
Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3769

REAL-TIME RAY TRACING REFLECTIONS AND SHADOWS
IMPLEMENTATION USING DIRECTX RAYTRACING

YOUNGSIK KIM

Dept. of Game and Multimedia Engineering, Tech University of Korea, Republic of Korea

E-mail: kys@tukorea.ac.kr (corresponding author)

ABSTRACT

In traditional 3D games, techniques such as environment mapping and shadow mapping were used to simulate
reflections and shadows due to the high computational load of ray tracing. However, recent advancements in
technology have made real-time ray tracing possible, allowing for higher quality reflections and shadows
compared to traditional methods. This paper proposes DirectX Raytracing (DXR) to achieve high-quality
real-time reflections and shadows. To reduce the computational load of real-time ray tracing, we use the G-
buffer from deferred rendering to compute only the information required for shadows and reflections, which
is then combined to generate the final color. This paper verifies the effectiveness of our approach by
comparing the performance of a DXR-based program with images produced using Unreal Engine 4's ray
tracing capabilities. The results show that the proposed method provides high-quality graphics while
minimizing computational load.

Keywords: Reflection, Shadow, Real-time Raytracing, DirectX Raytracing, Performance Evaluation

1. INTRODUCTION

With Recent advancements in computer
hardware, particularly in graphics accelerators, have
enabled the implementation of higher quality game
graphics. Reflection and shadows are essential
components for achieving high-quality game
graphics, and various techniques have emerged to
implement these elements in games. While ray
tracing, which involves tracing the movement of
light, is a simple and powerful way to implement
reflections and shadows, the computational load of
ray tracing is currently too high for real-time
implementation of these effects using GPU
hardware. As a result, other alternative methods have
been used to implement reflections and shadows.

In [1], researchers describe using shadow
maps to implement real-time shadows. Shadow maps
are textures that store information about which parts
of a scene are in shadow and which parts are
illuminated. By using shadow maps, the
computational cost of shadow generation is greatly
reduced, making it possible to implement real-time
shadows in games. In [2], researchers describe using
environment maps to implement real-time
reflections in a rendering environment. Environment
maps are images that capture the surrounding
environment from a single viewpoint, and they can
be used to simulate the reflection of light off of
surfaces. This technique allows for the creation of
realistic reflections in real-time rendering

environments. In [3], researchers describe using
screen-space reflections to implement real-time
reflections. Screen-space reflections involve
rendering the scene from the perspective of the
camera, and then using that image to determine how
light would reflect off of surfaces in the scene. This
technique is particularly useful for reflections of
dynamic objects, such as characters, as it allows for
more accurate reflections in real-time rendering
environments.

Recent attempts to implement high-quality
game graphics have increased as computer
performance, including graphic accelerators, has
improved. In particular, reflections and shadows are
essential elements in implementing high-quality
game graphics, and various techniques have been
introduced to implement them in games. Although
ray tracing is a simple and powerful method to
implement shadows and reflections by tracing the
movement of light, real-time implementation of ray
tracing for shadows and reflections using existing
GPU hardware is challenging due to the high
computational load involved. Therefore, several
other techniques have been employed to implement
shadows and reflections using methods other than
ray tracing. However, attempts to apply more
straightforward yet powerful real-time ray tracing in
rendering have continued. Nvidia has demonstrated
improved ray tracing performance by releasing
graphics cards with dedicated hardware for ray
tracing [4]. In addition, graphics APIs such as

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3770

DirectX and Vulkan from MICROSOFT have added
APIs for ray tracing, and multiple support for real-
time ray tracing has been added.

The paper [5] discusses a hybrid rendering
approach that combines rasterization and ray tracing
to achieve real-time performance with high-quality
visuals. It proposes a two-step process where
geometry is first rendered using traditional
rasterization techniques, followed by ray tracing for
the accurate calculation of shadows, reflections, and
global illumination. The authors in [5] also discuss
various optimization techniques to improve
performance, such as dynamic geometry tessellation
and light culling. The paper [5] provides a
comprehensive overview of the hybrid rendering
approach and demonstrates its effectiveness in real-
world applications such as video game development.

The paper [6] presents a comprehensive
overview of the deferred rendering technique and its
use in modern real-time graphics pipelines. The
paper [6] explains the concept of deferred rendering,
its advantages, and limitations, and compares it to
other rendering techniques. It also covers various
optimization strategies and implementation details
such as G-buffer organization, lighting models, and
antialiasing methods. The paper [6] concludes with a
discussion of the challenges and future directions for
deferred rendering in the context of emerging
graphics hardware and applications.

The article [7] proposes a technique for
deferred shading that allows for rendering multiple
light sources with a single pass. The technique
involves rendering the scene geometry into multiple
render targets and storing additional data about each
pixel's depth, normals, and material properties.
These multiple render targets are then used in a
subsequent pass to compute lighting calculations for
each pixel, improving performance and allowing for
more realistic lighting effects. The article [7]
includes code examples and implementation details
for the proposed technique.

The paper [8] discusses the implementation
of cinematic rendering using real-time ray tracing
and denoising in Unreal Engine 4. The authors in [8]
describe how they leveraged the DXR API to enable
real-time ray tracing in the engine, and discuss their
approach to denoising to improve the visual quality
of the rendered images. The authors in [8] also
discuss the challenges they faced in implementing
these techniques, including performance limitations
and the need for specialized hardware. Finally, they
present several examples of cinematic rendering
using these techniques to demonstrate their

effectiveness in creating high-quality, photorealistic
images.

The paper [9] presents a new acceleration
structure called Ray-Specialized Bounding Volume
Hierarchy (RSBVH) for efficient ray tracing of
complex scenes. The RSBVH structure partitions the
scene into regions that are specific to each ray,
enabling faster traversal of the BVH tree by culling
irrelevant parts of the scene. The authors in [9] also
propose a new scheme for building the RSBVH
structure using hierarchical clustering and iterative
refinement. The results in [9] show that RSBVH
outperforms existing methods for both static and
dynamic scenes.

The paper [10] proposes a method to create
3D scenes from 2D images by combining machine
learning and ray tracing. To achieve this, a new data
structure called Neural Radiance Field (NeRF) is
developed. NeRF is a framework for representing
complex 3D scenes as continuous functions learned
by a neural network. By modeling a scene as a
radiance field, NeRF can estimate the appearance of
any view of the scene by integrating the radiance
along a ray. This allows for highly realistic rendering
of novel views and enables applications such as free-
viewpoint video, 3D scene reconstruction, and
augmented reality. The key challenge in training
NeRF is to optimize the network to represent fine-
scale details of the scene while maintaining a
tractable computational complexity.

The paper [11] proposes a real-time
algorithm to compute ambient occlusion for complex
scenes using spatial hashing. The approach combines
the benefits of ray tracing with the efficiency of
spatial hashing to generate high-quality results
without sacrificing performance. The algorithm is
designed to work on modern hardware, including
GPUs, and is capable of handling dynamic scenes in
real-time. The paper [11] also presents several
optimizations to further improve the performance
and quality of the algorithm, making it suitable for
use in games and other interactive applications.

The paper [12] presents a new ray-tracing
tool, named DELSOL3, which is designed for
simulating heliostat fields used in solar thermal
power plants. DELSOL3 aims to improve the
accuracy and efficiency of heliostat field simulations
by incorporating new algorithms for handling the
complexity of the heliostat field geometry, such as
the introduction of a hierarchical bounding box
structure. The authors in [12] demonstrate the
improved accuracy and performance of DELSOL3

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3771

compared to other ray-tracing tools through a series
of simulations and comparisons.

The paper [13] proposes a differentiable
Monte Carlo ray tracing method using edge
sampling, which allows for the computation of
gradients of ray tracing images, enabling a wide
range of applications such as optimizing the position
of light sources, materials and geometry. By
applying the method to the path tracing and photon
mapping algorithms, the authors demonstrate that
their approach can achieve comparable or even better
results compared to traditional non-differentiable
methods, while offering the flexibility of end-to-end
optimization. The proposed method in [13] is
evaluated on a variety of test scenes and is shown to
be effective in generating high-quality images with
reduced noise.

Unreal Engine 4's ray tracing is a software
implementation that runs on both Nvidia and AMD
GPUs. It uses the CPU to set up acceleration
structures and uses the GPU to trace rays. DirectX
Raytracing (DXR) is a hardware-based ray tracing
solution that runs on compatible GPUs. It has lower
overhead, faster setup times, and can handle more
complex scenes. DXR can also be used with Unreal
Engine 4 to achieve hardware-accelerated ray
tracing.

This paper describes the implementation of
real-time shadows and reflections using DXR, a ray
tracing API for DirectX, along with traditional
rasterization rendering. In Section 2, the paper
provides an overview of various terms and concepts
related to using DXR. In Section 3, the paper
explains the overall rendering process using ray
tracing and the methods for implementing shadows
and reflections with ray tracing. The paper also
describes how the resulting images are combined to
create the final image. Section 4 compares the actual
implementation and performance differences with
the commercial engine Unreal Engine 4, and Section
5 concludes the paper.

2. BACKGROUNDS

2.1 DirectX Raytracing (DXR)

DirectX is a graphics API developed by
Microsoft, which provides APIs suitable for real-
time ray tracing and enables GPU-accelerated ray
tracing. In DXR, an extension of the graphics API
DirectX, a data structure called the acceleration
structure is provided for efficient ray intersection
testing. There are two types of acceleration
structures: the bottom-level acceleration structure,

which represents geometry such as polygons, and the
top-level acceleration structure, which places the
geometry represented by the bottom-level
acceleration structure into the actual scene. Each
acceleration structure is built and managed in an
optimized structure through the DXR API, enabling
fast ray collision detection during the ray tracing
stage.

The bottom-level acceleration structure is a
structure that defines shapes using actual vertices or
parameter equations, and is slow to create and update
but has the advantage of fast collision detection. The
top-level acceleration structure is a structure that
defines which bottom-level acceleration structure an
object uses, which hit group it uses, and where it is
located. It is fast to create and update.

In DXR, the ray generation shader is a
programmable shader stage that allows for the
purposeful generation of rays and the ability to
reflect the results of ray collisions onto textures. This
shader stage provides the flexibility to generate
custom rays to suit specific rendering needs and
enables the creation of dynamic lighting and shadow
effects in real-time rendering applications. By
defining and implementing the ray generation shader
in DXR, developers can harness the power of
hardware acceleration and real-time ray tracing to
achieve stunning visual effects and improved
performance in graphical applications.

The hit shader is a shader stage used in
DXR that allows programming of how the ray should
be processed when it collides with an acceleration
structure. Depending on the type of collision, there
are three types of hit shaders: closest hit shader that
handles the closest collision, any hit shader that
handles all objects hit by the ray, and intersection
shader that handles intersection with boundaries.
Through hit shaders, it is possible to program how
the result of the collision should be reflected in the
final image.

In DXR, a hit group is a group created by
combining hit shaders, and it exists continuously in
the shader table. When a ray collision occurs, the
object can specify which hit shader to invoke within
the same hit group. Hit groups allow developers to
organize and manage the invocation of hit shaders
efficiently during ray tracing, and they are defined
by specifying the closest hit shader, any hit shader,
and/or intersection shader. By using hit groups,
developers can define and group together multiple
shaders that are executed together during the ray
tracing process. This enables more efficient

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3772

management of resources and control over the
execution of shaders.

Miss shader is a shader stage in DXR that
allows for programming what happens when a ray
does not hit any geometry in the scene. This shader
is called after all hit shaders have been executed for
a ray and can be used to set the color or transparency
of the background, simulate atmospheric effects, or
generate procedural patterns. The miss shader can be
associated with a miss shader table, which is a set of
miss shaders that can be selected by ray tracing
programs.

A shader table is a data structure used to
pass information on which resources to use for ray
generation, hit, and miss shaders to the DXR
internally. The actual shader table is an array in GPU
memory that contains identifiers to identify the
shaders and handles to the resources that will be used
by the shaders, as well as GPU memory addresses.
In the Dispatch function that executes the ray tracing
stage, the size of each element in the table and the
starting GPU memory address of the table are passed
as parameters, and the shader table to be used for
each shader - ray generation, hit group, and miss -
can be specified. In particular, for the hit group
shader table, the hit group to be used is determined
by the hit group number in the top-level acceleration
structure, and the offset is specified in the ray
generation function of the shader code to specify
which hit shader to call.

A state object is a data structure in DirectX
Raytracing (DXR) that replaces the Pipeline State
Object in traditional DirectX. It informs the system
which shaders to use and allows for the configuration
of various options required for ray tracing. These
options include but are not limited to, the
acceleration structure used, the shader tables, the
depth stencil state, the rasterizer state, and the blend
state. The state object is created by specifying the
desired configuration and then compiling it into a
binary format that can be loaded into the GPU
memory. It is then passed to the device during
execution to set up the necessary states for the ray
tracing process.

Hybrid ray tracing is a technique that
combines rasterization and ray tracing in order to
handle the entire rendering process. This approach is
necessary because the computational demands of
rendering everything through ray tracing can be very
high. According to reference [5], this approach
involves using rasterization for G-buffer rendering
and utilizing compute shaders for direct lighting,
while using ray tracing to implement shadows,

reflections, indirect lighting, ambient occlusion, and
transparent objects.

Figure 1. Rendering Flow.

3. IMPLEMENTATION

3.1 Rendering Flow

This paper employs a hybrid rendering
method using the previously described hybrid ray
tracing technique to render the entire scene. The
rendering flow used to apply hybrid ray tracing in
this paper is illustrated in Figure 1. The paper utilizes
G-buffer rendering with rasterization for deferred
rendering, and implements direct lighting and final
result computations using compute shaders. Shadow
and reflection processing are implemented using ray
tracing.

3.2 Preparation

This step involves collecting the resources
required for the actual rendering process, such as
textures and geometry, and preparing them to be
passed to the GPU buffer. The world matrix is
calculated using the position, rotation, and size
information of each object, and is then copied to the
GPU memory to be prepared for use in the rendering
process. In addition, global variables, constant
buffers, and other resources required for the
rasterization and ray tracing stages are prepared and
copied to the GPU memory, ready for use in the
rendering process.

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3773

If skin animation is applied, it is necessary to
prepare the final vertices after the animation-related
operations before building the acceleration structures,
so that the geometry structure with animation can be
passed to DXR. In this paper, a compute shader stage
is used to apply the animation operation to the entire
vertex buffer and create a vertex buffer with applied
animations. This prepared vertex buffer is then built
into a bottom-level acceleration structure in the
subsequent scene build stage and passed to DXR for
use.

The process of building various resources
necessary for ray tracing by traversing all objects in
the entire scene, which is performed identically for
both hybrid ray tracing and ray tracing only, is called
the construction process. This process involves two
main steps: building the hit group shader table and
building the acceleration structure.

In the first step of building the hit group shader
table, elements of the shader table are generated
based on the combination of textures, shader code,
vertices, and indices used in the object, and their
indices are assigned as hit group numbers. Objects
using the same combination are assigned the same hit
group number. Even if the same original mesh is
used, different hit group numbers are assigned if the
position of the vertices is different due to animation.
In this paper, two types of shaders, one for shadow
processing and the other for reflection processing,
were placed in the hit group shader table for hybrid
ray tracing, as shown in Figure 2.

Figure 2. Hit Group Table.

The next step is building the acceleration
structure. First, the bottom-level acceleration
structure is built. Since the bottom-level acceleration
structure only needs to be built once per original
geometry, it is determined whether it has been built
or not and built if it hasn't been built yet. For objects
with animation applied, the position of the vertices
changes every frame, so the bottom-level acceleration
structure must be built or updated every time. In this
paper, the method of rebuilding it every time was
used to simplify the implementation.

Once the bottom-level acceleration structure is
built, the top-level acceleration structure needs to be
built. Using the hit group numbers obtained while
building the shader table, the object's world matrix,
and the bottom-level acceleration structure to be
used, the top-level acceleration structure is built.

3.3 G-Buffer Rendering Stage

The G-Buffer rendering stage, as depicted in
Figure 3, is used to store geometry information
similar to that used in deferred rendering as discussed
in papers [6][7]. In this paper, we use the MRT
(Multiple Render Targets) feature of Direct3D 12 to
render object material information, normal values,
depth values, and other information to three render
targets and a depth-stencil buffer. The G-Buffer
rendering stage is performed before the ray tracing
stage in order to determine whether an object is
visible at a particular pixel based on its depth value
and to obtain the world position of the pixel to be used
as the starting position for the ray in the subsequent
ray tracing stage.

Figure 3. G-Buffer

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3774

3.4 Ray Tracing Stage

After the G-Buffer rendering is complete, ray
tracing is used to calculate whether each pixel has
shadows and its reflection color. In this paper, to
reduce the number of rays generated, the depth
buffer is used to determine whether there is an actual
object visible in that pixel. Only pixels with actual
objects are used to generate rays for optimization.

A ray is fired from each pixel's world position
towards the light source. The collision detection with
the previously constructed top-level acceleration
structures is used to determine whether the ray hits
an object or not. If the ray hits an object, the hit
shader is called; otherwise, the miss shader is called.
If the hit shader is called, it means there is an object
obstructing the path between the light source and the
pixel, resulting in shadows. This paper implements
shadows for one directional light in Figure 4. Since
the light direction is the same for all pixels, rays are
fired in the opposite direction of the light.
Additionally, to use the shadow information in
subsequent lighting operations, the hit shader records
a value of 0, and the miss shader records a value of 1
in a separate texture.

The camera vector is used with the normal value
from the G-Buffer to calculate the reflection vector.
A ray is then fired from each pixel's world position
in the direction of the reflection vector. If the ray hits
an object, the hit shader is called; otherwise, the miss
shader is called. Unlike shadows, in reflections, the
hit shader needs to identify the intersection point of
the ray and the polygon, and then interpolate the
adjacent vertex values. Once the intersection point's
variables have been interpolated, lighting operations
can be performed to calculate the final color of the
intersection point. To determine the shadow
information of this intersection point, additional
shadow rays can be generated. Additionally, this
paper did not use it, but to reflect again from the
reflected intersection point, another reflection ray
can be generated to composite the results. To reduce
the number of rays generated, this paper generated
only shadow rays in a single reflection ray, and
additional reflection processing is performed using
the environment map. This process is performed for
all pixels, and the results are recorded in a separate
texture as shown in Figure 5.

3.5 Direct Lighting Computation and Final
Result

The final lighting computation is performed

using the G-Buffer, shadow texture generated from
ray tracing, reflection texture, and lighting
information of the scene using the compute shader
stage of DirectX.

The basic lighting calculation process is similar
to deferred rendering, where for each pixel of the
screen, the material information, normal value, and
world coordinate are calculated from the G-Buffer
and passed to the lighting calculation function to
calculate direct lighting. To determine the shadow of
the direct lighting, the previously calculated shadow
texture is used to determine whether a pixel is in
shadow, and the ratio of direct lighting is adjusted
accordingly to implement shadows. In addition, the
reflectivity of the material for each pixel is
calculated, and the reflection texture previously
calculated is combined according to the reflectivity
to calculate the final image with reflections and
shadows applied.

Figure 4. Shadow.

Figure 5. Reflection.

Figure 6. Final Scene.

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3775

4. PERFORMANCE EVALUATION

4.1 Experimental Environment

The study compared the rendering
performance of self-made scenes and similar scenes
implemented using Unreal Engine 4 with ray tracing.
The experiment was conducted on a computer with
an AMD Ryzen 5 2600X CPU @ 3.6GHz processor,
32GB memory, Windows 11 64-bit operating
system, and NVIDIA Geforce RTX 2070 SUPER
graphics card. The device screen resolution was set
to 1920x1080 for both Unreal Engine 4 and the self-
made program. Each scene was implemented using

DirectX12's DXR, and factors other than
rendering that could significantly affect performance
and output were set and measured identically. As
shown in Figure 8 and Table 1, the study compared
the difference between the output of the self-made
program and the output of Unreal Engine 4, as well
as their performance measured in frames per second,
using three models with similar scenes, namely A, B,
and C.

4.2 Comparing Output Results

Regarding the difference in output, as
shown in Figure 7 for the entire model, the self-made

(a) Model A in DXR

(b) Model A in UE4

(c) Model B in DXR

(d) Model B in UE4

(e) Model C in DXR

(f) Model C in UE4

Figure 7 Screen Shots for Various Simulation Models

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3776

program's output was darker than that of
Unreal Engine 4. To achieve the same output with
the same resources, we implemented realistic
lighting based on PBR, which is also used in Unreal
Engine 4. However, differences in detailed lighting
formulas, texture compression and loading methods,
and the method of tone mapping HDR results to
LDR caused differences in brightness and color.

The most significant difference in terms of
ray tracing was the result of the glossy plane. Figure
8 shows the reflection calculation results of each
program when the roughness value was 0.25. As
shown in the figure, the self-made program's result
shows a clear reflection of the surrounding
environment, while the reflection in Unreal Engine
4's result appears blurred. In a typical rendering
environment, for materials with a roughness value
other than 0, which means specular reflection rather
than mirror reflection, several hundred rays are fired
in multiple directions for sampling. In this paper, we
linearly interpolated the results sampled from a
single ray and a sky map blurred cube map sampled
with blurring processing according to the roughness
value to handle specular reflection processing in
real-time rendering environments. As a result, even
materials with low roughness values can show the
surrounding environment like mirror reflection. In
contrast, Unreal Engine 4 handles specular reflection
by dividing it into two categories: low roughness and
high roughness. When the roughness is low, it uses
one ray with noise reduction to sample the reflection,
while for high roughness, it uses many rays to
sample the reflection in multiple directions. This
approach is more accurate but requires more
computational resources [8].

(a) In DXR (Roughness 0.25)

 (b) In UE4 (Roughness 0.25)

Figure 8. Difference between Reflection Results in
Same Roughness.

4.3 Rendering Speeds

 Table 1 compares the rendering speeds (in
FPS: Frames per second) measured in three scene
models, A, B, and C. Despite using the same
materials and geometry in similar scenes, DXR-
based content shows significantly better
performance, ranging from 45.0% to 118.3%
compared to UE4-based content. Although Unreal
Engine 4 uses several techniques such as
multithreading to utilize GPU usage up to 100%, it
seems to fall short in terms of frame rate compared
to a self-made program that uses only a single thread
and lacks optimization techniques, resulting in only
50% GPU usage. This could be due to Unreal Engine
4 performing several processes in addition to ray
tracing, such as applying noise filters to handle
specular reflections and using multiple rays per
pixel, causing lower performance compared to a
self-made program that uses simple linear
interpolation and single rays per pixel.

Table 1. Performance Results in Rendering Speeds (FPS).

 Scene A Scene B Scene C

DXR 87 ~ 93
(FPS)

97 ~ 102
(FPS)

125 ~ 131
(FPS)

Unreal
Engine 4

58 ~ 60
(FPS)

59 ~ 61
(FPS)

60 ~ 62
(FPS)

Difference 45.0 ~ 60.3
(%)

59.0 ~ 72.9
(%)

101.6~118.
3(%)

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3777

5. CONCLUSION

In this paper, real-time ray tracing
reflections and shadows were implemented using
DXR, a ray tracing API, and compared with Unreal
Engine 4's real-time ray tracing in 3D games.
Generating rays and performing collision detection
with scene objects is not suitable for computation on
the GPU, so special hardware such as NVIDIA's
RTX graphics card and APIs such as DXR were used
to efficiently implement ray tracing and collision
detection in a real-time rendering environment.
Additionally, to reduce the heavy workload, primary
rays were rendered using the existing rasterization
method, and shadow rays and reflection rays were
created based on the results, enhancing rendering
efficiency. Real-time ray tracing requires special and
high-performance hardware, making it difficult to
serve a wide range of users. However, as graphics
card performance continues to improve
significantly, more users are likely to possess such
hardware, allowing for more intuitive
implementation and realistic graphic effects.

In terms of future research directions, there
are several areas that could be explored. First, while
this study focused on real-time ray tracing for
reflections and shadows, there are other applications
of ray tracing that could be investigated, such as
global illumination and caustics. Second, while the
study used DXR as the ray tracing API, other APIs
such as Vulkan and OpenGL could also be examined
for their performance and capabilities. Third, the
study primarily used NVIDIA's RTX graphics cards,
but other hardware configurations and manufacturers
could be tested to evaluate their performance and
compatibility with real-time ray tracing. Finally, the
study examined the performance of real-time ray
tracing on a limited number of scenes and objects, so
further research could explore the scalability and
adaptability of ray tracing to more complex and
dynamic environments.

REFERENCES:
[1] Do-Hyoung Kim, “Real Time Shadow

Processing Techniques in 3D Game Graphics
Engine”, The Magazine of the IEIE, Vol. 34, No.
10, pp. 54-62, 2007.10.

[2] Ned Greenel. "Environment mapping and other
applications of world projections.", IEEE
computer graphics and Applications, 6.11, pp.
21-29, 1986.

[3] McGuire, Morgan, and Michael Mara. "Efficient
GPU screen-space ray tracing." Journal of
Computer Graphics Techniques (JCGT) 3.4, pp.
73-85, 2014.

[4] Sanzharov, V. V., et al. "Examination of the
Nvidia RTX." Proceedings of the 29th
International Conference on Computer Graphics
and Vision. Vol. 2485. 2019.

[5] Colin Barré-Brisebois, et al. "Hybrid rendering
for real-time ray tracing." Ray Tracing Gems:
High-Quality and Real-Time Rendering with
DXR and Other APIs, Haines E., Akenine-
Möller T.,(Eds.). pp. 437-473, 2019.

[6] Andrew Lauritzen. "Deferred rendering for
current and future rendering pipelines".
SIGGRAPH Course: Beyond Programmable
Shading, 2010.

[7] Nicolas Thibieroz. "Deferred shading with
multiple render targets." Shader X 2 pp. 251-251,
2004.

[8] Liu, Edward, et al. "Cinematic rendering in UE4
with real-time ray tracing and denoising." Ray
Tracing Gems: High-Quality and Real-Time
Rendering with DXR and Other APIs, Haines E.,
Akenine-Möller T.,(Eds.). pp. 289-319, 2019.

[9] Hunt, Warren, and William R. Mark. "Ray-
specialized acceleration structures for ray
tracing." 2008 IEEE Symposium on Interactive
Ray Tracing. IEEE, 2008.

[10] Mildenhall, B., Srinivasan, P. P., Tancik, M.,
Barron, J. T., Ramamoorthi, R., & Ng, R, “Nerf:
Representing scenes as neural radiance fields for
view synthesis”’ Communications of the ACM,
65(1), pp. 99-106, 2021.

[11] Gautron, Pascal. "Real-time ray-traced ambient
occlusion of complex scenes using spatial
hashing." Special Interest Group on Computer
Graphics and Interactive Techniques Conference
Talks. 2020.

[12] Belhomme, Boris, et al. "A new fast ray tracing
tool for high-precision simulation of heliostat
fields." Journal of Solar Energy Engineering
131.3, 2009.

[13] Li, Tzu-Mao, et al. "Differentiable monte carlo
ray tracing through edge sampling." ACM
Transactions on Graphics (TOG) 37.6 (2018): 1-
11.

