
Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3850 

 

 HYBRIDML: FAULTY NODE DETECTION USING HYBRID 
LEARNING MODEL FOR DISTRIBUTED DATA CENTRES 

 

 ATUL V. DUSANE1,  DR. KRISHNAKANT. P. ADHIYA2 
1 Ph.D. Research Scholar, Department of Computer Engineering, SSBT’s College of Engineering & 

Technology Jalgaon.MH, India.  

2 Professor, Department of Computer Engineering, SSBT’s College of Engineering & Technology 

Jalgaon.MH, India.  

E-mail:  1atuld.1987@gmail.com, 2adhiyakp@gmail.com 

 
 

ABSTRACT 
 

The distributed systems are very effective when it deals with massive data processing. Nowadays, entire 
world generates high-dimensional data such as audio, video, image etc. To process such extensive data at a 
minimum is hard for a stand-alone machine, and this is a big challenge for the computer system to evaluate 
such data. The distributed framework is the solution for the process of such extensive data. Still, during the 
execution, some faulty or straggler nodes can increase the overall computation time to process data. 
However, to detect such straggler nodes, from large distributed systems are mandatory before assigning 
jobs to VM. Early identification of such faulty node can future save the overall computation time.  In this 
paper, we proposed a hybrid machine learning model for detecting faulty nodes in large distributed 
machines using collaboration of reinforcement and supervised machine learning. The large Virtual Machine 
(VM’s) log data has been collected from the distributed environment and proceeded with reinforcement 
learning algorithm for module training and supervised machine learning for module testing. According to 
extracted features, reinforcement learning encompasses an activation function that generates the label for 
the respective node, whether healthy or faulty. In the testing phase, the natural world VM’s log data has 
been collected and evaluated with supervised machine learning classifiers. Several machine learning 
classification algorithms have evaluated and acquired the results. The SVM provides higher accuracy over 
the other machine learning classifiers with our reinforcement learning model. 

Keywords: Supervised Machine Learning, Classification, Faulty Node, Straggler Node Detection, 
Distributed System 

 
1. INTRODUCTION  
 
These days, emerging trends, such as IoT, cloud, 
health care, VANET, intelligent city applications 
etc., generate a high volume of data. To process 
such data in a required large processing model or 
high-performance computation[1]. Because of this 
ongoing rise in data velocity refers to the speed, 
computing capabilities systems may be utilized [2] 
[4], which perpetuates the need for customizable, 
computer-controlled scheduling [8]. This challenge 
is the primary subject of this work, which studies 
several solutions with the specific goal of reducing 
straggler tasks. Stragglers are tasks within a job that 
take much longer to execute than other tasks, and 
they can produce a serious increment in response 
time because of the need to synchronize the outputs 
of the tasks with one another. These challenges can 

be avoided by carefully planning the order in which 
tasks are performed. The existence of them may 
result in something known as the Long Tail 
Phenomenon [5]. To be more specific, the Long 
Tail Problem happens when the amount of time 
needed to complete a certain project is considerably 
altered in an unfavorable manner by a small 
number of prone to failures activities. Any gathered 
technology that performs jobs comprised of several 
tasks may be susceptible to the phenomenon known 
as task stragglers. Examples of such systems 
include Google's Software tool [6] and the Hadoop 
architecture [7], both of which provide methods for 
the avoidance of stragglers as standards [1], [8], 
and [9].  
Both the MapReduce and the Hadoop frameworks 
enable a system to scale to enormous cheap 
commodity machines. By the concepts outlined in 



Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3851 

 

IBM's autonomous model [10], [11], the execution 
of activities in parallel not only enhances the pace 
at which they are carried out but also deals 
automatically and independently with any problems 
that may occur. However, stragglers may still 
emerge due to software or hardware problems 
because autonomic approaches are often delayed in 
managing failures. This can result in extended 
downtime for devices with limited resources [1]. 
These contribute to unanticipated delays in the 
work execution owing to the financial constraints or 
the loss of data. They cause such jobs to hog 
resources, leading to more extraordinary reaction 
times in the case of non-primitive execution. 
       Therefore, effective methods are essential to 
reduce stragglers to avoid excessive response times 
and breaches of SLA agreements. Now we will talk 
about the many mistakes that result in straggler's 
chores. While carrying out jobs, there is a 
possibility of encountering either a task failure or a 
node failure. The former scenario occurs when a 
job's tasks fail for various reasons, including 
software and hardware [12]. This latter scenario 
plays out when one of the components of a 
particular node, which is responsible for carrying 
out the task of the job, fails [1]. Several problems at 
the operating system (OS) or hardware level might 
be to blame. As an illustration of a strategy for 
straggler mitigation, MapReduce tries to alleviate 
task failures by relaunching the job after it has 
failed [13]. This is an example of a straggler 
mitigation approach. If a node fails, MapReduce 
will carry out once again all of the original 
activities planned to be carried out on that node. In 
terms of system crashes, when the effectiveness of 
a node deteriorates, either because of a fault in the 
operating system or the hardware or when the node 
fails spectacularly. The execution time of a 
particular task, known as a "straggler," can become 
excessively long, which forces any other work 
activities that rely heavily on it to wait for it to 
finish [14]. 

For the job to be finished at the level of the work, 
each of the tasks that make up the job must be 
finished. If one straggling task affects other related 
tasks from being completed, the work will not be 
finished until all of the straggling tasks have been 
finished [15]. In addition, straggler jobs can 
potentially delay the completion of other activities 
dependent on their output, causing those other 
processes to use extra resources and further hinder 
the performance of the computer system. Stragglers 
have an impact not just on performance but also on 
the costs of deployment. The problem of straggler 
jobs, which may cause a delayed response or waste 

resources, is a concern faced by well-known cloud 
service providers, such as Amazon, Google, Netflix, 
and Apple. This necessitates an unnecessary 
scaling-up of the network infrastructures, which 
increases deployment costs [14], [16]. The 
performance of cloud services is also impacted by 
instances of high latency that are referred to be 
"tail-tolerant" or "latency-tail-tolerant" [17]. Jobs 
that are tolerant of latency have a negative impact 
on resource usage and a positive one on energy 
consumption. Investigations such as [1, [2], [5], [6], 
[10], [12], and [18] reveal that resource contention 
is the primary cause for stragglers, which occurs 
when various tasks are waiting for shared 
infrastructure. This is shown to be the case by the 
findings. Programmes on different nodes can 
compete for globally interconnected resources [17]. 
Previous research [19] focuses on resolving the 
issue of straggler tasks by identifying and resolving 
which activities are stragglers only when the jobs 
have been completed. This approach was used to 
solve the problem of missing value tasks. The term 
"straggler mitigation" involves the protection of any 
influence that straggler tasks may have on the 
quality of service or the service level agreement. 

2. LITERATURE REVIEW 
In this section, we demonstrate various 

state-of-art system developers by previous 
researchers. In Google cluster use traces, Mesbahi 
et al. [20] provide a trustworthiness analysis and a 
Markov model. They used different physical 
machine probability of failure and attributes, 
including steady-state unavailability, mean time to 
rebuild and between failures to study the 
dependability of Google cluster traces. In a case 
study on Amazon and Search engine Cluster Trace, 
Ruan et al. [21] used a multi-view technique to 
compare two cloud workloads. Using the Google 
cluster workload, Ahmed et al. [22] have 
discovered the density function again for time to 
restore and the probability of failure for cloud 
servers. Unsupervised machine learning has been 
used to describe cloud approaches based on job and 
activity events [23,24]. Di et al. used a K-means 
clustering approach with an appropriate number of 
sets to identify cloud-based applications based on 
task occurrences and resource use. The distribution 
of applications in the K-means classification sets is 
analogous to the Pareto distribution. Resources and 
workload patterns were studied statistically by 
Alam et al. [24]. Even though multiple prior studies 
have examined Google clustering traces for 
required to fill, the significant contributions of this 
research are the grouping of Google required to fill 



Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3852 

 

and the categorization of jobs using K-means 
clusters. 
Four new traces exist, two from private clusters and 
two from high-performance computing centres 
(HPCs). According to their results, there is a 
correlation between the data analysis jobs 
performed in private clusters and those performed 
in HPC clusters. New results should be evaluated in 
the context of previous evidence, as this 
observation indicates. LANL's high-performance 
computer clusters and Two Sigma's private cloud 
each contributed additional traces to the analysis 
[26]. In [27], we looked at things like memory use, 
CPU speed, and available storage space related to 
workload. Failed jobs tend to have many aspects in 
common with those that succeed. In addition, there 
is significant evidence that cloud resources were 
used for either cancelled or failed activities. A tiny 
fraction of rejected tasks were resubmitted 
numerous times to finish them successfully. As a 
result, these failed operations were classified as 
"killed" jobs since they used up many resources. 
None of the three-class activities worked out. The 
scheduling category and failure go hand in hand, as 
shown in this case. 
Zhao et al. [28] use an entirely new technique for 
disc failure detection than earlier studies. They 
employ distinct properties measured at consecutive 
time intervals for a disc drive as time series, and 
they apply HMM and Embedded Semi-Markov 
Model (HSMM) to simulate such moving average 
to detect "failed" discs from "good" discs. Auto-
scaling services may be constructed using various 
CPU prediction methods, such as Linear 
Regression, Due To attachment and Auto 
Regression Incorporated Moving Averages 
(ARIMA) (ARIMA). Moreover, pattern 
identification and a state-driven approach to 
estimate occupations by Gong et al. [30] construct 
the workload forecasting model called Predictive 
Dynamic resource Scalability. Signal processing 
methods are utilized to identify whether or not the 
CPU in a virtual machine exhibits recurring activity 
patterns. In this case, the recurring patterns are used 
to predict future workloads; if the response is no, 
PRESS uses a statistical state-driven approach. 
Predicting future demand is done using a discrete-
time Dynamical system. 
Samak et al. [35] used the Bayesian Classification 
method to forecast task failure based on the logs of 
science processes. Then they demonstrated that a 
job projected to fail might be successfully 
scheduled to another available resource in some 
instances. Proactive fault tolerance strategies were 
presented by Bala and Chana [36], utilizing 

analysis of the data and machine learning 
techniques to detect job failures. In this way, they 
use their method throughout the execution of the 
applications before the failure. 
Hongyan et al. evaluated machine learning 
classifiers to predict work failures [37]. They tested 
four algorithms: RF, KNN, KDT, and LR, and 
compared their results. It is necessary to utilize the 
OpenCloud dataset to verify the classifier's 
accuracy. It was shown that Sun et al. [38] could 
accurately forecast software failures using a deep 
learning model. Additionally, they devised a way to 
manufacture new failure data by producing fresh 
samples. For scientific applications, Padmakumari 
and Umamakeswari [39] used a variety of machine 
learning classifiers to forecast task failure. A 
fictitious collection of data was used to train and 
evaluate classifiers. This study's findings show that 
the NB classifier is accurate (up to 94.9 per cent). 
Workplace failures can be predicted using deep 
learning, according to Gao et al. [40]. Many layers 
were used in a model known as Bidirectional Long 
Short Term Memory (Bi-LSTM). The authors use 
static and dynamic features to model validation data 
sets. Bi-LSTM forecasted task failure with an 
effectiveness of up to 93 per cent and job failure 
with an accuracy of up to 87 per cent, according to 
the data. The failure of a cloud application may be 
attributed to several factors, including the 
following: The Sequence-to-sequence model was 
used to anticipate the application's end state. 
According to these findings, LSTM is up to 87% 
accurate. In our prior work [41], we suggested 
failure forecasting models and used numerous 
feature selection strategies to increase the model's 
accuracy. Prediction models developed by us 
surpassed those developed by others in earlier 
research. 

The above survey describes detecting 
faulty or straggler nodes from distributed VMs. 
However Most researchers have used the statical 
analysis method, and some are supervised machine 
learning and deep learning classifiers. The major 
problem of this system is the low detection rate for 
accurate detection of faulty nodes due to 
insufficient training model or features required for 
robust module building. 

 
3. PROPSOED SYSTEM DESIGN 

The below Figure 1 describes a faulty 
node detection using proposed hybrid model, with 
reinforcement learning and supervised learning 
model. Through the cooperation of a number of 
different hybrids learning algorithms, this body of 
work proved the ability to identify a defective node 



Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3853 

 

in a decentralized system. It has been gathered from 
the log data of dispersed virtual machines, and 
several characteristics, including system memory, 
CPU load, activity RAC, etc., have been retrieved 
from the data. The fragment that was eliminated 
was used as input into the classifier that was being 
trained for a particular machine learning method. 
The application of categorization has been 
implemented inside the WEKA 3.7 framework. In 
order to verify the work that was presented, we 
conduct an analysis of almost six different machine 
learning methods and compile the likely outcomes 
from each classifier. 

 
 

Figure 1 :Proposed System Architecture For Faulty Node 
Detection In Distributed Systems 

 The whole process results in the 
identification of straggler nodes as the output, and 
the system then automatically blocks any such 
nodes that are found. The following step-by-step 
instructions should be followed exactly for the 
complete execution. Before distributing any work 
to any nodes, we first retrieve the data proximity 
characteristics, CPU load, and memory load from 
all of the virtual machines. Then, we send the 
different jobs to every other node to be processed. 
This information is taken into account for load data 
in order to locate the straggler throughout the 
complete operation. 
When it came to identification and tracking, all we 
did was apply HML as a simple supervised 
classification algorithm. Following this, a technique 
based on machine learning is used to train the 
classifiers. At the beginning, information along with 
its classifications is delivered. When trying to 
determine whether someone is lying about their 
identity on social media, the HML technique uses a 
number of different decision trees, each of which is 

generated by randomly selecting a feature from a 
set of features. Then, the HML technique selects the 
decision tree whose outcomes are most common as 
the final result. 

 

4. IMPLEMENTATION DETAILS 
The below algorithm technique presents a 

solution that gets around the problem of straggler 
nodes being predicted, and it does so use the hybrid 
supervised classification method. The total values 
for the retrieved parameters are shown by the 
proposed hybrid technique. These values are 
calculated using a variety of machine learning 
algorithms. The following methodology was used 
in order to construct the machine performance 
report in accordance with the combination 
reinforcement learning based prediction method. 
 
Input: Normalized training dataset Train_Data[], 
Normalized testing dataset Test_Data[], defined 
threshold  qTh 
Output: Result set as output with {Predicted_class, 
weight} 
 
Step 1:  Read all test data from Test_Data[] using 
below function for validating to training rules, the 
data is normalized and transformed according to 
algorithms requirements 

 
Step 2: select the features from extracted attributes 
set of  and generate feature 
map using below function. 

Test_FeatureMap [t…..…n] = 
 (x) 

are the selected features 
in pooling layer. The convolutional layer extracts 
the features from input and passes to pooling layer 
and those selected features are stored in 
Test_FeatureMap 
Step 3: Now read entire taring dataset to build the 
hidden layer for classification of entire test data in 
sense layer,  

 
Step 4: Generate the training map using below 
function from input dataset 

Train_FeatureMap [t…..…n] = 
 (x) 

is the hidden layer map 
that generates feature vector for build the hidden 



Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3854 

 

layer. That evaluate the entire test instances with 
train data. 
Step 5: After generating the feature map we 
calculate similarity weight for all instances in dense 
layer between selected features in pooling layer 

 
Step 6: Evaluate the current weight with desired 
threshold 

 
Step 7 :  ( ) 
Step 8: Go to step 1 and continue when 
Test_Data  

Step 9: Return  
 
This composite classification method receives input 
in the form of all potential outcomes produced by 
specified data mining algorithms. These results are 
then fed as input to the composite classification 
algorithm. As per the given values of probabilities 
method in step 5, it creates the exact weight for a 
particular virtual environment, and on the basis of 
that, and we may estimate the potential of straggler 
for VM. 
 
5. RESULTS AND DISCUSSION 
 

The expansive Java platform with JDK 1.8 
and the Weka 3.7 framework were used to carried 
out the development of the proposed system. In this 
extensive experimental analysis, the different types 
of machine learning approaches were used to 
determine the likelihood of straggler identification. 
The system provides a description of five 
assessments that have been carried out using three 
distinct forms of cross validation. The SVM offers 
the best performance, with a detection performance 
of 96% when subjected to 20-fold classification 
model. 

Table 1: Dataset Description 

Name Description Missing 
values 

Log-1 Log data of distributed 
VM’s with 10 nodes 

Yes 

Log-2 Log data of distributed 
VM’s with 25 nodes 

Yes 

Log-3 Log data of distributed 
VM’s with 50 nodes 

Yes 

Log-4 Log data of distributed 
VM’s with 100 nodes 

Yes 

 

The  Table 1, demonstrates dataset used for 
detection and prediction of straggler node. The four 
datasets have used with different size of virtual 
machines. 

87
.5

88 89 87
.290 91 90

.5

91
.3

91
.2

92 93

90
.595

.6

96
.2

94
.1

93
.9

L O G - 1 L O G - 2 L O G - 3 L O G - 4

Naïve Bayes ANN

Adaboost SVM (Hybrid-ML)

 Figure 2: Comparative Analysis Of Proposed Model 
With Various Log Dataset For Faulty Node Detection 

 

85.6
88.2

84.1

90.5 91.6
96

75
80
85
90
95

100

Figure 3: Accuracy Of Straggler Node Identification By 
The Use Of Machine Learning And Hybrid Classification 

 
As can be seen in Figure 3, five different 
categorization strategies were used in an effort to 
locate straggler nodes on the decentralized log 
collection. Out of all the classifications, the SVM 
has the highest accuracy, whilst the RF 
classification has the lowest accuracy. In order to 
evaluate the effectiveness of such categorization 
strategies, we made use of another database to 
generate test cases based on a variety of log 
information sources. The performance study was 
conducted out on a number of different existing 
systems, each of which used equivalent machine 
learning methodologies to construct analogous 
tactics. A further experiment including a large 
number of data samples was carried out, and the 
relevant evaluations of sensitivity and specificity 
were carried out. Our hybrid classification system 
has a detection accuracy of 96%, which is often the 
highest among other classifiers. 
 
6. CONCLUSION 

This work describes a faulty node 
detection and prediction using hybrid machine 



Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3855 

 

learning model. We've shown that our approach 
outperforms some of the more well-known 
alternatives. With just a third of the learning 
algorithm, our formulation is more accurate and 
generalizable than existing techniques for active 
learning requiring little. As a result, the issue of 
class disparity is dealt with progressively. For 
straggler identification, our technique is more 
suited since it is able to accurately represent the 
straggler nodes distribution. The proposed models 
archive 96% average accuracy for various log 
dataset with hybrid SVM. Identifying stragglers in 
operation with great reliability is possible because 
to this performance. Rather than being limited to 
big data computing architectures, the suggested 
framework may be used to a wide range of 
workloads (e.g., across several data centers). 
Additional information may be gleaned from the 
node and task usage resources mentioned in this 
framework.  
 
7. FUTURE WORK 

To develop various deep learning models 
for effective detection and prediction of straggler 
nodes in large distributed environments. 
 
REFERENCES 
[1] S. S. Gill, X. Ouyang, and P. Garraghan, “Tails 

in the cloud: a survey and taxonomy of 
straggler management within large-scale 
cloud data centres,” The Journal of 
Supercomputing, pp. 1–40, 2020. 

[2] H. Xu and W. C. Lau, “Optimization for 
speculative execution in big data processing 
clusters,” IEEE Transactions on Parallel and 
Distributed Systems, vol. 28, no. 2, pp. 530–
545, 2016. 

[3] M. Liaqat, A. Naveed, R. L. Ali, J. Shuja, and 
K.-M. Ko, “Characterizing dynamic load 
balancing in cloud environments using virtual 
machine deployment models,” IEEE Access, 
vol. 7, pp. 145 767– 145 776, 2019. 

[4] S. Mustafa, K. Sattar, J. Shuja, S. Sarwar, T. 
Maqsood, S. A. Madani, and S. Guizani, “Sla-
aware best fit decreasing techniques for 
workload consolidation in clouds,” IEEE 
Access, vol. 7, pp. 135 256–135 267, 2019. 

[5] D. Wang, G. Joshi, and G. Wornell, “Using 
straggler replication to reduce latency in 
large-scale parallel computing,” ACM 
SIGMETRICS Performance Evaluation 
Review, vol. 43, no. 3, pp. 7–11, 2015. 

[6] E. Coppa and I. Finocchi, “On data skewness, 
stragglers, and mapreduce progress 
indicators,” in Proceedings of the Sixth ACM 

Symposium on Cloud Computing. ACM, 
2015, pp. 139–152. 

[7] A. Eldawy and M. F. Mokbel, “Spatialhadoop: 
A mapreduce framework for spatial data,” in 
2015 IEEE 31st international conference on 
Data Engineering. IEEE, 2015, pp. 1352–
1363. 

[8] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, 
I. Stoica, A. Wierman, and M. Yu, “Grass: 
Trimming stragglers in approximation 
analytics,” in Networked Systems Design and 
Implementation (NSDI), 2014, pp. 289–302. 

[9] R. Bitar, M. Wootters, and S. El Rouayheb, 
“Stochastic gradient coding for straggler 
mitigation in distributed learning,” IEEE 
Journal on Selected Areas in Information 
Theory, 2020. 

[10] S. S. Gill, P. Garraghan, V. Stankovski, G. 
Casale, R. K. Thulasiram, S. K. Ghosh, K. 
Ramamohanarao, and R. Buyya, “Holistic 
resource management for sustainable and 
reliable cloud computing: An innovative 
solution to global challenge,” Journal of 
Systems and Software, 2019. 

[11] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and 
X. Zhang, “Thinkair: Dynamic resource 
allocation and parallel execution in the cloud 
for mobile code offloading,” in 2012 
proceedings IEEE Infocom. IEEE, 2012, pp. 
945–953. 

[12] D. Lindsay, S. S. Gill, and P. Garraghan, 
“Prism: An experiment framework for 
straggler analytics in containerized clusters,” 
in Proceedings of the 5th International 
Workshop on Container Technologies and 
Container Clouds. ACM, 2019, pp. 13–18. 

[13] P. Garraghan, R. Yang, Z. Wen, A. 
Romanovsky, J. Xu, R. Buyya, and R. Ranjan, 
“Emergent failures: Rethinking cloud 
reliability at scale,” IEEE Cloud Computing, 
vol. 5, no. 5, pp. 12–21, 2018. 

[14] D. Wang, G. Joshi, and G. Wornell, “Efficient 
task replication for fast response times in 
parallel computation,” in ACM 
SIGMETRICS Performance Evaluation 
Review, vol. 42, no. 1. ACM, 2014, pp. 599–
600. 

[15] U. Kumar and J. Kumar, “A comprehensive 
review of straggler handling algorithms for 
mapreduce framework,” International Journal 
of Grid and Distributed Computing, vol. 7, 
no. 4, pp. 139–148, 2014. 

[16] M. F. Aktas, P. Peng, and E. Soljanin, 
“Effective straggler mitigation: Which clones 
should attack and when?” ACM 



Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3856 

 

SIGMETRICS Performance Evaluation 
Review, vol. 45, no. 2, pp. 12–14, 2017. 

[17] N. J. Yadwadkar, G. Ananthanarayanan, and 
R. Katz, “Wrangler: Predictable and faster 
jobs using fewer resources,” in Proceedings of 
the ACM Symposium on Cloud Computing. 
ACM, 2014, pp. 1–14. 

[18] F. Farhat, “Stochastic modeling and 
optimization of stragglers in mapreduce 
framework,” 2015. 

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, 
J. Ma, M. McCauley, M. J. Franklin, S. 
Shenker, and I. Stoica, “Resilient distributed 
datasets: A fault-tolerant abstraction for in-
memory cluster computing,” in Networked 
Systems Design and Implementation (NSDI), 
2012, pp. 2–2 

[20] Mesbahi, M.R.; Rahmani, A.M.; 
Hosseinzadeh, M. Dependability analysis for 
characterizing Google cluster reliability. Int. 
J. Commun. Syst. 2019, 32, e4127 . 

[21] Ruan, L.; Xu, X.; Xiao, L.; Yuan, F.; Li, Y.; 
Dai, D. A Comparative Study of Large-Scale 
Cluster Workload Traces via 
MultiviewAnalysis. In Proceedings of the 
2019 IEEE 21st International Conference on 
High Performance Computing and 
Communications; IEEE 17th International 
Conference on Smart City; IEEE 5th 
International Conference on Data Science and 
Systems (HPCC/SmartCity/DSS), 
Zhangjiajie, China, 10–12 August 2019; pp. 
397–404.  

[22] Ahmed, K.M.U.; Alvarez, M.; Bollen, M.H. 
Characterizing failure and repair time of 
servers in a hyper-scale data center. 
InProceedings of the 2020 IEEE PES 
Innovative Smart Grid Technologies Europe 
(ISGT-Europe), Hague, The Netherlands, 26–
28 October 2020; pp. 660–664. 

[23] Di, S.; Kondo, D.; Cappello, F. Characterizing 
cloud applications on a Google data center. In 
Proceedings of the 2013 42nd International 
Conference on Parallel Processing, Lyon, 
France, 1–4 October 2013; pp. 468–473. 

[24] Alam, M.; Shakil, K.A.; Sethi, S. Analysis and 
clustering of workload in google cluster trace 
based on resource usage. In Proceedings of 
the 2016 IEEE International Conference on 
Computational Science and Engineering 
(CSE) and IEEE International Conference on 
Embedded and Ubiquitous Computing (EUC) 
and 15th International Symposium on 
Distributed Computing and Applications for 
Business Engineering (DCABES), Paris, 

France, 24–26 August 2016; pp. 740–747. 
doi:10.1109/CSE-EUCDCABES.2016.271. 

[25] Amvrosiadis, G.; Park, J.W.; Ganger, G.R.; 
Gibson, G.A.; Baseman, E.; DeBardeleben, N. 
On the diversity of cluster workloads and its 
impact on research results. In Proceedings of 
the 2018 USENIX Annual Technical 
Conference (USENIX ATC 18), Boston, MA, 
USA, 11–13 July 2018; pp. 533–546. 

[26] Amvrosiadis, G.; Kuchnik, M.; Park, J.W.; 
Cranor, C.; Ganger, G.R.; Moore, E.; 
DeBardeleben, N. The Atlas cluster trace 
repository. USENIX Login 2018, 43, 4. 

[27] Jassas, M.; Mahmoud, Q.H. Failure Analysis 
and Characterization of Scheduling Jobs in 
Google Cluster Trace. In Proceedings of the 
IECON 2018—44th Annual Conference of 
the IEEE Industrial Electronics Society, 
Washington, DC, USA, 21–23 October 2018; 
pp. 3102–3107. 

[28] Zhao, Y.; Liu, X.; Gan, S.; Zheng, W. 
Predicting disk failures with HMM-and 
HSMM-based approaches. In Industrial 
Conference on Data Mining; Springer: 
Berlin/Heidelberg, Germany, 2010; pp. 390–
404. 

[29] Morais, F.J.A.; Brasileiro, F.V.; Lopes, R.V.; 
Santos, R.A.; Satterfield, W.; Rosa, L. 
Autoflex: Service agnostic auto-scaling 
framework for iaas deployment models. In 
Proceedings of the 2013 13th IEEE/ACM 
International Symposium on Cluster, Cloud, 
and Grid Computing, Delft, The Netherlands, 
13–16 May 2013; pp. 42–49. 

[30] Gong, Z.; Gu, X.; Wilkes, J. Press: Predictive 
elastic resource scaling for cloud systems. In 
Proceedings of the 2010 International 
Conference on Network and Service 
Management, Niagara Falls, ON, Canada, 25–
29 October 2010; pp. 9–16. 

[31] Liang, Y.; Zhang, Y.; Sivasubramaniam, A.; 
Jette, M.; Sahoo, R. Bluegene/l failure 
analysis and prediction models. In 
Proceedings of the IEEE International 
Conference on Dependable Systems and 
Networks (DSN’06), Philadelphia, PA, USA, 
25–28 June 2006; pp. 425–434. 

[32] Shetty, J.; Sajjan, R.; Shobha, G. Task 
Resource Usage Analysis and Failure 
Prediction in Cloud. In Proceedings of the 
IEEE 2019 9th International Conference on 
Cloud Computing, Data Science & 
Engineering (Confluence), Noida, India, 10–
11 January 2019; pp. 342–348. 



Journal of Theoretical and Applied Information Technology 
31st May 2023. Vol.101. No 10 
© 2023 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
3857 

 

[33] Soualhia, M.; Khomh, F.; Tahar, S. Predicting 
scheduling failures in the cloud: A case study 
with google clusters and hadoop on amazon 
EMR. In Proceedings of the 2015 IEEE 17th 
International Conference on High 
Performance Computing and 
Communications, 2015 IEEE 7th 
International Symposium on Cyberspace 
Safety and Security, and 2015 IEEE 12th 
International Conference on Embedded 
Software and Systems, New York, NY, USA, 
24–26 August 2015; pp. 58–65. 
doi:10.1109/HPCC-CSSICESS.2015.170. 

[34] Alahmad, Y.; Daradkeh, T.; Agarwal, A. 
Proactive Failure-Aware Task Scheduling 
Framework for Cloud Computing. IEEE 
Access 2021. 
doi:10.1109/TSC.2020.2993728. 

[35] Samak, T.; Gunter, D.; Goode, M.; Deelman, 
E.; Juve, G.; Silva, F.; Vahi, K. Failure 
analysis of distributed scientific workflows 
executing in the cloud. In Proceedings of the 
IEEE 2012 8th International Conference on 
Network and Service Management (CNSM) 
and 2012 Workshop on Systems Virtualiztion 
Management (SVM), Las Vegas, NV, USA, 
22–26 October 2012; pp. 46–54. 

[36] Bala, A.; Chana, I. Intelligent failure 
prediction models for scientific workflows. 
Expert Syst. Appl. 2015, 42, 980–989. 

[37] Hongyan, T.; Ying, L.; Long, W.; Jing, G.; 
Zhonghai, W. Predicting misconfiguration-
induced unsuccessful executions of jobs in big 
data system. In Proceedings of the 2017 IEEE 
41st Annual Computer Software and 
Applications Conference (COMPSAC), 
Turin, Italy, 4–8 July 2017; Volume 1, pp. 
772–777. 

[38] Sun, Y.; Xu, L.; Li, Y.; Guo, L.; Ma, Z.; 
Wang, Y. Utilizing Deep Architecture 
Networks of VAE in Software Fault 
Prediction. In Proceedings of the 2018 IEEE 
International Conference on Parallel & 
Distributed Processing with Applications), 
Melbourne, VIC, Australia, 11–13 December 
2018; pp. 870–877. 

[39] Padmakumari, P.; Umamakeswari, A. Task 
failure prediction using combine bagging 
ensemble (CBE) classification in 
cloudworkflow. Wirel. Pers. Commun. 2019, 
107, 23–40. 

[40] Gao, J.; Wang, H.; Shen, H. Task failure 
prediction in cloud data centers using deep 
learning. IEEE Trans. Serv. Comput. 2020, 9, 

106152–106168. 
https://doi.org/10.1109/TSC.2020.2993728. 

 [41] Jassas, M.S.; Mahmoud, Q.H. Evaluation of a 
Failure Prediction Model for Large Scale 
Cloud Applications. In Canadian Conference 
on Artificial Intelligence; Springer: 
Berlin/Heidelberg, Germany, 2020; pp. 321–
327 

 


