
Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3712

LAXITY-AWARE MIXED-CRITICALITYTASK
SCHEDULING FOR ENERGY-EFFICIENT

HETEROGENEOUS MULTICORE PROCESSORS

N.GOMATHI1, K.NAGALAKSHMI2

1Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of
Science and Technology, Chennai, Tamilnadu, India. , gomathin9746@gmail.com

2Research scholar, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology,
Chennai, Tamilnadu, India.

ABSTRACT

Mixed-criticality systems (MCS) have developed as an efficient solution in several industries, where
numerous tasks with different criticality levels (safety requirements) are assimilated onto a shared
computational platform. Today, increased energy consumption in MCS, especially in critical situations,
leads to temperature hotspots, which may disrupt the reliability and correctness of the system. As
processors with multiple processing elements are becoming the vital paradigm in MCS, an integrated
timeliness and power management is an important issue. This paper proposes a laxity-aware mixed-critical
task scheduling (LMTS) algorithm that provides correctness, timeliness, power management, and
guaranteed service level in MCS simutaneously. This method minimizes energy consumption of the system
considerably through dynamic voltage and frequency scaling (DVFS) method. It collects several workloads
concurrently and form clusters with one high-critical workload and a set of low-critical workloads. It
determines the laxities and selects the most suitable cluster to exploit the available laxity based on its
impact on the energy consumption and hotspot problems of the system. However, changing the core
frequency, allocating more suitable cluster for available laxity, and finding out an appropriate core for
mapping at runtime are difficult processes and cause deadline desecration which is not suitable for safety-
critical tasks. Therefore, we develop an effective scheduling method using DVFS schemes and task
migration techniques in online mode to utilize available laxity. We also defined cost functions to select the
most apposite cluster to right core by scaling its voltage/frequency (𝑣/𝑓) value or to migrate it to another
processing element. We assess the effectiveness of our scheduling algorithm in a heterogeneous multicore
processor with real-time tasks.

Keywords— Arm Big. LITTLE; DVFS; Energy Efficiency; Task Scheduling; Mixed-Criticality System;
Multi-Core Processors; Laxity Utilization.

1. AIM AND BACKGROUND

 The inexorable improvements in embedded

technology allow system designer to devise more
processing elements (cores) on a single chip to
achieve high performance computing with
improved reliability at low cost. Therefore, the
field of embedded microelectronic has encountered
an irretrievable shift towards integrating numerous
workloads on a shared hardware platform [1].
Assimilating multiple applications on a common
computational hardware fetches numerous benefits
to the safety-critical systems such as improved
dependability as well as resource utilization while
reducing energy consumption, size, and weight [2].
A system is known as safety-critical whose failure

might lead to a severe environmental risk to human
life [3]. The task with higher criticality level
denotes that a maximum guarantee is obligatory for
correctness of the system. In a safety-critical
system, the worst-case execution time (WCET) is a
vital factor employed to provide real-time
guarantee for all the tasks, especially high-level
tasks. Each high-critical task (𝜏௜

ଶ) is defined by
two or more WCETs [4] with a more conservative,
high-critical WCET (𝐶௜

ଶ) and less conservative,
low-critical WCET (𝐶௜

ଵ). Here, 𝑖 represents task
index. The greater 𝐶௜

ଶ is used to provide maximum
timeliness guarantee. However, the probability that
the real execution time of the task will be equal to
𝐶௜

ଶ is very less. Consequently, in most of the cases,
the processor is underutilized as the actual

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3713

execution time of tasks is less than 𝐶௜
ଶ [5]. In this

work, we focus on a dual-criticality system where
each 𝜏௜

ଶ is defined by 𝐶௜
ଵ and 𝐶௜

ଶ and a low-level
task (𝜏௜

ଵ) is defined by 𝐶௜
ଵ only.

Several studies have proposed methods to
implement mixed-critical tasks in both 𝑀ଵ and 𝑀ଶ
modes; however, most of them have only
considered average energy dissipation of the
system [6]. These works use the DVFS scheme
and reject 𝜏௜

ଵ in 𝑀ଶ mode to manage average
energy consumption; but, none of them has
endeavored to manage instantaneous energy
consumption. Moreover, few algorithms cannot be
just employed in 𝑀ଶ especially in the critical
conditions; since changing the 𝑣/𝑓 levels of
processing elements imposes amplified timing
overhead that leads to deadline defilement of 𝜏௜

ଶ
and also decreases the system dependability. It is
worth mentioning that decreasing only the average
power consumption is not adequate. Although it
may decrease the instantaneous energy
consumption, there is no guarantee that the TDP is
not desecrated [7]. Hence, we aim to reduce
instantaneous energy dissipation and associated
thermal problems in a multiprocessor system.
Another challenge in scheming MCSs is enabling
guaranteed service level for 𝜏௜

ଵ in critical
conditions. This work proposes an online energy-
efficient scheduling algorithm, LMTS, to manage
instantaneous power consumption of a MCS using
DVFS. Also, we determine the existing laxity (i.e.,
the difference between the WCET of the tasks and
their actual execution time).
In this work, we develop a laxity-aware mixed-
critical task scheduling method to achieve
timeliness, peak power management and
guaranteed service level for 𝜏௜

ଵ simultaneously. We
create a static scheduling table for both 𝑀ଵ and 𝑀ଶ
and implement a task migration approach that
calculate and exploit the available laxity to remap
the tasks to other processing elements within a
constellation to decrease the thermal profile of the
heterogeneous system in run time. We assess the
effectiveness of LMTS approach to provide the
timeliness guarantee for safety-critical
applications[8]. Also, we attempt to deliver
reasonable service level for 𝜏௜

ଵ without violating
the real-time constraints of 𝜏௜

ଶ.

2.EXPERIMENTAL

In this work, we aim to decrease peak power

consumption and associated temperature issues in a
mixed-critical application. To attain our target, we

employ a laxity-aware DVFS scheme. Here, the
𝑣/𝑓 value of each processing element can be
changed based on available laxity to minimize the
peak power consumption.

3.SCHEDULING METHOD:

The major goal of LMTS is to decrease the
peak power dissipation and the associated
temperature problems of the processing elements.
We utilize DVFS method to manage these issues.
Equation (5) is used to define the objective
function of LMTS.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ቌ ෍ 𝑃టೕ
, 𝑇௠௔௫

௝∈௖௢௥௘௦

ቍ , ∀ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 (5)

Reducing 𝑣/𝑓 value of a specified processing
element in task execution extends the task finishing
time and it may cause deadline defilement. Also,
the overhead of changing 𝑣/𝑓 value during runtime
also cause deadline defilement. Equation (6)
represents that the summation of the processing
time of τ௜

𝓍 at 𝑣/𝑓 value ℓ on the processing
element 𝜓௝ and timing complexity of scheduling
(𝒪௦) and changing 𝑣/𝑓 value (𝒪௩) should not be
exceeded the deadline (𝑑௜) of the workload in
diverse levels of criticality.

𝐶௜

𝑓టೕℓ

+ 𝒪௦ + 𝒪௩ ≤ 𝑑௜ ቊ
𝐶௜ = 𝐶௜

ଵ 𝑖𝑛 𝑀ଵ

𝐶௜ = 𝐶௜
ଶ 𝑖𝑛 𝑀ଶ

 (6)

LMTS comprises of two phases including

offline and online. It uses the online phase to
manage the instantaneous power dissipation and
temperature problems; hence it is impossible to
implement optimization approaches due to its
augmented timing overhead. As a result, we
develop a heuristic-based method. We use
ODROID XU3 processor for defining the power
dissipation of the workloads in offline and for
executing tasks on processing elements in online
phase. During offline execution, LMTS takes
multiple tasks at the same time and creates clusters
using the technique used in our earlier study [9].
The power dissipation of a workload can be
computed by performing tasks obtained from a
real-time application on ODROID XU3 processor.
It is notable that executing an unknown workload
during runtime is beyond the scope of this study.
Mostly, the system engineer identifies the tasks and
their characteristics during design time.

In this work, we generate two scheduling
and mapping tables based on the workload
parameters for both normal and critical modes. The

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3714

EDF algorithm is used to determine the schedule in
both modes statically based on the WCETs as
given in [10]. In normal mode, all the tasks are
treated with the equal significance; in critical
mode, all 𝜏௜

ଶ are performed with higher
precedence. These predefined tables are then
utilized to perform workloads at runtime. This
imposes a strict ordering in executing the
workloads and guarantees that all deadlines are
satisfied in accordance with the design time
analysis. As 𝐶௜

ଶ of 𝜏௜
ଶ are higher, not all 𝜏௜

ଵ
workloads may be schedulable in critical mode. To
increase the quality of service, LMTS is intended
to drop some 𝜏௜

ଵ for creating table in critical mode.

Our method employs task parameters and these
tables in online mode to manage the peak power
and thermal issues in the system.

The task cluster is a group of tasks gathered
together before scheduling each task. In our
approach, a cluster comprises of one 𝜏௜

ଶ and a
group of 𝜏௜

ଵ tasks. The cluster is described as 𝑆௜ =
{ 𝜏௜

ଶ, 𝜏ଵ
ଵ, 𝜏ଶ

ଵ … … 𝜏௡
ଵ}, where 𝜏௜

ଶ(1 ≤ 𝑗 ≤ 𝑚)
represents the single critical task and 𝜏௜

ଵ(1 ≤ 𝑖 ≤
𝑛) are low-critical task in the cluster. The base
period (𝑃ௌ೔

) of the cluster 𝑆௜ is computed as the
greatest common factor (gcf) of period of all tasks
in a particular cluster as given in Equation (7).

 𝑃ௌ೔

= 𝑔𝑐𝑓{ 𝑃(𝜏௜
ଶ), 𝑃(𝜏ଵ

ଵ), 𝑃(𝜏ଶ
ଵ) … … 𝑃(𝜏௡

ଵ)} (7)

where 𝑃(𝜏௜

௫) is the period of workload. The number of cluster budget replenishments in 𝑃(𝜏௜
ଵ) is defined

by Equation (8).

 𝐿𝑂௜
௝

=
 𝑃(𝜏௜

ଵ)

 𝑃ௌ೔

 (8)

Similarly, the number of budget replenishments in 𝑃(𝜏௝

ଶ) is calculated by Equation (9).

 𝐻𝐼௝ =
 𝑃(𝜏௝

ଵ)

 𝑃ௌೕ

 (9)

Now, we can compute the utilization of each
cluster by 𝐸௝/ 𝑃ௌೕ

. The term 𝐸௝ is the execution

time budget that a cluster must obtain to guarantee
each workload satisfy the schedulability condition.
The proposed approach performs each cluster 𝑆௝
with other clusters as a normal task with budget 𝐸௝
and period 𝑃ௌೕ

. Our online phase comprises of

some function controlling units as follows:
1. Scheduling unit: It is the vital element that is

cooperating with the other units for mapping
and scheduling of the tasks.

2. Predictor: If there is any laxity in the system,
or a cluster accomplishes earlier, the predictor
determines the most apposite cluster for
execution.

3. Migrator: If an appropriate cluster is allocated
for a processing element, according to the
thermal profile of the current processing
element related to other processing elements,
the task migrator is used to reduce the core
temperature and decide whether to migrate the
cluster to other processing element or not.
Then, the selected 𝑣/𝑓 level for the processing
element is listed. This speed is used by the
DVFS controller to perform the task.

4. DVFS controller: This unit is used to
determine an optimum 𝑣/𝑓 value for a
designated constellation. Owing to mixed-

criticality behaviour, the system enters into
critical mode if the WCET of any one 𝜏௜

ଶ

surpasses its 𝐶௜
ଵ. It should be tested by the

mode changer. In this condition, the system
changes its scheduling policy according to the
scheduling table.

4. LAXITY CALCULATION

After computing laxity, the predictor unit
selects a most appropriate cluster for mapping on
the processing element where the laxity (ℒ) is
observed. Equation (10) defines the cost function
(𝜕௜) for each cluster.

𝜕௜ = 𝜌𝐸௜ + 𝜎𝑃௜ (10)

where 𝑃௜ and 𝐸௜ are the maximum instantaneous
power and energy of the cluster, respectively. The
terms 𝜌 and 𝜎 are in the range of [0, 1]. Indeed,
reduced power dissipation leads to a reduction in
chip temperature. It is important that if we
assume ⟨𝜌, 𝜎⟩ = ⟨1, 0⟩, and then 𝜕௜ only depends
on power dissipation of a cluster, and not its
energy. Thus, the cluster with the maximum power
is designated to be executed at lower frequency to
reduce the peak power. If we consider ⟨𝜌, 𝜎⟩ =
⟨0, 1⟩, cost function only relate to energy. Hence,

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3715

the cluster with the maximum energy dissipation is
selected to be executed at lower level frequency,
accordingly decreasing the power dissipation. After
choosing the cluster, the maximum power
consumption, and it’s WCETs are updated based
on the available laxity and the 𝑣/𝑓 values.
Furthermore, Equation (10) is exploited by a
cluster that can initiate their executions earlier. The
task τ௜

𝓍 can start early if it is arrived before 𝑎௜ − ℒ,
where 𝑎௜ is the start time of τ௜

𝓍. A workload can be
released when all its ancestors complete their
performance. Therefore, we define a condition in
Equation (11).

𝑇௥௜ < 𝑎௜ − ℒ௜ିଵ (11)

where 𝑇௥௜ is the task release time. Let us assume
the selected task τ௜

𝓍 with deadline 𝑑௜ and the start
time 𝑎௜ that 𝑎௜ + 𝐶௜ ≤ 𝑑௜. Let us assume that we
have the laxity time, ℒ௜ିଵ created by task τ௜ିଵ

𝓍 in
execution. To utilize this slack for the apt task τ௜

𝓍,
generally, the task scheduler estimates the
minimum appropriate core frequency using
Equation (12).

𝑓௜ = 𝑚𝑎𝑥 ൬𝑓௠௜௡ ,
𝐶௜

𝐶௜ + ℒ௜ିଵ

, 𝑓௠௔௫൰ (12)

This guarantees that only the start time of the task is earlier by ℒ௜ିଵ and the deadline is kept constant.
Hence,

 𝑎௜ − ℒ௜ିଵ +
𝐶௜

൬
𝑓௜

𝑓௠௔௫
൰

≤ 𝑎௜ + 𝐶௜ ≤ 𝑑௜ (13)

Conversely, changing the values of 𝑣/𝑓 and
selecting a suitable task and the processing
element, generate timing overheads. If we neglect
them for selecting the optimum frequency, it may
cause timeliness desecration. Hence, ℒ௜ିଵ is
extended by 𝒪௦ and 𝒪௩ . By calculating the
optimum frequency the start time of the appropriate
cluster is updated for the static schedule.

4.1

4.2 Energy efficiency

Laxity-aware task scheduling algorithm
shifts the selected task to the other processing
elements without changing its deadline for
reducing the chip temperature. Therefore, to decide
about the task migration and finding the right
processing element to transfer, we define the cost
function in Equation (14).

𝜕௖ = 𝛾 ෍ 𝐸௖

௧೎

௧ୀଵ

(𝑡) (14)

We calculate the temperature of each processing
element from total energy dissipation. A processing
element is likely to have a lower thermal profile
when its energy dissipation is lower than the
others. Conversely, the difference between the total
energy dissipation of the base processing element
and the selected processing element should be large
enough. Thus, we develop a parameter (𝛾) (in our

experiments 𝛾 = 0.9). In Equation (14), 𝑡௖ is the
completion time of a task. Since we employ an
asymmetric multicore system for our
experimentation, each execution time and power
dissipation of the clusters will be different when
executing on different constellations. Albeit
migration from an A7 to A15 core reduces the
execution time of the task, it leads to augmented
power consumption, which is inappropriate for
safety-critical domain. Therefore, to reduce the
instantaneous power consumption, we implement
migration technique within the constellation. Since
this technique is applied to a cluster that is not
started yet, the migration overhead does not affect
the deadline limitations. Indeed, it is negligible
related to the overhead due to changing the
frequency.

After executing a task, there might be a
laxity or a task in the processing element that is
ready to execute. All processing elements in the
constellation operate at the same 𝑣/𝑓 value in an
asymmetric multicore processor. As the values of
𝑣/𝑓 for both constellations are not same, it is
checked on which constellation the recently
completed task was executing. Next, we verify the
selected 𝑣/𝑓 value of running or ready to run tasks
on all processing elements of the constellation. As
processing elements within a constellation operate
with the identical speed, we select the optimal
value of frequency to fix to the constellation. The
reason for choosing the greatest minimum

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3716

frequency is to ensure that all tasks are completed
without violating their deadline. Finally, if the
designated frequency is different from constellation
frequency, we allocate the new frequency for the
constellation. Then, voltage will be changed
automatically.

4.3 LMTS algorithm

The pseudo code of the LMTS approach is
given in Algorithm 1. Workloads are assigned and
scheduled up to time T according to the current

schedule. In critical scenario or mode switches at
time T, LMTS assigns and executes the remaining
workloads according to the new schedule from
time T to the end of the application period. The
time is equally splitted into multiple time
slots (𝑆்), and the scheduling algorithm will assign
workloads into cores only at the commencement of
every time slot.

Algorithm 1: Laxity-aware mixed-critical task scheduling
Input: Set of processing element 𝜓 = {𝜓଴, 𝜓ଵ, … . . 𝜓ఒିଵ},
clusters, time (𝑇), schedule up to the time T (𝐼௦௖௛), task
ready queue (𝑄௥௘௔ௗ௬), count(χ)=0.
Output: Final schedule (𝐹௦௖௛)
1 procedure Scheduling
2 for 𝑆்= 𝑇 to PERIOD do
3 𝐴௥௘௔ௗ௬ ← ∅
4 Pop a task from 𝑄௥௘௔ௗ௬ and push it into 𝐴௥௘௔ௗ௬

when 𝑘𝑒𝑦 = 𝑆் and 𝑄௥௘௔ௗ௬ ≠ ∅;
5 if 𝑄௥௘௔ௗ௬ = ∅ and 𝐴௥௘௔ௗ௬ = ∅ then
6 return 𝐹௦௖௛
7 end if
8 if 𝐴௥௘௔ௗ௬ = ∅ then
9 continue
10 end if
11 TaskForExecution←Sort (𝐴௥௘௔ௗ௬ , decreasing

order);
12 CoresToExecute←Sort (𝜓, increasing order);
13 for task in TaskForExecution do
14 for core in CoresToExecute do
15 TempTime ← WCET of the task
16 χ ← 0
17 TempSch ← Fୱୡ୦
18 TempPower ← A୮_୫ୟ୶
19 while TempTime > 0 do
20 if TempSch (𝑆்+ χ, 𝜓) ≠ ∅) and

TempPower (𝑆்+ χ) + TaskPower ≤ 𝑇𝐷𝑃
then

21 TempSch (𝑆் + χ, 𝜓) = 𝑡𝑎𝑠𝑘
22 TempPower (𝑆் + χ) +=TaskPower
23 TempTime = TempTime -1
24 end if
25 χ = χ + 1;
26 end while
27 if 𝑆்+ χ ≤ TaskDLine then
28 𝐼௦௖௛← TempSch
29 𝐴௣_௠௔௫ ← TempPower
30 CoresToExecute ← Sort (𝜓, increasing

order);
31 TaskSch ← true

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3717

32 break
33 end if
34 end for
35 if TaskSch == false then
36 return unschedulable clusters
37 end if
38 end for
39 end for
40 end procedure

At every time slot, LMTS algorithm creates

an array for ready tasks (𝐴௥௘௔ௗ௬) and then it pop
ups all elements from 𝑄௥௘௔ௗ௬ , where their key is
equal to the current time slot. This indicates all
previous workloads in the ready queue have
completed their performance. If 𝑄௥௘௔ௗ௬ and 𝐴௥௘௔ௗ௬
are both empty, this approach delivers the final
schedule (𝐹௦௖௛) since it effectively performs all
workloads. If there is no ready task to be executed
currently (𝑖. 𝑒. , 𝐴௥௘௔ௗ௬ = ∅) but, 𝑄௥௘௔ௗ௬ ≠ ∅ then
the procedure moves to the subsequent time slot.
Our approach sorts the ready tasks in decreasing
order based on their energy dissipation. The energy
dissipation of each workload (𝐸ఛ೔

ೣ) is measured

using Equation (15).

𝐸ఛ೔
ೣ = 𝑃ఛ೔

ೣ × 𝐶௜
௫ (15)

where 𝑃ఛ೔

ೣ and 𝐶௜
௫ are the peak power dissipation,

and the WCET of workload 𝜏௜
௫, respectively. The

peak power of a workload can be calculated by
executing them on a test bed. The power
dissipation of the system must never surpass the
TDP limit to evade the overheating issues. In this
work, we assume fixed power dissipation for
workloads at offline mode, which is equal to its
peak power dissipation, to satisfy the TDP limit in
the critical situation. Furthermore, increasing in
energy causes a rise in core temperature.
Accordingly, we assign a workload with more
energy dissipation to a processing element with
lower temperature. Next, the LMTS sorts the
processing elements in the increasing order based
on their energy consumption. A processing element
has more priority for workload allotment if it has
lower energy consumption (i.e., tends to have a
lower thermal profile). Then, LMTS maps
workloads to the processing elements sequentially.
Hence, for every workload, the algorithm
designates a processing element from the sorted list
and executes the workload on the free slots of the
processing element. The peak power dissipation
must be lower than the TDP limit of the system; so,

we create an array known as 𝐴௣_௠௔௫, which stores
the peak power dissipation in each time slot. LMTS
verifies 𝐴௣_௠௔௫ and TDP limit before mapping a
workload on a processing element. If the workload
is finished before its deadline, LMTS updates the
schedule 𝐼௦௖௛ , 𝐴௣_௠௔௫, and scheduling condition of
the workload (TaskSch). It also sorts the
processing elements again since the energy of one
processing element has varied, and starts to execute
the subsequent workload. If there is a deadline
violation on the designated processing element, the
LMTS picks another processing element and
executes tasks on that processing element.
Conversely, if the deadline of one workload is
violated in all processing elements, it returns an
error message such as "un-schedulable tasks".

5.RESULT AND DISCUSSION

 To evaluate the performance of

LMTS approach, we conduct several experiments
on ODROID XU3 processor (ARM big. LITTLE
multiprocessor) system as given in Figure 1. Since
it supports various 𝑣/𝑓 settings, we consider the
effect of different 𝑣/𝑓 levels. To perform
experiments, we engender random tasks employing
the technique given in and execute these tasks on
the processor with maximum frequency and
calculate the energy dissipation from sensing
elements used on the kit. As the 𝑣/𝑓 scaling is
employed to the whole system, the energy
consumption at other lower level core speeds can
be measured by varying the frequency of the
system. Moreover, we analyzed the effect of
number of processing elements by performing
tasks on 1 to 8 processing elements. We run each
trial 1000 times with different parameters (i.e.,
deadline, actual execution times, WCETs, etc.) and
calculate the average results. We found that the
higher energy dissipation of tasks in the range of
[2.986, 6.856] W in big cores and [0.492, 0.923] W
in LITTLE cores.

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3718

Figure 1: Experimental Set-Up In ODROID XU3 Board

To assess the effectiveness of our
proposed algorithm, we employed random task
generation proposed by Medina et al. [7]. The
applications are created with 20, 40, 60, 80, and
100 workloads (n), where 10% to 70% of them are
high-level workloads. Also, we consider 5% to
25% edge percentage (k) in this work. Edge
percentage is defined as the possibility of having

edges from one workload to other workloads. We

consider the normalized system utilization
 ௎

ఒ
,

where 𝑈 is the system utilization in critical mode,
and 𝜆 is the number of processing elements in the
system. The normalized system utilization is
anticipated in the range of [0, 1].

Figure 2: Time For Cluster Generation By Varying Number Of Tasks
We also assess LMTS by comparing its

performance with other state-of-the-art approaches
in the literature using a real-time application,
vehicle cruise controller (VCC) . VCC contains 32
workloads, where 34% of them are high-level
workloads. Besides, the value of k for this
application is 7%. Initially, we assess offline
cluster generation time by changing the parameters
𝑛 and 𝑘. The time of cluster generation is observed
on a system with an Intel core-i5 1.3 GHz speed
processor. The time taken for cluster generation
hinges on the number of tasks and faults. Figure 2
illustrates the impact of the number of workloads

and the percentage of high-level workloads in the
input dataset on a system with number of fault is 3.
Similarly, Figure 3 illustrates the impacts of the
number of fault occurred on a system with number
of tasks is 40. These figures illustrate that by
varying the number of workloads or faults, the time
of cluster generation is growing exponentially.
Though the offline cluster generation time is
comparatively high for large applications, the
online overhead is negligible and constant for all
applications. It is obvious that our approach can
create each node of a cluster simultaneously to
minimize the time complexity. For instance, if we

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3719

have a system with 4 processing elements, the
construction time is about four times faster than a

system with single processing element.

Figure 3: Time For Cluster Generation By Varying Number Of Faults

To measure the system temperature, we

perform the tasks on Core 2 and 3 that usually
realize maximum temperature due to their
closeness to the memory and other components.
The board contains sensors to monitor the
temperature of every A15 core and to calculate the

power dissipation of each constellation. Therefore,
the power and temperature values are measured
from these sensors. Figure 4 demonstrates the
power trace of the constellation with A15 cores
during runtime using LMTS and a state-of-the-art
method .

Figure 4: Power Trace Of The Constellation With A15 Cores

The temperature traces of Core 2 and Core 3

are depicted in Figures 5 and 6, correspondingly.
The core temperature has been decreased by LMTS
considerably. After applying our algorithm and
reducing the 𝑣/𝑓 levels, the temperatures of the

processing elements are reduced. Hence, LMTS
will be more effective and provide a significant
performance improvement whenever more tasks
are performed on more number of cores.

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3720

Figure 5: Temperature Trace Of A15-Core2

Figure 6: Temperature Trace Of A15-Core3

We evaluate the performance of LMTS
under three different scenarios as showed in
Figures 7- 9, in which the results are normalized to
[8-10]. Mostly, as the applications become
complex (e.g., having higher system utilization or
numerous tasks), it is very problematic to achieve
the substantial reduction in peak power dissipation,

temperature, and energy consumption. It is
observed that the power consumption of the system
is reduced when the number of cores is increased.
The proposed migration technique is employed to
reallocate the tasks more uniformly to the
processing elements at runtime based on their
energy consumption.

Figure 7: Impact Of Number Of Processing Elements On System Parameters

As LMTS only considers drop in peak
power dissipation for each processing element
autonomously, it is very difficult to realize a
similar drop in power when a fewer number of
processing elements is employed. The variation in
maximum power is substantial by growing the
number of processing elements as shown in

Figure 4. Using our approach we can

achieve 6.35%, 16.28%, and 21.12% of drop in the
maximum power, energy, and temperature,
respectively [11-15].

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3721

Figure 8: Impacts of number of tasks on system parameters

The effectiveness of LMTS depends on the

available laxity in online mode and the possibility
of assigning them to the tasks. Therefore, if there is
small laxity perceived due to the type of the
application in terms of the number of tasks and
system utilization, the system parameters including
peak power, energy, and temperature drop are very
small. In Figure 10, if we increase the utilization,

the idle time of the processing element among two
successive releases of tasks is decreased. The tasks
also tend to execute longer time. Accordingly, the
size of laxities that can be employed at online
mode is constrained. LMTS provides a minimum
4.215% and a maximum 8.719% of reduction in
peak power consumption in this case.

Figure 9: Varying utilization bound

6. CONCLUSION

This work proposes a laxity-aware task
scheduling algorithm for mixed-critical system to
support correctness, energy management,
timeliness and failsafe service level. The proposed
approach reduces power dissipation of the
multicore processor cnsiderably by applying DVFS
method. Our algorithm accepts multiple worklodas
simultaneously and create task clusters with one
high-level task and a set of low-critical tasks. It
computes the extant laxities efficiently and
determines the most appropriate cluster to exploit
that available laxity by considering its impact on
power dissipation and related temperature issues of
the system. At the same time, changing the core
speed, allocating a right cluster for residual laxity,
and choosing a right processing element for task
migration in online mode are difficult endeavors
and cause deadline defilement which is not suitable
for safety-critical applications. Therefore, we
develop an runtime scheduler with task migration
technique and DVFS to reduce power dissipation
and related thermal issue by scheduling tasks at
runtime. We also defined cost functions to select
the right task cluster to allocate the right processing
element by scaling its 𝑣/𝑓 value or to transfer it to
another element. We evaluate the effectiveness of

the proposed LMTS method using ODROID XU3
processor with real-time task sets.

Declaration:

Ethics Approval and Consent to Participate:

 No participation of humans takes place in
this implementation process

Human and Animal Rights:

 No violation of Human and Animal Rights
is involved.

Funding:

 No funding is involved in this work.

Conflict of Interest:

 Conflict of Interest is not applicable in this
work.

Authorship contributions:

 There is no authorship contribution

 Acknowledgement:
 There is no acknowledgement involved in
this work.

REFERENCES

[1]. K.Nagalakshmi and N.Gomathi, “An
Irreversible Transition towards Multicore
Platform in Safety-Critical Domain for the
Aviation Industries,” International Journal of
Scientific Research in Science, Engineering
and Technology, vol. 2, 2016, pp. 345-359.

[2]. K.Nagalakshmi and N. Gomathi, “ Analysis of
Power Management Techniques in Multicore
Processors, In proceeding of International
conference on Artificial Intelligence and
Evolutionary Computations in Engineering
Systems, “Advances in Intelligent Systems and
Computing, Springer, vol. 517,2017, pp. 397-
418, DOI:10.1007/978-981-10-3174-8_35.

[3]. K.Nagalakshmi, and N. Gomathi, “
Criticality-cognizant Clustering-based Task

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3722

Scheduling on Multicore Processors in the
Avionics Domain,” International Journal of
Computational Intelligence Systems, vol.
11,2018, pp. 219–237,
DOI:10.2991/ijcis.11.1.17.

[4]. Z.Qian, W. Jianguo, X. Fei and H. Shujuan, “
Research on semi-partitioned scheduling
algorithm in mixed-criticality system,”
Cognitive Robotics, vol. 1,2021, pp. 214-221.
doi: 10.19304/J.ISSN1000-7180.2022.0427

[5]. A.Kritikakou, and S. Skalistis, “ Progress-
aware Dynamic Slack Exploitation in Mixed-
critical Systems: Work-in-Progress,” 2020
International Conference on Embedded
Software (EMSOFT), 2020, pp. 10-12.
DOI:10.1109/EMSOFT51651.2020.9244032.

[6]. J.Simó, P. Balbastre, J.F. Blanes, J.L. Poza-
Luján and A. Guasque, “ The Role of Mixed
Criticality Technology in Industry 4.0.,”
Electronics, vol. 10,2021, pp. 226.
DOI:10.3390/electronics10030226.

[7]. M.Ansari and S. Safari, “ Peak Power
Management to Meet Thermal Design Power
in Fault-Tolerant Embedded Systems,” in
IEEE Transactions on Parallel and
Distributed Systems, vol. 30,2019, pp. 161-
173, DOI:10.1109/TPDS.2018.2858816.

[8]. S.Hosseinimotlagh and A. Ghahremannezhad,
“On Dynamic Thermal Conditions in Mixed-
Criticality Systems,” 2020 IEEE Real-Time
and Embedded Technology and Applications
Symposium (RTAS), 2020, pp. 336-349,
DOI:10.1109/RTAS48715.2020.00009.

[9]. H.Sobhani, S. Safari, J. Saber-Latibari and S.
Hessabi ,” REALISM: Reliability-Aware
Energy Management in Multi-Level Mixed-
Criticality Systems with Service Level
Degradation,” Journal of Systems
Architecture, vol. 117,2021, pp.102090,
DOI:10.1016/j.sysarc.2021.102090.

[10]. I.Ali, “ Reducing Dynamic Power
Consumption in Mixed-Critical Real-Time
Systems, “Applied Sciences, vol. 10, 2020,
pp.7256. DOI:10.3390/app10207256

[11]. K.V.Kumar and A.Rajaram, “Energy
efficient and node mobility based data
replication algorithm for
MANET,” International Journal of
Computer Science, 2019.

[12]. A.P.Sridevi and A.Rajaram,
“Efficient Energy Based Multipath Cluster
Routing Protocol For Wireless Sensor
Networks”. Journal of Theoretical &

Applied Information
Technology,vol.68,2014.

[13]. A.Rajaram and S.Kannan,”ENERGY
BASED ROUTING ALGORITHM FOR
MOBILE AD HOC NETWORKS,” Journal
of Theoretical & Applied Information
Technology, Vol.61, 2014.
DOI: 10.1109/WD.2008.4812884

[14]. Rajaram, A. and Sathiyaraj, K., 2022.
An improved optimization technique for
energy harvesting system with grid
connected power for green house
management. Journal of Electrical
Engineering & Technology, 17(5), pp.2937-
2949. https://doi.org/10.1007/s42835-022-
01033-2

[15]. Kumar, K.V. and Rajaram, A., 2019.
Energy efficient and node mobility based
data replication algorithm for
MANET. International Journal of Computer
Science, 2019.

