
Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3966

EMPIRICAL INVESTIGATIONS TO A NEIGHBORING IDEAL
MULTICAST SCHEME FOR MOBILE AD-HOC NETWORKS

1DR. THOTAKURA HARITHA, 2DR. SURYA PRASADA RAO BORRA, 3DR. A. GEETHA DEVI,

4PRAVEEN TUMULURU 5DR.K. VIDYA SAGAR

123Associate Professor, Dept. of ECE, PVP Siddhartha Institute of Technology, Vijayawada,:
4Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P. India.,

5Department of EIE, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad,

E-mail: harithat4770@gmail.com praveenluru@gmail.com vidyasagar_k@vnrvjiet.in

Abstract
Ad-hoc mobile networks are made up of mobile nodes that are randomly and dynamically placed so that
their connections to one another can change at any time. Such an ad-hoc network routing protocol's main
objective is to construct an accurate and effective route between two nodes so that messages may be
delivered promptly. Instead of sending several copies of a packet over the same area of the network or
sending packets to clients who don't want them, multicasting is the practice of sending a single copy of a
packet to all of the clients that want it.
By using user-multicast trees and dynamic logical cores, the Adhoc Multicast Routing Protocol (AM
Route) offers a revolutionary method for resilient IP Multicast in mobile ad-hoc networks. Only group
senders and receivers are used as tree nodes in order to establish a bi-directional, shared tree for data
dissemination. On the User-multicast tree, neighbours are connected by means of unicast tunnels. As a
result, network nodes that are not interested in or capable of multicasting do not need to implement AM
Route, and only group senders and receivers are responsible for group State Cost. Additionally, even in the
event of a changing network topology, using tunnels as tree connections indicates that tree structure does
not need to change, which lowers signaling traffic and packet loss.
As a result, the underlying Unicast protocol serves this purpose and AM Route is not required to monitor
network fluctuations. Since AM Route doesn't need a particular Unicast routing protocol, it may work
without a hitch over distinct domains using various Unicast protocols. The transient loops in the mesh
production have been addressed. Additionally, in order to increase the protocol's effectiveness, we
introduced the dynamic core migration approach by employing a timer that periodically switches the
current core node.
.Keywords: Adhoc, AM Route, Ideal, Scheme, route.

1. INTRODUCTION:

The world of networking has been completely taken
over by its numerous uses nowadays. Today's
communication has advanced significantly thanks
to networking. Depending on the type of
connectivity, networks may be divided into two
general categories. As suggested by the name, a
wire connects one of the wired network's terminals
to another. Thus, through these physically present
wire links, data is conveyed.[1]

 These networks do not have a physical link
between the multiple endpoints, such as a wire. In
locations where a wired connection is challenging
to make, wireless networks become crucial. The
original intent behind the creation of wireless
networks was this. But as the benefits and

adaptability were understood, these networks began
to rule the planet.

The basic reason is the ability to communicate
without any physical connection. Wireless
networks can be further classified into two types.
This is the traditional cellular network model that
supports the current mobile computing needs by
installing base stations and access points. In such
networks, the stationary base stations and the cable
backbone serve as the sole means of
communication between two mobile hosts. Unlike
unicast, which is designed for communication
between pairs of computers, multicast is a sort of
communication that is used for communication
between groups of computers. In a typical ad hoc
setting, network hosts collaborate to complete a job.
Therefore, multicast is crucial in ad hoc networks.
The fundamental benefit of multicasting is that it

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3967

only requires one transfer of the data from the
sender, which saves a lot of resources (such
network transmission bandwidth).[2]

2. WORK DESCRIPTION

A mesh is created between the members of the
group by a Mesh Creation technique, which
involves broadcasting a Control Packet to identify
the members of the Group. This is an “ Expanded
Ring Search” algorithm.
Each of the mesh created consists of a Logical Core
node, which is responsible for maintaining the tree
and its members. The core is selected by using a
“Core Resolution” algorithm.
Once a Mesh is created a User Multicast Tree is
built from it. This tree is formed in such a way that
the nodes of the tree are the members of the group.
The next step is to maintain the Tree created. This
is done by periodically sending a message to all the
members of the group. The core node is responsible
for sending this packet. [3]
TREE_CREATE_TIMER.
To improve the efficiency of the AM Route
protocol a Core Migration technique is used in our
algorithm. A new core is being elected periodically
so that the core migrates and thereby the tree is
maintained effectively.
 A description of each of the above steps is given in
detail in the following pages.
 This algorithm is used to find out the
members of a group in AM Route. The members
found are logically linked to each other in the form
of a mesh. Hence each of the nodes in the mesh can
be identified as the neighboring node.
The algorithm can be explained as follows:
 An expanding ring search works by
searching larger areas, centered around the source
node, until a node with a route to the destination is
located. The basic premise behind the expanding
ring search is to find some local node with a route
to the destination and thereby avoid flooding the
entire network in search of a route. Using an
expanding ring search, the initial JOIN_REQ has a
small time to live (TTL) i.e., two hops. Each time
the JOIN_REQ is rebroadcast, the sending node
decrements the TTL. Once the TTL reaches zero,
the JOIN_REQ is no longer forwarded. The source
node waits the discovery period for a JOIN_ACK
to be returned. If it has not received a JOIN_ACK
by the end of the discovery time, it initiates a new
JOIN_ACK with the TTL increased by an
increment. This process continues until a threshold
TTL value is reached. After this point, if no route
has been located the JOIN_REQ is flooded across

the network. The following figures illustrate
the expanding ring search algorithm. The shaded
nodes indicate nodes, which have a route to the
destination. In a larger network with more than that
illustrated the number of node undisturbed by the
request query would be likewise greater. When re-
discovering a route after a link break, the source
places the last known hop count to the destination
in the TTL is increased by the increment value. The
TTL is increased on each subsequent route
discovery attempt until the TTL threshold is
reached. After this point the JOIN_REQ is just
flooded to the entire network.

FIGURE 2.1: Request of mesh=1

The above three figures illustrate the Expanding
Ring Search algorithm. In the first
figure the JOIN_REQ packet is transferred with a
TTL value of 1. Hence when the neighbors of the
source receive that packet they try to decrement the
value of TTL and rebroadcast it. But the value of
TTL becomes Zero after decrementing. Hence they
don’t forward the message. Meanwhile the source
waits till the discovery time. Once the timer expired
the source again transmits the JOIN_REQ
 message incrementing the TTL value.
 The second figure illustrates the state with
a hop count of 3. With this hop count the
JOIN_REQ packet reaches the neighbors of the
destination node. Thus the destination node
receives the JOIN_REQ packet and it transmits the
JOIN_ACK packet. The third figure depicts the
route from source to destination.

The following section explains how a
mesh is actually created in the AM Route protocol.

FIGURE 2.2: Request of mesh=3

FIGURE 2.3: Path of request to source

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3968

2.2 Mesh creation

An AM Route mesh is a graph where each node is a
member (sender or receiver) of the group and every
link is a bi-directional unicast tunnel. While the
mesh establishes connectivity across all the
members of a group, a tree is needed for forwarding
the data. We use a two-step process of creating a
mesh before the tree because it is simpler and more
robust.
 A mesh is much simpler to maintain a
mesh (that could potentially have loops) than a tree
(with no loops) at every state of member mutual
discovery phase. For example, a very naive
merging algorithm could result in a loop when three
disjoint trees discover each other. In addition, the
redundant mesh links contribute towards increased
robustness in the case of node/link failures. (Note
that the use of unicast tunnels between neighboring
nodes of the mesh itself contributes towards
robustness in the face of intermediate node/link
failures along routes between them as the unicast
protocol is expected to establish a separate route
around the failed network node/link).[4]

 To create a mesh encompassing all the
members (senders or receivers) of a specific group,
mechanisms are needed to allow members to
discover each other. The expanding ring search
mechanism based on TTL limited responds back
with a JOIN_ACK. A new bi-directional tunnel is
established between the core and the responding
node of the other mesh. As a consequence of mesh
mergers, a mesh will have multiple cores. One of
the cores will emerge as the “winning” core of the
unified mesh as a result of the core resolution
algorithm.
 Only logical core nodes initiate the discovery
of other disjoint meshes, while both core and non-
core nodes respond to the discovery messages. It is
simpler and more scalable (in bandwidth usage) to
have only the core node initiate discovery as
against every node of the mesh. However, to avoid
the situation where every merger adds a link to a
core (which might result in too many links from the
core), non-core nodes can participate in the mergers
by responding to discovery messages.

If a node leaves a group, they send out a
single JOIN-NAK message to their neighboring
nodes. If they subsequently receive any data or
signaling message for that group they can send out
further JOIN-NAK messages.[5]

 Whenever, the number of links adjacent to a
node exceeds LINK THRESHOLD, a node must

break one or more of its links. Each of the links
could be associated with a weight representing the
“distance” (example, a number of hops) from the
neighbor. The links chosen to be broken could be
the ones with the farthest neighbors. The farthest
neighbor is notified about the link breakage using a
JOIN-BAK message. If the message is lost and data
is received from this non-neighbor, the JOIN-NAK
message will be resent. Periodic mesh
reconfiguration is necessary to maintain a
reasonably optimal mesh in the face of mobility;
however, removing links may result in temporary
loss of data and additional overhead. When the
links are broken, the mesh might be fragmented
into disjoint meshes. Fragmentation is handled in
the same manner as node failures.
 There might be a need for dynamically
migrating the logical core so as to make the tree
more optimal. If the core is “closer” to the senders,
then the tree may be a close approximation of a
source-based tree (which is shared). If the core is at
the “center” of the mesh, then TREE-CREATE
messages (described in the next section) reach all
the nodes of the mesh faster than when the core is
at the “edge”. In addition, as the core is involved in
discovering and merging with other disjoint
meshes, dynamically changing the core might help
in avoiding the situation where there are excessive
links adjacent to a core node. Policies and
mechanisms for node changes are still under
research.

2.3Core resolution Algorithm
 Before starting with the core resolution
algorithm, the operations performed by a core node
are explained. In the AMRoute protocol each group
has at least one logical core that is responsible for
initiating signaling actions, specifically:
Mesh joins (discovering new group members and
disjoint mesh Segments) and A non-core node
cannot initiate these two operations, acting only as
a passive responding agent. Limiting the number of
nodes that perform these two functions (ultimately
to a single logical core) ensures that AMRoute can
scale, without causing excessive signaling or
processing overhead.
 An immediate reaction on hearing about using
core nodes is that “Yes, a core improves scalability
(as shown by CBT or PIM-SM, but it also causes
robustness problems in dynamic networks. “
However, the AMRoute logical core node is
different from a CBT core and PIM-SM RP in
several fundamental aspects. In particular, an
AMRoute core node:

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3969

is not a central point for all data. Forwarding can
continue on working branches of the tree
irrespective of the status of the logical core and
links to the logical core. Is not a preset node. Each
multicast tree segment designates one of its nodes o
be the core based on the “core resolution
algorithm”. Changes dynamically. The core node
migrates according to group membership and
network connectivity.[6]

 The core resolution algorithm is run in a
distributed fashion by all nodes. The goal of the
algorithm is to ensure that any group segment has
exactly one core node and that the core node
migrates to maintain a robust and efficient multicast
tree.
 An AMRoute segment can temporarily have
more than one core node for group after new nodes
join or disjoint segment emerge together. A
network node designates itself as a core when first
joining a group. As a logical core a node can
quickly discover new group members and join the
mesh and tree with its closest neighbors (not just to
the existing core). When multiple core nodes exist
in a segment, they will advertise their presence by
sending out tree creation messages. Core nodes use
the reception of tree creation messages from other
cores to decide whether to remain as a core.
 An AMRoute segment can also have no
core nodes because the core node disappears (e.g.,
leaves the group) or an existing segment is split into
multiple disjoint segments (e.g., because of link or
node failure). If a segment does not have a core
node, one of the nodes will designate itself as the
core node at some random time, on not receiving
any join or tree creation messages.
 A key issue with any algorithm that
assigns a single core node is that it can centralize
the multicast tree and indeed the mesh links on
itself. AMRoute prevents centralization in a number
of ways:
A non-core node is not allowed to graft to its own
logical core. Without this limitation all group
members would ultimately be connected to the
core. All nodes, including the core, are only
allowed to have a limited number of tree links. If
the limit is reached the node must drop the link
furthest (at highest cost) from its current
location.[7]

A logical core will only take responsibility as core
for a limited time or until some event makes
changing the core desirable. A new logical core can
be picked, for example when the core’s mesh
connectivity limit is reached. Clearly the core

resolution and change algorithms are key to the
robustness and performance of the AMRoute
protocol. However, it is also desirable to contain
the complexity of the algorithms. Simulations are
hence being planned to determine the tradeoffs
between simplicity, robustness and efficiency.[8]
 In the event of mesh mergers, there might be
multiple active cores in the new mesh. Nodes in the
mesh become aware of this situation when they
receive TREE-CREATE messages from multiple
cores. The nodes execute a core resolution
algorithm to decide on a unique core for the mesh
and forward TREE-CREATE messages arriving
from the unique core and discard TREE-CREATE
messages from other cores. As the multiple cores in
the mesh will also become aware of the existence of
other cores, they will also execute the same core
resolution algorithm. All the cores except the
“winning” core will demote themselves to non-core
state. One simple core resolution algorithm could
pick the winning core to be the one with the highest
IP address. This is the technique used in our
protocol. The Core resolution algorithm picks up
the node, which has the highest IP address.
 Once the core has been picked up the next step
is to create a tree using the mesh links. The creation
of user multicast tree is explained in the next
section.[9]

2.4 Tree Creation
 This section discusses the creation of a tree for
data forwarding purposes once a mesh has been
established. The core is responsible for initiating
the tree creation process. From the point of view of
individual nodes of the mesh, this phase involves
identifying the subset of links adjacent to it that
belong to the tree.
 The core sends out periodic TREE-CREATE
messages along all the links adjacent to it in the
mesh. (Note that TREE-CREATE messages are
sent along the unicast tunnels in the mesh and are
processed by group members only, while JOIN-
REQ messages are broadcast messages that are
processed by all network nodes).
 The periodicity of the TREE-CREATE
messages depends on the size of the mesh and also
on the mobility of the nodes of the mesh. As the
mesh nodes are mobile, the number of hops
between neighbors keeps changing dynamically.
Thus, newer and more optimal trees might be
created when TREE-CREATE messages are sent
out. Group members receiving non-duplicate
TREE-CREATEs forward it on all mesh links
except the incoming, and mark the incoming and
outgoing links as tree links. If a node has a

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3970

collection of neighbors all 1-hop away on the same
broadcast capable interface, then the node can send
a single broadcast message to all 1-hop neighbors
simultaneously.[9]
 If a link is not going to be used as part of the
tree, the TREE-CREATE message is discarded and
a TREE-CREATE-NAK is sent back along the
incoming links. On receiving a TREE-CREATE-
NAK, a group member marks the incoming link as
a mesh link and not a tree link. Thus each non-core
node considers the link along which a non-duplicate
TREE-CREATE message was received and every
other link along which no TREE-CREATE-NAK
message was received to be part of the tree for a
specific group. (Core considers every link adjacent
to it to be part of the tree). Note that all these tree
links are bi-directional tunnels.
 The choice of using ACK or NAK in
response to the TREE-CREATE messages is
dictated by whether robustness or saving bandwidth
is more important. If an ACK-based (positive
acknowledgement) scheme is use, then data may
not be delivered along links where ACKs were lost.
This results in loss of data, but no wasting of
bandwidth. However, if a NAK (negative
acknowledgement) based scheme is use, loss of
NAKs can only result in some data being forwarded
more than once (which is discarded by the
downstream node on reception).When data arrives
at a node along one of the tree links, the node
forwards the data along all other tree links.
However, if data arrives along a non-tree link a
TREE-CREATE-NAK message is (again) sent back
along that link and the data is discarded.[9]
The tree created by the <n>th TREE-CREATE
message might not be the same as the one created
by <n-1>th message. A situation may exist where
some nodes are forwarding data according to the
older tree and some according to the newer tree,
which may result in loops or data loss. Such a phase
is to be expected due to the dynamic nature of ad
hoc networks. However it is considered to be
transient and AMRoute recovers from it as soon as
the network reduces its dynamicity.
 Nodes leaving a group or node failures are
only partially handled by the redundant links in the
mesh. In some situation, node failures might result
in splitting the mesh into multiple disjoint meshes,
where only one of these meshes has the core. Each
node in the mesh expects to periodically receive
TREE-CREATE messages. In case this message is
not received within a specific timeout, the node
designates itself to be the core after a random time.
The node whose timer expires the earliest succeeds
in becoming the core and initiates the process of

discovering other disjoint meshes as well as tree
creation. Multiple cores that may arise in this case
are resolved by the core resolution procedure.
 There are several possible algorithms that can
be used to decide which mesh branches to use for
the tree. The simplest approach is to simply accept
the first TREE-CREATE message that is received
and discard and duplicate TREE-CREATE
message. This results is a reasonable tree, but it is
not necessarily the most bandwidth efficient (e.g.,
using minimum number of total hops) or lowest
latency. We are therefore investigating the tradeoff
of increasing the complexity of branch selection in
order to improve bandwidth efficiency or reduce
latency. To improve bandwidth efficiency a node
can select the branch from which it received a
TREE-CREATE from its closest neighbor(based on
the TTL value in the outer IP header). However, in
order to prevent the tree from becoming broken
(not connecting all group members), the algorithm
must be able to tell when the TREE-CREATE
message has been received before, and
not change the initial selection until the next round
of TREE-CREATE messages are received.[9]
 To detect duplicates it necessitates the use of a
path-vector field in the TREE-CREATE message.
Also the duplicate messages can be identified with
the help of a sequence no field in the packet. Every
time the core sends a TREE-CREATE packet at
increments the sequence no field. Initially the value
is 0. Each time a packet is duplicated it’s sequence
No is changed.[10]

2.5 Implementation Details

 The implementation details include the
various types of messages used and their formats.
These messages and their formats are given below.
The logical core node periodically to all the nodes
nearer to it broadcasts this message. These nodes
forward the message to their neighbors and so on.
The structure of the packet is as follows.

 A node in response to a JOIN_REQ from
a logical core generates this. This message indicates
that the node is interested in becoming a member of
the group.
 TABLE 2.2: JOIN ACK

 A node in response to a JOIN_REQ from a
logical core generates this. This message indicates
that the node is not interested in becoming a
member of the group.

Version Message-ID Unused Initial-
TTL

Source IP ADDRESS IP Multicast Address

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3971

Version Message-ID Unused Initial-
TTL

Source IP ADDRESS IP Multicast Address
 TABLE 2.3: JOIN-NACK

 The logical core node generates this message.
This is used to create a tree out of the mesh. The
logical core node generates this message
periodically.

Version Message-ID SEQ-NO Initial-

TTL
Source IP ADDRESS IP Multicast Address
 TABLE 2.4 TREE_CREATE

Field Description

Version: This field represents the version of the
AM Route protocol.

Message-ID: This field is used to identify the type
of packet.
Message-ID = 1, a JOIN_REQ packet
Message-ID = 2, a JOIN_ACK packet
Message-ID = 3, a JOIN_NAK packet
Message-ID = 4, a JOIN_CREATE packet
Message-ID = 5, a JOIN_CREATE_NAK packet
Message-ID = 6, a Data packet

Initial TTL: This field indicates the TTL value
(i.e.,) the no. of hop counts allowed to that
particular packet. This field when used along with
the TTL value in the IP header can be used to find
out the remaining hops for the packet.
Source IP Address: This field indicates the IP
address of the source of that packet. The node,
which is sending the packet, fills up this field with
its address.
IP Multicast Address: This field indicates the
multicast group address. This is used to distinguish
from one group address to another group address.
SEQ_NO: This field is used to identify the
duplicate TREE_CREATE message. For the first
message this field is set to zero and for every
duplicate message this is incremented by one.
Path Vector: This is used to distinguish among
replicated versions of the same TREE_CREATE
messages when more bandwidth or latency optimal
trees are desired. Initially it is set to 0. Each node
that performs any replication modifies the value at
each replication.
These are the various message formats and their
descriptions.
Timer

 A logical core keeps two timers, namely the
JOIN-REQ-SEND timer and the TREE-CREATE-
SEND timer. The expiry of JOIN-REQ-SEND
causes the node to compute the new TTL value to
use for the expanding ring search, broadcast a new
JOIN-REQ with this TTL value and reset the timer.
The TREE-CREATE-SEND timer is kept to send
out periodic TREE-CREATE messages. A non-core
member uses a TREE-CREATE-RCV timer. When
it expires, the node waits for some random amount
of time before it resets itself to be a core, and starts
sending out JOIN-REQs and TREE-CREATEs.
This period is set to be random to prevent multiple
non-core nodes from becoming cores
simultaneously.[9]
Data structures
 Each member keeps two tables, each
containing a set of neighbors, the neighbors on the
mesh and the neighbors on the multicast tree. Note
that these neighbors are connected by unicast
tunnels rather than being physical neighbors. The
member also keeps a “hop-count” associated with
each mesh link. This hop-count is obtained at the
time of mesh link creation, and is updated by the
periodic control messages (control messages have
original TTL value used by source in the headers).
A node tracks the ID of the logical core it currently
recognizes, which can be itself. We allow the
existence of multiple logical cores in a same group.
However, each node only recognizes one logical
core at any instant. This information is updated
when the node receives a TREE-CREATE from a
logical core it did not recognize, or when the node
resets itself to be core, as described in detail in the
next section.
 So the data structures involves basically a
Mesh table and a Tree table. These include the
corresponding neighbors either of the tree or of the
mesh. Also many other details can be stored in this
table. This table is implemented using a singly
linked list data structure. This is chosen because of
the flexibility in inserting or removing an entry
from the table. Also the complexity involved is less
in this case.[9]

2.6 MODULES
 The various modules in the protocol are as follows.
 Module 1 Receiving Control packets:
 This module deals with those routines,
which are to be executed on receiving some of the
control packets. They are as follows:
Receiving a JOIN_REQ message:
Core Node:
If this core itself (because of the broadcast medium)
transmitted the JOIN-REQ, it is ignored.

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3972

If this core is in the same group as the JOIN-REQ
indicates and does not have a mesh or tree link to
the source of the JOIN-REQ, it returns a JOIN-
ACK and drops the JOIN-REQ. (Note that the
JOIN-ACK is unicast to the source of the JOIN-
REQ). The core marks the source of the JOIN-ACK
as its mesh neighbor.
Otherwise the core decrements the TTL of the
JOIN-REQ and re-broadcasts it.
Non-core Node:
If this JOIN-REQ comes from a logical core that
this node recognizes (which means they are already
on the same mesh), decrement the TTL value of the
JOIN-REQ and rebroadcast it.
If this JOIN-REQ comes from a different logical
core from that recognized by this node, the node
returns a JOIN-ACK to the source and marks the
source as a mesh neighbor.
If this JOIN-REQ is for a different group, the node
decrements the TTL, of the JOIN-REQ and re-
broadcasts it(acting as an intermediate router).
Receiving a JOIN_ACK packet
Core Node:
 If the JOIN-ACK is responding to a JOIN-
REQ sent out by this core, the logical core marks
the source of the JOIN-ACK as its mesh neighbor
and drops the JOIN-ACK.
Non-Core Node:
 A non-core member will NEVER receive a
JOIN-ACK message since JOIN-ACK is sent to the
source of a JOIN-REQ, which can only be a logical
core. Hence any JOIN-ACK received is dropped.
Receiving a JOIN_NAK Packet
Core Node:
 The logical core deletes any existing mesh
and tree links with the source of the JOIN-NAK.
Non-Core Node:
 The node deletes any existing mesh and tree
links with the source of the JOIN-NAK.
TREE_CREATE Timer
 This message is used to build the
multicast tree. This message is transmitted over the
existing mesh links, i.e., this message is sent
through unicast tunnels to mesh neighbors. On
transmission of a TREE-CREATE, logical core
considers its mesh neighbors as its tree neighbors
also until informed otherwise by a TREE-
CREATE-NAK. Note that when a node joins a
group and sets itself to be a logical core, it has no
mesh neighbors prior to receiving a JOIN-ACK or
JOIN-REQ. Therefore, the TREE-CREATE
message is not transmitted until one or more mesh
neighbors exist. The two timer events and
Receiving the control packets or the data packets
are executed simultaneously. There are three

processes, each of which executes its routine
independently.
 Module 2:
Sending Data Packets
 This module is used to get data from the
user and the data is sent from a separate program.
Hence the two programs are to be executed
separately. Message Queues are used to establish
Inter Process Communication (IPC CALLS)
between the two modules. Whenever the data is to
be sent by the user, the user types the data and then
this module will check if there are any members in
the tree. If there is a node a message queue is used
to transfer the data from one routine to another
routine. After this the module sends the data to the
address specified in the queue. Thus this module is
used to send data from the user.
Module 3:
Tree Table:
 A tree table is actually a Linked List,
which is used to store some information Such as the
IP address of the neighboring node the number of
hop counts required to reach the corresponding
node and some of the other entries like the core
nodes id total no of nodes in the tree etc.,
 This module is used to perform the
following operations.

 To add an entry to the tree table
 To remove an entry from the tree table
 To search for the given entry in the tree table
 To display the contents of the tree table
 Module 4:
Mesh Table
 A mesh table is also implemented using a
linked list and it is used to store information about
the neighboring nodes in the mesh. These
information’s include IP address of the neighbor,
Hop count required to reach him, Total no. of
neighbors and the current core node.
The manipulations made in the mesh table are same
as those done in tree table.
 To add an entry to the mesh table
 To remove an entry from the mesh table
 To search for the given entry in the mesh table
 To display the contents of the mesh table

3. RESULTS: The below result screens explain the
entire process in fully qualified manner.

Fig 3.1 Source node sending Message frame

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3973

Fig 3.2 Browsing the FILE message to be send to

destination

 Fig 3.3 sending File

Fig 3.4 Encrypted Message

Fig 3.5 Encrypted Message

Fig 3.6 Finding Core node to send the data

Fig 3.7. Decrypting the message (file)

Fig 3.8 Destination frame

Fig .3.9 receiving the message (file)

4. CONCLUSION

According to an analysis of older Adhoc routing
protocols, current multicast methods do not perform
well in ad hoc networks because frequent tree
reorganizations might result in high signaling cost,
frequent datagram loss, and an inability to identify
the core node for segment passing. Designing a
routing system that includes first locating a core
node and then sending each via it is the answer to
this problem. To establish Inter Process
Communication (IPC CALLS), message queues are
employed.

By using user-multicast trees and dynamic
logical cores, the Optimal Adhoc Multicast Routing
Protocol (AM Route) offers a fresh method for
resilient IP Multicast in mobile ad-hoc networks.
Only group senders and receivers are used as tree
nodes in order to establish a bi-directional, shared
tree for data dissemination. The User-Multicast
Tree's neighbours are connected via tree
connections made of unicast tunnels.. As a result,
network nodes that are not interested in or capable
of multicasting do not need to implement
AMRoute, and only group senders and receivers are
responsible for the group state cost. Additionally,
the usage of tunnels as tree connections suggests
that the tree structure need not change even in the
event of a dynamic network topology, reducing
signaling traffic and packet loss. As a result, the
underlying Unicast protocol serves this purpose and
AM Route is not required to monitor network
fluctuations. . AM Route may work over several
domains with various Unicast protocols since it is
not dependent on a specific Unicast routing
protocol. The mesh production's transient loops
have been handled. The successful outcome shows
how successfully the protocol performed, and I
infer that it can outperform earlier protocols.
Multicast routing in Adhoc networks, which was
the project's main goal, proved successful.

5. FUTURE WORK:

The simplicity and scalability of AM Route in
terms of the number of senders offered some hope.
Unidirectional "critical" links, however, hindered

Journal of Theoretical and Applied Information Technology
31st May 2023. Vol.101. No 10
© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3974

the delivery of trustworthy data. As mobility grew,
the issue got worse. The prevalence of loops and
the ineffective development of trees on the AM
Route were further problems. By using reachability
information (i.e., packets sent to neighbours and
packets received from neighbours) while choosing
tree linkages, AM Route may be improved. The
effect of unidirectional crucial linkages can be
lessened by using this technique. A loop prevention
technique must be used for AM Route to be
effective; adding adaptively to the protocol can also
help generate more optimum trees.

 REFERENCES

[1]. Bommaiah, McAuley, Taplade and Liu

“”AMRoute: Ad hoc Multicast Routing
Protocol”, draft-talpade-manet-amroute-
00.txt, August 6, 1998

[2]. Ballardie T., “Core based Trees(CBT)
Mulitcast Routing Architecture”, RFC
2201, September, 1997.

[3]. Deering, S., et al, “Protocol independent
Mulitcast-Sparse Mode (PIM-SM):
Motivation and Architecture”, Internet Draft,
draft-ietf-idmr-pim-arch-04.txt, October,
1996.

[4]. Pusateri, T., “Distance Vector Multicast
Routing Protocol”, Internet Draft, draft-ietf-
idmr-dvmrp-v3-06.txt, March 1998.

[5]. Corson, S., and J.Macker, “Mobile Ad
hocNetworking (MANET): Routing Protocol
Performance Issues and Evaluation
Considerations”, Internet Draft, draft-ietf-
manet-issues-00.txt, September, 1997.

[6]. Perkins, C., “Mobile Ad hoc Networking
Terminology”, Internet Draft, draft-ietf-
manet-term-00.txt, October, 1997.

[7]. Sung.Ju Lee, William Su, Julian Hsu,Mario
Gerla, and Rajive Bagrodia “A Performance
Comparision Study of Ad Hoc Wireless
Multicast Protocols”

[8]. ”Unix Network Programming” by Richard W
Stevens.

[9]. “The Desing of Unix Operating Systems” By
Maurice J Bach.

[10]. “Design of Unix Operating System” by
Maurice J Bach..

