
Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

135

A DEEP LEARNING BASED TECHNIQUE FOR THE
CLASSIFICATION OF MALWARE IMAGES

MD. HARIS UDDIN SHARIF1, NASMIN JIWANI2, KETAN GUPTA3, MEHMOOD
ALI MOHAMMED4, DR.MERAJ FARHEEN ANSARI5

1School of Computer & Information Sciences, University of the Cumberlands, KY, 40769, USA
2School of Computer & Information Sciences, University of the Cumberlands, KY, 40769, USA
3School of Computer & Information Sciences, University of the Cumberlands, KY, 40769, USA
4School of Computer & Information Sciences, University of the Cumberlands, KY, 40769, USA

 5School of Computer & Information Sciences, University of the Cumberlands, KY, 40769, USA

E-mail : 1haris.uddin.sharif@gmail.com, 2Nasminjiwani@gmail.com, 3ketan1722@gmail.com,
4mehmood.db9@gmail.com, 5 merajfarheenansari25@gmail.com

ABSTRACT

Because of the fast expansion of the internet and technology, a slew of developing malware and attack
techniques has evolved. As a result, researchers concentrated their efforts on machine learning and deep
learning techniques to detect malware. Many organizations have been developing new algorithms and
products to secure people from these scams. On the other hand, Malware kinds have been expanding
substantially in recent years. The anti-virus companies have been discovering millions of new malware
variants every year. Therefore, new intelligent malware detection methods must be solved as soon as possible
to halt this rise. Malware is becoming more prevalent, more diverse, and more sophisticated. Deep learning
in malware detection through images has recently been demonstrated to be highly effective. We also
employed an Image-based Malware dataset [Malimg] and used the different deep learning algorithms, CNN,
Caps-Net, VGG16, ResNet, and InceptionV3, for malware detection. The dataset images were transported
through the pre-processing pipeline and into the deep learning pipeline, where they were used to train deep
learning models in the right way. As part of the model training process, all images were resized to be the
same size and proportions. A factor of 1/255 was then applied to the images, resulting in a conversion from
RGB value to grayscale, which restored the original RGB values to their correct positions. Later, the dataset
was segmented into two groups, train, and test. The VGG16, ResNet50, and InceptionV3 models detected
the malware images. A combination of the Adam optimizer and the cross-entropy loss function was used to
train all of the models. The models were trained for 50 epochs using early stopping criteria. Finally, the model
composition method was used to classify malware images where the previously trained models were
combined. The custom CNN model, the VGG16, ResNet50, and InceptionV3 models were combined to
predict a single outcome for the experimental condition. The proposed technique provided very promising
results.

Keywords: Malware Prediction, VGG16, ResNet50, Caps-Net, Image-Based Malware Prediction, Cyber
Analysis, Deep Learning, Cyber Security

Proposed Acronyms

EC = Ensemble Classifier
ANN = Artificial Neural Network
Caps-Net = Capsule Network
CNN = Convolutional Neural Networks
CVA = Cross Validation Accuracy
DDoS = Distributed Denial of Service
DL = Deep Learning
DoS = Denial of Service
DPA = Deep Learning Algorithm

IoT = Internet of Things
VGG16=Visual Geometry Group
KDD = Knowledge Discovery Databases
KNN = K Nearest Neighbor
KNNA = K-Nearest Neighboring Algorithm
LASSO = Least Absolute Shrinkage and Selection
Operator
LSTM = Long Short-Term Memory
ML = Machine Learning

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

136

DT = Decision Tree
EC = Ensemble Classifier
ECA = Ensemble Classification Algorithme
FAR = False Alarm Rate
FN = False Negative
FP = False Positive
FSS = Feature Selection System
GA = Genetic Algorithm
HELAD = A new incompatibility detection model
called HELAD
IDS = Intrusion Detection System
SVM = Support Vector Machine
TML = Traditional Machine Learning
TN = True Negative
TNS = Traditional neural networks

MLA = Machine Learning Algorithms
MLP = Multi-Layer Perceptron
NCF = network connection features
NFS = Network Features Selection
NN = Neural Network
PCA = Principal Component Analysis
Probe = Probing Attack
PSO = Particle Swarm Optimization
RFE = Recursive Feature Elimination
R2L = Remote to Local
RC = Random Classifier
RF = Random Forest
SNN = Standard Neural Networks
TP = True Positive
U2R = User to Root

1. INTRODUCTION

In Attacks on the internet have increased
exponentially, and malware has emerged as one of
the most severe threats to network security.
According to a recent study, millions of sensors
regularly capture millions of harmful threat events
per second [1]. In parallel with the rise in popularity
of mobile devices and IoT, malware has also
increased prevalence. Globally, according to the
most recent threat reports, the number of users who
faced Android malware increased by more than 1.7
million. Viruses and malware are among the most
significant security dangers facing internet users.
Malware is defined as any type of harmful code that
can compromise a digital system's integrity,
confidentiality, and operation [2]. Malware is
divided into several categories by its functions,
including Trojans, worms, and backdoors. These
classes are further subdivided into families based on
the sort of variations that are present in them. When
creating variations of an existing malware family,
malware authors employ various obfuscation
techniques, including code transposition, subroutine
reordering, and code insertion, to ensure that the
infections remain undetected [3]. Discovering
malware variations is the most challenging aspect of
internet security. Numerous malware versions, such
as Nuwar, Storm, and Kekihos, have characteristics,
implying that the same malware developer generated
them.

According to Symantec estimates, millions of
malwares have been discovered, and the number is
growing continuously. Criminals have also begun to
conduct crimes online rather than in a person.
Criminals typically employ malicious software to
initiate cyberattacks against victim computers.
Antimalware systems from the past are frequently
inadequate in coping with today’s diversity and
amount of malware. Malware analysis is a rapidly

increasing discipline that requires considerable
attention due to technological advancement in social
networks, mobile environment, cloud computing, the
Internet of things (IoT), and the industrial Internet of
Things (IIoT). It was created for simple goals in the
early stages of malware development, making it
easier to detect. This type of malware is referred to
as conventional malware. However, malware that
can function in kernel mode and is more damaging
and difficult to detect than typical malware might be
classified as next-generation malware these days.
This type of malware is extremely adept at bypassing
security software that runs in kernel modes, such as
firewalls and antivirus software. Generally, classic
malware is composed of a single process and does
not employ sophisticated strategies for concealment.
On the other hand, new generation malware runs
numerous existing or new processes concurrently
and employs various obfuscation techniques to
conceal itself and establish a lasting presence in the
system. This new-generation malware can launch
more devastating operations such as targeted and
persistent attacks that have never been seen before,
and the attacks employ many types of malwares. The
frequency, sophistication, and cost of malware
attacks on the global economy have been steadily
growing in recent years. According to scientific and
industry reports, over 1 million malware files are
developed daily, and cybercrime is expected to cost
the global economy approximately $6 trillion
annually by 2021 [4].

The recent research also indicated that mobile
malware is increasing in popularity. According to
McAfee’s mobile threat report, backdoors and
banking Trojans targeting mobile devices have
increased significantly [5]. Additionally, malware
assaults targeting social media platforms, healthcare,
cloud computing, and Cryptocurrency are growing.
The malware must be discovered to protect genuine
users and businesses from it. Malware detection is

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

137

the process of identifying whether or not a certain
application is harmful. Most modern malware
detection systems rely significantly on the antivirus
software containing signature databases to detect
dangerous patterns, which is a feature of most
antivirus software.

On the other hand, such software is incapable of
detecting new or undiscovered malware.
Furthermore, these technologies have their own set
of limitations, such as the inability to identify
malware that has been packaged or encrypted. Even
the simple reusability of code with some packers can
create a new form of malware capable of evading
signature-based detection systems. Because of these
constraints, signature-based approaches cannot
detect the majority of packed malware, which allows
it to remain undiscovered for an extended period.
Static and dynamic analysis approaches are the two
most often utilized techniques for malware
identification and prevention.

Additionally, a hybrid technique for malware
detection that incorporates both static and dynamic
analysis is being developed and tested. And have
also been investigated [5]. Static code analysis is
time-consuming and depends significantly on
reverse-engineering malware to complete
successfully. Code obfuscation is a significant
difficulty with static analysis, and one of the
disadvantages of dynamic analysis is that it depends
on the execution environment to expose its whole
behavior. Over time, researchers offered novel ways
to detect, including behavioral, heuristic, and model
checking-based approaches.

Due to these approaches, data mining and
machine learning methods are also being
increasingly employed in malware detection.
Recently, novel ways to detect have been proposed,
including those based on deep learning, cloud
computing, mobile devices, and the Internet of
things. Heuristic detection approaches also
effectively detect known malware and certain
undiscovered malware. Behaviours, model checking,
and cloud-based techniques, on the other hand,
outperform traditional approaches when dealing with
unknown and sophisticated malware. Deep learning,
mobile devices, and Internet of Things (IoT)-based
techniques are also being developed to identify a
fraction of known and undiscovered malware.
However, it has not been demonstrated conclusively
that one detection method is more successful than the
others. This is because each approach has its own set
of benefits and weaknesses, and under particular
situations, one method may detect more accurately
than another.

1.1 Importance of The Study

Feature engineering, feature selection, and
representation approaches are used to develop
machine learning algorithms. The set of
characteristics associated with a matching class is
used to train a model, which is then utilized to
generate a dividing plane between benign and
malicious objects. This dividing plane aids in
detecting malware and the classification of malware
into its associated malware family. Both feature
engineering and feature selection methods
necessitate a thorough understanding of the domain.
Static and dynamic analysis may both be used to
determine the various characteristics. Static analysis
is a technique for capturing information from a
binary program without running it on the computer.
Dynamic analysis is the practice of observing
malware activity in real-time while running in a
controlled environment. Dynamic analysis has the
potential to be an effective long-term solution for
malware detection systems. In real-time malware
detection, dynamic analysis cannot be used since it
requires a significant amount of time to evaluate the
activity of the infection. A harmful payload might be
delivered during this time, making it ineffective.

Compared to statically gathered data, malware
detection approaches based on dynamic analysis are
more resistant to obfuscation methods than statically
obtained data. In most cases, commercial anti-
malware solutions employ a combination of static
and dynamic analysis methodologies to detect and
remove the malware. Traditional machine learning-
based malware detection systems have a significant
drawback. They are heavily reliant on approaches
such as feature engineering and learning and feature
representation methodologies, which need deep
domain expertise. Furthermore, if an attacker
becomes familiar with the characteristics, the
malware detection may readily have circumvented
[6].

Machine Learning algorithms require data with
a range of malware patterns to be successful.
Because of security and privacy issues, there is
extremely little publicly available benchmark data
for malware analysis research.

Even though just a few datasets are available,
each comes with its own set of scratching comments,
as most of them are out of date. Many of the results
of machine learning-based malware analysis that
have been published have been based on the author’s
datasets. Even though there are publically available
sources for crawling malware datasets, building a
quality dataset for the study is time-consuming and
difficult. Because of these challenges, establishing a
general machine learning-based malware analysis
system that can be deployed in real-time has been

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

138

hampered in recent years. More importantly, the
participants explored the compelling concerns
associated with using data science approaches [7].
Deep learning, which is the more advanced model of
neural networks, has recently outperformed
traditional machine learning algorithms in many
tasks in the fields of natural language processing,
computer vision, and many others [8].

In recent years, a novel technique for malware
detection based on mage visualization [9]- [10] has
been investigated by several researchers to
discriminate between malicious programs.
Visualization-based techniques decrease the
requirement for domain specialists and eliminate the
need for manual feature engineering, resulting in
time savings. A Convolutional Neural Network
(CNN) architecture is a type of neural network that
can extract information from an input image without
human intervention. Furthermore, well-defined
CNN architecture like ResNet 50, Inception V3, and
AlexNet may be used as feature extractors and
classifiers [11]- [12]. These networks are trained on
huge datasets of images. Without further training,
they may be utilized as a classifier for comparable
classification issues in the target domain, such as
malware image classification. The transfer learning-
based malware classification approach has been
examined in several existing works of literature. Pre-
trained networks with well-established topologies
may be used either as feature extractors in
conjunction with the machine learning methods for
classification on the target domain [11]- [12] or fine-
tuning a classification model for the target domain
[13]. However, only a few researchers have
addressed the issue of overfitting when working with
the smaller or unbalanced datasets to date.
Competitive advantage is provided to the algorithm
by the early stopping regularization approach, which
allows it to halt the model’s training process based
on validation data results. It is also computationally
challenging to execute a whole deep CNN model on
a short dataset because of many variables. Because
of an early stopping approach, the model converges
quickly and efficiently without imposing additional
burden on the training process, resulting in a
computationally efficient model. Retraining the pre-
trained model with several convolutional layers is
time-consuming and impractical for use.

1.2 Contribution of The Study
The researchers developed and assessed various

machine learning and deep learning algorithms to
increase their productivity, which was often used in
conjunction with the information reduction
technique. On the other hand, these algorithms have
shown favorable outcomes when a set of assessment

measures has been used. On the other hand, such
models are worthless when identifying malware in
real-world networks. In this field, there was a
tendency to focus on exceeding specular results for a
particular dataset rather than delving further into
machine learning-based virus identification models.
Several studies have been conducted in a real-world
context due to this reaction. Though, these
approaches are troublesome since they are often
assessed using just one dataset with such a consistent
list of qualities, which may not be practical to collect
or maintain in an actual network communication
stream, they are beneficial in theory. The further
point is that, due to machine learning and deep
learning, there is occasionally room for
improvements. in hyperparameters when various
datasets are allocated to the same model. In this
research study

 We proposed a self-sufficient model in terms of
a wide range of advantages and trained it using
a Malimg –An image-based dataset.

 We performed a malware image-based
classification using custom CNN, and their pre-
trained networks.

 We first investigated Capsule Network's
performance (Caps-Net) for malware image
classification.

2. RELATED WORKS

To protect computer systems from
malware, we must first detect malware before it can
cause damage to the computer systems. When it
comes to detecting malware, three classic ways have
been used: behavior-based, heuristic-based, and
signature-based detection. There are lots of pros and
cons to using these strategies. Signature-based
detection effectively identifies known malware by
pattern matching. Still, it is ineffective at identifying
unknown malware because malware can alter its
properties, resulting in a new signing this method
cannot detect. While this method can identify both
well-known and unknown malware, it has the
potential to produce high error rates for both false-
positive and false-negative results. The behavior of
suspicious files is observed by approaches based on
behavior-based malware detection. Resources and
time are required for this approach to be
implemented and monitored to be effective. In this
part, we highlighted the advantages and
disadvantages of some of the prominent
classification models used for malware detection,
which typically relied on static and dynamic analysis
and their variants in more recent years. However,

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

139

when dealing with a large amount of data, it is even
more critical to consider image processing
techniques to improve data visualization and make
more informed decisions.

2.1 Malware Classification Using Statistical
Analysis

Some security researchers have utilized
domain-level understanding of portable executables
to identify static malware in their work. Analysis of
byte-n grams and strings are now the two most often
used approaches for static malware detection that do
not require domain-level expertise to be effective.
The n-gram technique, on the other hand, is
computationally costly, and the performance is well
below average. When developing a machine
learning model to discriminate between malware and
benign file, it is frequently challenging to apply
domain-level knowledge to extract the essential
features. Similarly, with the continually changing
specifications from time to time, the malware
detection system will need to be updated to fulfill
further security needs. In a study [14], the authors
have attempted to address this issue by combining
machine learning algorithms with features derived
from the parsed information in the PE file. They
used formatting of agnostic characteristics such as
byte entropy histogram, raw byte histogram, and
string extraction. They also have made a dataset
containing features, raw files, and related code
available to the public since deep learning models
require more examination and investigation.
Similarly, wholly linked classical networks and
recurrent neural networks were also used to detect
malware using 300 bytes of information [15].

2.2 Malware Classification Using Dynamic

Analysis
The dynamic malware analysis method is

more resistant to obfuscation techniques than static
malware analysis approaches, which are more used
in the industry. In a research study [16], features
from API calls were extracted and fed to CNN for
classification purposes using dynamic analysis.
They employed around 170 samples and acquired a
quality measure of 0.96- AUC as a result. In another
study [17], the authors said that they had gotten a
shallow feed-forward network feature set of API
requests from a large number of benign and
malicious samples that had been gathered privately.
It outperforms the previous technique in terms of
performance, but it does not include research on
execution speed, which is critical for real-time
deployments of software. In [18], a study of the echo
state networks (ESN) and recurrent neural networks

(RNNs) were carried out to understand the language
of malware. Compared to RNNs, the ESNs
outperformed them in most of the studies. The study
[19] was carried out to establish when to terminate
the virus execution about the network connectivity
being used. The overall time required by this
procedure was 67 percent shorter than the time
required by traditional methods. An RNN and its
variants, long short-term memory (LSTM), and
CNN were used for malware classification in [20],
employing API call long sequence as features while
CNN was used for classification. The most
significant disadvantage of the approach was that
they required more time to evaluate the system's
behavior as it was being executed. This combination
reported very promising results. It was also
discovered through dynamic analysis that these
system calls were made, and their technique was
shown to outperform previously utilized algorithms
such as HMM and Support vector machines.
However, the most significant shortcoming was the
lack of considering the significance of execution
time in the context of malware detection in real-time.
Multiple studies have been conducted to examine the
effectiveness of malware detection strategies based
on static, dynamic, and hybrid analysis
methodologies. There was comparison research on
detection rates and the usage of HMM on both static
and dynamic feature sets in [21], which included a
large number of malware families and included both
static and dynamic analysis of feature sets. Their
finds revealed that dynamic analysis often provided
the highest detection rates.

2.3 Malware Images

It is possible to describe malware
executables as a matrix of binary or hexadecimal
strings, which may be translated into a form that can
be thought of as an image. Malware developers
typically add to or update the code in existing
malware to produce a new variant. As a result, when
the file structure is displayed as an image, it is much
easier to see minute addition or modifications to
various areas of the file structure. Initially suggested
by [22], this approach for converting malware into
graphics involves converting raw bytecode PE files
to grayscale image data, where each pixel is
represented by one or more bits. Similarly, in [23],
the authors accomplished image-based malware
classification utilizing an ensemble CNN
architecture to identify packed and unpacked
malware files. In another work [24], malware binary
in IoT contexts was transformed into an image, and
CNN's was utilized to classify the malware families.
The proposed technique reported 94% accuracy for

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

140

goodware and DDoS malware and 81.8% accuracy
for goodware malware. In [25], the researchers
presented the MCSC model, i.e., Malware
Classification Using SimHash and CNN. They
hashed decompiled malware code and transformed it
into grayscale images before training CNNs to
classify malware. The proposed technique was
validated on malware image samples and reported
98.86% classification accuracy.

2.4 Malware Classification Using Image

Processing Techniques
Malicious software assaults are on the rise,

and in recent years, new malware may be simply
created by modifying existing malware from a well-
known malware family in a straightforward manner.
To address this challenge, it is necessary to become
familiar with the features of malware that are similar
to one another and may be used to group malware
into families. Several research studies [26]- [28]
exploited the fact that most malware variants are
similar in structure, employing digital signal and
image processing techniques to classify malware.
They converted malware codes to grayscale images
and discovered that malware belonging to the same
malware family appears to be pretty similar structure
and texture. Because Image processing techniques
do not involve disassembly or code execution, they
are significantly quicker than static and dynamic
analysis. The primary advantage of this strategy is
that it can handle compressed malware and can work
with a wide variety of malware regardless of the
operating system. Experimental results indicate a
classification accuracy of 98% when applied to an
extensive malware database and is also resistant to
typical obfuscation techniques, such as encryption.
They also proposed an Image-based dataset Malimg
for malware classification. In these studies, the
researchers also demonstrated Search and Retrieval
of Malware, an online search, and retrieval system
that analyzed binary executables using similarity
metrics.

They also demonstrated signal, a signal
processing-based system for detecting malware
similarities. It can handle both packed and unpacked
samples, bypassing the resource-intensive
unpacking step. Recently, the Malimg dataset has
been utilized to compare the efficacy of advanced
machine learning algorithms to that of traditional
machine learning algorithms. Rather than relying on
various signal and image processing approaches, the
application of deep learning algorithms is translated
into malware classification using the Maligmg
dataset [29]- [30]. Similarly, SVM combined with
deep learning architecture such as CNN and RNN

variants were also explored in [29] and reported very
promising results.

2.5 Malware Classification Based on Deep

Learning
Deep learning is used to learn the properties

of malware and benign files by analyzing large
datasets. Deep learning has been employed in
various domains, including speech recognition and
image recognition, as an effective artificial
intelligence [30]. For instance, [31] developed
MCSC, a malware classification approach that
combines visualization and deep learning
techniques. They extracted the Opcode commands
from the malware executable and then encrypted
them using SimHash. They transformed SimHash
values into grayscale images by converting them into
pixels. Finally, the Convolutional Neural Network
was employed to train the images, and malware
families were identified. The proposed solution
produced a high degree of classification accuracy in
small-scale application settings but could not detect
malware more quickly in a large-scale application
environment.

In [32], the author's presented a deep
learning approach without relying on reverse
engineering. Their approach obtained a
classification accuracy of 98.2 percent using just
10860 samples from nine malware families.
Similarly, in [33], a combination of CNN and LSTM
was employed to automatically learn the
characteristics from infected files. It significantly
decreased the cost of developing artificial features.
The proposed technique achieved a classification
accuracy of 99.36% using only 10,860 samples from
nine malware families. Another research work [34]
suggested an architecture based on CNN's for
classifying malware samples. They conducted
research on the most complex malware dataset
known as Mailing. While analyzing 9339 samples
from 25 malware families, their design achieved
98.52% accuracy. They tested 10% of the samples
within a family at random. [35] introduced a deep
learning architecture for malware detection based on
CNNs. They conducted experiments on the Malimg
dataset and considered 25 malware families. The
proposed model achieved a 98% accuracy rate when
applied to 9339 samples. The experiment randomly
picked 10% of the family's samples. The concept of
deep learning was also employed in another research
study [36]. They used various deep learning
techniques, including CNN architecture, to identify
intrusion in both network-based instruction detection
systems and host-based intrusion detection systems,
with a claimed accuracy of over 98%. The suggested

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

141

approach does not provide sufficient information on
the malware's structure and properties and does not
account for overhead time.

In [37], the author discussed using the
image-based technique for identifying suspicious
system activity and advocated using hybrid image-
based approaches in conjunction with CNN-based
deep learning architecture for successful malware
classifications. They presented two- CNN-based
models, Unidirectional GRU and Bidirectional
GRU, and then assessed and compared their
performance to other current CNN architectures
such as Unidirectional LSTM and Bidirectional
LSTM. They conducted an experiment using two
publicly available datasets: Microsoft Malware
Classification challenge and Mailing. The proposed
architecture reported an average accuracy of 96%
but did not account for overhead time. Several
researchers suggested using data balancing
approaches to minimize the possibility of malware
detection misclassification. [38], developed a
weighted Softmax loss algorithm to balance the
imbalance malware dataset.

Similarly, [39] suggested a CNN-based
malware variant identification technique.
Additionally, they resolved the data imbalance issue
by utilizing a BAT method for data equilibrium.
While analyzing 9339 samples from 25 malware
families, their approach achieved a 94.5%
classification accuracy. A cost-effective solution
was utilized to address the unbalanced multiclass
malware family issue. Recently, security researchers
have begun forecasting the image classification
problem like a malware classification [36]. The
models of CNN, such as VGG -16, ResNet -50, and
Inception V2, have been implemented for the
intrusion detection system. The focus of this study is
an Image-based malware classification using these
models.

3. PROPOSED METHODOLOGY

The All of the dataset images were
transferred through the pre-processing pipeline and
into the deep learning pipeline for appropriate
training of deep learning models. To train the model,
all images were shrunk to the same proportions as
each other. Following that, the images were rescaled
from RGB value to grayscale by a factor of 1/255 to
bring the RGB values back into balance. They are
considered too high for good model performance if
they fall within the range of 0 – 255. Finally, the
dataset was subdivided into two groups: the training
and test sets. Malware images were distributed in
two sets: a training set and a test set with a 70 percent
training set and a 30% test set. Many deep learning

models for malware classification were trained when
a malware images dataset was prepared and made
available to the researchers. The Adam optimizer
and the cross-entropy loss function were employed
for the proposed custom CNN architecture. The
default value for the remaining hyperparameters was
utilized for the rest of the parameters. The
classifier’s performance was improved by reducing
the learning rate on the plateau, which was enabled
by default. A further step was taken to train three
distinct deep learning models to classify Malware
Images. These models were labeled as VGG-16,
ResNet 50, and Inception V3. The Adam optimizer
and the cross-entropy loss function were combined
to train all models. Using early halting criteria, the
models were trained for 50 epochs. With the help of
the evaluation measures, the results of all trained
models were compared. Finally, the classification of
malware images the model composition method was
employed. The composite model was created by
combining several previously trained models. The
custom CNN models and the VGG 16, ResNet 50,
and InceptionV3 models were merged to predict a
single outcome for the experiment. An overview of
the proposed methodology is presented in figure 1.
The detailed employed dataset and proposed
architecture are presented in the subsequent section.

Table 1. Algorithm

Algorithm Composite Model Algorithm for The
Classification

Input: Sample image of Malimg dataset

Output: Class or Malware type of image

Step 1: Sample-image = load (“path of the
testing set image)

Step 2: Result1 = custom-CNN. Predict
(Sample-image)

Step 3: Result2 = VGG16. Predict (Sample-
image)

Step 4: Result3 = ResNet50. Predict
(Sample-image)

Step 5: Result4 = InceptionV3. Predict
(Sample-image)

Step 6: Final-Result = max* (Result1,
Result2, Result3, Result4)

Step 7: Return Final-Result

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

142

Fig. 1 An overview of Proposed Methodology
3.1 Dataset

It is necessary to construct a large dataset
with various samples to evaluate the effectiveness of
traditional machine learning and deep learning
architecture. Because of the privacy-preserving
practices of individuals and organizations, there are
extremely few public datasets for possible cyber
security studies for malware detection purposes. As
malware has grown sophisticated, finding a single
source containing all the different malware families
has become increasingly difficult. Many researchers
have attempted various efforts to build the dataset
and collaborated on their findings; however, there is
currently no one dataset that has been published
where all of the necessary samples can be found. In
this study, the Malimg dataset is used to classify
Malwares. The Malimg dataset was acquired from
the Kaggle repository, which comprises mostly 9458
malware samples that have been classified into 25
different classes. The most notable characteristic of
this dataset is not supplying only malware samples
once but are also providing images of malware
samples as they appear on the disc.

Fig. 2 A sample Images of Malimg Dataset

The work in bytes of executable le files is
analogous to the work in that floats are allocated
inconsequentially to values that would be later be
revealed as pixel values of the grayscale image. The
malware classes in the dataset are unequally
distributed, with the bulk of samples belonging to the
class ‘Allaple. A’ comprises 2949 samples, and the
least number of samples belonging to the lowest
class, which contains just 80 samples. The random
samples of the malware image dataset have been
presented in Figure 1. The images in each category
have distinct styles that allow distinguishing
between the samples of a family, regardless of
whether or not they are examples of another family
in the same class. After the collection of the samples,
we performed image preprocessing. It is an
important stage in the development of a
classification system. Removing any unnecessary
information from images during preprocessing is
necessary to improve the classification rate. The
preprocessing is carried out by the types of image
that has been received. Image processing steps such
as noise removal, skew correction, and binarization.
After the preprocessing steps, we prepared the
training data of malware images and fed them to the
deep neural networks for feature extraction and
classification.

3.2 VGG- 16
 VGG-16 is a Convolutional Neural
Networks (CNN) architecture that is simple and
widely used in visual object classification and
detection research. Initially, It was used for
ImageNet, a big database project utilized in object
recognition software research. Karen Simonyan and
Andrew Zisserman from the University of Oxford
developed and introduced the VGG 16 architecture.
The term ‘VGG’ stands for Visual Geometry Group,
a group of researchers at the University of Oxford
that worked together to build this architecture. The
number 16 indicates that this architecture comprises
16 layers of information.
 The VGG-16 model achieved 92.7%
classification accuracy in the ImageNet dataset,
which contained 14 million images belonging to the
1000 different classes. One of the most well-known
models submitted to the ImageNet Large Scale
Visual Recognition Challenge 2014. It improved the
AlexNet design by substituting large kernel filters
with three-three kernel-sized filters one after another
in the first and second convolutional layers,
respectively. The VGG 16 has been employed in
different deep learning classification problems due
to its simplicity of implementation because a very
small 3 * 3 filter size was used throughout the whole

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

143

network, with a stride of 1 pixel being used
throughout the network. In the previous network,
such as AlexNet, this was 11 * 11 with stride 4, and
the same field in ZFNet was 7* 7 with stride 2. The
concept of using 3 *3 filters uniformly distinguishes
the VGG. Two consecutive 3 * 3 filters produce an
effective receptive field of 5 *5 due to the
combination of the three filters.
 Similarly, three 3 * 3 filters can create a
receptive field 7 * 7 by combining them. It is
possible to substitute for a large receptive area by
combining numerous 3 * 3filters in this manner. The
advantage of this arrangement is, as an alternative to
the one non-linear activation layer that would
present id 7*7, there are three non-linear activation
layers in addition to the three convolutional layers.
As a result, the decision-making functions become
more discriminative. It provides the network with
the potential to converge at a faster rate. Second, it
has the additional benefit of greatly reducing the
number of weight parameters which lessen the
likelihood that the network will become overfitting
during the training session. According to the
architecture of VGG- 16, It was assumed that the
input to the network was a fixed size image with
three channels, RGB with a resolution of 224 X 224
pixels. The only pre-processing that has been done is
to normalize the RGB values for each individual
pixel.

This was accomplished by removing the mean value
from each pixel in the image. A 3 * 3 receptive size
image was sent through the first stack of two
convolutional layers with a receptive size of 3* 3,
after which Relu activation functions were
performed. Each of these two levels has a total of 64
filters in it. The convolution stride and padding were
fixed at one pixel, and the padding was fixed at one
pixel. This arrangement keeps the spatial resolution
of the image intact, and the output activation map
size was the same as the dimension of the input
image. The activation maps were then run via spatial
max-pooling layer over a 2 * 2-pixel window with a
stride of 2 pixels. After this, the activations were
then routed through a second stack similar to the first
stack but with 128 filters instead of 64 filters in the
first stack. There were three Convolutional layers
and a max-pooling layer in this stack, followed by
the fourth stack.

Fig. 3 VGG -16 Architecture for Malware Image
Classification

 Similarly, the 256 filters were used in the
fourth stack, and so on. In the end, the stacks of
convolutional layers followed the three fully
connected layers with a flatting layer in between.
The employed VGG-16 architecture in this study for
malware image classification is presented in Figure 3.
 Compared to the AlexNet, the VGG-16
architecture was an upgrade since it replaced the
large kernel size filter with various 3 * 3 kernel sized
filters that applied into stack manners. When
working with the pre-trained Networks, two
approaches can be used, features extract action and
fine-tuning. We used VGG16 for feature extraction
as well as for classification purposes. It is distinctive
in that, rather than having many hyper-parameters, it
contains convolutional layers of 3 * 3filter with a
stride 1 and always utilizes the same padding and
max pool layer. We initialized the model
checkpoints during training and prepared the
malware image size according to the network input.

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

144

In the end, adjust the value of neurons at the Fully
connected layer as, by default, it corresponded from
1000 classes of ImageNet.

3.3 Resnet 50
 AlexNet earned the first prize in the
LSVRC2012 classification challenge in 2012, and
since then, ResNet has been the most intriguing thing
to happen in the world of computer vision and deep
learning. Because of the foundation that ResNet
provides, it became possible to train extremely deep
neural networks, which means that a network can
have thousands of layers while still achieving
excellent performance, a previously impossible feat.
The ResNet was initially applied to the image
recognition problems, but as reported in the
literature, this framework was extended to various
tasks other than computer vision to obtain higher
accuracy and greater precision. As we know, the
deep Convolutional Neural networks are extremely
good at identifying low, mild, and high-level
features in images, and stacking more layers
generally results in better accuracy. The question
arises as to whether increasing the number of layers
will improve model performance? With this question
comes the problem of vanishing gradients, which has
been addressed in various ways and has enabled
networks with tens of layers to converge. However,
when the deep neural networks converge, another
problem arises: the accuracy becomes saturated and
degrades rapidly. This was not caused by the
overfitting, as one might expect, and adding more
layers to a suitable deep model only increased the
training error. To address this further, the researchers
employed a shallower model and deeper model, both
of which were constructed with layers from the
shallow model and identified layers added on the top
of them. As a result, the deeper model should not
have produced any training error because the added
layers were only the identity layers. To overcome
this issue, a deep residual learning architecture was
introduced where the author proposed a shortcut
connection that merely performed identity
mappings. Because there were no additional
parameters introduced to the model due to this
shortcut identity mapping, it was possible to keep the
computing time under control. As mentioned earlier,
the Residual Network design was selected as the
winner of the ILSVRC competition, and jamming
was the one that invented ResNet. To do this, he set
out to create ultra-deep networks that were not
affected by the vanishing gradient problem that has
plagued previous generations of the networks.
 ResNet employs a variety of layer counts,
including 34, 50, 101, 152, and even 120 layers in

some instances. ResNet-50, a convolutional neural
network with 50 layers, is one of the versions of
ResNet. A total of 48 convolution layers are included
and 1 Max pooling and 1 Average pooling layer. The
ResNet 50 is a deep residual learning framework
built on a neural network. It can resolve the
vanishing gradient problem even when working with
incredibly dense neural networks. ResNet 50,
despite the fact it contains 50 layers, has around 23
million trainable parameters, which are significantly
less than the trainable parameters of previous
architectures. Even if the explanations behind its
performance are still up for debate, the most
straightforward method to comprehend it is to
describe residual blocks and how they function, as
presented in figure 4.

Fig. 4 Residual Learning Block

Suppose, a residual block has y as an input and wants
to learn the true distribution H(y). The difference
between input and true learning can be write as

R(y) = Output – Input
R (y) = H(y) – y

 After the rearranging this equation we will have.

H (y) = R(y) + y

 The residual block is attempted to figure
out what the genuine output is H(y); as the residual
block has an identity link arising as a result of they,
the layers are learning the residual, which is
represented by the letter R(y). When using a standard
network, the layers are responsible for learning the
true output H(y), but the layers of the residual
network are responsible for learning the residual
R(y).

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

145

Fig. 5 The Architecture Of The Resnet 50 Is

Illustrated
Furthermore, it has been shown that learning the
residual of the output and input, rather than just the
inputs, is more straightforward. Thus because they
have been bypassed and do not add any complexity
to the design, the residual identity model allows for
the reuse of activation functions from earlier levels
[40]. The architecture of the ResNet 50 is illustrated
in figure 5.
 In this research, we used ResNet 50
architecture for the features extraction and
classification of Malware images with different
experimental settings and tuned on a various number
of epochs to achieve better results.

3.4 Inception V3
 Since Krizhevesky et al. [41] won the 2012
image completion, their network “AlexNet” has
been successfully applied to a broader range of

computer vision tasks, including object detection
and video classification. In the wake of these
breakthroughs, researchers began a new line of
investigations into improving the performance of
convolutional neural networks. With the
implementation of deeper and larger networks
beginning in 2014, the quality of network topologies
has improved dramatically. In the 2014 ILSVRC
challenge, the VGGNet [42] and Google Net [43]
networks achieved a similar level of performance. It
was shown that the improvements in classification
tend to translate into considerable quality
improvements across a wide range of application
areas, which was the fascinating findings. This
indicated that architectural advances in deep
learning could be used to increase the performance
of a wide range of other computer vision
applications that are becoming increasingly reliant
on high-quality, learned visual features, such as
object detection and tracking. Improvements in
network quality have also led to the development of
new application areas for convolutional networks in
different circumstances where the AlexNet feature
could not compete with hand-engineered features.
 Even though VGGNet offered the
appealing virtue of architectural simplicity, this
appears at a hefty cost: assessing the network needs
a significant amount of computational power, which
is not always available. On the other hand, Google
Net [43] was built with the inception architecture in
mind, and it was meant to perform well even when
faced with stringent memory and computation
power. Compared to AlexNet, which used 60 million
parameters, Google Net used only 5 parameters,
representing a 12 percent reduction in parameter
usage. Furthermore, VGGNet used approximately
three times as many parameters as AlexNet. In
addition, the computational cost of Inception is far
cheaper than that of VGG Net or its more powerful
descendants. This has made it possible to use
Inception networks in computer vision and big data
tasks, where a large amount of data needs to be
processed at a reasonable cost, or scenarios where
memory or processing capability is fundamentally
constrained. In this study, we employed the 3rd
version of Inception named Inception V3 for
malware image classification.
 Through the modifications to the previous
Inception architectures, InceptionV3 strives to
consume fewer processing resources. Inception V3
has shown to be more computationally efficient than
VGGNet, both in terms of the number of parameters
generated by the network and the cost incurred. Care
must be taken while making changes to an Inception
network not to lose computational gains.

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

146

Consequently, it turns out to be challenging to adapt
Inception networks to diverse use cases because of
the ambiguity around the new network’s efficiency.
Many strategies have been proposed for improving
the network in an Inception v3 model to make the
model more adaptable. Parallel calculations,
regularization, dimension reduction, and factorized
convolutions are just a few of them. According to the
architecture, the Inception v3 contains 48 layers
consisting of different parameters such as factorized
convolutions, smaller convolutions, Asymmetric
convolutions, Grid Size reduction, and auxiliary
classifier.
 The factorized convolutions are used in the
architecture to reduce the number of parameters in a
network. This helps to improve computational
efficiency. It is also used to monitor the network’s
efficiency. Similarly, the large convolutions are
replaced with smaller convolutions, which results in
faster training. The grid size reduction is also
employed in Inception v3, where pooling techniques
are commonly used to reduce the grid size. However,
a more effective strategy is given to overcome the
computational cost bottleneck. A small CNN is
placed between layers during training as an auxiliary
classifier, and the loss it incurs is added to the net
loss. This classifier works as a regularizer in
Inception v3 [44].

Fig. 6 3*3 smaller convolutions

Fig. 7 Inception Module where two 3* 3
convolutions replace each 5 * 5 convolution.

Fig. 8 Inception V3 architecture for Malware
Image classification.

3.5 Convolutional Neural Network (CNN)
 Even though Convolutional Neural
Networks were introduced for the first time in the
early 1990s [45], they did not gain much attention
from the research and academic community due to
the scarcity of large datasets, the complexity of the
algorithms, and the length of time required for
training. Large datasets such as ImageNet [46] and
the introduction of astonishingly effective GPUs
have combined significantly improved the
performance on a wide range of learning tasks while
simultaneously reducing the training time. As a
result of Krizhevesky et al. [47]’s usage of CNNs in
the Image Net competition, CNNs have received
widespread acceptance. The CNN-based system

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

147

outperformed those based on traditional
methodologies, but it also had a much lower effort
rate. The use of neural networks for recognition tasks
has exploded since then, and they have been applied
to a wide range of pattern classification tasks.
Traditional networks require input in a single vector;
however, the fully connected design results in a
considerable number of weights per neuron due to
the fully linked topology. Overfitting occurs as a
result of the fact that such networks do not scale well
for image-based data. On the other hand, CNN's are
optimized for image recognition and classification
since they are predicated on the assumption that the
input is mostly an image. Because each neuron is
connected to a specific part of the image, the number
of weights associated with a neuron is significantly
reduced compared to a fully connected architecture.
 In CNN's, the neurons are arranged
according to the three dimensions of height, width,
and depth. A CNN is composed mainly of
convolutional and pooling layers placed on top of
one another, followed by the fully connected layer.
In CNN's, the convolutional layers are the central
component that extracts a distinct feature from the
image to create a more accurate representation. The
output of the convolution process is an activation
map, which is then passed on to the next layer of the
algorithm structure. When the early convolutional
layers detect low-level features, the following
convolutional layers combine these features to
discover the high-level features. Each filter in a
convolutional layer creates an individual activation
map or features to calculate output volume. Most of
the time, a non-linearity is introduced into the
network by applying an activation function to the
output of the convolutional layers. In the activation
function, the ReLu is the most usually employed.
The vanishing gradient problem with the standard
sigmoid function is effectively avoided by ReLu,
despite its simplicity. The ReLu can be defined as

R(x) = max (0, x)

 When the convolutional layers are added
repeatedly, the pooling layer is introduced to down
sample the feature maps. It is important to note that
the down sampling procedure not only helps to lower
the number of parameters in the network, but it also
helps to prevent overfitting. The max-pooling
operation is used in the convolutional network. It
picks the maximum filter response from among all
of the filter responses examined in a particular
region of the input volume among the various
pooling process utilized. Following a sequence of
pooling layers, the feature maps produced by the
fully connected layer that serves as the classifier are

fed into the fully connected layer. In the FC layer, all
neurons are connected to all of the neurons in the
preceding layers in the same way.
 In addition to the pre-trained network, we
employed the CNN and trained it from scratch. The
architecture of a CNN is a function of many factors
and variables. In this study, we developed and
compared various CNN architectures by altering
their kernel sizes, their number of layers, and the
number of filters within each convolutional layer.
The proposed architecture has convolutional 144 *
144 and 71 * 71. After the convolutional layers, the
max pooling operation was performed where 71 * 71
and 32 * 32 dimensions with 64 filters were used for
the pooling operation. After the pooling layer, the
flatten layer was used to convert the data into a
feature vector for further classification processing.
After the flattening layer, the two dense layers of 128
and 25 neurons were used. As the output generated
by the dense layer is an m dimensional vector, thus
the dense layers were used to change the vector's
dimension. Normally, in the architecture, it is a layer
firmly related to its preceding layer and works to
change the dimension of the output by performing
matrix-vector multiplication. The detail of the
proposed architecture of CNN is illustrated in Table
II.

Table 2. CNN’s Proposed Architecture of Malware
Image Classification

Model: “sequential”

Layer (type) Output
Shape

Param #

Conv2d (Conv2D) (None, 144,
144, 128)

18944

max_pooling2d
(MaxPooling2D)

(None, 71, 71,
128)

0

conv2d_1
(Conv2D)

(None, 67, 67
64)

204864

max_pooling2d_1
(Maxpooling2D)

(None, 32, 32,
64)

0

flatten (Flatten) (None, 65536) 0
dense (Dense) (None, 128) 8388736
dense_1 (Dense) (None, 25) 3225

Total params: 8,615,769
Trainable params: 8,615,769
Non-trainable params: 0

3.6 Capsule Neural Network (CAPS – Net)
 An example of an artificial neural network
is a Caps Net. Because CNN does not have many
restrictions for computer vision tasks, The Capsule
Network was developed as an alternative to CNN.
Convolutional neural networks, or CNNs, were

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

148

initially designed to categorize images by merging
convolutional and pooling layers. These networks
are sometimes referred to as the "cornerstone" in
some circles. Even though the CNNs could produce
accurate results, there was a noticeable decline in
their performance. This resulted from a reduction in
the data dimension, which brought about a loss of
information. As an alternative to convolutional
neural networks, which Geoffrey Hinton invented,
he came up with a novel architecture called the
capsule neural network [48]. Capsules are used in
capsule networks rather than neurons, used in
traditional networks. All of the essential information
present in an image to generate a vector was
contained within the capsules.
 In contrast to neurons, which can only
output a scalar quantity, tablets can keep tabs on the
future path while being monitored. Consequently, if
we start moving the features about in their respective
positions, the value of the vector will remain the
same, but the vector's direction will change to
represent the movement of the features. An encoder
and a decoder are the two parts that make up a Caps
Net, as specified by the design.
 When used together, the encoder and
decoder make up six levels in the system. To be more
specific, encoders transform the input image into a
vector with 16 dimensions by using that image as a
source. The input image is converted into a 16-
dimensional vector by the first three layers of the
network's architecture. The convolutional neural
network, the primary caps network, and the digital
caps network are the three layers that contribute to
the construction of the encoder that Caps Net uses.
The first layer is responsible for isolating the most
fundamental characteristics of the images. The
second layer is responsible for taking these essential
characteristics and identifying more intricate
relationships between them; the capsule sizes
available in this layer can vary depending on the
dataset being used. The variation in the number of
capsules present in the third layer follows the pattern
established in the second layer. When figuring out
which capsules from the primary caps will be moved
to the Digit caps, it is vital to compare and contrast
the weight of the lower-level capsules with that of
the higher-level capsules. We employed two
convolutional and one fully connected layer in the
encoder section. The convolutional layer used the
ReLu activation function, which uses 256
convolutional kernels of 9x9 size, and the stride is 1.
This layer is in charge of converting the intensities
of the pixels to the activities of the local feature
detector, and the results are subsequently supplied to
the Primary Caps layer.

 The Primary Caps layer is a convolutional
layer that consists of 32 channels of convolutional 8-
D capsules. There were 8 convolutional units within
each capsule, with a 9 x 9 kernel and a stride of 2.
Inverse graphics were created by primary capsules,
which means that the process of really creating an
image is reverse-engineered by these capsules. A
6*6*8 output tensor was produced due to the
capsules applying eight 9*9*256 kernels to the
20*20*256 input volume. In light of the fact that
there were 32 8- D capsules, the output would have
the dimensions of 6 * 6 * 8 * 32. Each class in the
Digit Caps layer is comprised of 16- D capsules, and
each capsule gets input from the corresponding low-
level capsules. The weight matrix was employed for
affine transformation against each 8- D capsule. In
the end, an instantiation parameter encoding was
accomplished through the utilization of
reconstruction loss. When calculating, The loss of
each training sample was compared against all of the
output classes. The overall loss was calculated by
adding up the individual losses of each digit capsule.
An overview of the proposed architecture is
presented in Figure 9 and Figure 10, respectively.

Fig. 9 Architecture of Caps-Net.

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

149

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) (None, 64, 64, 3) 0

conv_2d_ (Conv2D) (None, 64, 64, 32) 24608 input_1[0][0]
batch-normalization_1
(BatchNormalization)

(None, 64, 64, 32) 128 conv2D_1[0][0]

activation_1 (Activation) (None, 64, 64, 32) 0 batch_normalization_1[0][0]

conv2d_2 (Conv2D) (None, 28, 28, 72) 186696 activation_1[0][0]

reshape_1 (Reshape) (None, 6272, 9) 0 conv2D_2[0][0]

lambda_1 (Lambda) (None, 6272, 9) 0 reshape_1[0][0]
routing_layer_1
(CapsuleLayer)

(None, 25, 18) 25558400 lambda_1[0][0]

input_2 (InputLayer) (None, 25) 0

mask_1 (Mask) (None, 18) 0
routing_layer_1[0][0]
input_2[0][0]

dense_1 (Dense) (None, 16) 304 mask_1[0][0]

dense_2 (Dense) (None, 32) 544 dense_1[0][0]

dense_3 (Dense) (None, 12288) 405504 dense_2[0][0]

output (Length) (None, 25) 0 routing_layer_1[0][0]

output_recon (Reshape) (None, 64, 64, 3) 0 dense_3[0][0]
Total params: 26,176,184
Trainable params: 26,019,320
Non-trainable params: 156,864

Fig. 10 Detailed-Architecture of Caps-Net

4. EXPERIMENTAL SETUP

 The study was carried out on a hardware
computer equipped with 8GB of RAM, a 1TB hard
drive, and a GPU with 11G capability. Python
version 2.6.10 was installed and configured to design
and test the models. The list of used libraries and
their purpose are listed below.

4.1 Numpy
 NumPy is a numerical python; numerous-
dimensional and one-dimensional array items can be
computed and manipulated using NumPy. We used
this library for data pre-processing.

4.2 Keras
 Deep learning API Keras is built on Tensor
Flow, a machine learning platform. Keras may be
used to train deep neural networks in python.
Initially, it was designed to allow for quick testing to
occur. It is being created to deliver results as quickly
as possible to conduct high-quality research. We
used this library in this research to train our proposed
models.

4.3 Tensor Flow
 In machine learning and artificial
intelligence, Tensor Flow is a runtime environment

that is entirely open-source and available for free to
anybody to use. It can also be put to use in a variety
of other situations. Although it focuses on deep
neural network-based training and validation, it is
not without its limitations.

4.5 Pillow
 Pillow is referred to as a Python Imaging
Library (PIL), and it allows to view, alter, and save
images in the Python programming language. The
most recent edition can recognize and handle various
file types. Writing assistance is restricted to some of
the most extensively used exchanging and
presentation formats to achieve this. In this research,
we used this library for image preparation and pre-
processing.

4.6 Scikit-Learn
 Scikit-learn (Sklearn) is a machine learning
library written in Python that is widely used and
extremely powerful. This library takes advantage of
Python consistency API to provide a set of rapid
tools for machine learning and statistical modeling,
similar classification and prediction, clustering, and
data preprocessing, among other things.

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

150

4.8 Pandas
 Pandas is a Python programming
language's data processing and analysis software
package. The data formats and methods for
processing numeric records and time-series data that
are included are particularly relevant. We also used
this library for data processing.
4.9 Seaborn
 Seaborn is, in fact, a Python module that
allows creating statistical visualization. It is made on
top of matplotlib and close associates to panda's
dataset models. Seborn is a tool that aids in exploring
and analyzing information. Its charting units work
with data frames and matrices that include the entire
set of data, doing the necessary semantic mapping
and statistical aggregation within them to create
usable graphs and charts.

4.10 Matplotlib
 Matplotlib is, in fact, a Python and its
extension NumPy-based cross-platform data
visualization and graphical charting program that
may be used on a variety of systems. As a result, it
is a suitable open-source replacement for the
MATLAB programming language. Matplotlib APIs
can be used to integrate graphs into the graphical
user interface and other applications. We used this
library for the generation of charts and graphs.

5. EVALUATION MEASURES

The Different evaluation methods were
employed to compare the performance of trained
CNN models to compare their results. These
evaluation measures aim to generate a numeric value
for the model in terms of model performance by
employing various mathematical formulas and
techniques. The accuracy, precision, recall, and F1-
score are the evaluation measures that have been
chosen.

5.1 Accuracy

The most straightforward and clear
performance metric is accuracy, just the proportion
of correctly predicted observations to all
observations in a dataset. Assuming it is accurate,
our model would lead one to believe that it is the
best. Yes, accuracy is a relevant statistic, but only
when the datasets are symmetric and the number of
samples for each class is almost evenly distributed
across the datasets. Even though the Malimg dataset
does not have a balanced distribution of types, the
accuracy of all trained models was assessed for the
purpose of a fair comparison.

Accuracy =
𝑻𝑷ା𝑻𝑵

𝑻𝑷ା𝑻𝑵ା𝑭𝑷ା𝑭𝑵

5.2 Precision

In statistics, precision is defined as the
proportion of precisely anticipated positive samples
over the total number of accurately predicted
positive samples.

Precision =
𝑻𝑷

𝑻𝑷ା𝑭𝑷

5.3 Recall

The recall rate is the proportion of really
predicted positive samples in a class over the total
number of positive samples in the class.

Recall =
𝑻𝑷

𝑻𝑷ା𝑭𝑵

5.4 F1- Score

The F1 Score is the weighted mean of the
true positive rate and the false positive rate, and it
takes into consideration both.

F1- Score =
𝟐∗(𝑹𝒆𝒄𝒂𝒍𝒍ା𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏)

𝑹𝒆𝒄𝒂𝒍𝒍ା𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

6. RESULTS AND DISCUSSION

 This research presented a deep learning
approach for malware classification. The Kaggle
malware dataset, based on Malware images, was
used for this purpose. With a 70 – 30 split, the dataset
was divided into training and testing. The Malimg
dataset was used for training 70 % of the time, with
the remaining 30% used for testing. The Malimg
dataset trained many built-in CNN models, including
a custom convolutional neural network. Each
model’s performance was assessed using assessment
metrics such as accuracy, precision, recall, and F1-
Score. Initially, a custom CNN model based on
convolutional layers, Max pooling layers, and dense
layers were trained. With default hyperparameter
settings, the Adam optimizer and Cross-Entropy
were employed. The CNN model revealed a 90%
classification accuracy rate. The accuracy, loss and
confusion matrix of CNN model is presented below.

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

151

Fig. 10 Accuracy of CNN model during Training.
Fig. 11 Loss of CNN model during Training

Fig. 12 Confusion Matrix of CNN model

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

152

 One of the most common types of deep
learning architecture, the Convolutional neural
networks are increasingly being used in various
computer vision-related applications. CNNs have
defined the outcomes that are considered state of the
art in various fields, including image classification,
object detection, and segmentation. These networks
each have their own set of challenges and obstacles
when dealing with particular kinds of images. The
CNNs are doomed to failure of they are continually
fed images of varying dimensions and orientations.
To overcome these problems, the Caps Net was
proposed. Instead of doing computations on their
inputs as regular neurons do, capsules
“encapsulated” the results of those computations
into a small vector of highly informative outputs.
These sets capsules apart from conventional
neurons. When compared to an artificial neuron, a
capsule’s focus is on a vector, whereas an artificial
neuron is concerned with a scaler. A capsule can be
thought of as a replacement or alternative for
artificial neurons. On the complete set of data, Caps
Net stopped training at epoch 30. The training loss
in the last epoch reached the value of 0.0436, while
the validation loss reached the value of 0.0455. The
Caps Net achieved 90% classification accuracy. The
training and validation loss for each epoch is
presented in Figure 13 and Figure 14.

Fig. 13 Caps- Net Model Training and Validation Loss

Fig. 14 Caps- Net Model Training and Validation Loss

 The malware was then classified using
three separate built-in deep learning models
(VGG16, ResNet50, and Inception V3). The Malimg
dataset was used to train the VGG16 model for
malware classification. VGG16 is a convolutional
neural network (CNN) design awarded first place in
the 2014 ILSVR competition. It is widely recognized
as one of the most advanced vision model
architectures yet devised. The convolutional and
max pool layers were placed in the same way
throughout the architecture. For the model’s
training, the transfer learning technique was applied.
Following the model’s training and model was
evaluated using the testing set. For the test set, the
model demonstrated an accuracy of 80%. The
accuracy, loss, and confusion matrix are illustrated
below.

Fig. 15 Accuracy of VGG 16 Model for training and
validation set

Fig. 16 Loss of VGG 16 Model for training and

validation set

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

153

Fig. 17 Confusion Matrix of VGG 16 model for the testing set

 After this, the ResNet 50 was then trained
with the same hyperparameters for classification.
ResNet-50 is a deep CNN model with 50 layers
trained on the ImageNet database of 1000 different
objects. The ResNet 50 exhibited an accuracy of
81% classification accuracy. The accuracy, loss, and
confusion matrix of ResNet 50 is presented below.

Fig. 18 Accuracy of ResNet 50 model for training and

validation set

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

154

Fig. 19 Loss of ResNet 50 model for training and

validation set

Fig. 20 Confusion Matrix of ResNet 50 model for test set

 Inception V3 was the third built-in malware
classification model used in this study. Inception V3
is a CNN model that belongs to the Inception family
and includes Label Smoothing, factorized 7 * 7
Convolutions, and an extra classification algorithm
to transport labeled data deeper down the structure,
among their improvements. The Inception V3
computed 87% classification accuracy of malware
images. The training, validation accuracy, loss, and
confusion matrix are presented in a given section.

Fig. 21 Accuracy of Inception V3 for training and

validation set

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

155

Fig. 22 Loss of Inception V3 model for training and

validation set

Fig. 23 Confusion Matrix of Inception V3 model for test set

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

156

 Finally, we created a composite
model by combining all trained models. The findings
were produced using all of the model’s predictions,
and the final decision was decided using the majority

rule. The accuracy of the composite model was
92 %. The confusion matrix of the test for the
composite model is presented in figure 19.

Fig. 24 Confusion Matrix of Composite Model for test set

 After all of the models had been trained, the
assessment measure was used to compare the
outcomes. The testing set featured an almost equal
number of malware images for each class, despite
the fact that the original dataset was unbalanced. As
a result, all of the models were compared to the
accuracy score in order to choose the best Malware
classification, model. CNN displayed a malware
classification accuracy score of 90%. The confusion
matrix revealed that the vast majority of classes are
correctly labeled 100 percent of the time. However,
there are eight classifications in the confusion matrix

that have an accuracy score of 90 to 95 percent.
Yuner A Malware is a well-known sort of malware
that reduces the accuracy of a custom CNN model.
All Yuner A malware samples were incorrectly
classed as Autorn K malware samples, according to
the confusion matrix. As a result, the Yuner A
malware type’s accuracy was 0%. This Yuner A
class behavior presents several probabilistic
difficulties and confirms that custom CNN was
unable to train on Yuner A class data. The Yuner A
class pattern is probably too complicated for model
training, or there is no pattern for learning at all. On

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

157

the other hand, the model produced a substantial
result for the classification of malware types other
than Yuner A.
 Next, the trained weights were then utilized
for training the VGG16 model, which exhibited an
accuracy of 80% for the test set. The VGG 16 model
accurately learned certain malware classes, and it
showed 100 percent accuracy for these classes.
There were seven more classes that scored in the 80
to 90 percent range. For the VGG16 model, the
confusion matrix demonstrated that Autorn K and
Skintrim N are the most misclassified malware type.
All of the Autorun K malware samples in the test set
were incorrectly identified as Yuner A malware. The
five Skintrim N samples are classed as Alueron,
while the 10 samples are labeled as instant access.
Out of 18 samples, 15 samples of Autorun K have
been misclassified. The remaining malware is
classified with an average accuracy of 90%. The
Autorun K and Skintrim class VGG16 models, on
the other hand, showed an accuracy of 80%.
 Similarly, the Malimg dataset was also used
to train the ResNet 50 model for malware image
classification. The ResNet 50 model was trained
using ImageNet weights that had been pre-trained.
For the test set, the model exhibited an accuracy of
81%. The ResNet 50 confusion matrix revealed that
most malware types are correctly learned and
classified with a 100 percent accuracy score. Only 5
samples are misclassified in ResNet 50 confusion
Matrix, and they belong to three separate classes.
Few classes are completely misclassified, indicating
that the model could not learn the pattern of these
images for classification. Yuner A and Autorun K
have been mislabeled as Fakerean, the third malware
variant. The malware type Obfuscator was
completely misclassified as Instant access malware.
Except for these three classes, the remaining classes
are classified with an accuracy rate of around 99%.
Inception V3 is also trained to classify the different
types of malware images. The result of Inception V3
was similar to that of custom CNN. It also had 90 to
95 % accuracy for the bulk of classes, and the Yuner
A class was fully misclassified as Autorn K malware
type, which was comparable to custom CNN.
However, the Inception V3 total accuracy score was
lower than the custom CNN accuracy.
 Finally, the malware types were classified
using a composite model. The composite model
combines all of the previously described models and
makes decisions based on a majority vote. It does not
predict itself and will not decide based on a list of
predictions. The composite model returned the class
with the most occurrences in the given list. For
testing data, the composite model exhibited a 92%

accuracy. The confusion matrix of the composite
model revealed that the majority of malware variants
were classified 100 percent of the time. However,
there existed another Yuner A class that had been
misclassified. All 15 Yuner A malware samples
were re-classified as Autorun K class using a
composite model. However, 9 classes have an
accuracy score of greater than 95%, and the
composite models' average accuracy score for all
malware types except Yuner A was about 98%. As a
result of the outcomes of all models, some malware
types were too difficult to learn for all of them.
 The Yuner A and Autoren K malware types
appear to be comparable malware types; as different
models misclassify these classes interchangeably.
All Yuner A samples were classified as Autorun K
malware by Custom CNN and Inception V3;
however, the VGG16 fully misclassified all Autorun
K malware samples as Yuner A malware samples.
ResNet 50, on the other hand, incorrectly classified
all samples from both classes as the third malware
type (Instant access). The three classes (Autorun K,
Instant access, and Yuner A) collectively
downscaled the performance of trained models. By
accurately classifying the Autorun K and Instant
access classes. The composite model increases
performance. The Yuner A, on the other hand,
remains a challenging class for models as the
composite model misclassified it as well. Because
the composite model makes decisions based on the
majority of cases, the Yuner A class is too tough for
the model to grasp. The details of results are
mentioned in given table 3.

Table 3. Details of Results

Model
Accu
racy
(%)

Precisi
on

(%)

Recall
(%)

F1-
Score
(%)

Custom
CNN

90.07 90.01 89.95 90.00

Caps-Net 90% 83.93 84.87 81.87
VGG-16 80.16 80.00 79.90 80.10

ResNet-50 81.20 81.01 80.90 80.16
Inception-

V3
87.10 86.90 87.04 87.09

Ensemble
Model

92.30 92.05 92.15 92.25

6. CONCLUSION

In this study, we used the Malimg dataset to
classify malwares. In addition, multiple built-in deep
learning models were trained for a fair comparison
of the models, also, first time the performance of
Capsule Neural Network (Caps-Net) is explored for

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

158

malware image classification. Finally, the trained
models were combined into a composite model. A
few related classes such as Yuner A, Instant access,
and Autorun K degrades the model’s performance.
Because all built-in models consistently misclassify
samples belonging to these three classes, it is
considered that these classes are the most similar and
that models cannot differentiate them. However,
while the composite model corrected the predictions
for two classes (Instant access and Autorun K), the
composite model misclassified the Yuner A class.
The accurate prediction of the Yuner A class of
malwares may necessitate a complicated deep
learning model architecture or a few Image
preprocessing procedures.

 Furthermore, the proposed composite
model correctly diagnoses malware 92 % of the time.
The significant accuracy score indicated that the
model is strong enough to classify malwares using
image-based techniques. However, future studies
will need to adjust the training scheme or model
architecture to accurately classify complex malware
types.

REFERENCES:
[1] Fossi, M., Egan, G., Haley, K., Johnson, E.,

Mack, T., Adams, T., ... & Wood, P., “Symantec
internet security threat report trends for 2010,”
Volume XVI, 2011.

[2] Su, Jiawei, Danilo Vargas Vasconcellos,
Sanjiva Prasad, Daniele Sgandurra, Yaokai
Feng, and Kouichi Sakurai. "Lightweight
classification of IoT malware based on image
recognition." In 2018 IEEE 42Nd annual
computer software and applications conference
(COMPSAC), vol. 2, pp. 664-669. IEEE, 2018.

[3] Shabtai, A., Moskovitch, R., Elovici, Y., &
Glezer, C., “Detection of malicious code by
applying machine learning classifiers on static
features: A state-of-the-art survey,” information
security technical report, vol. 14, no. 1, pp. 16-
29, 2009.

[4] S. Morgan, “2019 cybersecurity almanac: 100
facts, figures, predictions and statistics,” Cisco
and Cybersecurity Ventures. Accessed: Nov.
10, 2019. [Online]. Available:
https://cybersecurityventures.com/
cybersecurity-almanac-2019

[5] Abdullah, T. A., Ali, W., & Abdulghafor, R.,
“Empirical study on intelligent Android
malware detection based on supervised machine
learning,” Int. J. Adv. Comput. Sci. Appl.
(IJACSA), vol. 11, no. 4, 2020.

[6] H. S. Anderson, A. Kharkar, B. Filar, and P.
Roth, “Evading Machine Learning Malware
Detection,” New York, NY, USA: Black Hat,
2017

[7] R. Verma, ‘‘Security analytics: Adapting data
science for security challenges,’’ in Proc. 4th
ACM Int. Workshop Secur. Privacy Anal. New
York, NY, USA: ACM, pp. 40–41, 2018.

[8] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep
learning,’’ Nature, vol. 521, no. 7553, pp. 436–
444, 2015.

[9] Davuluru, V. S. P., Narayanan, B. N., & Balster,
E. J., “Convolutional neural networks as
classification tools and feature extractors for
distinguishing malware programs,” In 2019
IEEE National Aerospace and Electronics
Conference (NAECON), pp. 273-278, IEEE,
2019.

[10] Narayanan, B. N., & Davuluru, V. S. P.,
“Ensemble malware classification system using
deep neural networks,” Electronics, vol. 9, no.
5, 721, 2020.

[11] Davuluru, V. S. P., Narayanan, B. N., & Balster,
E. J., “Convolutional neural networks as
classification tools and feature extractors for
distinguishing malware programs,” In 2019
IEEE National Aerospace and Electronics
Conference (NAECON), pp. 273-278, IEEE,
2019

[12] Narayanan, B. N., & Davuluru, V. S. P.,
“Ensemble malware classification system using
deep neural networks,” Electronics, Vol. 9, no.
5, 721, 2020.

[13] Vasan, D., Alazab, M., Wassan, S., Naeem, H.,
Safaei, B., & Zheng, Q., “IMCFN: Image-based
malware classification using fine-tuned
convolutional neural network architecture,”
Computer Networks, 171, 107138, 2020.

[14] H. S. Anderson and P. Roth, ‘‘EMBER: An
open dataset for training static PE malware
machine learning models,’’ 2018. [Online]
https://arxiv.org/ abs/1804.04637

[15] M. Krcál, O. Švec, M. Bálek, and O. Jašek,
“Deep Convolutional Malware Classifiers Can
Learn from Raw Executables and Labels Only,”
2018. [Online]. Available:
https://openreview.net/forum?id=HkHrmM1P
M

[16] S. Tobiyama, Y. Yamaguchi, H. Shimada, T.
Ikuse, and T. Yagi, ‘‘Malware detection with
deep neural network using process behavior,’’
in Proc. IEEE 40th Annu. Comput. Softw. Appl.
Conf. (COMPSAC), vol. 2, pp. 577–582, 2016

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

159

[17] W. Huang, J. W. Stokes, ‘‘Mtnet: A multi-task
neural network for dynamic malware
classification,’’ in Proc. Int. Conf. Detection
Intrusions Malware, Vulnerability Assessment,
Cham, Switzerland: Springer, pp. 399–418,
2016.

[18] R. Pascanu, J. W. Stokes, H. Sanossian, M.
Marinescu, and A. Thomas, ‘‘Malware
classification with recurrent networks,’’ in
Proc. IEEE Int. Conf. Acoust., Speech Signal
Process (ICASSP), pp. 1916–1920, 2015.

[19] T. Shibahara, T. Yagi, M. Akiyama, D. Chiba,
and T. Yada, ‘‘Efficient dynamic malware
analysis based on network behavior using deep
learning,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), pp. 1–7, 2016

[20] B. Kolosnjaji, A. Zarras, G. Webster, and C.
Eckert, ‘‘Deep learning for classification of
malware system call sequences,’’ in Proc.
Australas. Joint Conf. Artif. Intell. Cham,
Switzerland: Springer, pp. 137–149, 2016.

[21] A. Damodaran, F. Di Troia, C. A. Visaggio, T.
H. Austin, and M. Stamp, ‘‘A comparison of
static, dynamic, and hybrid analysis for malware
detection,’’ J. Comput. Virology Hacking
Techn., vol. 13, no. 1, pp. 1–12, 2017.

[22] Nataraj, L., Karthikeyan, S., Jacob, G., &
Manjunath, B. S., “Malware images:
visualization and automatic classification,” In
Proceedings of the 8th international symposium
on visualization for cyber security, pp. 1-7,
2011.

[23] Vasan, D., Alazab, M., Wassan, S., Safaei, B.,
& Zheng, Q., “Image-Based malware
classification using ensemble of CNN
architectures (IMCEC),” Computers & Security,
92, 101748, 2020.

[24] Su, J., Vasconcellos, D. V., Prasad, S.,
Sgandurra, D., Feng, Y., & Sakurai, K.,
“Lightweight classification of IoT malware
based on image recognition,” In 2018 IEEE
42Nd annual computer software and
applications conference (COMPSAC), 2, pp.
664-669, IEEE, 2018.

[25] Ni, S., Qian, Q., & Zhang, R., “Malware
identification using visualization images and
deep learning,” Computers & Security, 77, pp.
871-885, 2018.

[26] L. Nataraj, “A Signal Processing Approach To
Malware Analysis,” Santa Barbara, CA, USA:
Univ. California, 2015.

[27] L. Nataraj, V. Yegneswaran, P. Porras, and J.
Zhang, ‘‘A comparative assessment of malware
classification using binary texture analysis and

dynamic analysis,’’ in Proc. 4th ACM
Workshop Secur. Artif. Intell. New York, NY,
USA: ACM, pp. 21–30

[28] M. Farrokhmanesh and A. Hamzeh, ‘‘A novel
method for malware detection using audio
signal processing techniques,’’ in Proc. Artif.
Intell. Robot. (IRANOPEN), pp. 85–91, Apr.
2016.

[29] A. F. Agarap and F. J. H. Pepito. (2017).
‘‘Towards building an intelligent anti-malware
system: A deep learning approach using support
vector machine (SVM) for malware
classification.’’ [Online]. Available:
https://arxiv.org/abs/1801.00318

[30] E. Rezende, G. Ruppert, T. Carvalho, A.
Theophilo, F. Ramos, and P. de Geus,
‘‘Malicious software classification using
VGG16 deep neural network’s bottleneck
features,’’ in Information Technology-New
Generations. Cham, Switzerland: Springer,
2018, pp. 51–59

[31] Yu, H., Wang, J., Bai, Y., Yang, W., & Xia, G.
S., “Analysis of large-scale UAV images using
a multi-scale hierarchical representation,” Geo-
spatial information science, 21(1), 33-44, 2018.

[32] Ni, S., Qian, Q., & Zhang, R., “Malware
identification using visualization images and
deep learning,” Computers & Security, 77, pp.
871-885, 2018.

[33] Le, Q., Boydell, O., Mac Namee, B., & Scanlon,
M., “Deep learning at the shallow end: Malware
classification for non-domain experts,” Digital
Investigation, 26, S118-S126, 2018.

[34] Yan, J., Qi, Y., & Rao, Q., “Detecting malware
with an ensemble method based on deep neural
network,” Security and Communication
Networks, 2018.

[35] Masum, M., Shahriar, H., Haddad, H., Faruk,
M. J. H., Valero, M., Khan, M. A., ... & Wu, F.,
“Bayesian Hyperparameter Optimization for
Deep Neural Network-Based Network Intrusion
Detection,” In 2021 IEEE International
Conference on Big Data (Big Data), pp. 5413-
5419, IEEE, 2021

[36] Kumar, R., Xiaosong, Z., Khan, R. U., Ahad, I.,
& Kumar, J., “Malicious code detection based
on image processing using deep learning,” In
Proceedings of the 2018 International
Conference on Computing and Artificial
Intelligence, pp. 81-85, 2018.

[37] Namanya, A. P., Awan, I. U., Disso, J. P., &
Younas, M., “Similarity hash based scoring of
portable executable files for efficient malware

Journal of Theoretical and Applied Information Technology
15th January 2023. Vol.101. No 1

© 2023 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

160

detection in IoT,” Future Generation Computer
Systems, 110, pp. 824-832, 2020

[38] Venkatraman, S., Alazab, M., & Vinayakumar,
R., “A hybrid deep learning image-based
analysis for effective malware detection,”
Journal of Information Security and
Applications, 47, pp. 377-389, 2019.

[39] Yue, S., “Imbalanced malware images
classification: a CNN based approach,” arXiv
preprint arXiv:1708.08042, 2017.

[40] Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G. G.,
& Chen, J., “Detection of malicious code
variants based on deep learning,” IEEE
Transactions on Industrial Informatics, 14(7),
3187-3196, 2018.

[41] Mandal, B., Okeukwu, A., & Theis, Y.,
“Masked face recognition using resnet-50,”
arXiv preprint arXiv:2104.08997, 2021

[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S.
Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, et al., “Imagenet large
scale visual recognition challenge,” 2014

[43] K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556,
2014.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.
Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with
convolutions,” In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

[45] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens,
J., & Wojna, Z., “Rethinking the inception
architecture for computer vision,” In
Proceedings of the IEEE conference on
computer vision and pattern recognition, pp.
2818-2826, 2016.

[46] Yann LeCun, Bernhard E Boser, John S Denker,
Donnie Henderson, Richard E Howard, Wayne
E Hubbard, and Lawrence D Jackel,
“Handwritten digit recognition with a
backpropagation network,” In Proc. of
Advances in neural information processing
systems, pp. 396–404, 1990

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al., “Imagenet large scale
visual recognition challenge,” International
Journal of Computer Vision, 115(3):211–252,
2015.

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey
E Hinton. Imagenet classification with deep
convolutional neural networks. In Proc. of
Advances in neural information processing
systems, pages 1097–1105, 2012

[49] Vijayakumar, T., “Comparative study of
capsule neural network in various applications,”
Journal of Artificial Intelligence, 1(01), 19-27,
2019.

