research questions are 
investigated to evaluate the proposed approach: 

 
RQ1 Which method is effective to determine the 
optimal k, elbow method or silhouette analysis 
method? 
RQ2 How effective is the proposed approach for 
minimizing the test suite when compared to 
previously published approaches? 
RQ3 In comparison to other approaches, how 
effective is the minimized test suite generated by 
the proposed approach in terms of code coverage? 
RQ4 How effective is the proposed approach in 
comparison to other approaches in terms of 
execution time? 
 

 
 

Table 1 Programs Description. 
 

 

4.3 Evaluation Metrics 
 

To evaluate the proposed approach, multiple 
measures are used to assess the effectiveness of the 

approach. The measures are reduction rate, code 
coverage, and execution time. 
 

Program 
Name 

Program Description Original 
Versions 

Faulted 
Versions 

Lines of 
Code 

Test 
Cases 

Fault 

totinfo Information Measure 1 23 565 1052 23 

tcas Altitude Separation 1 41 173 1608 41 

schedule Priority Scheduler 1 9 412 2650 9 

schedule2 Priority Scheduler 1 10 374 2710 10 

print_tokens Lexical analyzer 1 7 726 4130 7 

print_tokens2 Lexical analyzer 1 10 570 4115 10 

replace Pattern Replace 1 32 564 5542 32 

space European Space Agency 
Program 

1 35 6199 13585 35 
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Reduced test suite size as a percentage of the 
original test suite size is used to compute the test 
suite reduction rate using the following equation: 
 
 

𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 =
|𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆| − |𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆𝑹𝒆𝒅|

|𝑻𝒆𝒔𝒕𝑺𝒖𝒊𝒕𝒆|
× 𝟏𝟎𝟎% 

( 2 ) 

where TestSuite is the original test suite's number 
and TestSuiteRed is the scaled-down test suite's 
number. 
 
The percentage of statements covered to test cases 
that actually run is known as the average code 
coverage. It is calculated using the following 
equation: 
 

𝑻𝒆𝒔𝒕𝑪𝒂𝒔𝒆𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝑪𝒐𝒅𝒆 =
|𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆𝒄𝒐𝒅𝒆|

|𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝒄𝒂𝒔𝒆|
× 𝟏𝟎𝟎% 

( 3 ) 

where the number of executed test cases is 
represented by ExecutionCase, and how many 
codes the executed test cases covered is represented 
by CoverageCode. 
 
The execution time of test suite reduction is taken 
into account, which is mainly divided into two 
components: clustering time and evaluation time. It 
is computed using the following equation: 
 

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆 = 𝑶𝒑𝒕𝒊𝒎𝒂𝒍𝑲𝑻𝒊𝒎𝒆
+ 𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝑻𝒊𝒎𝒆
+ 𝑬𝒗𝒂𝒍𝒖𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆 

( 4 ) 

where OptimalKTime represents the time of finding 
optimal k, ClusterTime defines the amount of time 
needed to cluster the test suite, and EvolutionTime 
is the amount of time needed to evolve the test suite. 
 
4.4 Results 
 

 
The objective of the first experiment was to 

answer the first research question to find which 
method is effective to determine optimal k, elbow 
method or silhouette analysis method.  
 
 RQ1 Which method is effective to determine 

the optimal k, elbow method or silhouette 
analysis method? 

The experiments were held on the eight programs to 
compare between two popular methods to get the 

optimal k that will be used after that in K-means++ 
to divide the clusters based on it: elbow and 
silhouette analysis methods. Therefore, the 
objective was to determine which one of the two 
methods is more effective to be used in the second 
experiment in terms of reduction rate and code 
coverage rate.  Each tested program is run 30 times 
to confirm the dependability of the results. The 
average value of the experimental data is utilized as 
the experimental result. 
Test suite reduction and code coverage rates were 
calculated for the two methods with different 
programs to take decision on which method will be 
more effective to be used in the proposed approach. 
The results are presented in Table 2 and 3. For tcas, 
schedule, print_tokens 2, and replace programs, 
both methods achieved the same results in terms of 
test suite reduction and code coverage rate. They 
achieved test suite reduction rates of 47.8%, 51.1%, 
45.7%, and 52.8%, respectively. They achieved 
code coverage rates of 23.8%, 32.6%, 25.8%, and 
23.4%, respectively. For totinfo, schedule 2, 
print_tokens, and space programs, the Silhouette 
method achieved higher results than the elbow 
method in terms of test suite reduction and code 
coverage rate. For test suite reduction rate, totinfo 
achieved 39.5% using the elbow method and 40.2% 
using the silhouette method, schedule 2 achieved 
52.7% using the elbow method and 54.4% using the 
silhouette method, print_tokens achieved 46.8% 
using the elbow method and 47.9% using silhouette 
method, space achieved 41.9% using elbow method 
and 42.5% using silhouette method. For test suite 
code coverage, totinfo achieved 87.6% using the 
elbow method and 88.5% using the silhouette 
method, schedule 2 achieved 28.7% using the 
elbow method and 29.9% using the silhouette 
method, print_tokens achieved 33.4% using the 
elbow method and 34.3% using silhouette method, 
space achieved 75.5% using elbow method and 
76.2% using silhouette method. As shown in figure 
5, the Silhouette method shows higher test suite 
reduction than the elbow method in totinfo, 
schedule 2, print_tokens, and space programs in 
terms of test suite reduction rate. Figure 6 shows a 
comparison between the elbow method and 
silhouette method in terms of code coverage rate. 
As shown in figure 6, the Silhouette method 
achieved better test suite code coverage than the 
elbow method in totinfo, schedule 2, print_tokens, 
and space programs in terms of code coverage. 
Therefore, the silhouette analysis method can 
effectively decrease the size of the test suite and 
present high code coverage.  
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Table 2 Comparison between Elbow and Silhouette Methods Based on Test Suite Reduction. 
Program name/ SUT Test Suite Reduction 

Elbow Method Silhouette Method 
totinfo 39.5% 40.2% 
tcas 47.8% 47.8% 

schedule 51.1% 51.1% 
schedule2 52.7% 54.4% 

print_tokens 46.8% 47.9% 
Print_tokens2 45.7% 45.7% 

replace 52.8% 52.8% 
space 41.9% 42.5% 

 

 

 

 

Figure 5 Elbow Method vs Silhouette Method based on 
Test Suite Reduction. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Elbow Method vs Silhouette Method based on 
Test Suite Code Coverage. 

 
The objective of the second experiment was to 
answer the research questions about the 
effectiveness of the proposed approach when 
compared to previously published approaches in 
terms of minimizing the test suite, code coverage, 
and execution time. The proposed approach was 
compared with existing approaches that have the 
same objective to reduce the test suite that will be 
executed in the regression test. Literature [15] 
proposed an evolutionary MOO algorithm for 
cluster test suite reduction (TSR-CE), TSR-CE 
employs a multi-objective genetic algorithm for test 
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suite reduction and the K-means algorithm for test 
suite clustering. A multi-objective test suite 
reduction technique (TSR-LF) based on a linear 
formula was proposed in the literature [16]. 
Statement coverage, error detection abilities, and 
test execution time are among the optimization 
goals. A test suite reduction method (TSR-FK) 
based on fuzzy K-means was published in the 
literature [26]. This algorithm's goal is to minimize 
the number of test cases that must be removed while 
still preserving the coverage and error detection rate 

of the reduced test suite. Besides the traditional 
multi-objective evolution method of test suite 
reduction (TSR-T) proposed in the literature [15]. 
The four test suite reduction methods listed above 
(TSR-CE, TSR-LF, TSR-FK, and TSR-T) are 
appropriate for comparison with the suggested 
approach, as they are capable of representing the 
state-of-the-art and have implemented approaches 
that are similar to our method. The experiment was 
held on the eight programs. The results are 
presented in Table 4,5 and 6.  

 
Table 3 Comparison between Elbow and Silhouette Methods Based on Test Suite Code Coverage. 

Program name/ SUT Test Suite Code Coverage 
Elbow Method Silhouette Method 

totinfo 87.6% 88.5% 
tcas 23.8% 23.8% 

schedule 32.6% 32.6% 
schedule2 28.7% 29.9% 

print_tokens 33.4% 34.3% 
Print_tokens2 25.8% 25.8% 

replace 23.4% 23.4% 
space 75.5% 76.2% 

 

Table 4 Comparison between the Proposed Approach, TSR-CE [15], TSR-LF[16], TSR-FK[26], and TSR-T[15] based 
on Test Suite Reduction.  

Program Name/ SUT Test Suite Reduction 
Proposed Approach TSR-CE [15] TSR-LF [16] TSR-FK [26] TSR-T [15] 

totinfo 40.2% 38.1% 30.3% 31.8% 25.6% 
tcas 47.8% 46.5% 39.5% 43.7% 28.7% 

schedule 51.1% 48.3% 42.6% 39.2% 36.9% 
schedule2 54.4% 51.6% 43.7% 44.4% 40.4% 

print_tokens 47.9% 45.3% 40.6% 45.6% 37.2% 
Print_tokens2 45.7% 43.1% 41.6% 36.6% 38.4% 

replace 52.8% 49.8% 43.9% 46.6% 35.8% 
space 42.5% 39.1% 37% 38.9% 31.8% 
means 47.82% 46.24% 41.27% 42.14% 35.6% 

 
 
Table 5 Comparison between the Proposed Approach, TSR-CE [15], TSR-LF[16], TSR-FK[26], and TSR-T[15] based 

on Test Suite Code Coverage. 

Program Name/ SUT Test Suite Code Coverage 
Proposed Approach TSR-CE [15] TSR-LF [16] TSR-FK [26] TSR-T [15] 

totinfo 88.5% 86.7% 77.08% 78.80% 72.16% 
tcas 23.8% 20.12% 17.78% 19.14% 15.10% 

schedule 32.6% 30.07% 27.12% 25.57% 24.64% 
schedule2 29.9% 28.51% 24.52% 24.80% 23.17% 

print_tokens 34.3% 32.15% 29.58% 24.64% 27.99% 
Print_tokens2 25.8% 24.34% 23.72% 21.85% 22.49% 

replace 23.4% 20.27% 18.16% 19.08% 15.84% 
space 76.2% 74.98% 72.41% 74.68% 66.91% 
means 41.81% 39.64% 36.30% 36.07% 33.54% 
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Table 6 Comparison between the proposed Approach, TSR-CE[15], TSR-LF[16], TSR-FK[26] and TSR-T[15] based 
on Execution Time. 

Program Name/ SUT Execution Time (seconds) 
Proposed Approach TSR-CE [15] TSR-LF [16] TSR-FK [26] TSR-T [15] 

totinfo 6.2 6.4 6.1 6.3 6.8 
tcas 14.1 13.5 14.4 13.1 15.2 

schedule 12.5 13.1 13.7 12.8 14.6 
schedule2 15.6 15.7 16.4 15.9 17.5 

print_tokens 145.6 145.2 150.5 140.7 161.3 
Print_tokens2 134.9 133.6 141.0 135.8 152.4 

replace 306.3 304.4 323.6 315.3 331.9 
space 1385.7 1402.1 1493.3 1353.2 1581.7 
means 252.61 254.25 269.88 249.14 285.18 

 
 RQ2 How effective is the proposed approach 

for minimizing the test suite when compared to 
previously published approaches? 

The test suite reduction rate was measured for all 
approaches with different programs to measure the 
effectiveness of the proposed approach to reduce 
the test suite. The results are presented in Table 4. 
In the previously published approaches, TSR-CE 
recorded the highest average test suite reduction 
rate with a value of 46.24% but the proposed 
approach recorded 47.82%, so the proposed 
approach achieved better results compared to other 
approaches. According to the results, the proposed 
approach shows higher test suite reduction than 
other approaches in all the SUT as shown in figure 
7 as boxplot based on the following five parameters: 
minimum, median, maximum, first quartile Q1, and 
third quartile Q3. 
 
 RQ3 In comparison to other approaches, how 

effective is the minimized test suite generated 
by the proposed approach in terms of code 
coverage? 

To measure the effectiveness of the minimized test 
suite in terms of code coverage, the code coverage 
was calculated for all approaches using different 
programs. The test suite code coverage was 
calculated for all approaches with different 
programs to measure the efficiency of the 
minimized test suite in code coverage. The average 
number of lines of code that each test case may 
cover is referred to as its average code coverage. 
The higher the score, the more code lines on 
average are covered by each test case, indicating 
that the algorithm is more efficient.  
The results are presented in Table 5. In the 
previously published approaches, TSR-CE 
recorded the highest average test suite code 
coverage rate with a value of 39.64% but the 
proposed approach recorded 41.81%, so the 
proposed approach achieved better results 
compared to other approaches. From the results, the 
proposed approach shows better test suite code 

coverage in all SUT as shown in figure 8 as boxplot 
based on the same five parameters mentioned 
before. So, as a conclusion, the proposed approach 
achieved high test suite reduction and high code 
coverage rate with the eight programs totinfo, tcas, 
schedule, schedule 2, print_tokens, print_tokens 2, 
replace, and space. Therefore, the proposed 
approach can effectively reduce the test suite size 
and present high code coverage. 
 
 RQ4 How effective is the proposed approach in 

comparison to other approaches in terms of 
execution time? 

The execution time was calculated for the proposed 
approach, TSR-CE, TSR-LF, TSR-FK, and TSR-T 
for all programs to evaluate the efficiency of the 
minimized test suite in execution time. The results 
are presented in Table 6. The TSR-FK has the 
quickest average execution time. The proposed 
approach method takes just 3.47 seconds longer on 
average to execute. Execution times can be noticed 
to be a little different. In other words, the proposed 
approach sometimes takes slightly more execution 
time but achieved high test suite reduction and code 
coverage rates figure 9 shows the results for the five 
approaches as boxplot based on the same five 
parameters mentioned before.  
 
The proposed approach is experimentally compared 
to four test suite reduction approaches by applying 
them on the eight programs from the SIR repository 
to answer the four mentioned research questions. 
Concluded from the results: (1) the silhouette 
analysis method is more effective to identify the 
optimal k than elbow method. (2) The proposed 
approach is effective for minimizing the test suite 
when compared to previously published 
approaches. (3) The minimized test suite generated 
by the proposed approach in terms of code coverage 
is more effective than previously published 
approaches. (4) the proposed approach sometimes 
takes slightly more execution time but achieved 
high test suite reduction and code coverage.  
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Therefore, the proposed approach outperformed 
other approaches and is effective in reducing the 
test suite while maintaining high code coverage. 
However, the limitation of the proposed approach 

and the previously published approaches is that all 
can produce a small representative set of test cases 
but with less fault detection capability. 

 
 

Figure 7 Proposed Approach vs TSR-CE vs TSR-LF vs TSR-FK vs TSR-T based on Test Suite Reduction. 
 

Figure 8 Proposed Approach vs TSR-CE vs TSR-LF vs TSR-FK vs TSR-T based on Test Suite Code Coverage. 
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Figure 9 Proposed Approach vs TSR-CE vs TSR-LF vs TSR-FK vs TSR-T based on Execution Time.

5. CONCLUSION AND FUTURE WORK 
 
Modern software systems are constantly evolving in 
order to improve the functionality and 
maintainability of the software and to correct its 
defects. To verify that software updates do not 
cause new regression issues, regression testing has 
been frequently employed. Although necessary, 
regression testing can be costly for large test suites. 
To verify changes made to software, new test cases 
are created. The size of the existing test suites is 
then increased by the addition of these additional 
cases. As a result, it gets highly expensive to run the 
full test suite for every update, and some of the 
previous test cases eventually become redundant, 
outdated, or unnecessary. Test suites are getting 
more and larger, thus optimization is necessary to 
make them smaller and run faster. In this study, the 
objective is to propose an enhanced approach for 
test suite reduction to enhance the regression testing 
process. Regression test suites are minimized using 
the K-means++ clustering algorithm to group test 
cases depending on their degree of similarity into 
clusters. Then, a multi-objective genetic algorithm 
is applied to reduce the test suite in each cluster 
based on code coverage. Determining the optimal 
number of clusters into which the data can be 
divided is a crucial step for any unsupervised 
clustering algorithm. Therefore, two methods were 

experimented to find out the optimal k: elbow 
method and silhouette analysis method. 
Experiments were performed on eight programs: 
totinfo, tcas, schedule, schedule 2, print_tokens, 
print_tokens 2, replace, and space. For totinfo, 
schedule 2, print_tokens, and space programs. The 
Silhouette method achieved higher results than the 
elbow method in terms of test suite reduction and 
code coverage rate. Besides, experiments were held 
using the eight programs to compare the proposed 
approach and four previously published 
approaches. In terms of the average test suite 
reduction rate, the proposed approach achieved 
47.82%. However, the highest value achieved by 
previously published approaches is 46.24%. In 
terms of average test suite code coverage, the 
proposed approach achieved 41.81%. However, the 
highest value achieved by previously published 
approaches is 39.64%. Therefore, according to the 
results, the proposed approach outperformed other 
approaches and is effective in reducing the test suite 
while maintaining high code coverage.  In the 
future, the proposed approach will be extended and 
experimented on test suites with module 
dependencies and in a parallel automation 
execution environment will be conducted.  
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