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ABSTRACT 
 

Because of the fast expansion of the internet and technology, a slew of developing malware and attack 
techniques has evolved. As a result, researchers concentrated their efforts on machine learning and deep 
learning techniques to detect malware. Many organizations have been developing new algorithms and 
products to secure people from these scams. On the other hand, Malware kinds have been expanding 
substantially in recent years. The anti-virus companies have been discovering millions of new malware 
variants every year. Therefore, new intelligent malware detection methods must be solved as soon as possible 
to halt this rise. Malware is becoming more prevalent, more diverse, and more sophisticated. Deep learning 
in malware detection through images has recently been demonstrated to be highly effective. We also 
employed an Image-based Malware dataset [Malimg] and used the different deep learning algorithms, CNN, 
Caps-Net, VGG16, ResNet, and InceptionV3, for malware detection. The dataset images were transported 
through the pre-processing pipeline and into the deep learning pipeline, where they were used to train deep 
learning models in the right way. As part of the model training process, all images were resized to be the 
same size and proportions. A factor of 1/255 was then applied to the images, resulting in a conversion from 
RGB value to grayscale, which restored the original RGB values to their correct positions. Later, the dataset 
was segmented into two groups, train, and test. The VGG16, ResNet50, and InceptionV3 models detected 
the malware images. A combination of the Adam optimizer and the cross-entropy loss function was used to 
train all of the models. The models were trained for 50 epochs using early stopping criteria. Finally, the model 
composition method was used to classify malware images where the previously trained models were 
combined. The custom CNN model, the VGG16, ResNet50, and InceptionV3 models were combined to 
predict a single outcome for the experimental condition. The proposed technique provided very promising 
results. 

Keywords: Malware Prediction, VGG16, ResNet50, Caps-Net, Image-Based Malware Prediction, Cyber 
Analysis, Deep Learning, Cyber Security 

 
Proposed Acronyms 
 

EC            = Ensemble Classifier 
ANN         = Artificial Neural Network 
Caps-Net  = Capsule Network 
CNN  = Convolutional Neural Networks 
CVA  = Cross Validation Accuracy 
DDoS  = Distributed Denial of Service 
DL  = Deep Learning 
DoS  = Denial of Service 
DPA  = Deep Learning Algorithm 

IoT  = Internet of Things    
VGG16=Visual Geometry Group 
KDD  = Knowledge Discovery Databases 
KNN  = K Nearest Neighbor 
KNNA  = K-Nearest Neighboring Algorithm 
LASSO  = Least Absolute Shrinkage and Selection 
Operator 
LSTM  = Long Short-Term Memory 
ML  = Machine Learning 
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DT  = Decision Tree 
EC  = Ensemble Classifier 
ECA  = Ensemble Classification Algorithme 
FAR  = False Alarm Rate 
FN  = False Negative 
FP  = False Positive 
FSS  = Feature Selection System 
GA  = Genetic Algorithm 
HELAD  = A new incompatibility detection model 
called HELAD 
IDS  = Intrusion Detection System 
SVM  = Support Vector Machine 
TML = Traditional Machine Learning 
TN  = True Negative 
TNS  = Traditional neural networks 

MLA  = Machine Learning Algorithms 
MLP  = Multi-Layer Perceptron 
NCF  = network connection features 
NFS  = Network Features Selection 
NN  = Neural Network 
PCA  = Principal Component Analysis 
Probe  = Probing Attack 
PSO  = Particle Swarm Optimization 
RFE  = Recursive Feature Elimination 
R2L  = Remote to Local 
RC  = Random Classifier 
RF  = Random Forest 
SNN  = Standard Neural Networks 
TP = True Positive 
U2R  = User to Root 
 

 
1. INTRODUCTION  

In Attacks on the internet have increased 
exponentially, and malware has emerged as one of 
the most severe threats to network security. 
According to a recent study, millions of sensors 
regularly capture millions of harmful threat events 
per second [1]. In parallel with the rise in popularity 
of mobile devices and IoT, malware has also 
increased prevalence. Globally, according to the 
most recent threat reports, the number of users who 
faced Android malware increased by more than 1.7 
million. Viruses and malware are among the most 
significant security dangers facing internet users. 
Malware is defined as any type of harmful code that 
can compromise a digital system's integrity, 
confidentiality, and operation [2]. Malware is 
divided into several categories by its functions, 
including Trojans, worms, and backdoors. These 
classes are further subdivided into families based on 
the sort of variations that are present in them. When 
creating variations of an existing malware family, 
malware authors employ various obfuscation 
techniques, including code transposition, subroutine 
reordering, and code insertion, to ensure that the 
infections remain undetected [3]. Discovering 
malware variations is the most challenging aspect of 
internet security. Numerous malware versions, such 
as Nuwar, Storm, and Kekihos, have characteristics, 
implying that the same malware developer generated 
them.  

According to Symantec estimates, millions of 
malwares have been discovered, and the number is 
growing continuously. Criminals have also begun to 
conduct crimes online rather than in a person. 
Criminals typically employ malicious software to 
initiate cyberattacks against victim computers. 
Antimalware systems from the past are frequently 
inadequate in coping with today’s diversity and 
amount of malware. Malware analysis is a rapidly 

increasing discipline that requires considerable 
attention due to technological advancement in social 
networks, mobile environment, cloud computing, the 
Internet of things (IoT), and the industrial Internet of 
Things (IIoT). It was created for simple goals in the 
early stages of malware development, making it 
easier to detect. This type of malware is referred to 
as conventional malware. However, malware that 
can function in kernel mode and is more damaging 
and difficult to detect than typical malware might be 
classified as next-generation malware these days. 
This type of malware is extremely adept at bypassing 
security software that runs in kernel modes, such as 
firewalls and antivirus software. Generally, classic 
malware is composed of a single process and does 
not employ sophisticated strategies for concealment. 
On the other hand, new generation malware runs 
numerous existing or new processes concurrently 
and employs various obfuscation techniques to 
conceal itself and establish a lasting presence in the 
system. This new-generation malware can launch 
more devastating operations such as targeted and 
persistent attacks that have never been seen before, 
and the attacks employ many types of malwares.  The 
frequency, sophistication, and cost of malware 
attacks on the global economy have been steadily 
growing in recent years. According to scientific and 
industry reports, over 1 million malware files are 
developed daily, and cybercrime is expected to cost 
the global economy approximately $6 trillion 
annually by 2021 [4]. 

The recent research also indicated that mobile 
malware is increasing in popularity. According to 
McAfee’s mobile threat report, backdoors and 
banking Trojans targeting mobile devices have 
increased significantly [5]. Additionally, malware 
assaults targeting social media platforms, healthcare, 
cloud computing, and Cryptocurrency are growing. 
The malware must be discovered to protect genuine 
users and businesses from it. Malware detection is 
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the process of identifying whether or not a certain 
application is harmful. Most modern malware 
detection systems rely significantly on the antivirus 
software containing signature databases to detect 
dangerous patterns, which is a feature of most 
antivirus software. 

On the other hand, such software is incapable of 
detecting new or undiscovered malware. 
Furthermore, these technologies have their own set 
of limitations, such as the inability to identify 
malware that has been packaged or encrypted. Even 
the simple reusability of code with some packers can 
create a new form of malware capable of evading 
signature-based detection systems. Because of these 
constraints, signature-based approaches cannot 
detect the majority of packed malware, which allows 
it to remain undiscovered for an extended period. 
Static and dynamic analysis approaches are the two 
most often utilized techniques for malware 
identification and prevention.  

Additionally, a hybrid technique for malware 
detection that incorporates both static and dynamic 
analysis is being developed and tested. And have 
also been investigated [5]. Static code analysis is 
time-consuming and depends significantly on 
reverse-engineering malware to complete 
successfully. Code obfuscation is a significant 
difficulty with static analysis, and one of the 
disadvantages of dynamic analysis is that it depends 
on the execution environment to expose its whole 
behavior. Over time, researchers offered novel ways 
to detect, including behavioral, heuristic, and model 
checking-based approaches. 

Due to these approaches, data mining and 
machine learning methods are also being 
increasingly employed in malware detection. 
Recently, novel ways to detect have been proposed, 
including those based on deep learning, cloud 
computing, mobile devices, and the Internet of 
things. Heuristic detection approaches also 
effectively detect known malware and certain 
undiscovered malware. Behaviours, model checking, 
and cloud-based techniques, on the other hand, 
outperform traditional approaches when dealing with 
unknown and sophisticated malware. Deep learning, 
mobile devices, and Internet of Things (IoT)-based 
techniques are also being developed to identify a 
fraction of known and undiscovered malware. 
However, it has not been demonstrated conclusively 
that one detection method is more successful than the 
others. This is because each approach has its own set 
of benefits and weaknesses, and under particular 
situations, one method may detect more accurately 
than another. 

1.1 Importance of The Study 

Feature engineering, feature selection, and 
representation approaches are used to develop 
machine learning algorithms. The set of 
characteristics associated with a matching class is 
used to train a model, which is then utilized to 
generate a dividing plane between benign and 
malicious objects. This dividing plane aids in 
detecting malware and the classification of malware 
into its associated malware family. Both feature 
engineering and feature selection methods 
necessitate a thorough understanding of the domain. 
Static and dynamic analysis may both be used to 
determine the various characteristics. Static analysis 
is a technique for capturing information from a 
binary program without running it on the computer. 
Dynamic analysis is the practice of observing 
malware activity in real-time while running in a 
controlled environment. Dynamic analysis has the 
potential to be an effective long-term solution for 
malware detection systems. In real-time malware 
detection, dynamic analysis cannot be used since it 
requires a significant amount of time to evaluate the 
activity of the infection. A harmful payload might be 
delivered during this time, making it ineffective.  

Compared to statically gathered data, malware 
detection approaches based on dynamic analysis are 
more resistant to obfuscation methods than statically 
obtained data. In most cases, commercial anti-
malware solutions employ a combination of static 
and dynamic analysis methodologies to detect and 
remove the malware. Traditional machine learning-
based malware detection systems have a significant 
drawback. They are heavily reliant on approaches 
such as feature engineering and learning and feature 
representation methodologies, which need deep 
domain expertise. Furthermore, if an attacker 
becomes familiar with the characteristics, the 
malware detection may readily have circumvented 
[6]. 

Machine Learning algorithms require data with 
a range of malware patterns to be successful. 
Because of security and privacy issues, there is 
extremely little publicly available benchmark data 
for malware analysis research. 

Even though just a few datasets are available, 
each comes with its own set of scratching comments, 
as most of them are out of date. Many of the results 
of machine learning-based malware analysis that 
have been published have been based on the author’s 
datasets. Even though there are publically available 
sources for crawling malware datasets, building a 
quality dataset for the study is time-consuming and 
difficult. Because of these challenges, establishing a 
general machine learning-based malware analysis 
system that can be deployed in real-time has been 
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hampered in recent years. More importantly, the 
participants explored the compelling concerns 
associated with using data science approaches [7]. 
Deep learning, which is the more advanced model of 
neural networks, has recently outperformed 
traditional machine learning algorithms in many 
tasks in the fields of natural language processing, 
computer vision, and many others [8].  

In recent years, a novel technique for malware 
detection based on mage visualization [9]- [10] has 
been investigated by several researchers to 
discriminate between malicious programs. 
Visualization-based techniques decrease the 
requirement for domain specialists and eliminate the 
need for manual feature engineering, resulting in 
time savings. A Convolutional Neural Network 
(CNN) architecture is a type of neural network that 
can extract information from an input image without 
human intervention. Furthermore, well-defined 
CNN architecture like ResNet 50, Inception V3, and 
AlexNet may be used as feature extractors and 
classifiers [11]- [12]. These networks are trained on 
huge datasets of images. Without further training, 
they may be utilized as a classifier for comparable 
classification issues in the target domain, such as 
malware image classification. The transfer learning-
based malware classification approach has been 
examined in several existing works of literature. Pre-
trained networks with well-established topologies 
may be used either as feature extractors in 
conjunction with the machine learning methods for 
classification on the target domain [11]- [12] or fine-
tuning a classification model for the target domain 
[13]. However, only a few researchers have 
addressed the issue of overfitting when working with 
the smaller or unbalanced datasets to date. 
Competitive advantage is provided to the algorithm 
by the early stopping regularization approach, which 
allows it to halt the model’s training process based 
on validation data results. It is also computationally 
challenging to execute a whole deep CNN model on 
a short dataset because of many variables. Because 
of an early stopping approach, the model converges 
quickly and efficiently without imposing additional 
burden on the training process, resulting in a 
computationally efficient model. Retraining the pre-
trained model with several convolutional layers is 
time-consuming and impractical for use. 

1.2 Contribution of The Study 
The researchers developed and assessed various 

machine learning and deep learning algorithms to 
increase their productivity, which was often used in 
conjunction with the information reduction 
technique. On the other hand, these algorithms have 
shown favorable outcomes when a set of assessment 

measures has been used. On the other hand, such 
models are worthless when identifying malware in 
real-world networks. In this field, there was a 
tendency to focus on exceeding specular results for a 
particular dataset rather than delving further into 
machine learning-based virus identification models. 
Several studies have been conducted in a real-world 
context due to this reaction. Though, these 
approaches are troublesome since they are often 
assessed using just one dataset with such a consistent 
list of qualities, which may not be practical to collect 
or maintain in an actual network communication 
stream, they are beneficial in theory. The further 
point is that, due to machine learning and deep 
learning, there is occasionally room for 
improvements. in hyperparameters when various 
datasets are allocated to the same model. In this 
research study 

 We proposed a self-sufficient model in terms of 
a wide range of advantages and trained it using 
a Malimg –An image-based dataset. 

 We performed a malware image-based 
classification using custom CNN, and their pre-
trained networks. 

 We first investigated Capsule Network's 
performance (Caps-Net) for malware image 
classification.        

 

2. RELATED WORKS 

To protect computer systems from 
malware, we must first detect malware before it can 
cause damage to the computer systems. When it 
comes to detecting malware, three classic ways have 
been used: behavior-based, heuristic-based, and 
signature-based detection. There are lots of pros and 
cons to using these strategies. Signature-based 
detection effectively identifies known malware by 
pattern matching. Still, it is ineffective at identifying 
unknown malware because malware can alter its 
properties, resulting in a new signing this method 
cannot detect. While this method can identify both 
well-known and unknown malware, it has the 
potential to produce high error rates for both false-
positive and false-negative results. The behavior of 
suspicious files is observed by approaches based on 
behavior-based malware detection. Resources and 
time are required for this approach to be 
implemented and monitored to be effective. In this 
part, we highlighted the advantages and 
disadvantages of some of the prominent 
classification models used for malware detection, 
which typically relied on static and dynamic analysis 
and their variants in more recent years. However, 
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when dealing with a large amount of data, it is even 
more critical to consider image processing 
techniques to improve data visualization and make 
more informed decisions. 

 
2.1 Malware Classification Using Statistical 
Analysis 

Some security researchers have utilized 
domain-level understanding of portable executables 
to identify static malware in their work.  Analysis of 
byte-n grams and strings are now the two most often 
used approaches for static malware detection that do 
not require domain-level expertise to be effective.  
The n-gram technique, on the other hand, is 
computationally costly, and the performance is well 
below average.  When developing a machine 
learning model to discriminate between malware and 
benign file, it is frequently challenging to apply 
domain-level knowledge to extract the essential 
features.  Similarly, with the continually changing 
specifications from time to time, the malware 
detection system will need to be updated to fulfill 
further security needs.  In a study [14], the authors 
have attempted to address this issue by combining 
machine learning algorithms with features derived 
from the parsed information in the PE file.  They 
used formatting of agnostic characteristics such as 
byte entropy histogram, raw byte histogram, and 
string extraction.  They also have made a dataset 
containing features, raw files, and related code 
available to the public since deep learning models 
require more examination and investigation.  
Similarly, wholly linked classical networks and 
recurrent neural networks were also used to detect 
malware using 300 bytes of information [15]. 
 
2.2 Malware Classification Using Dynamic 

Analysis 
The dynamic malware analysis method is 

more resistant to obfuscation techniques than static 
malware analysis approaches, which are more used 
in the industry. In a research study [16], features 
from API calls were extracted and fed to CNN for 
classification purposes using dynamic analysis. 
They employed around 170 samples and acquired a 
quality measure of 0.96- AUC as a result. In another 
study [17], the authors said that they had gotten a 
shallow feed-forward network feature set of API 
requests from a large number of benign and 
malicious samples that had been gathered privately. 
It outperforms the previous technique in terms of 
performance, but it does not include research on 
execution speed, which is critical for real-time 
deployments of software. In [18], a study of the echo 
state networks (ESN) and recurrent neural networks 

(RNNs) were carried out to understand the language 
of malware. Compared to RNNs, the ESNs 
outperformed them in most of the studies. The study 
[19] was carried out to establish when to terminate 
the virus execution about the network connectivity 
being used. The overall time required by this 
procedure was 67 percent shorter than the time 
required by traditional methods. An RNN and its 
variants, long short-term memory (LSTM), and 
CNN were used for malware classification in [20], 
employing API call long sequence as features while 
CNN was used for classification. The most 
significant disadvantage of the approach was that 
they required more time to evaluate the system's 
behavior as it was being executed. This combination 
reported very promising results. It was also 
discovered through dynamic analysis that these 
system calls were made, and their technique was 
shown to outperform previously utilized algorithms 
such as HMM and Support vector machines. 
However, the most significant shortcoming was the 
lack of considering the significance of execution 
time in the context of malware detection in real-time. 
Multiple studies have been conducted to examine the 
effectiveness of malware detection strategies based 
on static, dynamic, and hybrid analysis 
methodologies. There was comparison research on 
detection rates and the usage of HMM on both static 
and dynamic feature sets in [21], which included a 
large number of malware families and included both 
static and dynamic analysis of feature sets. Their 
finds revealed that dynamic analysis often provided 
the highest detection rates. 

 
2.3 Malware Images 

It is possible to describe malware 
executables as a matrix of binary or hexadecimal 
strings, which may be translated into a form that can 
be thought of as an image. Malware developers 
typically add to or update the code in existing 
malware to produce a new variant. As a result, when 
the file structure is displayed as an image, it is much 
easier to see minute addition or modifications to 
various areas of the file structure. Initially suggested 
by [22], this approach for converting malware into 
graphics involves converting raw bytecode PE files 
to grayscale image data, where each pixel is 
represented by one or more bits. Similarly, in [23], 
the authors accomplished image-based malware 
classification utilizing an ensemble CNN 
architecture to identify packed and unpacked 
malware files. In another work [24], malware binary 
in IoT contexts was transformed into an image, and 
CNN's was utilized to classify the malware families. 
The proposed technique reported 94% accuracy for 
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goodware and DDoS malware and 81.8% accuracy 
for goodware malware. In [25], the researchers 
presented the MCSC model, i.e., Malware 
Classification Using SimHash and CNN. They 
hashed decompiled malware code and transformed it 
into grayscale images before training CNNs to 
classify malware. The proposed technique was 
validated on malware image samples and reported 
98.86% classification accuracy. 
 
2.4 Malware Classification Using Image 

Processing Techniques 
Malicious software assaults are on the rise, 

and in recent years, new malware may be simply 
created by modifying existing malware from a well-
known malware family in a straightforward manner. 
To address this challenge, it is necessary to become 
familiar with the features of malware that are similar 
to one another and may be used to group malware 
into families. Several research studies [26]- [28] 
exploited the fact that most malware variants are 
similar in structure, employing digital signal and 
image processing techniques to classify malware. 
They converted malware codes to grayscale images 
and discovered that malware belonging to the same 
malware family appears to be pretty similar structure 
and texture. Because Image processing techniques 
do not involve disassembly or code execution, they 
are significantly quicker than static and dynamic 
analysis. The primary advantage of this strategy is 
that it can handle compressed malware and can work 
with a wide variety of malware regardless of the 
operating system. Experimental results indicate a 
classification accuracy of 98% when applied to an 
extensive malware database and is also resistant to 
typical obfuscation techniques, such as encryption. 
They also proposed an Image-based dataset Malimg 
for malware classification. In these studies, the 
researchers also demonstrated Search and Retrieval 
of Malware, an online search, and retrieval system 
that analyzed binary executables using similarity 
metrics. 

They also demonstrated signal, a signal 
processing-based system for detecting malware 
similarities. It can handle both packed and unpacked 
samples, bypassing the resource-intensive 
unpacking step. Recently, the Malimg dataset has 
been utilized to compare the efficacy of advanced 
machine learning algorithms to that of traditional 
machine learning algorithms. Rather than relying on 
various signal and image processing approaches, the 
application of deep learning algorithms is translated 
into malware classification using the Maligmg 
dataset [29]- [30]. Similarly, SVM combined with 
deep learning architecture such as CNN and RNN 

variants were also explored in [29] and reported very 
promising results. 

 
2.5 Malware Classification Based on Deep 

Learning 
Deep learning is used to learn the properties 

of malware and benign files by analyzing large 
datasets. Deep learning has been employed in 
various domains, including speech recognition and 
image recognition, as an effective artificial 
intelligence [30]. For instance, [31] developed 
MCSC, a malware classification approach that 
combines visualization and deep learning 
techniques. They extracted the Opcode commands 
from the malware executable and then encrypted 
them using SimHash. They transformed SimHash 
values into grayscale images by converting them into 
pixels. Finally, the Convolutional Neural Network 
was employed to train the images, and malware 
families were identified. The proposed solution 
produced a high degree of classification accuracy in 
small-scale application settings but could not detect 
malware more quickly in a large-scale application 
environment. 

In [32], the author's presented a deep 
learning approach without relying on reverse 
engineering. Their approach obtained a 
classification accuracy of 98.2 percent using just 
10860 samples from nine malware families. 
Similarly, in [33], a combination of CNN and LSTM 
was employed to automatically learn the 
characteristics from infected files. It significantly 
decreased the cost of developing artificial features. 
The proposed technique achieved a classification 
accuracy of 99.36% using only 10,860 samples from 
nine malware families. Another research work [34] 
suggested an architecture based on CNN's for 
classifying malware samples. They conducted 
research on the most complex malware dataset 
known as Mailing. While analyzing 9339 samples 
from 25 malware families, their design achieved 
98.52% accuracy. They tested 10% of the samples 
within a family at random. [35] introduced a deep 
learning architecture for malware detection based on 
CNNs. They conducted experiments on the Malimg 
dataset and considered 25 malware families. The 
proposed model achieved a 98% accuracy rate when 
applied to 9339 samples. The experiment randomly 
picked 10% of the family's samples. The concept of 
deep learning was also employed in another research 
study [36]. They used various deep learning 
techniques, including CNN architecture, to identify 
intrusion in both network-based instruction detection 
systems and host-based intrusion detection systems, 
with a claimed accuracy of over 98%. The suggested 
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approach does not provide sufficient information on 
the malware's structure and properties and does not 
account for overhead time. 

In [37], the author discussed using the 
image-based technique for identifying suspicious 
system activity and advocated using hybrid image-
based approaches in conjunction with CNN-based 
deep learning architecture for successful malware 
classifications. They presented two- CNN-based 
models, Unidirectional GRU and Bidirectional 
GRU, and then assessed and compared their 
performance to other current CNN architectures 
such as Unidirectional LSTM and Bidirectional 
LSTM. They conducted an experiment using two 
publicly available datasets: Microsoft Malware 
Classification challenge and Mailing. The proposed 
architecture reported an average accuracy of 96% 
but did not account for overhead time. Several 
researchers suggested using data balancing 
approaches to minimize the possibility of malware 
detection misclassification. [38], developed a 
weighted Softmax loss algorithm to balance the 
imbalance malware dataset. 

Similarly, [39] suggested a CNN-based 
malware variant identification technique. 
Additionally, they resolved the data imbalance issue 
by utilizing a BAT method for data equilibrium. 
While analyzing 9339 samples from 25 malware 
families, their approach achieved a 94.5% 
classification accuracy. A cost-effective solution 
was utilized to address the unbalanced multiclass 
malware family issue. Recently, security researchers 
have begun forecasting the image classification 
problem like a malware classification [36]. The 
models of CNN, such as VGG -16, ResNet -50, and 
Inception V2, have been implemented for the 
intrusion detection system. The focus of this study is 
an Image-based malware classification using these 
models. 
 
3.  PROPOSED METHODOLOGY 

The   All of the dataset images were 
transferred through the pre-processing pipeline and 
into the deep learning pipeline for appropriate 
training of deep learning models. To train the model, 
all images were shrunk to the same proportions as 
each other. Following that, the images were rescaled 
from RGB value to grayscale by a factor of 1/255 to 
bring the RGB values back into balance. They are 
considered too high for good model performance if 
they fall within the range of 0 – 255. Finally, the 
dataset was subdivided into two groups: the training 
and test sets. Malware images were distributed in 
two sets: a training set and a test set with a 70 percent 
training set and a 30% test set. Many deep learning 

models for malware classification were trained when 
a malware images dataset was prepared and made 
available to the researchers. The Adam optimizer 
and the cross-entropy loss function were employed 
for the proposed custom CNN architecture. The 
default value for the remaining hyperparameters was 
utilized for the rest of the parameters. The 
classifier’s performance was improved by reducing 
the learning rate on the plateau, which was enabled 
by default. A further step was taken to train three 
distinct deep learning models to classify Malware 
Images. These models were labeled as VGG-16, 
ResNet 50, and Inception V3. The Adam optimizer 
and the cross-entropy loss function were combined 
to train all models. Using early halting criteria, the 
models were trained for 50 epochs. With the help of 
the evaluation measures, the results of all trained 
models were compared. Finally, the classification of 
malware images the model composition method was 
employed. The composite model was created by 
combining several previously trained models. The 
custom CNN models and the VGG 16, ResNet 50, 
and InceptionV3 models were merged to predict a 
single outcome for the experiment. An overview of 
the proposed methodology is presented in figure 1. 
The detailed employed dataset and proposed 
architecture are presented in the subsequent section. 

Table 1. Algorithm 

Algorithm Composite Model Algorithm for The 
Classification 

Input: Sample image of Malimg dataset  

Output: Class or Malware type of image 

Step 1: Sample-image = load (“path of the 
testing set image) 

Step 2: Result1 = custom-CNN. Predict 
(Sample-image) 

Step 3: Result2 = VGG16. Predict (Sample-
image) 

Step 4: Result3 = ResNet50. Predict 
(Sample-image) 

Step 5: Result4 = InceptionV3. Predict 
(Sample-image) 

Step 6: Final-Result = max* (Result1, 
Result2, Result3, Result4) 

Step 7: Return Final-Result 
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Fig. 1 An overview of Proposed Methodology 
3.1 Dataset 

It is necessary to construct a large dataset 
with various samples to evaluate the effectiveness of 
traditional machine learning and deep learning 
architecture. Because of the privacy-preserving 
practices of individuals and organizations, there are 
extremely few public datasets for possible cyber 
security studies for malware detection purposes. As 
malware has grown sophisticated, finding a single 
source containing all the different malware families 
has become increasingly difficult. Many researchers 
have attempted various efforts to build the dataset 
and collaborated on their findings; however, there is 
currently no one dataset that has been published 
where all of the necessary samples can be found. In 
this study, the Malimg dataset is used to classify 
Malwares. The Malimg dataset was acquired from 
the Kaggle repository, which comprises mostly 9458 
malware samples that have been classified into 25 
different classes. The most notable characteristic of 
this dataset is not supplying only malware samples 
once but are also providing images of malware 
samples as they appear on the disc. 

 
 

Fig. 2 A sample Images of Malimg Dataset 

The work in bytes of executable le files is 
analogous to the work in that floats are allocated 
inconsequentially to values that would be later be 
revealed as pixel values of the grayscale image. The 
malware classes in the dataset are unequally 
distributed, with the bulk of samples belonging to the 
class ‘Allaple. A’ comprises 2949 samples, and the 
least number of samples belonging to the lowest 
class, which contains just 80 samples. The random 
samples of the malware image dataset have been 
presented in Figure 1. The images in each category 
have distinct styles that allow distinguishing 
between the samples of a family, regardless of 
whether or not they are examples of another family 
in the same class. After the collection of the samples, 
we performed image preprocessing. It is an 
important stage in the development of a 
classification system. Removing any unnecessary 
information from images during preprocessing is 
necessary to improve the classification rate. The 
preprocessing is carried out by the types of image 
that has been received. Image processing steps such 
as noise removal, skew correction, and binarization. 
After the preprocessing steps, we prepared the 
training data of malware images and fed them to the 
deep neural networks for feature extraction and 
classification. 

 
3.2 VGG- 16 
  VGG-16 is a Convolutional Neural 
Networks (CNN) architecture that is simple and 
widely used in visual object classification and 
detection research. Initially, It was used for 
ImageNet, a big database project utilized in object 
recognition software research. Karen Simonyan and 
Andrew Zisserman from the University of Oxford 
developed and introduced the VGG 16 architecture. 
The term ‘VGG’ stands for Visual Geometry Group, 
a group of researchers at the University of Oxford 
that worked together to build this architecture. The 
number 16 indicates that this architecture comprises 
16 layers of information. 
  The VGG-16 model achieved 92.7% 
classification accuracy in the ImageNet dataset, 
which contained 14 million images belonging to the 
1000 different classes. One of the most well-known 
models submitted to the ImageNet Large Scale 
Visual Recognition Challenge 2014. It improved the 
AlexNet design by substituting large kernel filters 
with three-three kernel-sized filters one after another 
in the first and second convolutional layers, 
respectively. The VGG 16 has been employed in 
different deep learning classification problems due 
to its simplicity of implementation because a very 
small 3 * 3 filter size was used throughout the whole 
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network, with a stride of 1 pixel being used 
throughout the network. In the previous network, 
such as AlexNet, this was 11 * 11 with stride 4, and 
the same field in ZFNet was 7* 7 with stride 2. The 
concept of using 3 *3 filters uniformly distinguishes 
the VGG. Two consecutive 3 * 3 filters produce an 
effective receptive field of 5 *5 due to the 
combination of the three filters. 
 Similarly, three 3 * 3 filters can create a 
receptive field 7 * 7 by combining them. It is 
possible to substitute for a large receptive area by 
combining numerous 3 * 3filters in this manner. The 
advantage of this arrangement is, as an alternative to 
the one non-linear activation layer that would 
present id 7*7, there are three non-linear activation 
layers in addition to the three convolutional layers. 
As a result, the decision-making functions become 
more discriminative. It provides the network with 
the potential to converge at a faster rate. Second, it 
has the additional benefit of greatly reducing the 
number of weight parameters which lessen the 
likelihood that the network will become overfitting 
during the training session. According to the 
architecture of VGG- 16, It was assumed that the 
input to the network was a fixed size image with 
three channels, RGB with a resolution of 224 X 224 
pixels. The only pre-processing that has been done is 
to normalize the RGB values for each individual 
pixel. 
 
This was accomplished by removing the mean value 
from each pixel in the image. A 3 * 3 receptive size 
image was sent through the first stack of two 
convolutional layers with a receptive size of 3* 3, 
after which Relu activation functions were 
performed. Each of these two levels has a total of 64 
filters in it. The convolution stride and padding were 
fixed at one pixel, and the padding was fixed at one 
pixel. This arrangement keeps the spatial resolution 
of the image intact, and the output activation map 
size was the same as the dimension of the input 
image. The activation maps were then run via spatial 
max-pooling layer over a 2 * 2-pixel window with a 
stride of 2 pixels. After this, the activations were 
then routed through a second stack similar to the first 
stack but with 128 filters instead of 64 filters in the 
first stack. There were three Convolutional layers 
and a max-pooling layer in this stack, followed by 
the fourth stack. 
 

 

Fig. 3 VGG -16 Architecture for Malware Image 
Classification 

   
  Similarly, the 256 filters were used in the 
fourth stack, and so on. In the end, the stacks of 
convolutional layers followed the three fully 
connected layers with a flatting layer in between. 
The employed VGG-16 architecture in this study for 
malware image classification is presented in Figure 3. 
  Compared to the AlexNet, the VGG-16 
architecture was an upgrade since it replaced the 
large kernel size filter with various 3 * 3 kernel sized 
filters that applied into stack manners. When 
working with the pre-trained Networks, two 
approaches can be used, features extract action and 
fine-tuning. We used VGG16 for feature extraction 
as well as for classification purposes. It is distinctive 
in that, rather than having many hyper-parameters, it 
contains convolutional layers of 3 * 3filter with a 
stride 1 and always utilizes the same padding and 
max pool layer. We initialized the model 
checkpoints during training and prepared the 
malware image size according to the network input. 
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In the end, adjust the value of neurons at the Fully 
connected layer as, by default, it corresponded from 
1000 classes of ImageNet. 
 
3.3 Resnet 50 
  AlexNet earned the first prize in the 
LSVRC2012 classification challenge in 2012, and 
since then, ResNet has been the most intriguing thing 
to happen in the world of computer vision and deep 
learning. Because of the foundation that ResNet 
provides, it became possible to train extremely deep 
neural networks, which means that a network can 
have thousands of layers while still achieving 
excellent performance, a previously impossible feat. 
The ResNet was initially applied to the image 
recognition problems, but as reported in the 
literature, this framework was extended to various 
tasks other than computer vision to obtain higher 
accuracy and greater precision. As we know, the 
deep Convolutional Neural networks are extremely 
good at identifying low, mild, and high-level 
features in images, and stacking more layers 
generally results in better accuracy. The question 
arises as to whether increasing the number of layers 
will improve model performance? With this question 
comes the problem of vanishing gradients, which has 
been addressed in various ways and has enabled 
networks with tens of layers to converge. However, 
when the deep neural networks converge, another 
problem arises: the accuracy becomes saturated and 
degrades rapidly. This was not caused by the 
overfitting, as one might expect, and adding more 
layers to a suitable deep model only increased the 
training error. To address this further, the researchers 
employed a shallower model and deeper model, both 
of which were constructed with layers from the 
shallow model and identified layers added on the top 
of them. As a result, the deeper model should not 
have produced any training error because the added 
layers were only the identity layers. To overcome 
this issue, a deep residual learning architecture was 
introduced where the author proposed a shortcut 
connection that merely performed identity 
mappings. Because there were no additional 
parameters introduced to the model due to this 
shortcut identity mapping, it was possible to keep the 
computing time under control. As mentioned earlier, 
the Residual Network design was selected as the 
winner of the ILSVRC competition, and jamming 
was the one that invented ResNet. To do this, he set 
out to create ultra-deep networks that were not 
affected by the vanishing gradient problem that has 
plagued previous generations of the networks. 
  ResNet employs a variety of layer counts, 
including 34, 50, 101, 152, and even 120 layers in 

some instances. ResNet-50, a convolutional neural 
network with 50 layers, is one of the versions of 
ResNet. A total of 48 convolution layers are included 
and 1 Max pooling and 1 Average pooling layer. The 
ResNet 50 is a deep residual learning framework 
built on a neural network. It can resolve the 
vanishing gradient problem even when working with 
incredibly dense neural networks. ResNet 50, 
despite the fact it contains 50 layers, has around 23 
million trainable parameters, which are significantly 
less than the trainable parameters of previous 
architectures. Even if the explanations behind its 
performance are still up for debate, the most 
straightforward method to comprehend it is to 
describe residual blocks and how they function, as 
presented in figure 4. 

 
Fig. 4 Residual Learning Block 

 
Suppose, a residual block has y as an input and wants 
to learn the true distribution H(y). The difference 
between input and true learning can be write as  

R(y) = Output – Input 
R (y) = H(y) – y 

 After the rearranging this equation we will have. 

H (y) = R(y) + y 

  The residual block is attempted to figure 
out what the genuine output is H(y); as the residual 
block has an identity link arising as a result of they, 
the layers are learning the residual, which is 
represented by the letter R(y). When using a standard 
network, the layers are responsible for learning the 
true output H(y), but the layers of the residual 
network are responsible for learning the residual 
R(y).  
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Fig. 5 The Architecture Of The Resnet 50 Is 

Illustrated 
Furthermore, it has been shown that learning the 
residual of the output and input, rather than just the 
inputs, is more straightforward. Thus because they 
have been bypassed and do not add any complexity 
to the design, the residual identity model allows for 
the reuse of activation functions from earlier levels 
[40]. The architecture of the ResNet 50 is illustrated 
in figure 5. 
  In this research, we used ResNet 50 
architecture for the features extraction and 
classification of Malware images with different 
experimental settings and tuned on a various number 
of epochs to achieve better results. 
 
3.4 Inception V3 
  Since Krizhevesky et al. [41] won the 2012 
image completion, their network “AlexNet” has 
been successfully applied to a broader range of 

computer vision tasks, including object detection 
and video classification. In the wake of these 
breakthroughs, researchers began a new line of 
investigations into improving the performance of 
convolutional neural networks. With the 
implementation of deeper and larger networks 
beginning in 2014, the quality of network topologies 
has improved dramatically. In the 2014 ILSVRC 
challenge, the VGGNet [42] and Google Net [43] 
networks achieved a similar level of performance. It 
was shown that the improvements in classification 
tend to translate into considerable quality 
improvements across a wide range of application 
areas, which was the fascinating findings. This 
indicated that architectural advances in deep 
learning could be used to increase the performance 
of a wide range of other computer vision 
applications that are becoming increasingly reliant 
on high-quality, learned visual features, such as 
object detection and tracking. Improvements in 
network quality have also led to the development of 
new application areas for convolutional networks in 
different circumstances where the AlexNet feature 
could not compete with hand-engineered features. 
  Even though VGGNet offered the 
appealing virtue of architectural simplicity, this 
appears at a hefty cost: assessing the network needs 
a significant amount of computational power, which 
is not always available. On the other hand, Google 
Net [43] was built with the inception architecture in 
mind, and it was meant to perform well even when 
faced with stringent memory and computation 
power. Compared to AlexNet, which used 60 million 
parameters, Google Net used only 5 parameters, 
representing a 12 percent reduction in parameter 
usage. Furthermore, VGGNet used approximately 
three times as many parameters as AlexNet. In 
addition, the computational cost of Inception is far 
cheaper than that of VGG Net or its more powerful 
descendants. This has made it possible to use 
Inception networks in computer vision and big data 
tasks, where a large amount of data needs to be 
processed at a reasonable cost, or scenarios where 
memory or processing capability is fundamentally 
constrained. In this study, we employed the 3rd 
version of Inception named Inception V3 for 
malware image classification. 
  Through the modifications to the previous 
Inception architectures, InceptionV3 strives to 
consume fewer processing resources. Inception V3 
has shown to be more computationally efficient than 
VGGNet, both in terms of the number of parameters 
generated by the network and the cost incurred. Care 
must be taken while making changes to an Inception 
network not to lose computational gains. 
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Consequently, it turns out to be challenging to adapt 
Inception networks to diverse use cases because of 
the ambiguity around the new network’s efficiency. 
Many strategies have been proposed for improving 
the network in an Inception v3 model to make the 
model more adaptable. Parallel calculations, 
regularization, dimension reduction, and factorized 
convolutions are just a few of them. According to the 
architecture, the Inception v3 contains 48 layers 
consisting of different parameters such as factorized 
convolutions, smaller convolutions, Asymmetric 
convolutions, Grid Size reduction, and auxiliary 
classifier. 
  The factorized convolutions are used in the 
architecture to reduce the number of parameters in a 
network. This helps to improve computational 
efficiency. It is also used to monitor the network’s 
efficiency. Similarly, the large convolutions are 
replaced with smaller convolutions, which results in 
faster training. The grid size reduction is also 
employed in Inception v3, where pooling techniques 
are commonly used to reduce the grid size. However, 
a more effective strategy is given to overcome the 
computational cost bottleneck. A small CNN is 
placed between layers during training as an auxiliary 
classifier, and the loss it incurs is added to the net 
loss. This classifier works as a regularizer in 
Inception v3 [44]. 

 
Fig. 6 3*3 smaller convolutions 

 

 

 

Fig. 7 Inception Module where two 3* 3 
convolutions replace each 5 * 5 convolution. 

 

Fig. 8 Inception V3 architecture for Malware 
Image classification. 

3.5 Convolutional Neural Network (CNN) 
  Even though Convolutional Neural 
Networks were introduced for the first time in the 
early 1990s [45], they did not gain much attention 
from the research and academic community due to 
the scarcity of large datasets, the complexity of the 
algorithms, and the length of time required for 
training. Large datasets such as ImageNet [46] and 
the introduction of astonishingly effective GPUs 
have combined significantly improved the 
performance on a wide range of learning tasks while 
simultaneously reducing the training time. As a 
result of Krizhevesky et al. [47]’s usage of CNNs in 
the Image Net competition, CNNs have received 
widespread acceptance. The CNN-based system 
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outperformed those based on traditional 
methodologies, but it also had a much lower effort 
rate. The use of neural networks for recognition tasks 
has exploded since then, and they have been applied 
to a wide range of pattern classification tasks. 
Traditional networks require input in a single vector; 
however, the fully connected design results in a 
considerable number of weights per neuron due to 
the fully linked topology. Overfitting occurs as a 
result of the fact that such networks do not scale well 
for image-based data. On the other hand, CNN's are 
optimized for image recognition and classification 
since they are predicated on the assumption that the 
input is mostly an image. Because each neuron is 
connected to a specific part of the image, the number 
of weights associated with a neuron is significantly 
reduced compared to a fully connected architecture.  
  In CNN's, the neurons are arranged 
according to the three dimensions of height, width, 
and depth. A CNN is composed mainly of 
convolutional and pooling layers placed on top of 
one another, followed by the fully connected layer. 
In CNN's, the convolutional layers are the central 
component that extracts a distinct feature from the 
image to create a more accurate representation. The 
output of the convolution process is an activation 
map, which is then passed on to the next layer of the 
algorithm structure. When the early convolutional 
layers detect low-level features, the following 
convolutional layers combine these features to 
discover the high-level features. Each filter in a 
convolutional layer creates an individual activation 
map or features to calculate output volume. Most of 
the time, a non-linearity is introduced into the 
network by applying an activation function to the 
output of the convolutional layers. In the activation 
function, the ReLu is the most usually employed. 
The vanishing gradient problem with the standard 
sigmoid function is effectively avoided by ReLu, 
despite its simplicity. The ReLu can be defined as 

R(x) = max (0, x) 

  When the convolutional layers are added 
repeatedly, the pooling layer is introduced to down 
sample the feature maps. It is important to note that 
the down sampling procedure not only helps to lower 
the number of parameters in the network, but it also 
helps to prevent overfitting. The max-pooling 
operation is used in the convolutional network. It 
picks the maximum filter response from among all 
of the filter responses examined in a particular 
region of the input volume among the various 
pooling process utilized. Following a sequence of 
pooling layers, the feature maps produced by the 
fully connected layer that serves as the classifier are 

fed into the fully connected layer. In the FC layer, all 
neurons are connected to all of the neurons in the 
preceding layers in the same way. 
  In addition to the pre-trained network, we 
employed the CNN and trained it from scratch. The 
architecture of a CNN is a function of many factors 
and variables. In this study, we developed and 
compared various CNN architectures by altering 
their kernel sizes, their number of layers, and the 
number of filters within each convolutional layer. 
The proposed architecture has convolutional 144 * 
144 and 71 * 71. After the convolutional layers, the 
max pooling operation was performed where 71 * 71 
and 32 * 32 dimensions with 64 filters were used for 
the pooling operation. After the pooling layer, the 
flatten layer was used to convert the data into a 
feature vector for further classification processing. 
After the flattening layer, the two dense layers of 128 
and 25 neurons were used. As the output generated 
by the dense layer is an m dimensional vector, thus 
the dense layers were used to change the vector's 
dimension. Normally, in the architecture, it is a layer 
firmly related to its preceding layer and works to 
change the dimension of the output by performing 
matrix-vector multiplication. The detail of the 
proposed architecture of CNN is illustrated in Table 
II. 

Table 2. CNN’s Proposed Architecture of Malware 
Image Classification 

Model: “sequential” 

Layer (type) Output 
Shape 

Param # 

Conv2d (Conv2D) (None, 144, 
144, 128) 

18944 

max_pooling2d 
(MaxPooling2D) 

(None, 71, 71, 
128) 

0 

conv2d_1 
(Conv2D) 

(None, 67, 67 
64) 

204864 

max_pooling2d_1 
(Maxpooling2D) 

(None, 32, 32, 
64) 

0 

flatten (Flatten) (None, 65536) 0 
dense (Dense) (None, 128) 8388736 
dense_1 (Dense) (None, 25) 3225 

Total params: 8,615,769 
Trainable params: 8,615,769 
Non-trainable params: 0 

3.6 Capsule Neural Network (CAPS – Net) 
  An example of an artificial neural network 
is a Caps Net. Because CNN does not have many 
restrictions for computer vision tasks, The Capsule 
Network was developed as an alternative to CNN. 
Convolutional neural networks, or CNNs, were 
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initially designed to categorize images by merging 
convolutional and pooling layers. These networks 
are sometimes referred to as the "cornerstone" in 
some circles. Even though the CNNs could produce 
accurate results, there was a noticeable decline in 
their performance. This resulted from a reduction in 
the data dimension, which brought about a loss of 
information. As an alternative to convolutional 
neural networks, which Geoffrey Hinton invented, 
he came up with a novel architecture called the 
capsule neural network [48]. Capsules are used in 
capsule networks rather than neurons, used in 
traditional networks. All of the essential information 
present in an image to generate a vector was 
contained within the capsules. 
  In contrast to neurons, which can only 
output a scalar quantity, tablets can keep tabs on the 
future path while being monitored. Consequently, if 
we start moving the features about in their respective 
positions, the value of the vector will remain the 
same, but the vector's direction will change to 
represent the movement of the features. An encoder 
and a decoder are the two parts that make up a Caps 
Net, as specified by the design.  
  When used together, the encoder and 
decoder make up six levels in the system. To be more 
specific, encoders transform the input image into a 
vector with 16 dimensions by using that image as a 
source. The input image is converted into a 16-
dimensional vector by the first three layers of the 
network's architecture. The convolutional neural 
network, the primary caps network, and the digital 
caps network are the three layers that contribute to 
the construction of the encoder that Caps Net uses. 
The first layer is responsible for isolating the most 
fundamental characteristics of the images. The 
second layer is responsible for taking these essential 
characteristics and identifying more intricate 
relationships between them; the capsule sizes 
available in this layer can vary depending on the 
dataset being used. The variation in the number of 
capsules present in the third layer follows the pattern 
established in the second layer. When figuring out 
which capsules from the primary caps will be moved 
to the Digit caps, it is vital to compare and contrast 
the weight of the lower-level capsules with that of 
the higher-level capsules. We employed two 
convolutional and one fully connected layer in the 
encoder section. The convolutional layer used the 
ReLu activation function, which uses 256 
convolutional kernels of 9x9 size, and the stride is 1. 
This layer is in charge of converting the intensities 
of the pixels to the activities of the local feature 
detector, and the results are subsequently supplied to 
the Primary Caps layer. 

  The Primary Caps layer is a convolutional 
layer that consists of 32 channels of convolutional 8-
D capsules. There were 8 convolutional units within 
each capsule, with a 9 x 9 kernel and a stride of 2. 
Inverse graphics were created by primary capsules, 
which means that the process of really creating an 
image is reverse-engineered by these capsules. A 
6*6*8 output tensor was produced due to the 
capsules applying eight 9*9*256 kernels to the 
20*20*256 input volume. In light of the fact that 
there were 32 8- D capsules, the output would have 
the dimensions of 6 * 6 * 8 * 32. Each class in the 
Digit Caps layer is comprised of 16- D capsules, and 
each capsule gets input from the corresponding low-
level capsules. The weight matrix was employed for 
affine transformation against each 8- D capsule. In 
the end, an instantiation parameter encoding was 
accomplished through the utilization of 
reconstruction loss. When calculating, The loss of 
each training sample was compared against all of the 
output classes. The overall loss was calculated by 
adding up the individual losses of each digit capsule. 
An overview of the proposed architecture is 
presented in Figure 9 and Figure 10, respectively. 

 
 

Fig. 9 Architecture of Caps-Net. 
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Layer (type) Output Shape Param # Connected to 

input_1 (InputLayer) (None, 64, 64, 3) 0  

conv_2d_ (Conv2D) (None, 64, 64, 32) 24608 input_1[0][0] 
batch-normalization_1 
(BatchNormalization) 

(None, 64, 64, 32)  128 conv2D_1[0][0] 

activation_1 (Activation) (None, 64, 64, 32) 0 batch_normalization_1[0][0] 

conv2d_2 (Conv2D) (None, 28, 28, 72) 186696 activation_1[0][0] 

reshape_1 (Reshape) (None, 6272, 9) 0 conv2D_2[0][0] 

lambda_1 (Lambda) (None, 6272, 9) 0 reshape_1[0][0] 
routing_layer_1 
(CapsuleLayer) 

(None, 25, 18) 25558400 lambda_1[0][0] 

input_2 (InputLayer) (None, 25) 0  

mask_1 (Mask) (None, 18) 0 
routing_layer_1[0][0] 
input_2[0][0] 

dense_1 (Dense) (None, 16) 304 mask_1[0][0] 

dense_2 (Dense) (None, 32) 544 dense_1[0][0] 

dense_3 (Dense) (None, 12288) 405504 dense_2[0][0] 

output (Length) (None, 25) 0 routing_layer_1[0][0] 

output_recon (Reshape) (None, 64, 64, 3) 0 dense_3[0][0] 
Total params: 26,176,184 
Trainable params: 26,019,320 
Non-trainable params: 156,864 

 

 

Fig. 10 Detailed-Architecture of Caps-Net 
 

4. EXPERIMENTAL SETUP 

  The study was carried out on a hardware 
computer equipped with 8GB of RAM, a 1TB hard 
drive, and a GPU with 11G capability. Python 
version 2.6.10 was installed and configured to design 
and test the models. The list of used libraries and 
their purpose are listed below. 
 
4.1 Numpy 
  NumPy is a numerical python; numerous-
dimensional and one-dimensional array items can be 
computed and manipulated using NumPy. We used 
this library for data pre-processing. 
 
4.2 Keras 
  Deep learning API Keras is built on Tensor 
Flow, a machine learning platform. Keras may be 
used to train deep neural networks in python. 
Initially, it was designed to allow for quick testing to 
occur. It is being created to deliver results as quickly 
as possible to conduct high-quality research. We 
used this library in this research to train our proposed 
models. 
 
4.3 Tensor Flow 
  In machine learning and artificial 
intelligence, Tensor Flow is a runtime environment 

that is entirely open-source and available for free to 
anybody to use. It can also be put to use in a variety 
of other situations. Although it focuses on deep 
neural network-based training and validation, it is 
not without its limitations. 
 
4.5 Pillow 
  Pillow is referred to as a Python Imaging 
Library (PIL), and it allows to view, alter, and save 
images in the Python programming language. The 
most recent edition can recognize and handle various 
file types. Writing assistance is restricted to some of 
the most extensively used exchanging and 
presentation formats to achieve this. In this research, 
we used this library for image preparation and pre-
processing. 
 
4.6 Scikit-Learn 
  Scikit-learn (Sklearn) is a machine learning 
library written in Python that is widely used and 
extremely powerful. This library takes advantage of 
Python consistency API to provide a set of rapid 
tools for machine learning and statistical modeling, 
similar classification and prediction, clustering, and 
data preprocessing, among other things. 
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4.8 Pandas 
  Pandas is a Python programming 
language's data processing and analysis software 
package. The data formats and methods for 
processing numeric records and time-series data that 
are included are particularly relevant. We also used 
this library for data processing. 
4.9 Seaborn 
  Seaborn is, in fact, a Python module that 
allows creating statistical visualization. It is made on 
top of matplotlib and close associates to panda's 
dataset models. Seborn is a tool that aids in exploring 
and analyzing information. Its charting units work 
with data frames and matrices that include the entire 
set of data, doing the necessary semantic mapping 
and statistical aggregation within them to create 
usable graphs and charts. 
 
4.10 Matplotlib 
  Matplotlib is, in fact, a Python and its 
extension NumPy-based cross-platform data 
visualization and graphical charting program that 
may be used on a variety of systems. As a result, it 
is a suitable open-source replacement for the 
MATLAB programming language. Matplotlib APIs 
can be used to integrate graphs into the graphical 
user interface and other applications. We used this 
library for the generation of charts and graphs. 

5. EVALUATION MEASURES 

The Different evaluation methods were 
employed to compare the performance of trained 
CNN models to compare their results. These 
evaluation measures aim to generate a numeric value 
for the model in terms of model performance by 
employing various mathematical formulas and 
techniques. The accuracy, precision, recall, and F1-
score are the evaluation measures that have been 
chosen. 
 
5.1 Accuracy 

The most straightforward and clear 
performance metric is accuracy, just the proportion 
of correctly predicted observations to all 
observations in a dataset. Assuming it is accurate, 
our model would lead one to believe that it is the 
best. Yes, accuracy is a relevant statistic, but only 
when the datasets are symmetric and the number of 
samples for each class is almost evenly distributed 
across the datasets. Even though the Malimg dataset 
does not have a balanced distribution of types, the 
accuracy of all trained models was assessed for the 
purpose of a fair comparison. 

 

Accuracy = 
𝑻𝑷ା𝑻𝑵

𝑻𝑷ା𝑻𝑵ା𝑭𝑷ା𝑭𝑵
 

 
5.2 Precision 

In statistics, precision is defined as the 
proportion of precisely anticipated positive samples 
over the total number of accurately predicted 
positive samples. 

 

Precision = 
𝑻𝑷

𝑻𝑷ା𝑭𝑷
         

 
5.3 Recall 

The recall rate is the proportion of really 
predicted positive samples in a class over the total 
number of positive samples in the class. 

 

Recall = 
𝑻𝑷

𝑻𝑷ା𝑭𝑵
 

 
5.4 F1- Score 

The F1 Score is the weighted mean of the 
true positive rate and the false positive rate, and it 
takes into consideration both.  

 

F1- Score = 
𝟐∗(𝑹𝒆𝒄𝒂𝒍𝒍ା𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏)

𝑹𝒆𝒄𝒂𝒍𝒍ା𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏
 

 

6. RESULTS AND DISCUSSION 

  This research presented a deep learning 
approach for malware classification. The Kaggle 
malware dataset, based on Malware images, was 
used for this purpose. With a 70 – 30 split, the dataset 
was divided into training and testing. The Malimg 
dataset was used for training 70 % of the time, with 
the remaining 30% used for testing. The Malimg 
dataset trained many built-in CNN models, including 
a custom convolutional neural network. Each 
model’s performance was assessed using assessment 
metrics such as accuracy, precision, recall, and F1- 
Score. Initially, a custom CNN model based on 
convolutional layers, Max pooling layers, and dense 
layers were trained. With default hyperparameter 
settings, the Adam optimizer and Cross-Entropy 
were employed. The CNN model revealed a 90% 
classification accuracy rate. The accuracy, loss and 
confusion matrix of CNN model is presented below. 
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Fig. 10 Accuracy of CNN model during Training.  
Fig. 11 Loss of CNN model during Training 

 
Fig. 12 Confusion Matrix of CNN model 
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  One of the most common types of deep 
learning architecture, the Convolutional neural 
networks are increasingly being used in various 
computer vision-related applications. CNNs have 
defined the outcomes that are considered state of the 
art in various fields, including image classification, 
object detection, and segmentation. These networks 
each have their own set of challenges and obstacles 
when dealing with particular kinds of images. The 
CNNs are doomed to failure of they are continually 
fed images of varying dimensions and orientations. 
To overcome these problems, the Caps Net was 
proposed. Instead of doing computations on their 
inputs as regular neurons do, capsules 
“encapsulated” the results of those computations 
into a small vector of highly informative outputs. 
These sets capsules apart from conventional 
neurons. When compared to an artificial neuron, a 
capsule’s focus is on a vector, whereas an artificial 
neuron is concerned with a scaler. A capsule can be 
thought of as a replacement or alternative for 
artificial neurons. On the complete set of data, Caps 
Net stopped training at epoch 30. The training loss 
in the last epoch reached the value of 0.0436, while 
the validation loss reached the value of 0.0455. The 
Caps Net achieved 90% classification accuracy. The 
training and validation loss for each epoch is 
presented in Figure 13 and Figure 14. 
 

 
 
Fig. 13 Caps- Net Model Training and Validation Loss 

 
Fig. 14 Caps- Net Model Training and Validation Loss 
 

  The malware was then classified using 
three separate built-in deep learning models 
(VGG16, ResNet50, and Inception V3). The Malimg 
dataset was used to train the VGG16 model for 
malware classification. VGG16 is a convolutional 
neural network (CNN) design awarded first place in 
the 2014 ILSVR competition. It is widely recognized 
as one of the most advanced vision model 
architectures yet devised. The convolutional and 
max pool layers were placed in the same way 
throughout the architecture. For the model’s 
training, the transfer learning technique was applied. 
Following the model’s training and model was 
evaluated using the testing set. For the test set, the 
model demonstrated an accuracy of 80%. The 
accuracy, loss, and confusion matrix are illustrated 
below. 

 
 

Fig. 15 Accuracy of VGG 16 Model for training and 
validation set 

 
Fig. 16 Loss of VGG 16 Model for training and 

validation set 
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Fig. 17 Confusion Matrix of VGG 16 model for the testing set 

  After this, the ResNet 50 was then trained 
with the same hyperparameters for classification. 
ResNet-50 is a deep CNN model with 50 layers 
trained on the ImageNet database of 1000 different 
objects. The ResNet 50 exhibited an accuracy of 
81% classification accuracy. The accuracy, loss, and 
confusion matrix of ResNet 50 is presented below. 

 
Fig. 18 Accuracy of ResNet 50 model for training and 

validation set 
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Fig. 19 Loss of ResNet 50 model for training and 

validation set 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 20 Confusion Matrix of ResNet 50 model for test set 

 Inception V3 was the third built-in malware 
classification model used in this study. Inception V3 
is a CNN model that belongs to the Inception family 
and includes Label Smoothing, factorized 7 * 7 
Convolutions, and an extra classification algorithm 
to transport labeled data deeper down the structure, 
among their improvements. The Inception V3 
computed 87% classification accuracy of malware 
images. The training, validation accuracy, loss, and 
confusion matrix are presented in a given section. 

 
Fig. 21 Accuracy of Inception V3 for training and 

validation set 



Journal of Theoretical and Applied Information Technology 
15th January 2023. Vol.101. No 1 

© 2023 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
155 

 

 
Fig. 22 Loss of Inception V3 model for training and 

validation set 

 

 

 

 

 

 

Fig. 23 Confusion Matrix of Inception V3 model for test set 



Journal of Theoretical and Applied Information Technology 
15th January 2023. Vol.101. No 1 

© 2023 Little Lion Scientific  
 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
156 

 

   Finally, we created a composite 
model by combining all trained models. The findings 
were produced using all of the model’s predictions, 
and the final decision was decided using the majority 

rule. The accuracy of the composite model was 
92 %. The confusion matrix of the test for the 
composite model is presented in figure 19. 

 
Fig. 24 Confusion Matrix of Composite Model for test set 

  After all of the models had been trained, the 
assessment measure was used to compare the 
outcomes. The testing set featured an almost equal 
number of malware images for each class, despite 
the fact that the original dataset was unbalanced. As 
a result, all of the models were compared to the 
accuracy score in order to choose the best Malware 
classification, model. CNN displayed a malware 
classification accuracy score of 90%. The confusion 
matrix revealed that the vast majority of classes are 
correctly labeled 100 percent of the time. However, 
there are eight classifications in the confusion matrix 

that have an accuracy score of 90 to 95 percent. 
Yuner A Malware is a well-known sort of malware 
that reduces the accuracy of a custom CNN model. 
All Yuner A malware samples were incorrectly 
classed as Autorn K malware samples, according to 
the confusion matrix. As a result, the Yuner A 
malware type’s accuracy was 0%. This Yuner A 
class behavior presents several probabilistic 
difficulties and confirms that custom CNN was 
unable to train on Yuner A class data. The Yuner A 
class pattern is probably too complicated for model 
training, or there is no pattern for learning at all. On 
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the other hand, the model produced a substantial 
result for the classification of malware types other 
than Yuner A. 
  Next, the trained weights were then utilized 
for training the VGG16 model, which exhibited an 
accuracy of 80% for the test set. The VGG 16 model 
accurately learned certain malware classes, and it 
showed 100 percent accuracy for these classes. 
There were seven more classes that scored in the 80 
to 90 percent range. For the VGG16 model, the 
confusion matrix demonstrated that Autorn K and 
Skintrim N are the most misclassified malware type. 
All of the Autorun K malware samples in the test set 
were incorrectly identified as Yuner A malware. The 
five Skintrim N samples are classed as Alueron, 
while the 10 samples are labeled as instant access. 
Out of 18 samples, 15 samples of Autorun K have 
been misclassified. The remaining malware is 
classified with an average accuracy of 90%. The 
Autorun K and Skintrim class VGG16 models, on 
the other hand, showed an accuracy of 80%. 
  Similarly, the Malimg dataset was also used 
to train the ResNet 50 model for malware image 
classification. The ResNet 50 model was trained 
using ImageNet weights that had been pre-trained. 
For the test set, the model exhibited an accuracy of 
81%. The ResNet 50 confusion matrix revealed that 
most malware types are correctly learned and 
classified with a 100 percent accuracy score. Only 5 
samples are misclassified in ResNet 50 confusion 
Matrix, and they belong to three separate classes. 
Few classes are completely misclassified, indicating 
that the model could not learn the pattern of these 
images for classification. Yuner A and Autorun K 
have been mislabeled as Fakerean, the third malware 
variant. The malware type Obfuscator was 
completely misclassified as Instant access malware. 
Except for these three classes, the remaining classes 
are classified with an accuracy rate of around 99%. 
Inception V3 is also trained to classify the different 
types of malware images. The result of Inception V3 
was similar to that of custom CNN. It also had 90 to 
95 % accuracy for the bulk of classes, and the Yuner 
A class was fully misclassified as Autorn K malware 
type, which was comparable to custom CNN. 
However, the Inception V3 total accuracy score was 
lower than the custom CNN accuracy. 
  Finally, the malware types were classified 
using a composite model. The composite model 
combines all of the previously described models and 
makes decisions based on a majority vote. It does not 
predict itself and will not decide based on a list of 
predictions. The composite model returned the class 
with the most occurrences in the given list. For 
testing data, the composite model exhibited a 92% 

accuracy. The confusion matrix of the composite 
model revealed that the majority of malware variants 
were classified 100 percent of the time. However, 
there existed another Yuner A class that had been 
misclassified. All 15 Yuner A malware samples 
were re-classified as Autorun K class using a 
composite model. However, 9 classes have an 
accuracy score of greater than 95%, and the 
composite models' average accuracy score for all 
malware types except Yuner A was about 98%. As a 
result of the outcomes of all models, some malware 
types were too difficult to learn for all of them. 
  The Yuner A and Autoren K malware types 
appear to be comparable malware types; as different 
models misclassify these classes interchangeably. 
All Yuner A samples were classified as Autorun K 
malware by Custom CNN and Inception V3; 
however, the VGG16 fully misclassified all Autorun 
K malware samples as Yuner A malware samples. 
ResNet 50, on the other hand, incorrectly classified 
all samples from both classes as the third malware 
type (Instant access). The three classes (Autorun K, 
Instant access, and Yuner A) collectively 
downscaled the performance of trained models. By 
accurately classifying the Autorun K and Instant 
access classes. The composite model increases 
performance. The Yuner A, on the other hand, 
remains a challenging class for models as the 
composite model misclassified it as well. Because 
the composite model makes decisions based on the 
majority of cases, the Yuner A class is too tough for 
the model to grasp. The details of results are 
mentioned in given table 3. 

Table 3. Details of Results 

Model 
Accu
racy 
(%) 

Precisi
on 

(%) 

Recall 
(%) 

F1-
Score 
(%) 

Custom 
CNN 

90.07 90.01 89.95 90.00 

Caps-Net 90% 83.93 84.87 81.87 
VGG-16 80.16 80.00 79.90 80.10 

ResNet-50 81.20 81.01 80.90 80.16 
Inception-

V3 
87.10 86.90 87.04 87.09 

Ensemble 
Model 

92.30 92.05 92.15 92.25 

 
6. CONCLUSION 

In this study, we used the Malimg dataset to 
classify malwares. In addition, multiple built-in deep 
learning models were trained for a fair comparison 
of the models, also, first time the performance of 
Capsule Neural Network (Caps-Net) is explored for 
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malware image classification. Finally, the trained 
models were combined into a composite model. A 
few related classes such as Yuner A, Instant access, 
and Autorun K degrades the model’s performance. 
Because all built-in models consistently misclassify 
samples belonging to these three classes, it is 
considered that these classes are the most similar and 
that models cannot differentiate them. However, 
while the composite model corrected the predictions 
for two classes (Instant access and Autorun K), the 
composite model misclassified the Yuner A class. 
The accurate prediction of the Yuner A class of 
malwares may necessitate a complicated deep 
learning model architecture or a few Image 
preprocessing procedures. 

  Furthermore, the proposed composite 
model correctly diagnoses malware 92 % of the time. 
The significant accuracy score indicated that the 
model is strong enough to classify malwares using 
image-based techniques. However, future studies 
will need to adjust the training scheme or model 
architecture to accurately classify complex malware 
types. 
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