
Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2771

 ONTOLOGICAL APPROACH FOR OVERCOMING
PESTICIDE PARADOX IN INTER-CLASS TESTING

1SAYED ABDELGABER, 2RASHA MANSOUR MOHAMED, 3LAILA ABDEL HAMID, 4A.ABDO
1234Information Systems Department .Faculty of Computers and AI, Egypt

4Faculty of Computing, Arab Open University, Egypt
E-mail: 1sgaber@fci.helwan.edu.eg,2Roshy.mans@yahoo.com, 3Eng.layla@fci.helwan.edu.eg ,4Amany

Abdo@fci.helwan.edu.eg

ABSTRACT

Object-Oriented System Testing (OOST) focus on issues emerged with Object-Oriented features e.g.
encapsulation, polymorphism, inheritance and dynamic binding. Different faults can detect during the
interfacing between classes: interface faults, conflicting functions, and missing functions. With iterative
nature of testing process, Traditional (automation) testing techniques become less efficient in forecasting
new defects resulting in pesticide paradox. To overcome the limitations of traditional inter-class testing
techniques, automation testing techniques need to be powered by artificial intelligence for bring dynamic
testing techniques into testing process. This paper presents a new dynamic approach to overcome the
pesticide paradox in inter-class testing of object-oriented applications that stores the knowledge into
ontologies and providing algorithms, which operate on the knowledge to regenerate testing steps easily
with required modification to uncover defects. Hence, ontologies can be modified without changing the
algorithms, and vice versa omitting using the same test cases to overcome the pesticide paradox. The
proposed approach generates an executable test suite in five phases omitting using the same test cases to
overcome the pesticide paradox. To validate the proposed approach, a tool entitled PSCCOTM
(Polymorphism State Collaboration Class Ontology Test Model) is developed and a case study is applied
using PSCCOTM tool. The results show that, test cases can be easily updated by uploading modified
ontology file of a test model into PSCCOTM tool. Also, the execution results show high percentage of
faults detection, however new cases studies need to be implemented to confirm the attained results.

Keywords: Object-Oriented System Testing, Pesticide Paradox, Inter-Class Testing, Ontologies, Test

Cases

1. INTRODUCTION

Building working object-oriented based
applications contains major testing phases, namely,
intra-method test, inter-method test, intra-class test,
and inter-class test. Among all these forms of
testing, inter-class test may be the most costly and
the most important [1]. The cost of inter-class test
may be 50 –70% of the cost of the entire testing
activity [1]. An empirical study stated that 39% of
the faults uncovered in the applications examined
were interface errors [2]. inter-class test can be
defined as" a systematic technique for combining a
software system while executing tests to discover
errors associated with interfacing". Inter-class test
aims to find faults in how one class uses the
implemented interface of another class. As the
classes' interfaces increase in size, the chains of
testing are being grown in number, length, and

complexity [3]. Mainly, the testing phase consists
of three steps: (i) Test Case creation, (ii) Test Case
Execution, and (iii) Test Case Evaluation [4]. The
test case creation step represents a vital step among
the three steps to overcome the pesticide paradox.
IEEE Standard 829 (1983) defines test case as
follows: "A set of test inputs, execution conditions,
and expected results developed for a particular
objective, such as to exercise a particular program
path or to verify compliance with a specific
requirement" [3].

In software testing techniques “pesticide
paradox” is a term introduced by the famous author
Dr. Boris Beizer in the year 1990 [5]. He has
framed the term pesticide paradox in software
testing phases as: "a residue of cluster of bugs is left
behind by each method that a person uses to prevent
against the testing methods that are ineffectual".

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2772

Singh (2013) mentioned seven principles of testing
which must be considered while testing a system.
The last one is the pesticide paradox asserted that; if
the same test cases are used repeatedly then the
ability of forecasting defects can be decreased.
Therefore, testers must update and check their test
cases on continual basis [6]. Chaudhary (2015) has
stated that developers should be careful about
places where testers found more defects. Hence;
executing the same test cases will not help find
more defects. The test suit needs to be updated to
manipulate different areas of the software [7].

Several researchers believed that the techniques
for automation of test case generation resolve the
pesticide paradox by maintaining test cases for an
efficient testing process. By reviewing related work
in software testing, most of the well-known
automation testing techniques for test case
generation encounter pesticide paradox. The
testing tools execute the same every time, and for
maintaining test cases updated require great
intervention of the testers. A real challenge facing
automation testing techniques is that the
functionality of software alters over time according
to customers' requests. Fine-tuning the testing tool
is a hard task, as it executes parallel with
generation of test model and for maintaining test
cases updates to overcome pesticide paradox, test
tool needs to be refactored. At last, the inter-class
testing techniques companied by Artificial
intelligence (AI) and machine learning techniques
will bring dynamic testing approach to the business
environment enhancing the need for refactoring the
testing tool. To overcome such difficulties, new
approach and solution need to be proposed.
Therefore, the objective of this research is
developing a dynamic approach depending on
semantic software engineering. Examining how the
ontology enabled semantic technologies improve
the reusability, sharing and extensibility of software
development tasks for overcoming pesticide
paradox contradiction. In this work, the proposed
approach utilizes knowledge engineering techniques
to separate the testing phase into two tasks; (1) the
identification of what requirements to be tested, (2)
the generation of test paths algorithms to
manipulate the ontology file. This separation
enables test experts to extend the test model
according to system modifications and identify new
coverage criteria. The new approach aims to
overcome the limitations of the previous attempts
regarding overcoming the pesticide paradox by
enriching testing process with new testing phase
omitting using the same test cases. It would
facilitate updating test cases of the system under

test using RDF/XML file of the PSCCOTM
ontology with minimum user interaction.
PSCCOTM approach aims to :(1) improve the
quality of test cases by generating test model that
reflect complete picture of the system under test. (2)
Maximize the automation level through
automatically analyzing ontology files of the test
model to extract instances of message association
class where test cases will be generated.(3)
electronically elimination duplication of test
cases(4) Define various coverage criteria based on
PSCCOTM ontology that have high percentage of
faults detection while keeping the testing cost
within the project budget. (5) Improve the execution
of test cases through identifying new class in the
proposed ontology that contains the expected results
of test cases. The remainder of this paper is
organized as follows: Section 2 presents a brief
survey of the related works in the areas of
automated test case generation; Section 3 presents
the proposed approach to overcome pesticide
paradox, including a discussion of the proposed
phases of the approach; Section 4 describes the
prototype tool to automate proposed approach;
Section 5 presents a case study to evaluate the
efficiency of the proposed technique; and finally
Section 6 concludes the results.

2. BACKGROUND AND RELATED WORK

Several researchers asserted that the
automation techniques of test case generation
reduce the pesticide paradox contradiction and
detect any other faults easily. Also, it helps to
maintain test cases and enhances the accuracy of
software testing techniques [8], [9]. Is the
automation of test case generation sufficient to
eliminate the pesticide paradox in inter-class testing
of the object-oriented applications [10]. This is the
question that should be answered through this
section.

In this section, automated test case
generation methods for object oriented testing will
be discussed in details, classifying them on their
background techniques. An enormous amount of
works target, test inputs generation, test scenarios
selections, and test oracles generation from formal
models and specification. Qiu Zhipeng et al (2021)
proposed a test case generation method for
embedded software controlling. The proposed
method generates formal requirements model to
analysis the error type of the test case by defining
constraint path from the input variable to the output
variable of the defined model [11]. Another
contextual demand-based test case generation
(TCG) approach for object oriented (OO) systems

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2773

is proposed by Rajvir Singh et al (2019) to optimize
selection of test cases by applying optimization
algorithms [12].

 UML activity diagrams are used for testing
information and generating test cases.
RAnbunathan,andABasu(2019) proposed using
pairwise testing and genetic algorithm to derive a
reduced number of test cases in activity diagram
with concurrent activities [13]. Swadhin Kumar
Barisal et al (2019) proposed generating java code
from XSD (‘‘XML Schema Definition’’) of activity
diagram to generate test cases based on concolic
testing. Then, the generated test cases and derived
Java source code were inserted into COPECA tool
(COverage PErcentage CAlculator) to calculate
MC/DC (Modified Condition/Decision Coverage)
score [14]. Another automatic-based testing
technique (ATCG) is proposed by Arvinder Kaur et
al (2018) that utilizes UML collaboration diagram
to generate test cases. An algorithm has been
introduced for generation of graphs from
collaboration diagrams ensuring full path coverage.
By traversal the graph, test cases are generated,
restrict the path selection to minimal and avoid
duplicate or unbounded path selection [15]. Using
hybrid solutions, Shah et al (2019) have proposed a
methodology to generate test cases from class and
sequence diagrams. A survey has been conducted in
this paper to evaluate the proposed framework [16].
Another approach for integration testing is
proposed by Yi Sun et al. (2019) based on
collaboration diagram and logic contracts, an
intermediate model called execution tree of
components built as component specification, then
test cases are automatically generated through
contract solving technology [17]. The literature
shows that (1) A model-based testing approach
mainly concentrate on a small boundary of the
system, a model of the complete system behavior is
not often exist and likewise, an overall evaluation
of the system using model-based testing is missing.
(2) Only few researchers execute an abstract test
case generation step that can be used for generating
generic and reusable test cases, which are unable to
overcome the pesticide paradox.

Another testing approach depends on generating
random sampling from the input space of the
program under test [18]. Adaptive random testing
(ART) has been proposed by Chen et al. (2017) to
improve fault-detection effectiveness of random
testing by evenly spreading random test inputs
across the input domain. ART makes use of
distance measurements between consecutive inputs

[19]. To overcome the problems of previous tools
which are not dealing with objects and methods of
multiple classes. Jinfu Chen et al (2017) proposed
a more generic distance metric known as, the object
and method invocation sequence similarity
(OMISS) metric, which facilitates integration
testing of OOS [19]. The overhead caused by the
computation of the distance metric makes ART less
effective than pure-random approaches, questioning
its practical effectiveness [20]. Marko Dim a sevi et
al. (2018) proposed a hybrid approach that
integrates dynamic symbolic execution and
feedback-directed random testing into an algorithm
for automatic testing of object-oriented software.
The main limitation of the proposed approach is the
non-applicability for integration testing [21]. Hanyu
Pei et al (2019) have compared the performance of
DRT through a more comprehensive study
compared with previous works, in which more
metrics are adopted in the experiments [22]. In the
final, an absolute disadvantage of random testing is
that randomly generated test cases are in general
difficult to interpret; consequently, a considerable
effort is required to understand them and to write
meaningful oracles [23]. For deriving testing
execution to specific code blocks, a symbolic
execution analysis approach is proposed [24]. The
main limitation of traditional symbolic execution
often leads to an exponential number of paths those
result in constraint solver termination [25]. Another
approach is proposed for overcoming the
limitations of symbolic execution and test
automation is Dynamic Symbolic Execution (DSE)
[26]. DSE techniques for object-oriented systems
have been implemented in tools like jCUTE(Java)
[27] and Pex (.NET) [28]. Also to overcome the
limitations of symbolic execution is combined with
fuzz testing [29]. Symbolic fuzzing framework
using S2E symbolic execution engine to quickly
reach more code areas without getting lost in a
large execution tree proposed by Chao-Chun Yehet
al(2015) [29].

To limit path explosion in hybrid testing, Bin
Zhang et al (2018) proposed a novel Lazy
concretization of the symbolic pointer (LCSP) to
operate states forked from symbolic pointers [30].
Search heuristic techniques combined in dynamic
symbolic execution to reduce path explosion [31].
Sooyoung Cha et al (2019) proposed a new
approach for dynamic symbolic execution. It
combines a parametric search heuristic and a
learning algorithm for finding good parameter
values [31]. Sooyoung Cha et al (2021) in [32]
presented a technique to generate an algorithm that

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2774

efficiently finds an optimal heuristic to overcome
the limitations of manually generating search
heuristics. The main problem of Symbolic
execution, is the shortage of processing real-world
code, especially, assessing path feasibility and
explosion (path constraint cannot be solved).
Researchers attempt to mitigate these problems by
leveraging dynamic symbolic execution with other
techniques, such as search heuristic, machine
learning. Hybrid testing can be seen as an instance
of the general framework of search-based software
testing/engineering [33]. Search-based testing
approaches examine testing process as a searching
problem by implementing meta-heuristic search
algorithms for test cases generation [33]. Sina
Shamshiri et al. (2017) compared in their study
between the efficiency of evolutionary algorithms
(including a genetic algorithm and chemical
reaction optimization) and random search
techniques in unit test suites generation. The study
asserted that the difference between the two
techniques is not large [34]. Snehlata Sheoran et al
(2019) proposed an artificial bee colony algorithm
to discover and prioritize the definition-use paths in
code-based testing which are not definition-clear
paths [35]. Madhumita Panda et al. (2020) proposed
a hybrid FA-DE framework complete transition
path coverage; using UML behavioural state chart
model along with the hybrid Firefly algorithm (FA)
and Differential Algorithm (DE) [36].
Implementing search-based testing techniques in
integration tests needs great efforts to solve several
issues, such as the combinatorial explosion of
conditions or pre-condition failures [37]. An
automated test case generation presents the main
pesticide paradox; it performs the same every time.
Given the iterative nature of system development,
the growth of systems leads to test case generation
to take place multiple times during a system
development project. Automated test case
generation can be improving the confidence hazards
and repeat tests many times. But, to perform
automated test case generation precisely; needs
assuring that a sufficient combination of human
testing is involved in testing process. The tester
faces difficult to maintain brittle scripts, test data
and test frameworks that requires updates
frequently when the software under test alters.

Few researches have studied in the direction
of developing ontologies to improve software
testing phase. Josip Bozic et al (2021) proposed
ontologies based web testing approach that
combines knowledge about common attacks and
the system under test. The proposed approach
depends on transforms ontologies into input
models to generate abstract test cases that can be
converted to concrete test cases [38]. Franz
Wotawa et al (2020) proposed environment
ontology based testing by converting ontologies
into input models and using a combinatorial
testing algorithm for deducing the test cases
[39].

So, there has been no specific study that
focused on developing an automated dynamic test
case generation approach for overcoming pesticide
paradox in inter-class testing based on ontology
building. Verma et al (2010) describe how a
collection of semantic models may help to automate
steps in the development process. By defining
semantic representation of knowledge in ontology,
tools used in different phases can communicate
knowledge across phases [40]. This Research
proposes using ontology to annotate the Test Model
with semantic information. In addition, the
ontology of application domain and the system
behavior can support a smarter retrieval of test
cases based on this semantic information.

3. THE PSCCOTM APPROACH

The testing phase is an iterative process of
tasks, debugging, modifying program code and,
testing again. The laborious process of testing
object-oriented applications was motivated to
develop a new approach to improve pesticide
paradox in testing applications. In this work, a new
set of testing phases are developed that help the
user to regenerate the steps easily with the required
modification to uncover a defect. It generates an
executable test suite in five phases. Figure 1
illustrates the phases of the proposed approach, and
their inputs and outputs.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2775

Figure 1: Phases of the Proposed Approach

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2776

3.1 Generation of Behavioral PSCCTM test
model for Object –Oriented Software

The first phase in the approach is an attempt to
develop a standard modeling technique to generate
the test model for any software implementing
Object-Oriented characteristics. The interactions
between collaborating objects need to be tested to
ensure the correct functionality of the system. The
proposed test model includes information about
interactions among objects, state transitions within
objects, inheritance relationships, and polymorphic
methods under system testing. Therefore, the
proposed test model will combine four diagrams in
order to reveal different kinds of information,
which is provided by each diagram. It uses a use
case diagram, a collaboration diagram, a class
diagram, and statechart diagrams. In previous work,
the augmentation of collaboration diagram with
objects states was already done [41]. This research
proposes the calling of a class diagram of a system
to capture inheritance relations and polymorphic
methods for a complete and coherent description of
the system. In the first step for the construction test
model, the collaboration diagram will be
transformed into a message collaboration graph
according to the sequence of messages.

The graph begins with a null vertex that models an
external message. The vertex in the test model

represents an object and each arrow represents a
message. Each object in the test model can be
represented as a modal vertex or non-modal vertex
according to the states of the object. If the object
has only one state, the object will be represented as
the vertex of the non-model class in the test model.
Vice versa, if the object has many states in the
Statechart diagram, the object, in this case, will be
represented as the vertex of modal class in the test
model. In the second step, the Statechart diagrams
will be added to the test model according to its
corresponding objects in the collaboration graph.
In the third step, abstract classes are extracted from
the class diagram according to involved classes in
the collaboration graph. The vertex in the test
model will be extended according to the inheritance
relationship described in the class diagram. Figure
2 shows the framework of the general procedure to
create the test model. Before the test model
construction, it is assumed that all UML diagrams
are consistent.

Figure 2: Framework of Proposed Test Model for Object Oriented Software Testing.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2777

3.2 Building PSCCOTM Behavioral Model
Ontology of Test Model

In this phase, behavioral model ontology is built for
the ontological representation of the PSCCOTM
test model of the system under test and saved in
RDF\XML file format. Ontology absolutely defines
the concept in a field, the characteristics of
properties, attributes, as well as specific constraints
related to the described concept [42]. Based on the
domain knowledge defined by the ontology,
coverage criteria are formalized to generate
appropriate test objectives for test cases generation.

 The notion for mapping between UML and Owl
must be formalized. The proposed notation is
described as follows:

 In the UML, the class is represented as U(C),
the attribute is represented as U (A), and the
relation is represented as U(R).

 In OWL the class is represented as O(C), the
data type property is represented as O (A),
and object property between classes is
represented as O (E1OE2).

Based on the Ontology Definition Metamodel
(ODM) [41], which is a specification adopted by
the OMG, the test model elements are mapped to
the OWL elements. Table 1 summarizes an
overview of transformations rules for mappings the
UML test model representation into the OWL
representation.

Table 1: Mapping of the Test Model Elements into OWL
Ontology Elements

The Test Model
structure Element

Representation in OWL

Class in test model transformed into OWL class
respectively

The Abstract Class
component represents the
class that has the
inheritance relationship
and polymorphic
methods.

Add class O(C) and class
O(Ci)which is a subclass of
class O(C).

Attribute of the class
Transformed into Data Type
Property of the Owl class

Message Details as
simple attributes

The message details are
transformed in OWL
Ontology as the attributes of
the message Association class
using data type property.

states and state
transitions of each model
class

Treat states and state
transitions of each model
class as separate classes and
connect them with the base
model class through

The Test Model
structure Element

Representation in OWL

the"Object Property" axiom.

Message links in
PSCCTM test model

Considering the Message link
as association class with
attributes:-

•An OWL class (named
message association class)
with instances of the class for
each message.

•Object property chains
between the different classes
connected to the association
class

3.2.1. The defined coverage criteria for test
model ontology

Based on PSCCOTM ontology construction various
coverage criteria are proposed for test paths
generation:-

 Message association coverage criterion: This
criterion ensures that each instance of message
association class in RDF/XML file is tested
once. It can be used only to check if the
interactions between classes are taking place
correctly.

 All-state transition class coverage: This
criterion will be implemented by traversing all
instances for each state transition class in
PSCCOTM ontology revealing invalid
transitions within state transitions classes. The
number of test paths in this criterion is
determined by the product of the instances of all
state transitions classes. The classes that have an
inheritance relationship will be seen as one
vertex in the PSCCTM model, as child classes
of abstract class will have the same transitions.

 All transitions and generalization coverage
criterion: This criterion will be implemented by
traversing the all instances for each state
transition class in child classes of PSCCOTM
ontology thus ensuring that all child classes and
all state transitions are tested at least once. This
criterion is used to reveal invalid transitions
within inheritance relations. The number of test
paths in this criterion is decided by the product
of maximum number of child classes for
abstract classes by the number of test paths for
All-State Transition Instances Coverage
criterion.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2778

3.3 Generation of Test Paths Algorithms

In this phase, the proposed approach aims at
defining a correspondence between test model
constructs and the defined coverage criteria. This
phase consists of three steps; the first step detects
test objectives predicates, parameters based on the
constructs of PSCCOTM test model ontology, and
defined coverage criteria. The second step
generates test paths algorithms for the manipulation
of RDF/XML file to generate the test paths. In the
second step, the detected test objectives are used as
input of the test paths algorithms. In the third step,
Test objectives and test paths algorithms can be
altered (predicates, parameters, or algorithms)
according to system modifications to overcome
pesticide paradox without the need to modify all the
steps to generate the test suite.

3.4 Generation of Test Suite

In this phase, test case is generated for
each test objective and added to the partially
generated abstract test suite. To decide whether test
case is already satisfied by test case generator or
not is checked by redundancy elimination operation
to avoid duplication of test cases. After that the
partially generated abstract test case will be saved
in database for efficient storage, retrieving, and
modifications. Abstract means that it is
implementation-neutral and programming-
language-neutral, depending merely on the
PSCCOTM ontology constructs. A test case is
specified by a list of steps. A Step is described by
the attributes of message association class that
change the state of the receiver class, and its
corresponding state-transition of the Statechart
diagram, as illustrated in figure 3.

Figure 3: Activity diagram representing steps of test case generation.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2779

3.5 Execution of Test Suite

Test path are parsed by extracting
instances of expected outcome class in PSCCOTM
ontology to identify the state transitions of model
classes and their Expected of Instance Variables.
The actual data of execution are extracted from the
log file of the system under test. The Expected of
Instance Variables is compared with Actual of
instance Variables to identify the result of the test
case. If any instance variable of any receiver class
of model type is not in the required resultant value
after execution, the corresponding test case is
considered to have failed.

Figure 4: Screenshot of PSCCOTM tool.

4. PSCCOTM IMPLEMENTATION

The PSCCOTM prototype tool was
developed based on the ontology-based approach
described in the previous section for manipulation
of RDF/XML file. The PSCCOTM tool consists of
three major modules: (1) Test objective detection,
(2) Test case generation, and (3) Test suite
Execution. The screenshot in Figure 4 shows the
interface of the PSCCOTM tool. The following
subsections describe the functionality of this tool.

4.1 Test Objective Detection Module

Since instances of message association
class are the main ontology constructs in the test

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2780

case generation process. The PSCCOTM tool gave
them great attention to decide the sequence of
extracting them from the RDF/XML file. The
PSCCOTM tool relied on the system.XML library
in C sharp language to detect test objectives. The
process begin with creating an object of XML
document class to store the nodes of the ontology
file, after that, the RDF/XML of the PSCCOTM
ontology is loaded using the load method in the
XML library. Using the name of the node method,
the nodes of the document are searched and
extracted which are stored in the following
properties:-
Sequence_Number,Message_Name,Sender_Class,R
eciever_ClassNam,Reciever_ClassType,Transtion_
Name,Transtion_State From, Transtion_state_to. B.
 Test case Generation Module

4.2 Test Case Generation Module

This module mainly is concerned with
building message expression for each test case step.
Test_Case_Generator module has three main
classes to cover detected test objectives: message
association class, state transition class,
Generalization transition class. Based on the
sequence of interactions in the PSCCOTM test
model, instances of message association class will
be extracted including state transitions for each
receiver class of a type model class.

A test path generation algorithms for
detected test objectives are discussed in the
following subsections:-

4.2.1. Message association coverage algorithm

The routine takes RDF/XML file of

PSCCOTM ontology and detected test objective as
an input and returns single test path that ensures
that each instance message of message association
class in PSCCOTM ontology extracted once. In the
algorithm below, Lines 5 to 23 generate a test path
by extracting all instances of message association
class using two methods:-

 Child node. Name method to fetch the name of

node.
 Child node.InnerText to fetch the value of the

node.

Transition states of modal classes are picked up by
calling two functions:-
 GetTransitionStateFrom(transtion_name):To

capture the source state of state transition.
 GetTransitionStateTo(transtion_name):To

capture the destination state of state transition.

 The pseudo code below shows the

algorithm for Message-Association Coverage.

Algorithm 1: test path generation for Message Association Coverage criterion
1 Input R: RDF/XML file
2 Output MASeq: Single Test Path(MASeq)

3 Declare MPSeq: A sequence (OCL 1.5) of message properties
in R(Sequence_number, Message_Name, sender_class, receiver_class_name,
receiver_class_type, transtion_name, transtion_value)
 Xml Document doc = new Xml Document;
4 doc.load(RDF/XML file)
5 foreach node in doc
6 If (node. Name=="owl:NamedIndividual(MessageAssociationClass)"
7 foreach (child node in node.Child Nodes)
8 If (child node. Name == "Receiver_Class")
9 Reciever_Class_Name = child node.InnerText;
10 foreach (receiver node in doc.Child Nodes)
11 if (receiver node.Name == Reciever_Class_Name)
12 Receiver_ class _type = receiver node.ChildNodes[1].InnerText;
13 else if (child node.Name == "Sequence_number")
14 Sequence_number = child node.InnerText;

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2781

15 else if (child node.Name == "Message_Name")
16 Message_Name = child node.InnerText;
17 else if (child node.Name == "Sender_class")
18 Sender_class = child node.InnerText;
19 If (! (Reciever_ class _type. Contains("NonModelClass"))
20 transtion_name = GetTransitions(Reciever_Class_Name)
21 transtion_value = GetTransitionValue(transtion_name)
22 transtion_state_from = GetTransitionStateFrom(transtion_name)
23 transtion_state_to = GetTransitionStateTo(transtion_name)
24 inserAt(test_cases_list,MPSeq)
4.2.2. State transition class coverage

algorithm

The routine takes RDF/XML file of

PSCCOTM ontology as an input and returns a set
of test paths as an output. The loop at line 9
executes for number of transition classes in a
PSCCTEM ontology that has maximum number of
transition instances. The loop in line 11 used to
achieve combinations between state transitions
instances of model classes. Lines 18 to 26 returns
all instances of message association class according
to message sequence number.

Lines 27 to 31 complete steps of each test
path by fetching state transitions data. The line
number 28 retains the data of state transitions of
test case in case_details variable to be used in
redundancy elimination operation. The last line in
the algorithm stores the generated test paths in
database table. The processed algorithm is shown
in the following.

Algorithm 2: test paths generation for State Transition Property Coverage criterion
1 Input melst: A messages list
2 Output MPSeq: A sequence of test paths
3 Declare MPSeq: A sequence of message properties(Sequence_number, Message_Name,
sender_class, receiver_class_name, receiver_class_type, case_transition, transtion_value,
transtion_state_from, transtion_state_to)
4 Xml Document doc = new Xml Document;
5 Doc.load(RDF/XML file)
6 for (i=1 to MessagesList.Count)
7 if (MessagesList [i].Value> largest_transition_count)
8 largest_transition_count = MessagesList [i].Value
9 for (no = 1 < largest_transition_count + 1)
10 //get state transitions for all receiver classes in test case
11 For (int index = 0 < MessagesList. Count - 1)
12 main_receiver_name = MessagesList [2, index].Value
13 main_receiver_type = MessagesList [3, index].Value
14 main_sequence_number = messageslist [0, index].Value
15 if (!(main_receiver_type.Contains("NonModelClass")))
16 foreach (t in get_transitions(main_receiver_name)
17 // get steps of each test case
18 for (int step = 0 < messageslist.Count)
19 Sequence_number = messageslist[0, step].Value
 Message_Name = messageslist [1, step].Value
 sender_class = messageslist [2, step].Value
 receiver_class_name = messageslist [3, step].Value

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2782

 receiver_class_type = messageslist [3, step].Value
20 If (! (receiver_class_type. Contains("NonModelClass")))
21 if (receiver_class_name == main_receiver_name
 && main_sequence_number == Sequence_number)
22 Case_ class = main_receiver_name
 case_trans = t
23 Else
24 case_class = receiver_class_name
 case_trans=Get_Class_transition (receiver_class_name, no)
25 Else
26 case_class = receiver_class_name
27 case_transition=""
 transtion_state_from = ""
 transtion_state_to = ""
 transtion_value = ""
28 if (!(case_transition == ""))
29 case_details = string.Concat(case_details,":" , case_transition)
30 transtion_value = GetTransitionValue(case_transition)
31 transtion_state_from= GetTransitionStateFrom(case_transition)
32 transtion_state_to= GetTransitionStateTo(case_transition)
33 insert At(test_case_table, MPSeq)

4.2.3. All transitions and generalization

class coverage algorithm

The routine takes RDF/XML file of

PSCCOTM ontology as an input and returns a
set of test paths as an output. The condition at
line 11 gets largest number of child classes for
abstract classes in PSCCOTM ontology,
according to that number, the number of test
paths identified. Lines 35 to 40 fetch child class
of receiver classes to be calling in test case. The
line of number 44 retains the data of test case
transitions in case_details variable to be used in
redundancy elimination operation.

The last line in the algorithm stores the generated
test paths in database table. The processed
algorithm is shown in the following.

Algorithm 3: test paths generation for All Transitions and generalization Property Coverage
criterion

1 Input melst: A messages list
2 Output MPSeq: A sequence of test paths
3 Declare MPSeq: A sequence of message properties(Sequence_number, Message_Name,

sender_class, receiver_class_name, receiver_class_type, case_transition, transtion_value,
transtion_state_from, transtion_state_to)

4 Xml Document doc = new Xml Document;
5 Doc.load(RDF/XML file)
6 for (i=1 to MessagesList.Count)

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2783

7 if (MessagesList [i].Value> largest_transition_count)
8 largest_transition_count = MessagesList [i].Value
9 for (i=1 to MessagesList.Count)
10 if (MessagesList [i].Value> largest_childs_count)
11 largest_childs_count = MessagesList [i].Value
12 for (int child_index = 0 < largest_childs_count)
13 for (no = 1 < largest_transition_count + 1)
14 //get state transitions for all receiver classes in test case
15 for (int index = 0 < MessagesList. Count - 1)
16 main_receiver_name = MessagesList [2, index].Value
17 main_receiver_type = MessagesList [3, index].Value
18 main_sequence_number = messageslist [0, index].Value
19 if (!(main_receiver_type.Contains("NonModelClass")))
20 foreach (t in get_transitions(main_receiver_name)
21 // get steps of each test case
22 for (int step = 0 < messageslist.Count)
23 Sequence_number = messageslist[0, step].Value

 Message_Name = messageslist [1, step].Value
 sender_class = messageslist [2, step].Value
 receiver_class_name = messageslist [3, step].Value
receiver_class_type = messageslist [3, step].Value

24 If (! (receiver_class_type. Contains("NonModelClass")))
25 if (receiver_class_name == main_receiver_name

 && main_sequence_number == Sequence_number)
26 Case_ class = main_receiver_name

 case_trans = t
27 Else
28 case_class = receiver_class_name

 case_trans=Get_Class_transition (receiver_class_name, no)
29 If (! (receiver_class_type. Contains("NonAbstractClass")))

30 if (get_child(case_class).Count <= child_index)
31 case_class = get_child(case_class)[child_index - 1]
32 Else
33 case_class = get_child(case_class)[child_index]
34 Else
35 case_class = receiver_class_name
36 case_transition=""

 transtion_state_from = ""
 transtion_state_to = ""
 transtion_value = ""

37 if (!(case_transition == ""))
38 case_details=string.Concat(case_details,":",case_class+ case_transition)
39 transtion_value = GetTransitionValue(case_transition)
40 transtion_state_from= GetTransitionStateFrom(case_transition)
41 transtion_state_to= GetTransitionStateTo(case_transition)
42 insert At(test_case_table, MPSeq)

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2784

4.2.4. Redundancy elimination operation

A redundancy elimination operation uses clear
duplicate () function to check whether test cases
are already satisfied by test case generator or not.
A test case is preserved by the test suite if a test
case that satisfies the test objective already holds
in test cases table. The parameters of generated
test cases are hold in test cases table as
case_details. The case_details of the test case are
defined by the attributes of case_class to retain
the name of child class, and case_transition to
retain the name of state transitions. Using

check_case () method to check whether if the
case_details already exist in test cases table or
not. After the test case is generated the
check_case method is called by passing
case_details parameter. The Boolean flag
case_exist will return true, if case_details exists
otherwise will return false. The figure 5
illustrates the flowchart of redundancy
elimination operation.

Figure 5: Flowchart of Redundancy Elimination Function

4.3 Test Suite Execution Module

In test executor tab, list of test cases

IDS appeared based on selected coverage
criterion, as illustrated in figure (6). According to
selected test case, a concert test case steps will be
loaded with expected values of instance variables
loaded from Expected_Outputs class in
PSCCOTM ontology.

 The Test Executor executes concrete

test cases by filling the test data in the function
calls of test paths. Each test case is then executed
on the implementation and the execution results
are logged in the file to read by PSCCOTM tool
for comparing the results of a test run with the
expected results.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2785

Figure 6: GUI for Test Executor with Case Study of Type State Transitions Property Selected.

5. EVALUATION

This section introduces an evaluation of
the PSCCOTM approach based on implemented
case study. First, the PSCCOTM test model,
ontology, and test suite will be generated for the
system under test. Second, the initial evaluation
of the approach will depend on executing
mutation testing to measure the efficiency of the
test cases in actual testing of software, and then
the approach is compared with test method in
[13] to evaluate the fault detection ability of the
approach. In the final section the importance of
the proposed approach is indicated.

5.1. The Case Study

In this section, the PSCCOTM test
model and ontology of online shopping portal
will be implemented based on the following
scenario:
1. Register an account for the customer by site's

administrator.
2. Create a new member for the customer.
3. Log in to the portal system by the customer.
4. The member after login can search catalogue

for the items.
5. The customer can edit and submit the final

cart.
6. Check out and make a payment.

7. The site's administrator can update different

items in the product.
8. The system will Send a hard copy receipt or

email a soft copy receipt to the customer.
9. Deliver the item to the customer.

5.1.1 Test model for online shopping portal

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2786

The PSCCOTM test model of the Online
Shopping Portal is generated from collaboration
graph and Statechart diagrams.
 Then, inheritance information of the
corresponding classes in the collaboration graph
is extracted from class diagram to be used in
creating PSCCOTM test model. In this step the

test model is augmented with inheritance and
polymorphic information captured from class
diagram, as shown in figure (7).

Figure 7: PSCCOTM Test Model for Online shopping Portal

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2787

5.1.2 PSCCOTM ontology for online
shopping portal Online

 Shopping portal Ontology defined as
classes, subclasses; Relationship between
classes implemented using web interface of
Protégé. The structure of the Online shopping
portal ontology is depicted as follow:-
 Base class named Thing contains all classes.
 Sibling class named sender class contains

classes that send the messages.
 Sibling class named receiver class contains

classes that receive the messages.

 Sibling class named message association
class contains the message expression
attributes of the relation between classes.

 Sibling class named state class contains
model classes with their states.

 Sibling class named transition class contains
state transitions of model classes. Figure (8)
illustrates the structure of the online shopping
portal.

Figure 8: Class hierarchy of PSCCOTM ontology for Online shopping Portal.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2788

To validate the semantic consistency
of the generated ontology, graphical
representation of the portal ontology obtained
using the plugin OntoGraf protégé to show the
hierarchy of the test model. As shown in
figure(9), there is object property called send
message, the domain of the property is
sender class, and the range of the property is
message association class. Another object
property is receiving message, the domain
of the property is message association class
and the range is receiver class. Also, there is
object property with name has state between
receiver class and state class, the domain of the
property is receiver class, and the range is
state class. Finally, there are two object
properties with name from and to between state
class and state transition class to represent the
source and destination states of state transition.

Also, in the figure there is individual of
message association class called update
product message with two object properties;
send message and receive message. The
domain of the send message object property is
the instance of the portal'sAdmin class as sender
class and the range of the receive message is the
instance of product class as receiver class. Table
2 shows the number of state instances and
transition instances for shopping Portal
Ontology.

Figure 9: Graphical Representation of Online Shopping Portal Ontology.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2789

Table 2: State Instances and Transition Instances for Portal Ontology.

5.1.2.1 Defined coverage criteria for online

shopping portal ontology

Based on PSCCOTM ontology constructs
shown in table 2 numbers of coverage criteria are
formalized to perform the needed level of
testing.
 Message Association Coverage Criterion:
This coverage criterion generates single test path
from RDF/XML file. This criterion ensures that
each message in an end-to-end sequence of
messages in collaboration is tested once.
However, this is the weakest coverage criterion
and can be used only to check if the interactions
between classes are taking place correctly.

 All State Transition Instances Coverage
Criterion: This criterion will be implemented by
traversing all instances of each state transition
class in shopping portal ontology, by taking in the
account the probability of combinations between
state transitions of model classes. The number of
test paths in this criterion is determined by the
product of the instances of all state transitions
classes. The inheritance relationship will be
treated as one vertex in the PSCCOTM ontology.
Therefore, there are 1*1*1* 2*2*1 * 2 *1*1=8
test paths for this criterion.

 All Inheritance and All transitions
Coverage Criterion: This criterion will be
implemented by traversing all instances of
transition classes and the all child classes of
abstract classes in the portal ontology thus asserts
that all child classes and all state transition

instances are traversed at least once. The number
of test paths in this criterion is calculated by the
product of maximum number of child classes for
inheritance relation by the number of state
transitions instances for state transition classes in
the PSCCOTM ontology. The maximum number
of child classes are two, and number of the
product of all instances of state transitions are
eight. Therefore, there are 2*8 =16 test paths for
this criterion.

5.1.3 Test suite generation

The PSCCOTM tool takes the PSCCOTM
ontology of the online shopping portal as an
input, while the output is a set of test paths for
detected test objectives. Examples of Generated
Test Paths for these objectives:

5.1.3.1 The Message Association Coverage

This coverage will produce only test path to
ensure the correctness of the interactions
between classes regardless of the state transitions
of objects and generalization relations, GUI for
the generated test path illustrated in figure 10.

Class

Name

Structure of Portal Ontology

Child Classes Instances of Message

Association Class

Number of
state

instances

Number of
transition
instances

Portal's Admin
----------- register()

log-in ()
2
2

1
1

Portal's
User

VIP
Regular

New User() 1 1

Product
----------- Search ltem()

Remove Item()
2
2

2
2

Shopping Cart ----------- Submit Cart() 1 1

Payment
Credit
PayPal

Check Out ()
2
2

2
2

Receipt
Hard Copy
Soft Copy

Send Receipt()
2
2

1
1

Shipment ----------- deliver () 1 1

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2790

Figure 10: GUI for Generating Test path of Message Association Coverage.

5.3.1.2 State transitions class coverage
This coverage will generate 8 paths

according to instances number of state transition
classes.
GUI for the generated test cases illustrated in
figure 11.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2791

 Figure 11: GUI for Generating Test cases of State transitions class Coverage.

5.1.3.3 All transitions and generalization
coverage

This coverage will generate 16 paths

according to the maximum number of child
classes' for inheritance relation product by the
maximum number of state transition instances of
state transition classes.

GUI for the generated test cases illustrated in
figure 12.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2792

Figure 12: GUI for Generating Test cases of State transitions and Inheritance Coverage.

5.2 Experimental Setup

Mutation testing is executed by planting

faults using mutation operators. This technique is
employed for evaluation testing methods and has
been asserted that, its yield useful results [44].
For implementing mutation testing, eight
different types of mutation operators were used
to plant faults [45]. The criteria for mutation
operators selection is the ability to detect the
interfacing faults, which are uncovered by
interactions between classes. 40 instances of the
program (mutant programs) were produced,

with each instance consisting of only one planted
fault. Note that 8 random test suites produced for
the selected coverage criteria to capture the
combinations between the instances of all state
transition classes in PSCCOTM ontology. The
number of mutants killed for the selected 8 test
suites is represented in Table 3 accompanied by
the number of paths tested.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2793

Table 3: Number Of Mutants Killed In Each Test Suite

Proposed Test
Objective

Mutant Scores
for each of the 8
randomly chosen

test suites

Number
of test
paths

Message
Association
Coverage

27, 28, 30, 29,
27, 28, 29, 27

1

All-State
Transition
Instances
Coverage

31, 35, 35, 35,
35, 37, 37, 37

8

All inheritance
and All-State

Transition

39, 40, 35, 35,
40, 40, 38, 38

16

In online shopping portal case study, for
the selected three test objectives, table 4
summarizes the results by providing the
minimum, average, and maximum number of
mutants killed by each test objective within the 8
randomly generated test suites. The minimum is
computed by getting the lowest value of mutant
score of each coverage criterion divided by 40
(the total number of planted mutants). For
example, the lowest value of mutant score for
message association coverage is 27, which is
divided by 40 to get the minimum 67.5% of
mutant detection. For the average percentage of
mutant detection, the average number is
calculated first divided by the total number of
seeded faults. The maximum percentage is
calculated by taking the largest number of
mutant score divided by the total number of
seeded faults.

Table 4: Mutation Score Against Test Objective

Evaluation
Criteria

Test Objective

Message
Association
Coverage

All-State
Transition
Instances
Coverage

All
Inheritance
and All-State
Transition

Minmum
67.5
%

77.5% 87.5%

Average
64.06
%

77.18% 95.3%

Maximum
75% 92.5% 100%

5.2.1 Test Results and Discussion

 Message Association coverage: The message
association coverage criterion is able to detect
from 27 to 30 faults out of a total of 40 faults.
Message association coverage is able to detect all
types of faults, but it cannot completely detect all
faults that are seeded in the inheritance classes.
The selected path may not cover all child classes
which contain the inserted faults.

 All-State Transition Instances Coverage:
This criterion produced a better result that
showed a 13.12% increase in fault detection on
average than message association Coverage. All-
state transition instances coverage detected all
types of faults as well, except child classes which
contain the inserted faults. Depending on the
generated test paths and randomly selected test
suites, the total number of detected faults ranged
from 31 to 37 faults.

 All inheritance Coverage and All-State
Transition Instances: For this criterion, the total
number of detected faults ranged from 35 to 40.
This criterion is supposed to be an acceptable
compromise for those numerous occasions when
all-path Coverage is cost- or time- prohibitive.
The test result reveals that Coverage produced a
better result than previous coverage criterion by
an average of 18%.

The results of validation of the proposed
approach show that, all types of inserted faults
can be detected by the generated test paths using
the PSCCOTM tool. Such test paths consisted of
all instances of message association class in the
PSCCOTM ontology that are not mutually
exclusive. By considering the combinations
between state transitions of objects, such state
faults could be completely detected depending on
the proposed coverage criteria.

All test suites generated by message association
coverage detected 64.06%% of faults on average;
All-State Transition Instances Coverage detected
77.18% of faults on average; All inheritance and
All-State Transition coverage criterion detected
95.3% on average. Figure 13 depicts a bar chart
representation of the minimum, average and
maximum mutation scores for each test objective.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2794

 PSCCOTM approach is an ontology based
approach to store test model elements.
PSCCOTM approach is implemented through
ease of use tool that manipulates ontology file
of type RDF/XML to generate abstract test
suite.

 The PSCCOTM tool was implemented
through a user-friendly interface that supports
defined coverage criteria and ease of use.

 Regarding using Unified Modeling Language
(UML), PSCCOTM approach uses UML for
building test model.

 Regarding automation, PSCCOTM tool
depends on an internal Generator and
Executor modules to automatically generate
and execute test cases from RDF/XML file.

 Although the [13] can detect from 85% of
mutants on maximum, the All
generalization and All-State Transition
coverage criterion in PSSCOTM approach is
able to detect 100% of mutants.

Table 4 : Comparison Of Psccotm And Automated

Test Approach

Figure 13: Mutation Score against Test Objective.

5.2.2 PSCCOTM And ATCG

To validate the PSCCOTM approach, the

approach is compared with test approach in [13]
to evaluate the fault detection ability of the
PSCCOTM approach. The comparison between
them is based on standard evaluation criteria
formulated by Havva Gulay Gurbuz1&Bedir
Tekinerdogan (2017) [46] as shown in Table 4,
the comparison results can be illustrated as
follows:

Since the PSCCOTM focuses not only on

integration testing as in [13] , but also, it
focuses on faults that are caused by
generalization , polymorphism and the objects
in the correct states. The comparison is showing
that the proposed approach has powerful
capability in mutant detection for object oriented
characteristics (abstraction, inheritance, and

polymorphic methods). In the experiment, the
selected test paths of third coverage criterion are
covered all possible combinations of state
transitions in selected child classes. This is
obvious by reading the percentage mutant
detection on maximum, the percentage of mutant
detection in third coverage criteria on maximum
is 100% for selected test paths. The evaluation of
the proposed approach indicates that, the
pesticide paradox at great extent can be
eliminated using it. Test cases can be easily
updated according to system modification with
effective fault detection.

5.3 PSCCOTM And Related Work

Criteria PSCCOTM Approach
[13] automated based
Approach

Model
specification

Generation of
PSCCTEM test model
based on UML to
capture the functionality
of the system

UsingUMLcollaborati
on diagram that doesn't
reflect all system
picture

Abstract
testcase
generation

Manipulations of
RDF/XML ontology file
to generate the test
paths.

apply this step by
traversing the graph
using algorithm

Type of
generated
test elements

Test suite (test
sequences, and test
oracles are generated
beside of the test cases.)

Test case only

Approach to
generate test
elements

Proposed a ontology -
based testing tool called
PSCCOTM

Algorithm only

Test selection
criteria

Define our own criteria. Not specified

Test case
specification

define test cases
formally

define test cases
formally

Test
execution

done automatically done manually

mutants
killed

100% when complying
with All-State Transition
and All generalization
coverage criterion

Asserted using C1
metric for testing
coverage ,assuming
85% of all faults are
revealed

Message
Association
Coverage

All-State Transition
Instances Coverage

All inheritance and
All-State Transition

Min Avg Max

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2795

According to the results of evaluation of the
PSCCOTM approach, the commonalities and
differences between existing automation testing
techniques and the proposed approach can be
highlighted. With regards to this evaluation,
none of the existing automation testing
techniques have the ability to capture the
characteristics of object oriented software. In
contrary, PSCCOTM approach is building test
model that captures the characteristics of object
oriented software by integrating number of UML
diagrams in test model. The existence techniques
did not have intermediate layer for modeling test
model elements into OWL ontology to eliminate
the needs for refactoring testing tool. In
PSCCOTM, transformation rules are proposed
based on ontology definition metamodel for
building this layer. In addition to that,
PSCCOTM manipulates RDF/XML file of the
ontology to generate test cases automatically.
The PSCCOTM approach defined their own
coverage criteria that have the ability to detect all
errors.

 In most of recent approaches test cases are
executed manually, but in PSCCOTM, test cases
are executed automatically. This is done by
proposed new class in the PSCCOTM ontology
that contains the expected results of execution. A
limitation of PSCCOTM approach, it captures
generalization relations only between classes.
PSCCOTM approach can be extended to capture
multiple inheritances between classes and other
additional relations between classes.

6. CONCLUSION AND FUTURE WORK

This research presented Polymorphism State

Collaboration Class Ontology Test Model
approach (PSCCOTM) that helps the user to
update the test paths easily according to system
modifications for overcoming pesticide paradox
in inter-class testing of object oriented
applications. The PSCCOTEM approach
developed new testing phase that retains
information and knowledge in ontologies for
enhancing the limitations of automation testing
reducing the need for tuning testing tools on
continual basis.

 Domain ontology was constructed, which
described the vocabularies related to a software
engineering domain. The ontology retained the
structure of a Polymorphism State Collaboration
Class Test Model (PSCCTM) by defining the test
model's structural elements and the relationships
between them. In this research, the rules for
transforming UML PSCCTM test model into

behavioral model ontology, proposed based on
the Ontology Definition Metamodel (ODM).
Using defined coverage criteria in the previous
phase, PSCCOTM approach provides flexibility
to define test objectives, which are high-level
descriptions of test cases, according to system
modifications omitting using the same test cases
to overcome pesticide paradox. New tool is
introduced to automate the generation and
execution of test cases. The PSCCTM tool has
three major functions: (1) test objective
detection, (2) the test case generation, and (3)
test suite Execution. PSCCTM tool supported a
graphical user interface for each function. To
detect test objectives, the PSCCOTM tool
depends on the load method in the XML library
for loading RDF/XML of the PSCCOTM
ontology to extract the instances of message
association class. Test paths can be generated
from the test objectives using the Test Case
Generator tab of the PSCCOTM tool as
demonstrated in this work. The Test Executor
executes concrete test cases by filling the test
data in the functions calls of test paths. Each test
case is then executed on the implementation and
the execution results are logged in the
PSCCOTM tool for comparing the results of a
test run with the expected results. Redundancy
elimination operation in PSCCOTM tool is used
to check whether a test case already exists in the
test-suite to avoid duplications of test cases. The
main contribution for the PSCCTEM tool is the
selection subset of all test paths that uncovers all
defects. This is clear by reviewing the percentage
of mutant detection in third coverage criterion on
maximum, which is 100% for selected test paths.
The experimental results of PSCCOTM execution
indicates that powerful ability in generation and
updating of test paths based on defined coverage
criteria. For PSCCOTM ability to detect faults,
the execution results show high percentage of
faults detection.

 Regarding the future work, new cases studies
need to be implemented to confirm the attained
results. Also, PSCCOTM implementation can be
extend to support other types or levels of testing
including system testing, as this work
concentrated on inter-class testing only.
Execution of test cases needs to be enhanced by
prioritizing generated test cases using machine
learning techniques for efficient testing process.

REFERENCES:

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2796

[1] "Software Engineering: Principles and

Practices". 2nd Edition, page number 257.
 [2] V. Basili,B. Perricone, “Software errors and

complexity, an empirical investigation. In
Software engineering metrics”. McGraw-
Hill, Inc., New York, NY, USA, pp.168-183,
1993.

 [3] K.Naik, P.Tripathy, “Software Testing and
Quality Assurance: Theory and
Practice”,2008.

[4] The Software Experts (2008). "Software
Process Models".http://www.the-software-
experts.de/e_dta-sw-process.htm.

[5]Beizer,B.,(1990).“Software Testing
Techniques(2ndEd.)”.Van Nostrand Reinhold
Co., New York, NY, USA.

 [6] S. Singh,A. Kaur,K. Sharma and S.
Srivastava, “Software testing strategies and
current issues in embedded software
systems”. International Journal of Scientific
& Engineering Research, 3(4), 1342-
1357,2013.

 [7] .D.S. Chaudhary, “Defect clustering and
pesticide paradox ”. PIT Solutions Private
Limited,2015.

[8] P.P. Mahadik,M.D. Thakore, “Survey on
automatic test data generation tools and
techniques for ob ect oriented code”.
International journal of innovative research in
computer and communication engineering,
2016, 4(1), pp. 357-364.

 [9] S. Rajvir,S.Anita and B. Rajesh, “Test Case
Generation Tools – A Review ”. International
Journal of Electronics Engineering (ISSN:
0973-7383) Volume 10. Issue 2 pp. 586-596,
2018.

[10]S.Anand,E.K.Burke,T.Y.Chen,J.Clark,M.BC
ohen,W.Grieskamp,M.Harman,M.J.Harrold
and P.M.Minn,“ An orchestrated survey of
methodologies for automated software test
case generation”. Journal of Systems and
Software, 86(8), 2013.

 [11]Q. Zhipeng, W. Lisong, K. Jiexiang, G.
Zhongjie, H. Wang, W. Yin and S. Xiangyu,
“A Method of Test Case Generation Based
on VRM Model”, 2021 IEEE 6th
International Conference on Computer and
Communication Systems (ICCCS), pp. 1099-
1107,2021.

 [12]S. Rajvir,B. Rajesh and S. Anita, “Demand
Based Test Case Generation for Object
Oriented System”, IET Software. 13.
10.1049/iet-sen.2018.5043,2019.

 [13]R.Anbunathan and A. Basu, “Combining
genetic algorithm and pairwise testing for
optimized test generation from UML ADs”,
The Institution of Engineering and
Technology (IET Software). Volume 13,
Issue5,p.423.–433.DOI:10.1049/iet-
sen.2018.5207,Print ISSN1751-8806, Online
ISSN1751-8814, October 2019.

 [14] S.K. Barisal,S.S. Behera and S.
Godboley, “Validating object-oriented
software at design phase by achieving/DC ”.
International Journal of System Assurance
Engineering and Management, Volume 10,
Issue4, pp 811–823: 811.
https://doi.org/10.1007/s13198-019-00815-8,
August 2019.

[15] A. Kaur and V. Vig, “Automatic test case
generation through collaboration diagram: a
case study”. International Journal of System
Assurance Engineering & Management, 9: 1-
15.published at Springer, 2018.

 [16]A. Shah,A. Bukhari,M. Humayun,N. Jhanjhi
and F. Abbas, “Test Case Generation using
Unified Modeling Language ”, In: Proc. of
International Conference on Computer and
Information Sciences (ICCIS)-Ieee, Sakaka,
Saudi Arabia,pp.1-6., 2019.

 [17]Yi. Sun,Y. Xiaohua,L.Jie,Y. Tonglan,X.
Zhuoran,W. Zhiqiang and CH. Zhi,
“Automatic integration testing through
collaboration diagram and logic
contracts”.Journal of Physics: Conference
Series. 1187. 042043. 10.1088/1742-
6596/1187/4/042043,2019.

 [18] M.Vivanti, “Dynamic Data Flow
Testing”. Doctoral Dissertation, Faculty of
Informatics of the Università della Svizzera,
Italiana,2016.

 [19]J. Chen,F.Kuo,Y.T. Chen,D. Towey,C. Su
and R. Huang, “ A Similarity Metric for the
Transactions on Reliability. vol. 66, no. 2, pp.
373-402, June 2017.

 [20] A.Arcuri,L.Briand,“Adaptive random
testing: An illusion of effectiveness”,In
Proceedings of the International Symposium
on Software Testing and Analysis, ISSTA
’11, pages 265–275. ACM, 2011.

[21]M.Dimašević,F.Howar,K.Luckow,Z.Rakamar
ić ,“Study of Integrating Random and
Symbolic Testing for Object-Oriented
Software”, In: Furia C., Winter K. (eds)
Integrated Formal Methods. Lecture Notes in
Computer Science, vol 11023. Springer,
Cham,2018.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2797

 [22]H.Pei,K.ai,B.Yin,P.A.Mathur and M.Xie,
“Dynamic Random Testing: Technique and
Experimental Evaluation”,inIEEE
Transactions on Reliability, vol. 68, no. 3, pp.
872-892, Sept. 2019.

[23]G.Denaro,A.Margara,M.Pezzè,M.Vivant,“Dy
namic Data Flow Testing of Object Oriented
Systems ”. DOI:10.1109/ICSE.2015.104,
Electronic ISBN: 978-1-4799-1934-5,2015.

 [24]C.J. King, “Symbolic execution and program
testing”, Communications of the ACM,
19(7):385–394,1976.

 [25]B.Zhang,C.Feng,A.Herrera,V. Chipounov,G.
Candea and C.Tang, “Discover deeper bugs
with dynamic symbolic execution and
coverage-based fuzz testing ”. IET Software,
vol. 12, no. 6, pp. 507-519, 2018.

[26] T.Chen,X.Zhang,Sh.Guo,H.Li,Y.Wu,
“Dynamic symbolic execution for automated
test generation ”. Future Generation
Computer Systems,Volume 29, Issue 7,
Pages 1758-1773,September 2013.

 [27]https://doi.org/10.1007/978-3-540-79124-
9_10.

 [28]N. Tillmann,J.de Halleux,“Pex–White Box
Test Generation for .NET ”, Lecture Notes in
Computer Science, vol 4966. Springer,
Berlin, Heidelberg, 2008.

 [29] C.Yeh,H.Chung and S.Huang, “ Target-
Aware Symbolic Fuzz Testing”, In. IEEE
39th Annual Computer Software and
Applications Conference, Taichung, pp. 460-
471,2015.

[30]B.Zhang,C.Feng,A.Herrera,V.Chipounov, “
Discover deeper bugs with dynamic symbolic
execution and coverage-based fuzz testing ”,
In IET Software, vol. 12, no. 6, pp. 507-519,
,2018.

[31]S.Cha,S.Hong,J.Kim,J.LeeandH.oh,“Enhanci
ng Dynamic Symbolic Execution by
AutomaticallyLearningSearchHeuristics“.
The Department of Computer Science and
Engineering, Korea University, Seoul,
Korea,2019.

[32] S. Cha, S. Hong, J. Bak, J. Kim, J. Lee and
H. Oh, “Enhancing Dynamic Symbolic
Execution by Automatically Learning Search
Heuristics“,in IEEE Transactions on
Software Engineering, 2021.

[33] P. McMinn, “Search-Based Software
Testing: Past, Present and Future“, in IEEE
Fourth International Conference on Software
Testing, Verification and Validation
Workshops, Berlin, pp. 153-163,2011.

[34] Sina. Shamshiri,M.J. Rojas,L. Gazzola,G.
Fraser,Ph. McMinn,L. Mariani and A. Arcuri,
“Random or Evolutionary Search for Object-
Oriented Test Suite Generation“. Published
online in Wiley InterScience
(www.interscience.wiley.com, 2017.

 [35] S. Sheoran,N. Mittal and A. Gelbukh,
“Artificial bee colony algorithm in data flow
testing for optimal test suite generation“,Int J
Syst Assur Eng Manag, ,2019.

 [36] M. Panda, S. Dash, A. Nayyar, M. Bilal
and R. M. Mehmood, “Test Suit Generation
for Object Oriented Programs: A Hybrid
Firefly and Differential Evolution Approach,
“ in IEEE Access, vol. 8, pp. 179167-179188,
2020, doi: 10.1109/ACCESS.2020.3026911.

 [37]J.E. Rapos,J. Dingel, “ Incremental Test Case
Generation for UML-RT Models Using
Symbolic Execution“, in IEEE Fifth
International Conference on Software
Testing, Verification and Validation,
Montreal, QC, 2012, pp. 962-963,2012.

[38] J.Bozic, Y.Li, and F. Wotawa, (2020).
"Ontology-driven Security Testing of Web
Applications".IEEE International
Conference onArtificial Intelligence Testing
(AITest), pp. 115-122, doi:
10.1109/AITEST49225.2020.00024.11.

[39]F.Wotawa,J.Bozic,andY.Li,(2020)."Ontology
-based Testing: An Emerging Paradigm
for Modeling and Testing Systems and
Software". IEEE International Conference
on Software Testing, Verification and
Validation Workshops (ICSTW),pp.14-
17,doi: 10.1109/ICSTW50294.2020.00020.

 [40]Verma, Kunal | Kass, Alex, “ Model-
Assisted Software Development: Using a
'semantic bus' to automate steps in the
software development process”. Semantic
Web, vol. 1, no. 1-2, pp. 17-24, 2010.

[41]S.Ali,L.C. Briand,M.J. Rehman,H. Asghar,Z.
ZIqbala,A. Nadeem. Muhammad, “ A State-
based Approach to Integration Testing based
on UML Models“. Information and Software
Tech¬nology, vol. 49, pp. 1087-1106, 2007.

[42]C.Calero,F.Ruiz,M.Piattini,“Ontologies in
Software Engineering and Software
Technology“.published by springer, 2015.

[43]“OntologyDefinition Metamodel“,Technical
report, Object Management Group. OMG
Document Number: formal/2014-09-02
Standard Document URL :http:// www. omg.
org/spec/ODM/1.1/.September 2014.

Journal of Theoretical and Applied Information Technology
15th May 2022. Vol.100. No 9
© 2022 Little Lion Scientific

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2798

[44]H.J. Andrews,C.L. Briand, and Y. Labiche,
“Is Mutation an Appropriate Tool for Testing
Experiments“,in proc of the IEEE 27th
International Conference on Software
Engineering (ICSE). St. Louis, Missouri,
USA, pp. 15-21, 2005.

 [45]G. Fraser and A. Zeller, “Mutation-Driven

Generation of Unit Tests and Oracles,” IEEE
Transactions on Software Engineering, vol.
38, no. 2, pp. 278-292,March-April 2012.

 [46]H.G.,Gurbuz,B.,Tekinerdogan,“Model-based
testing for software safety: a systematic
mapping study“. Software Qual J 26, 1327–
1372, 2018. https://doi.org/10.1007/s11219-
017-9386-2.

