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ABSTRACT 
 

Mixed-criticality systems (MCS) have developed as an efficient solution in several industries, where 
numerous tasks with different criticality levels (safety requirements) are assimilated onto a shared 
computational platform. Today, increased energy consumption in MCS, especially in critical situations, 
leads to temperature hotspots, which may disrupt the reliability and correctness of the system. As 
processors with multiple processing elements are becoming the vital paradigm in MCS, an integrated 
timeliness and power management is an important issue. This paper proposes a laxity-aware mixed-critical 
task scheduling (LMTS) algorithm that provides correctness, timeliness, power management,  and 
guaranteed service level in MCS simutaneously. This method minimizes energy consumption of the system 
considerably through dynamic voltage and frequency scaling (DVFS) method. It collects several workloads 
concurrently and form clusters with one high-critical workload and a set of low-critical workloads. It 
determines the laxities and selects the most suitable cluster to exploit the available laxity based on its 
impact on the energy consumption and hotspot problems of the system. However, changing the core 
frequency, allocating more suitable cluster for available laxity, and finding out an appropriate core for 
mapping at runtime are difficult processes and cause deadline desecration which is not suitable for safety-
critical tasks. Therefore, we develop an effective scheduling method using DVFS schemes and task 
migration techniques in online mode to utilize available laxity. We also defined cost functions to select the 
most apposite cluster to right core by scaling its voltage/frequency (𝑣/𝑓)  value or to migrate it to another 
processing element. We assess the effectiveness of our scheduling algorithm in a heterogeneous multicore 
processor with real-time tasks. 

Keywords— Arm Big. LITTLE; DVFS; Energy Efficiency; Task Scheduling; Mixed-Criticality System; 
Multi-Core Processors; Laxity Utilization. 

1. AIM AND BACKGROUND 
          
 The inexorable improvements in embedded 

technology allow system designer to devise more 
processing elements (cores) on a single chip to 
achieve high performance computing with 
improved reliability at low cost. Therefore, the 
field of embedded microelectronic has encountered 
an irretrievable shift towards integrating numerous 
workloads on a shared hardware platform [1]. 
Assimilating multiple applications on a common 
computational hardware fetches numerous benefits 
to the safety-critical systems such as improved 
dependability as well as resource utilization while 
reducing energy consumption, size, and weight [2]. 
A system is known as safety-critical whose failure 

might lead to a severe environmental risk to human 
life [3]. The task with higher criticality level 
denotes that a maximum guarantee is obligatory for 
correctness of the system. In a safety-critical 
system, the worst-case execution time (WCET) is a 
vital factor employed to provide real-time 
guarantee for all the tasks, especially high-level 
tasks. Each high-critical task (𝜏௜

ଶ)  is defined by 
two or more WCETs [4] with a more conservative, 
high-critical WCET (𝐶௜

ଶ) and less conservative, 
low-critical WCET (𝐶௜

ଵ). Here, 𝑖 represents task 
index. The greater 𝐶௜

ଶ is used to provide maximum 
timeliness guarantee. However, the probability that 
the real execution time of the task will be equal to 
𝐶௜

ଶ is very less. Consequently, in most of the cases, 
the processor is underutilized as the actual 
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execution time of tasks is less than 𝐶௜
ଶ [5]. In this 

work, we focus on a dual-criticality system where 
each 𝜏௜

ଶ is defined by 𝐶௜
ଵ and 𝐶௜

ଶ and a low-level 
task (𝜏௜

ଵ) is defined by 𝐶௜
ଵ only.  

Several studies have proposed methods to 
implement mixed-critical tasks in both 𝑀ଵ and 𝑀ଶ 
modes; however, most of them have only 
considered average energy dissipation of the 
system [6].  These works use the DVFS scheme 
and reject 𝜏௜

ଵ in 𝑀ଶ mode to manage average 
energy consumption; but, none of them has 
endeavored to manage instantaneous energy 
consumption. Moreover, few algorithms cannot be 
just employed in 𝑀ଶ especially in the critical 
conditions; since changing the 𝑣/𝑓 levels of 
processing elements imposes amplified timing 
overhead that leads to deadline defilement of 𝜏௜

ଶ 
and also decreases the system dependability. It is 
worth mentioning that decreasing only the average 
power consumption is not adequate. Although it 
may decrease the instantaneous energy 
consumption, there is no guarantee that the TDP is 
not desecrated [7]. Hence, we aim to reduce 
instantaneous energy dissipation and associated 
thermal problems in a multiprocessor system. 
Another challenge in scheming MCSs is enabling 
guaranteed service level for 𝜏௜

ଵ in critical 
conditions. This work proposes an online energy-
efficient scheduling algorithm, LMTS, to manage 
instantaneous power consumption of a MCS using 
DVFS. Also, we determine the existing laxity (i.e., 
the difference between the WCET of the tasks and 
their actual execution time).  
In this work, we develop a laxity-aware mixed-
critical task scheduling method to achieve 
timeliness, peak power management and 
guaranteed service level for 𝜏௜

ଵ simultaneously. We 
create a static scheduling table for both 𝑀ଵ and 𝑀ଶ 
and implement a task migration approach that 
calculate and exploit the available laxity to remap 
the tasks to other processing elements within a 
constellation to decrease the thermal profile of the 
heterogeneous system in run time. We assess the 
effectiveness of LMTS approach to provide the 
timeliness guarantee for safety-critical 
applications[8]. Also, we attempt to deliver 
reasonable service level for 𝜏௜

ଵ  without violating 
the real-time constraints of 𝜏௜

ଶ.  
 

2.EXPERIMENTAL 

 
In this work, we aim to decrease peak power 

consumption and associated temperature issues in a 
mixed-critical application. To attain our target, we 

employ a laxity-aware DVFS scheme. Here, the 
𝑣/𝑓 value of each processing element can be 
changed based on available laxity to minimize the 
peak power consumption.  
 

3.SCHEDULING METHOD: 

The major goal of LMTS is to decrease the 
peak power dissipation and the associated 
temperature problems of the processing elements. 
We utilize DVFS method to manage these issues. 
Equation (5) is used to define the objective 
function of LMTS. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ቌ ෍ 𝑃టೕ
, 𝑇௠௔௫  

௝∈௖௢௥௘௦

ቍ , ∀ 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡   (5) 

 
Reducing 𝑣/𝑓 value of a specified processing 
element in task execution extends the task finishing 
time and it may cause deadline defilement. Also, 
the overhead of changing 𝑣/𝑓 value during runtime 
also cause deadline defilement. Equation (6) 
represents that the summation of the processing 
time of τ௜

𝓍  at 𝑣/𝑓 value ℓ on the processing 
element 𝜓௝ and timing complexity of scheduling 
(𝒪௦) and changing 𝑣/𝑓 value (𝒪௩) should not be 
exceeded the deadline (𝑑௜)  of the workload in 
diverse levels of criticality. 

𝐶௜

𝑓టೕℓ

+ 𝒪௦ + 𝒪௩ ≤ 𝑑௜ ቊ
𝐶௜ = 𝐶௜

ଵ 𝑖𝑛  𝑀ଵ

𝐶௜ = 𝐶௜
ଶ 𝑖𝑛 𝑀ଶ 

     (6) 

 
LMTS comprises of two phases including 

offline and online. It uses the online phase to 
manage the instantaneous power dissipation and 
temperature problems; hence it is impossible to 
implement optimization approaches due to its 
augmented timing overhead. As a result, we 
develop a heuristic-based method. We use 
ODROID XU3 processor for defining the power 
dissipation of the workloads in offline and for 
executing tasks on processing elements in online 
phase. During offline execution, LMTS takes 
multiple tasks at the same time and creates clusters 
using the technique used in our earlier study [9]. 
The power dissipation of a workload can be 
computed by performing tasks obtained from a 
real-time application on ODROID XU3 processor. 
It is notable that executing an unknown workload 
during runtime is beyond the scope of this study. 
Mostly, the system engineer identifies the tasks and 
their characteristics during design time.  

In this work, we generate two scheduling 
and mapping tables based on the workload 
parameters for both normal and critical modes. The 
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EDF algorithm is used to determine the schedule in 
both modes statically based on the WCETs as 
given in [10]. In normal mode, all the tasks are 
treated with the equal significance; in critical 
mode, all  𝜏௜

ଶ are performed with higher 
precedence. These predefined tables are then 
utilized to perform workloads at runtime. This 
imposes a strict ordering in executing the 
workloads and guarantees that all deadlines are 
satisfied in accordance with the design time 
analysis. As 𝐶௜

ଶ of  𝜏௜
ଶ  are higher, not all  𝜏௜

ଵ 
workloads may be schedulable in critical mode. To 
increase the quality of service, LMTS is intended 
to drop some  𝜏௜

ଵ for creating table in critical mode. 

Our method employs task parameters and these 
tables in online mode to manage the peak power 
and thermal issues in the system. 

The task cluster is a group of tasks gathered 
together before scheduling each task. In our 
approach, a cluster comprises of one  𝜏௜

ଶ and a 
group of  𝜏௜

ଵ tasks. The cluster is described as 𝑆௜ =
{ 𝜏௜

ଶ, 𝜏ଵ
ଵ,  𝜏ଶ

ଵ … …  𝜏௡
ଵ}, where  𝜏௜

ଶ(1 ≤ 𝑗 ≤ 𝑚) 
represents the single critical task and  𝜏௜

ଵ(1 ≤ 𝑖 ≤
𝑛) are low-critical task in the cluster. The base 
period  (𝑃ௌ೔

) of the cluster  𝑆௜ is computed as the 
greatest common factor (gcf) of period of all tasks 
in a particular cluster as given in Equation (7).  

 
 𝑃ௌ೔

= 𝑔𝑐𝑓{ 𝑃(𝜏௜
ଶ), 𝑃(𝜏ଵ

ଵ),  𝑃(𝜏ଶ
ଵ) … … 𝑃(𝜏௡

ଵ)}       (7)  
 
where  𝑃(𝜏௜

௫) is the period of workload. The number of cluster budget replenishments in  𝑃(𝜏௜
ଵ) is defined 

by Equation (8). 

 𝐿𝑂௜
௝

=
 𝑃(𝜏௜

ଵ)

 𝑃ௌ೔

     (8) 

  
Similarly, the number of budget replenishments in  𝑃(𝜏௝

ଶ) is calculated by Equation (9).  

 𝐻𝐼௝ =
 𝑃(𝜏௝

ଵ)

 𝑃ௌೕ

         (9) 

Now, we can compute the utilization of each 
cluster by 𝐸௝/ 𝑃ௌೕ

. The term 𝐸௝  is the execution 

time budget that a cluster must obtain to guarantee 
each workload satisfy the schedulability condition. 
The proposed approach performs each cluster 𝑆௝ 
with other clusters as a normal task with budget 𝐸௝ 
and period 𝑃ௌೕ

. Our online phase comprises of 

some function controlling units as follows:  
1. Scheduling unit: It is the vital element that is 

cooperating with the other units for mapping 
and scheduling of the tasks.  

2. Predictor: If there is any laxity in the system, 
or a cluster accomplishes earlier, the predictor 
determines the most apposite cluster for 
execution.  

3. Migrator: If an appropriate cluster is allocated 
for a processing element, according to the 
thermal profile of the current processing 
element related to other processing elements, 
the task migrator is used to reduce the core 
temperature and decide whether to migrate the 
cluster to other processing element or not. 
Then, the selected 𝑣/𝑓 level for the processing 
element is listed. This speed is used by the 
DVFS controller to perform the task.  

4. DVFS controller: This unit is used to 
determine an optimum 𝑣/𝑓 value for a 
designated constellation. Owing to mixed-

criticality behaviour, the system enters into 
critical mode if the WCET of any one  𝜏௜

ଶ 

surpasses its 𝐶௜
ଵ. It should be tested by the 

mode changer. In this condition, the system 
changes its scheduling policy according to the 
scheduling table. 

 

4. LAXITY CALCULATION 

After computing laxity, the predictor unit 
selects a most appropriate cluster for mapping on 
the processing element where the laxity (ℒ) is 
observed. Equation (10) defines the cost function 
(𝜕௜) for each cluster. 
 

𝜕௜ = 𝜌𝐸௜ + 𝜎𝑃௜         (10) 
 
where 𝑃௜  and 𝐸௜ are the maximum instantaneous 
power and energy of the cluster, respectively. The 
terms 𝜌 and 𝜎 are in the range of [0, 1]. Indeed, 
reduced power dissipation leads to a reduction in 
chip temperature. It is important that if we 
assume ⟨𝜌, 𝜎⟩ = ⟨1, 0⟩, and then 𝜕௜ only depends 
on power dissipation of a cluster, and not its 
energy. Thus, the cluster with the maximum power 
is designated to be executed at lower frequency to 
reduce the peak power. If we consider ⟨𝜌, 𝜎⟩ = 
⟨0, 1⟩, cost function only relate to energy. Hence, 
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the cluster with the maximum energy dissipation is 
selected to be executed at lower level frequency, 
accordingly decreasing the power dissipation. After 
choosing the cluster, the maximum power 
consumption, and it’s WCETs are updated based 
on the available laxity and the 𝑣/𝑓 values. 
Furthermore, Equation (10) is exploited by a 
cluster that can initiate their executions earlier. The 
task τ௜

𝓍  can start early if it is arrived before 𝑎௜ − ℒ, 
where 𝑎௜ is the start time of τ௜

𝓍. A workload can be 
released when all its ancestors complete their 
performance. Therefore, we define a condition in 
Equation (11). 

 
𝑇௥௜ <  𝑎௜ − ℒ௜ିଵ    (11) 

 
where 𝑇௥௜ is the task release time. Let us assume 
the selected task τ௜

𝓍 with deadline  𝑑௜  and the start 
time  𝑎௜  that  𝑎௜ +  𝐶௜ ≤ 𝑑௜. Let us assume that we 
have the laxity time, ℒ௜ିଵ created by task  τ௜ିଵ

𝓍  in 
execution. To utilize this slack for the apt task τ௜

𝓍, 
generally, the task scheduler estimates the 
minimum appropriate core frequency using 
Equation (12).  

 

𝑓௜ = 𝑚𝑎𝑥 ൬𝑓௠௜௡ ,   
𝐶௜

𝐶௜ + ℒ௜ିଵ

, 𝑓௠௔௫൰   (12)  

 
This guarantees that only the start time of the task is earlier by ℒ௜ିଵ and the deadline is kept constant. 
Hence,  
 

 𝑎௜ − ℒ௜ିଵ +
𝐶௜

൬
𝑓௜

𝑓௠௔௫
൰

≤  𝑎௜ + 𝐶௜ ≤ 𝑑௜          (13) 

 
Conversely, changing the values of 𝑣/𝑓 and 
selecting a suitable task and the processing 
element, generate timing overheads. If we neglect 
them for selecting the optimum frequency, it may 
cause timeliness desecration. Hence, ℒ௜ିଵ is 
extended by 𝒪௦ and 𝒪௩ . By calculating the 
optimum frequency the start time of the appropriate 
cluster is updated for the static schedule. 

4.1  

4.2 Energy efficiency 

Laxity-aware task scheduling algorithm 
shifts the selected task to the other processing 
elements without changing its deadline for 
reducing the chip temperature. Therefore, to decide 
about the task migration and finding the right 
processing element to transfer, we define the cost 
function in Equation (14). 
 

𝜕௖ = 𝛾 ෍ 𝐸௖

௧೎

௧ୀଵ

(𝑡)          (14) 

 
We calculate the temperature of each processing 
element from total energy dissipation. A processing 
element is likely to have a lower thermal profile 
when its energy dissipation is lower than the 
others. Conversely, the difference between the total 
energy dissipation of the base processing element 
and the selected processing element should be large 
enough. Thus, we develop a parameter (𝛾) (in our 

experiments 𝛾 = 0.9). In Equation (14), 𝑡௖ is the 
completion time of a task. Since we employ an 
asymmetric multicore system for our 
experimentation, each execution time and power 
dissipation of the clusters will be different when 
executing on different constellations. Albeit 
migration from an A7 to A15 core reduces the 
execution time of the task, it leads to augmented 
power consumption, which is inappropriate for 
safety-critical domain. Therefore, to reduce the 
instantaneous power consumption, we implement 
migration technique within the constellation. Since 
this technique is applied to a cluster that is not 
started yet, the migration overhead does not affect 
the deadline limitations. Indeed, it is negligible 
related to the overhead due to changing the 
frequency. 

After executing a task, there might be a 
laxity or a task in the processing element that is 
ready to execute. All processing elements in the 
constellation operate at the same 𝑣/𝑓 value in an 
asymmetric multicore processor. As the values of 
𝑣/𝑓 for both constellations are not same, it is 
checked on which constellation the recently 
completed task was executing. Next, we verify the 
selected 𝑣/𝑓 value of running or ready to run tasks 
on all processing elements of the constellation. As 
processing elements within a constellation operate 
with the identical speed, we select the optimal 
value of frequency to fix to the constellation. The 
reason for choosing the greatest minimum 
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frequency is to ensure that all tasks are completed 
without violating their deadline. Finally, if the 
designated frequency is different from constellation 
frequency, we allocate the new frequency for the 
constellation. Then, voltage will be changed 
automatically. 

 

4.3 LMTS algorithm 

The pseudo code of the LMTS approach is 
given in Algorithm 1. Workloads are assigned and 
scheduled up to time T according to the current 

schedule. In critical scenario or mode switches at 
time T, LMTS assigns and executes the remaining 
workloads according to the new schedule from 
time T to the end of the application period. The 
time is equally splitted into multiple time 
slots (𝑆்), and the scheduling algorithm will assign 
workloads into cores only at the commencement of 
every time slot.  

 
Algorithm 1: Laxity-aware mixed-critical task scheduling 
Input: Set of processing element  𝜓 = {𝜓଴, 𝜓ଵ, … . . 𝜓ఒିଵ}, 
clusters, time (𝑇), schedule up to the time T (𝐼௦௖௛), task 
ready queue (𝑄௥௘௔ௗ௬), count(χ)=0. 
Output: Final schedule (𝐹௦௖௛) 
1 procedure Scheduling  
2  for 𝑆்= 𝑇 to PERIOD do 
3   𝐴௥௘௔ௗ௬ ← ∅  
4   Pop a task from 𝑄௥௘௔ௗ௬  and push it into 𝐴௥௘௔ௗ௬  

when 𝑘𝑒𝑦 = 𝑆் and 𝑄௥௘௔ௗ௬ ≠ ∅; 
5   if 𝑄௥௘௔ௗ௬ = ∅ and 𝐴௥௘௔ௗ௬  = ∅ then 
6    return 𝐹௦௖௛ 
7   end if 
8   if 𝐴௥௘௔ௗ௬  = ∅ then 
9    continue  
10   end if 
11   TaskForExecution←Sort (𝐴௥௘௔ௗ௬ , decreasing 

order); 
12   CoresToExecute←Sort (𝜓, increasing order); 
13   for task in TaskForExecution do 
14   for core in CoresToExecute do 
15    TempTime ← WCET of the task 
16    χ ← 0 
17    TempSch ← Fୱୡ୦ 
18    TempPower ← A୮_୫ୟ୶ 
19    while TempTime > 0 do 
20    if TempSch (𝑆்+ χ, 𝜓) ≠ ∅) and 

TempPower (𝑆்+ χ) + TaskPower ≤ 𝑇𝐷𝑃 
then 

21           TempSch (𝑆் + χ, 𝜓) = 𝑡𝑎𝑠𝑘 
22           TempPower (𝑆் + χ) +=TaskPower  
23            TempTime = TempTime -1 
24    end if 
25    χ = χ + 1; 
26    end while 
27    if 𝑆்+ χ ≤  TaskDLine  then 
28    𝐼௦௖௛← TempSch 
29    𝐴௣_௠௔௫ ← TempPower 
30    CoresToExecute ← Sort (𝜓, increasing 

order); 
31    TaskSch ← true 
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32    break 
33    end if 
34   end for 
35   if TaskSch == false then 
36    return unschedulable clusters  
37   end if 
38   end for 
39  end for 
40 end procedure 

 
At every time slot, LMTS algorithm creates 

an array for ready tasks (𝐴௥௘௔ௗ௬) and then it pop 
ups all elements from  𝑄௥௘௔ௗ௬ , where their key is 
equal to the current time slot. This indicates all 
previous workloads in the ready queue have 
completed their performance. If 𝑄௥௘௔ௗ௬  and 𝐴௥௘௔ௗ௬  
are both empty, this approach delivers the final 
schedule (𝐹௦௖௛) since it effectively performs all 
workloads. If there is no ready task to be executed 
currently ( 𝑖. 𝑒. , 𝐴௥௘௔ௗ௬ = ∅) but, 𝑄௥௘௔ௗ௬ ≠ ∅ then 
the procedure moves to the subsequent time slot. 
Our approach sorts the ready tasks in decreasing 
order based on their energy dissipation. The energy 
dissipation of each workload (𝐸ఛ೔

ೣ) is measured 

using Equation (15). 
 

𝐸ఛ೔
ೣ = 𝑃ఛ೔

ೣ × 𝐶௜
௫                   (15)  

 
where 𝑃ఛ೔

ೣ  and 𝐶௜
௫ are the peak power dissipation, 

and the WCET of workload 𝜏௜
௫, respectively. The 

peak power of a workload can be calculated by 
executing them on a test bed. The power 
dissipation of the system must never surpass the 
TDP limit to evade the overheating issues. In this 
work, we assume fixed power dissipation for 
workloads at offline mode, which is equal to its 
peak power dissipation, to satisfy the TDP limit in 
the critical situation. Furthermore, increasing in 
energy causes a rise in core temperature. 
Accordingly, we assign a workload with more 
energy dissipation to a processing element with 
lower temperature. Next, the LMTS sorts the 
processing elements in the increasing order based 
on their energy consumption. A processing element 
has more priority for workload allotment if it has 
lower energy consumption (i.e., tends to have a 
lower thermal profile). Then, LMTS maps 
workloads to the processing elements sequentially. 
Hence, for every workload, the algorithm 
designates a processing element from the sorted list 
and executes the workload on the free slots of the 
processing element. The peak power dissipation 
must be lower than the TDP limit of the system; so, 

we create an array known as 𝐴௣_௠௔௫, which stores 
the peak power dissipation in each time slot. LMTS 
verifies 𝐴௣_௠௔௫ and TDP limit before mapping a 
workload on a processing element. If the workload 
is finished before its deadline, LMTS updates the 
schedule 𝐼௦௖௛ , 𝐴௣_௠௔௫, and scheduling condition of 
the workload (TaskSch). It also sorts the 
processing elements again since the energy of one 
processing element has varied, and starts to execute 
the subsequent workload. If there is a deadline 
violation on the designated processing element, the 
LMTS picks another processing element and 
executes tasks on that processing element. 
Conversely, if the deadline of one workload is 
violated in all processing elements, it returns an 
error message such as "un-schedulable tasks". 

 
5.RESULT AND DISCUSSION 

 
             To evaluate the performance of 

LMTS approach, we conduct several experiments 
on ODROID XU3 processor (ARM big. LITTLE 
multiprocessor) system as given in Figure 1. Since 
it supports various 𝑣/𝑓 settings, we consider the 
effect of different 𝑣/𝑓 levels. To perform 
experiments, we engender random tasks employing 
the technique given in and execute these tasks on 
the processor with maximum frequency and 
calculate the energy dissipation from sensing 
elements used on the kit. As the 𝑣/𝑓 scaling is 
employed to the whole system, the energy 
consumption at other lower level core speeds can 
be measured by varying the frequency of the 
system. Moreover, we analyzed the effect of 
number of processing elements by performing 
tasks on 1 to 8 processing elements. We run each 
trial 1000 times with different parameters (i.e., 
deadline, actual execution times, WCETs, etc.) and 
calculate the average results. We found that the 
higher energy dissipation of tasks in the range of 
[2.986, 6.856] W in big cores and [0.492, 0.923] W 
in LITTLE cores. 
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Figure 1: Experimental Set-Up In ODROID XU3 Board 
 

To assess the effectiveness of our 
proposed algorithm, we employed random task 
generation proposed by Medina et al. [7]. The 
applications are created with 20, 40, 60, 80, and 
100 workloads (n), where 10% to 70% of them are 
high-level workloads. Also, we consider 5% to 
25% edge percentage (k) in this work. Edge 
percentage is defined as the possibility of having 

edges from one workload to other workloads. We 

consider the normalized system utilization 
 ௎

ఒ
, 

where 𝑈 is the system utilization in critical mode, 
and 𝜆 is the number of processing elements in the 
system. The normalized system utilization is 
anticipated in the range of [0, 1].  

 

 
 

Figure 2: Time For Cluster Generation By Varying Number Of Tasks 
We also assess LMTS by comparing its 

performance with other state-of-the-art approaches 
in the literature using a real-time application, 
vehicle cruise controller (VCC) . VCC contains 32 
workloads, where 34% of them are high-level 
workloads. Besides, the value of k for this 
application is 7%. Initially, we assess offline 
cluster generation time by changing the parameters 
𝑛 and 𝑘. The time of cluster generation is observed 
on a system with an Intel core-i5 1.3 GHz speed 
processor.  The time taken for cluster generation 
hinges on the number of tasks and faults. Figure 2 
illustrates the impact of the number of workloads 

and the percentage of high-level workloads in the 
input dataset on a system with number of fault is 3. 
Similarly, Figure 3 illustrates the impacts of the 
number of fault occurred on a system with number 
of tasks is 40. These figures illustrate that by 
varying the number of workloads or faults, the time 
of cluster generation is growing exponentially. 
Though the offline cluster generation time is 
comparatively high for large applications, the 
online overhead is negligible and constant for all 
applications. It is obvious that our approach can 
create each node of a cluster simultaneously to 
minimize the time complexity. For instance, if we 
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have a system with 4 processing elements, the 
construction time is about four times faster than a 

system with single processing element. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Time For Cluster Generation By Varying Number Of Faults 

 
To measure the system temperature, we 

perform the tasks on Core 2 and 3 that usually 
realize maximum temperature due to their 
closeness to the memory and other components. 
The board contains sensors to monitor the 
temperature of every A15 core and to calculate the 

power dissipation of each constellation. Therefore, 
the power and temperature values are measured 
from these sensors. Figure 4 demonstrates the 
power trace of the constellation with A15 cores 
during runtime using LMTS and a state-of-the-art 
method .   

 
 

 
 
 
 
 
 
 
 
 
    
 
 
 
 

Figure 4: Power Trace Of The Constellation With A15 Cores 
 
The temperature traces of Core 2 and Core 3 

are depicted in Figures 5 and 6, correspondingly. 
The core temperature has been decreased by LMTS 
considerably. After applying our algorithm and 
reducing the 𝑣/𝑓 levels, the temperatures of the 

processing elements are reduced. Hence, LMTS 
will be more effective and provide a significant 
performance improvement whenever more tasks 
are performed on more number of cores. 
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Figure 5:  Temperature Trace Of A15-Core2 

 
 
 
 
 
 
 
 
 
 
 

Figure 6:  Temperature Trace Of A15-Core3 
 

We evaluate the performance of LMTS 
under three different scenarios as showed in 
Figures 7- 9, in which the results are normalized to 
[8-10]. Mostly, as the applications become 
complex (e.g., having higher system utilization or 
numerous tasks), it is very problematic to achieve 
the substantial reduction in peak power dissipation, 

temperature, and energy consumption. It is 
observed that the power consumption of the system 
is reduced when the number of cores is increased. 
The proposed migration technique is employed to 
reallocate the tasks more uniformly to the 
processing elements at runtime based on their 
energy consumption.  

 
 

Figure 7: Impact Of Number Of Processing Elements On System Parameters 
 

As LMTS only considers drop in peak 
power dissipation for each processing element 
autonomously, it is very difficult to realize a 
similar drop in power when a fewer number of 
processing elements is employed. The variation in 
maximum power is substantial by growing the 
number of processing elements as shown in  

 
Figure 4. Using our approach we can 

achieve 6.35%, 16.28%, and 21.12% of drop in the 
maximum power, energy, and temperature, 
respectively [11-15]. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 



Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3721 

 

 
Figure 8:  Impacts of number of tasks on system parameters 

 
The effectiveness of LMTS depends on the 

available laxity in online mode and the possibility 
of assigning them to the tasks. Therefore, if there is 
small laxity perceived due to the type of the 
application in terms of the number of tasks and 
system utilization, the system parameters including 
peak power, energy, and temperature drop are very 
small. In Figure 10, if we increase the utilization, 

the idle time of the processing element among two 
successive releases of tasks is decreased. The tasks 
also tend to execute longer time. Accordingly, the 
size of laxities that can be employed at online 
mode is constrained. LMTS provides a minimum 
4.215% and a maximum 8.719% of reduction in 
peak power consumption in this case. 

 
 

            
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Varying utilization bound 
 

6.  CONCLUSION 

This work proposes a laxity-aware task 
scheduling algorithm for mixed-critical system to 
support correctness, energy management, 
timeliness and failsafe service level. The proposed 
approach reduces power dissipation of the 
multicore processor cnsiderably by applying DVFS 
method. Our algorithm accepts multiple worklodas 
simultaneously and create task clusters with one 
high-level task and a set of low-critical tasks. It 
computes the extant laxities efficiently and 
determines the most appropriate cluster to exploit 
that available laxity by considering its impact on 
power dissipation and related temperature issues of 
the system. At the same time, changing the core 
speed, allocating a right cluster for residual laxity, 
and choosing a right processing element for task 
migration in online mode are difficult endeavors 
and cause deadline defilement which is not suitable 
for safety-critical applications. Therefore, we 
develop an runtime scheduler with task migration 
technique and DVFS to reduce power dissipation 
and related thermal issue by scheduling tasks at 
runtime. We also defined cost functions to select 
the right task cluster to allocate the right processing 
element by scaling its 𝑣/𝑓 value or to transfer it to 
another element. We evaluate the effectiveness of 

the proposed LMTS method using ODROID XU3 
processor with real-time task sets. 

Declaration: 

Ethics Approval and Consent to Participate:  

           No participation of humans takes place in 
this implementation process 

Human and Animal Rights:  

            No violation of Human and Animal Rights 
is involved. 

Funding:  

             No funding is involved in this work. 

Conflict of Interest:  

            Conflict of Interest is not applicable in this 
work. 

Authorship contributions:   

           There is no authorship contribution 

 Acknowledgement:    
          There is no acknowledgement involved in 
this work. 

 

REFERENCES 

[1]. K.Nagalakshmi and N.Gomathi, “An 
Irreversible Transition towards Multicore 
Platform in Safety-Critical Domain for the 
Aviation Industries,” International Journal of 
Scientific Research in Science, Engineering 
and Technology,  vol. 2, 2016, pp. 345-359. 

[2]. K.Nagalakshmi and N. Gomathi, “ Analysis of 
Power Management Techniques in Multicore 
Processors, In proceeding of International 
conference on Artificial Intelligence and 
Evolutionary Computations in Engineering 
Systems, “Advances in Intelligent Systems and 
Computing, Springer, vol. 517,2017, pp. 397-
418, DOI:10.1007/978-981-10-3174-8_35. 

[3]. K.Nagalakshmi,  and N. Gomathi, “ 
Criticality-cognizant Clustering-based Task 

 



Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3722 

 

Scheduling on Multicore Processors in the 
Avionics Domain,” International Journal of 
Computational Intelligence Systems, vol. 
11,2018,  pp. 219–237, 
DOI:10.2991/ijcis.11.1.17. 

[4]. Z.Qian, W. Jianguo, X. Fei and H. Shujuan, “ 
Research on semi-partitioned scheduling 
algorithm in mixed-criticality system,” 
Cognitive Robotics, vol. 1,2021,   pp. 214-221. 
doi: 10.19304/J.ISSN1000-7180.2022.0427 

[5]. A.Kritikakou, and S. Skalistis, “ Progress-
aware Dynamic Slack Exploitation in Mixed-
critical Systems: Work-in-Progress,” 2020 
International Conference on Embedded 
Software (EMSOFT), 2020, pp. 10-12. 
DOI:10.1109/EMSOFT51651.2020.9244032. 

[6]. J.Simó, P. Balbastre, J.F. Blanes, J.L. Poza-
Luján and A. Guasque, “ The Role of Mixed 
Criticality Technology in Industry 4.0.,” 
Electronics, vol. 10,2021,  pp. 226. 
DOI:10.3390/electronics10030226. 

[7]. M.Ansari and  S. Safari, “ Peak Power 
Management to Meet Thermal Design Power 
in Fault-Tolerant Embedded Systems,” in 
IEEE Transactions on Parallel and 
Distributed Systems, vol. 30,2019,  pp. 161-
173, DOI:10.1109/TPDS.2018.2858816. 

[8]. S.Hosseinimotlagh and A. Ghahremannezhad,  
“On Dynamic Thermal Conditions in Mixed-
Criticality Systems,” 2020 IEEE Real-Time 
and Embedded Technology and Applications 
Symposium (RTAS), 2020, pp. 336-349, 
DOI:10.1109/RTAS48715.2020.00009. 

[9]. H.Sobhani, S. Safari, J. Saber-Latibari and S. 
Hessabi ,” REALISM: Reliability-Aware 
Energy Management in Multi-Level Mixed-
Criticality Systems with Service Level 
Degradation,” Journal of Systems 
Architecture, vol. 117,2021,  pp.102090, 
DOI:10.1016/j.sysarc.2021.102090. 

[10]. I.Ali, “ Reducing Dynamic Power 
Consumption in Mixed-Critical Real-Time 
Systems, “Applied Sciences, vol. 10, 2020,  
pp.7256. DOI:10.3390/app10207256 

[11]. K.V.Kumar and A.Rajaram, “Energy 
efficient and node mobility based data 
replication algorithm for 
MANET,” International Journal of 
Computer Science, 2019. 

[12]. A.P.Sridevi  and A.Rajaram, 
“Efficient Energy Based Multipath Cluster 
Routing Protocol For Wireless Sensor 
Networks”. Journal of Theoretical & 

Applied Information 
Technology,vol.68,2014. 

[13]. A.Rajaram and S.Kannan,”ENERGY 
BASED ROUTING ALGORITHM FOR 
MOBILE AD HOC NETWORKS,” Journal 
of Theoretical & Applied Information 
Technology, Vol.61, 2014. 
DOI: 10.1109/WD.2008.4812884 

[14]. Rajaram, A. and Sathiyaraj, K., 2022. 
An improved optimization technique for 
energy harvesting system with grid 
connected power for green house 
management. Journal of Electrical 
Engineering & Technology, 17(5), pp.2937-
2949. https://doi.org/10.1007/s42835-022-
01033-2  

[15]. Kumar, K.V. and Rajaram, A., 2019. 
Energy efficient and node mobility based 
data replication algorithm for 
MANET. International Journal of Computer 
Science, 2019. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


